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Abstract

In this article, a modeling strategy is proposed that accounts for heterogeneity in nominal responses that is

typically ignored when using common multinomial logit models. Heterogeneity can arise from unobserved

variance heterogeneity, but it may also represent uncertainty in choosing from alternatives or, more gener-

ally, result from varying coefficients determined by effect modifiers. It is demonstrated that the bias in

parameter estimation in multinomial logit models can be substantial if heterogeneity is present but ignored.

The modeling strategy avoids biased estimates and allows researchers to investigate which variables deter-

mine uncertainty in choice behavior. Several applications demonstrate the usefulness of the model.

Keywords

heterogeneous multinomial logit model, heterogeneity, heterogeneous choice model, location-scale model,
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INTRODUCTION

The modeling of heterogeneity in binary and ordinal response models has been a topic

of intensive research. In particular, Allison’s (1999) demonstration that comparisons of

binary model coefficients across groups can be misleading if one has underlying het-

erogeneity of residual variances has stimulated research in the area. Williams (2009),

Mood (2010), Rohwer (2015), Karlson, Holm, and Breen (2012), and Breen, Holm,

and Karlson (2014) have all investigated ways to deal with this problem.

One approach is based on the heterogeneous choice model, in which an explicit

term is included that accounts for variance heterogeneity (see Williams 2009, 2010).

McCullagh (1980) considered an earlier version of the model under the name location-

scale model, but the importance of modeling variance heterogeneity was not recog-

nized until much later. Tutz and Berger (2016, 2017) proposed alternative models to

account for variance heterogeneity in ordinal models. The considered location-shift

models use an additive parameterization unlike the heterogeneous choice model, which

uses a multiplicative predictor. Nevertheless, location-scale and location-shift models
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typically show similar goodness of fit. However, both models assume the response is

ordinal.

CUB-type mixture models (i.e., combination of discrete uniform and binomial dis-

tribution) account for heterogeneity in ordinal responses. These models assume the

observed response results from a mixture of an ordinal response model and an uncer-

tainty component. The latter is determined by a uniform discrete distribution over cate-

gories. It is assumed to represent respondents’ uncertainty. Explanatory variables can

determine the probabilities of the mixture. D’Elia and Piccolo (2005), Iannario and

Piccolo (2010), Iannario (2012), Tutz et al. (2017), and Iannario et al. (2020) all con-

sidered models of this type, and Piccolo and Simone (2019) provided an extensive

overview.

It is surprising that prior work has considered heterogeneity only for ordinal

responses, not for unordered responses. In many surveys (e.g., surveys that cover party

preference), respondents are asked to choose from a set of categories that represent

distinct but not ordered alternatives. In the special case of binary choices, the hetero-

geneous model applies but CUB-type models fail because they work only for more

than two categories. However, for more than two response categories, both types of

model explicitly assume that categories are ordered.

Here, we consider the case of unordered response categories, in which response

categories are mere labels without any inherent ordering. Social scientists use choice

models for this type of response when modeling party preference, for example, or the

choice of brands in economic applications. In such cases, respondents choose from a

set of k categories, which simply represent alternatives. The response is measured on a

nominal scale. Instead of using the numbers 1; . . . , k, any k labels or any permutation

of the numbers could be used. The multinomial logit model (MLM) is the most widely

used model for unordered responses; it models the response probability as a function

of explanatory variables.

A model is proposed that accounts for additional heterogeneity not captured by the

linear parametric terms in the MLM. Heterogeneity is modeled as a function of expla-

natory variables that modifies the response probabilities. Heterogeneity can be inter-

preted as variance heterogeneity but also as respondents’ uncertainty. The resulting

model is a truly multicategorical model, which, in contrast to the classical MLM, can-

not be estimated by considering subsets of two response categories. The main benefits

of the modeling strategy are that (1) the approach accounts for potential heterogeneity

in unordered choices; (2) we avoid bias in parameter estimates, which can be substan-

tial if heterogeneity is present but ignored; and (3) we obtain information on the depen-

dence of choice uncertainty on explanatory variables.

THE HETEROGENEOUS MLM

Let Y 2 f1; . . . , kg denote the response in nominal categories 1; . . . , k, and x denote a

vector of explanatory variables. The widely used MLM has the general form
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PðY = rjxÞ= expðxT brÞ
S

k
s = 1 expðxT bsÞ

; ð1Þ

where for simplicity x is assumed to contain an intercept. Side constraints are needed,

for example, bT
1 = ð0; . . . , 0Þ, which makes category 1 the reference category, orPk

s = 1 bT
s = ð0; . . . , 0Þ, which is symmetric and does not refer to any fixed category.

The model contains k linear predictors hr = xT br, one for each category (although the

effective number is k � 1). In contrast to typical ordinal models, the parameter vectors

are category specific, which means the model has a rather large number of parameters.

Accounting for Heterogeneity

Let z denote an additional vector of explanatory variables, which can be distinct from

x but may also contain components of x. The heterogeneous MLM (HMLM) proposed

here contains an additional heterogeneity term, which is determined by z and a vector

of parameters g. It has the form

PðY = rjx; zÞ= expðxT bre
zT gÞPk

s = 1 expðxT bse
zT gÞ

: ð2Þ

For any two categories, we thus have

log
PðY = rjx; zÞ
PðY = sjx; zÞ

� �
= xT ðbr � bsÞezT g: ð3Þ

The predictors in the model comprise two components: the location terms, xT br,

which are category specific, and the scaling term, ezT g, which is not category specific.

The effect of the scaling term is considered in the following, where for simplicity we

assume that z 2 f0; 1g is a group indicator. We obtain the following properties:

For g ! �‘, we obtain PðY = rjx; z = 1Þ= 1=k, which means a person from group 1

chooses categories at random and shows maximal uncertainty, that is, a noncontingent

response style. This occurs if people have a tendency to respond carelessly, randomly,

or nonpurposefully (Baumgartner and Steenkamp 2001; Van Vaerenbergh and

Thomas 2013).

For g ! ‘, we obtain PðY = rjx; z = 1Þ = 1 for one of the categories r 2 f1; . . . , kg, pro-

vided the parameters br are nonzero and vary across categories. This means that a per-

son from group 1 knows exactly which category to choose, the person has a distinct

preference (more details and a proof are given in the Appendix).

With varying parameter g, the whole spectrum from a random response to a distinct

choice is covered. This interpretation of the scaling component focuses on uncertainty.

Before discussing alternative interpretations, let us briefly mention some further

properties.
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If k = 2, the model reduces to the heterogeneous choice model for binary responses,

which is a special case of the heterogeneous choice model designed for ordinal

responses (see, e.g., Mood 2010; Williams 2009).

If we use the first category as a reference category by setting bT
1 = ð0, . . . , 0Þ, we

obtain

log
PðY ¼ rjx, zÞ
PðY = 1jx, zÞ

� �
= log

PðY = rjY 2 f1, rg, x, zÞ
PðY = 1jY 2 f1, rg, x, zÞ

� �
= xT bre

zT g = xT b�r ; ð4Þ

where b�r ¼ bre
zT g is the effective parameter that determines the strength of the effect

of the explanatory variables x, which varies over values of z. With gT = ð0; . . . , 0Þ, we

obtain the simple MLM, which can be seen as a collection of binary logit models of

the form of equation (4). In the multinomial model, we can also investigate the effect

of variables by fitting separate binary models, although estimates are less efficient

(see, e.g., Agresti 2013). This does not hold for the heterogeneous model. For k . 2,

the uncertainty model is a truly multinomial model. We cannot investigate the effect

of variables separately, because the factor ezT g is the same in all the binary models that

are contained.

Interpretation of Parameters and Motivations of the Model

The effect of the scaling component has not always been presented clearly in the classi-

cal heterogeneous model; in particular, it is often interpreted solely as representing var-

iances. Therefore, we consider in the following several ways to interpret effects.

Variance Heterogeneity and Random Utilities. One way to motivate the multino-

mial model is to consider it as a random utility model. Let Ur be an unobservable ran-

dom utility associated with the r th response category. For example, Ur is the

(subjective) utility of a brand among a choice of brands 1; . . . , k or the “attractiveness”

of the r th political party. Let Ur be determined by Ur ¼ ur + er, where ur is a fixed

value, representing the fixed utility associated with the r th response category, and

e1; . . . , ek are iid random variables with distribution function F(.). In addition, let the

response Y be determined by the principle of maximum random utility, which specifies

that the link between the observable Y and the unobservable random utility is given

by

Y = r , Ur = max
j = 1;..., k

Uj:

Thus, we choose the alternative that maximizes the random utility. If we assume that

er; . . . , ek are iid variables with distribution function FðxÞ ¼ expð� expð�xÞÞ (i.e., the

Gumbel or maximum extreme value distribution), we obtain

PðY = rÞ= expðurÞPk
j = r expðujÞ
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(e.g., McFadden 1973; Yellott 1977). By setting ur ¼ xT br (with restriction b1 ¼ 0),

we obtain the simple multinomial model.

Let us now assume, more generally, that the random utilities are given

by Ur ¼ ur + ser, where s ¼ e�zT g. Then, the maximum utility approach, Y = r ,
Ur = maxj = 1;..., k Uj yields the heterogeneous model

PðY = rjx; zÞ= expðxT br=e�zT gÞPk
s = 1 expðxT bs=e�zT gÞ

=
expðxT bre

zT gÞPk
s = 1 expðxT bse

zT gÞ
;

where again ur is parameterized as ur ¼ xT br.

The derivation suggests the modification of effect strength br to bre
zT g is due to

varying heterogeneity of the variances in the underlying random utilities. If variances

differ, then effect strengths of the explanatory variables x also differ. If k = 2, the deri-

vation is in accordance with the derivation of the ordinal heterogeneous model when

applied to binary choices (see, e.g., Mood 2010; Williams 2009). In his frequently cited

binary response example, Allison (1999) examined biochemists’ careers with the bin-

ary response “promotion to associate professor from assistant professor (yes/no)” and

demonstrated that effect strengths of covariates (e.g., number of published articles) can

be affected by differing variances in the male and female groups of scientists.

Note that a scaling problem might affect the interpretation of parameters even when

variances do not explicitly depend on covariates. Parameters in the model are then

given by br=s, and parameters are only identified if the scaling parameter s is fixed.

This raises problems if one compares parameters across nested models. With random

utilities given by Ur ¼ xT br + ser we cannot expect the standard deviation s to be the

same in the full model and a reduced model with fewer explanatory variables unless

the corresponding parameters are zero. For binary response models, Karlson et al.

(2012) proposed a method to compare regression coefficients between nested models.

Uncertainty. In questionnaires in which respondents choose among unordered alter-

natives, heterogeneity in variances of underlying utilities can be seen as uncertainty. If

the variance is large, the preference for specific categories becomes less distinct; if var-

iance is small, the category with the largest value in the location term xT br has a high

probability of being chosen. Thus, heterogeneity in variances turns into uncertainty.

However, the scaling term ezT g can also be seen as measuring uncertainty without

reference to underlying variances. Reference to variances always assumes an underly-

ing latent trait model, which is an additional and not necessary assumption. Latent

variable models provide a motivation for categorical response models, but they are not

needed when interpreting parameters unless one wants to investigate the latent struc-

ture itself (for a discussion of binary responses, see Kuha and Mills 2017). As shown

earlier, the parameter g determines if (groups of) respondents have a tendency to

strongly prefer specific categories or tend to choose categories more or less at random,

yielding a categorical uniform response distribution. Thus, heterogeneity can be seen

as representing a noncontingent response style. Response styles have been mainly

investigated in item response settings with ordered responses (see, e.g., Falk and Cai

2016; Johnson and Bolt 2010; Wetzel and Carstensen 2017). However, one can also
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expect to find response styles if responses are measured on a nominal rather than ordi-

nal scale level.

Varying Coefficients and Interactions. More generally, the model can also be seen

within the framework of varying coefficients, proposed by Hastie and Tibshirani

(1993) and extended by Cai, Fan, and Li (2000), Antoniadis, Gijbels, and Verhasselt

(2012), and Park et al. (2015). For simplicity, let the scaling component contain the

single binary variable z, that is, one has a scaling effect zg. Then, all effects of expla-

natory variables in the location term are described by bezg. This means they vary over

values of z. The variable z is an effect modifier: it modifies all effects in the location

term. It is a specific form of interaction between variables in the location term and

variables in the heterogeneity term. To be more concise, if we let z also be present in

the location term, then we obtain the following for the predictor:

hr = ðbr0 + zbrz +
X

j

xjbrjÞezg = ~br0 + z~brz +
X

j

xj
~brj +

X
j

xjz~b
ðjzÞ
rj ;

where ~br0 ¼ br0, ~brj ¼ brj,
~brz = brz + ðbr0 + brzÞðeg � 1Þ, and ~b

ðjzÞ
rj = brjðeg � 1Þ. The

last form of the predictor shows a model in which interactions between all the variables

x1; . . . , xp and z are included. The crucial point is that these interactions are not varying

freely, they are constrained because they were generated by heterogeneity. The con-

straints can be given in the form

~b
ð1zÞ
r1 =~br1 = � � � = ~bðpzÞ

rp =~brp; ð5Þ

which means the proportion between the interaction effect ~b
ðjzÞ
rj and the corresponding

main effect ~brj is the same for all variables, namely, eg � 1. This means that the het-

erogeneous model includes interactions between the covariates and the variable in the

heterogeneity term, but interactions have a specific form. The model is not equivalent

to the general interaction model that contains all interactions between covariates and z,

but it can be estimated using the interaction model with constraints. The importance of

interaction terms in ordinal heterogeneous responses has been emphasized by Allison

(1999) and investigated more closely by Rohwer (2015) and Tutz (2018, 2020). It is

also present in the nominal model.

From a slightly different viewpoint, interactions can be seen as varying coefficients.

Varying-coefficient models allow one to model effects that are modified by other vari-

ables. An advantage is that no reference to latent motivating variables is needed.

These models aim to identify which effects are not stable across the variation of other

variables and provide a general concept for interpretation of effects in models that

account for the type of heterogeneity considered here. For the binary response case,

Tutz (2020) investigated varying coefficients and the simpler form of constraints.

The representation as a model with interactions holds also in the case where x and z

are distinct. Then z is not included in the location terms, that is, brz ¼ 0. We obtain the

same interaction parameters and main effects of the x variables as above, only the main

effect of z simplifies to ~brz = br0ðeg � 1Þ. We also see that the heterogeneity effect,
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although not present in the original location term, generates a location shift in the inter-

action representation of the model.

Measurement of Variability in Nominal Responses. Let us comment briefly on

the general problem of measuring variability in a nominal response. Because the vari-

able Y is measured on a nominal scale, the classical measure for variability, namely

the variance of Y , is useless. Measures that makes sense for nominal categories are the

(normalized) Gini heterogeneity, G = ð1�
Pk

r = 1 p2
r Þ k

k�1
; and the impurity based on

entropy, IE ¼ �
Pk

r¼1 pr logðprÞ. Both measures are zero if one of the probabilities

has value 1 (and the rest 0), and take their maximal value in the case of the uniform

distribution p1 ¼ � � � ¼ pk . Thus, small values indicate concentration in one of the

categories, and large values indicate strong variability with the same probability in all

categories. Strong variability corresponds to strong heterogeneity and therefore low

concentration.

This is in line with the effect of the heterogeneity term in the HMLM, in which the

probabilities are determined by covariates. Because the probabilities depend on covari-

ates, concentration is different for persons with different explanatory variables. Thus,

the category-specific location terms, which are present in the simple and the extended

nominal logit model, already generate heterogeneous concentration. The heterogeneity

term, which is not category specific, modifies this basic structure, yielding stronger

concentration if zT g ! ‘, and weaker concentration if zT g ! �‘. Thus, this can be

seen as the heterogeneity not captured in the category-specific location terms.

In summary, whatever the interpretation of ezg, as uncertainty or variance, the pres-

ence of the heterogeneity term means the probabilities vary over values of z; the size

of b parameters should not be interpreted without accounting for the scaling compo-

nent. Heterogeneity effects of the sort considered here mean that probabilities change

driven by heterogeneity although there might be no or a weak location effect (see also

the application below). The essence of the heterogeneity captured by the heteroge-

neous model is variability: persons with different values of z show different variability

in responses, and therefore have differing response probabilities, because in categori-

cal data variability and location are not separated. The only exception is the extreme

case xT
r b ¼ 0 for all r. In this case, persons have response probabilities 1=k and zg

does not change response probabilities.

Note that heterogeneity in the model is linked to covariates. It is not modeled on the

individual’s level in the form of random effects, which might be interesting but hard to

obtain without repeated measurements. It is a population-averaged approach, in con-

trast to conditional modeling approaches that consider responses given covariates and

subject-specific parameters (for the distinction between conditional and population-

averaged approaches, see, e.g., Neuhaus, Kalbfleisch, and Hauck 1991).

Identifiability

Identifiability of the parameters in a model is critical, because only then is reliable

inference on parameters possible. Parameters of the heterogeneous multinomial model

are identifiable if x and z are distinct (see the Appendix). The general case x ¼ z is
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more difficult. In one particular case, parameters are certainly not identifiable, namely

if there is just one binary predictor variable. Then the predictors in the logit model

have the form xbre
xg. The model is equivalent to a model with predictors x~br, as one

can always set ~br ¼ bre
xg. In other words, one can always set g = 1, because g is not

identifiable.

However, parameters are identified if the number of predictors in x is larger than

one (p . 1) and there is just one variable in the heterogeneity term. This is useful

because in many applications the researcher wants to investigate if a specific variable

modifies the effect strengths. This was the case in Allison’s biochemists example,

which focused on gender as an effect modifier to investigate equal opportunity issues.

Identifiability in the case of just one heterogeneity variable can also be used to investi-

gate if variables are needed in the heterogeneity term by including one variable at a

time.

Nevertheless, one also wants to allow for a vector of explanatory variables in the

heterogeneity terms, although it will be typically shorter than the vector of variables in

the location term. In the Appendix, it is shown that, in general, the parameters of the

heterogeneous model are identifiable if p . 1 and at least one variable contained in the

location term has no effect in the heterogeneity term. The Appendix also includes the

case with only one effect modifier. Note that the general result does not exclude that

also the model that includes all variables in the heterogeneity term might be identifi-

able in specific settings.

IGNORING HETEROGENEITY

To demonstrate that parameter estimates can be severely biased if heterogeneity is

ignored, we show some results of a simulation study. We include two explanatory

variables, one binary, following a Bernoulli variable Bð1; 0:5Þ, and one continuous,

following a normal distribution, Nð0; 1Þ. In the case k ¼ 3, the parameters are

bT
2 = ð0:3;b21;b22Þ;bT

3 = ð0:5; 0; 0Þ. Only estimates of b21;b22 are shown, which are

chosen by b21 ¼ 0:3, b22 ¼ 0:25. In the header of plots, estimates of b21 are referred

to as binary variables, and estimates of b22 as continuous variables. In the plots, the

true values are given as gray lines. Estimates of the heterogeneity parameter and the

difference in deviances are also given. Because the models are nested, we can compute

how much better the heterogeneity model fits the data, which also indicates if the

model can be simplified to the simple logit model.

Figure 1 shows estimates of g, b21, and b22 if g = 0:6, and the heterogeneity is in

the continuous variable. We see that the estimate of the continuous variable is strongly

biased if heterogeneity is ignored. Estimates of the heterogeneous model are much

closer to the true values than are estimates of the simple model. The heterogeneity

parameter is also estimated rather well. The differences in deviances show the hetero-

geneous model fits data much better, and it indicates that in a data analysis one would

find the improvement significant in most cases. Figure 2 shows estimates if the hetero-

geneity (g = 0:6) is in the categorical variable. The results are similar, but also esti-

mates of the binary variable are strongly biased if heterogeneity is ignored.

Tutz 93



The effect of varying values of g is depicted in Figure 3. The figure shows estimates

of the coefficients of the binary and the continuous variable if heterogeneity is present

in the continuous variable. The first row shows estimates of the binary variable coeffi-

cient, which are quite similar for the MLM and the HMLM. The more interesting coef-

ficient is the continuous variable coefficient in the second row: the bias increases

strongly with increasing values of g if it is ignored. In contrast, estimates obtained by

the HMLM do not show severe bias. It is seen that coefficients of variables that are

linked to heterogeneity might be strongly biased if one uses the simple MLM. Figure 4

shows the corresponding estimates of g. We see that the HMLM provides reasonable

estimates of the heterogeneity parameter. Similar pictures are obtained if heterogeneity

is in the categorical variable.

MODELING WITH HETEROGENEITY

The following sections demonstrate the usefulness of the modeling approach in several

applications. The Appendix provides details on how to obtain the estimates.
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Figure 1. Estimates of parameters in simulation study with heterogeneity in continuous
variable.
Note: n ¼ 500, k = 3, g ¼ 0:6.
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Party Choice

We consider modeling of party choice with data from the German Longitudinal

Election Study. The data are included in the R package EffectStars (Schauberger

2019). The response categories refer to the dominant parties in Germany: the Christian

Democratic Union (CDU; category 1), the Social Democratic Party (SPD; category 2),

the Liberal Party (FDP; category 3), the Green Party (category 4), and the Left Party

(Die Linke; category 5). The explanatory variables are age (standardized), gender (1 =

male, 0 = female), and regional provenance (west; 1 = former West Germany, 0 = oth-

erwise). The sample size is n = 816.

For illustration, let us first investigate if age is an effect-varying variable. Table 1

shows parameter estimates of the MLM and HMLM models with age in the scaling

component. We see that the heterogeneity effect of age should not be neglected (value

= .481, s.e. = .172). Older respondents show more distinct preferences for political par-

ties than do younger respondents. The parameters obtained for the heterogeneity

model differ from the parameters obtained without accounting for heterogeneity. In

particular, the age parameters are much closer to zero for the heterogeneity model.
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Figure 2. Estimates of parameters in simulation study with heterogeneity in categorical
variable.
Note: n = 500, k ¼ 3, g = 0:6.
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However, that does not mean age has a weaker effect on the response. Figure 5 shows

the effect of age for males living in the western part of the country. The dotted lines

show the effects on probabilities in the multinomial model without heterogeneity; the

gray lines represent the effects in the heterogeneous model. The change of probabil-

ities across age is modified, but the effect of age has a very similar tendency. The high

significance of the heterogeneity effect suggests part of this effect might be due to

heterogeneity.
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Figure 4. Estimates of heterogeneity parameter for varying g in continuous variable.
Note: Filled circles represent the true values, n ¼ 500, k = 3.
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Figure 3. Estimates of parameters for varying g in continuous variable.
Note: n ¼ 500, k = 3. First row: estimates of binary variable parameter; second row: estimates of

continuous variable parameter.
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Age is not the only variable that might modify effect strengths. Including one vari-

able at a time shows the variable gender is significant, but not the variable west. Table

2 (right-hand columns) shows parameter estimates of the HMLM model with heteroge-

neity effects of gender and age. We see that they should not be neglected and included

simultaneously. We also fitted a model that includes all variables in the scaling compo-

nent (left-hand columns). The fit also shows the heterogeneity effect of gender and age

should not be neglected. Modification of the age effect is rather similar to that seen in

Figure 5 and is not shown.

Contraceptive Prevalence Survey

This dataset is a subset of the 1987 National Indonesia Contraceptive Prevalence

Survey, available from the UCI Machine Learning Repository (Contraceptive Method

Choice Data Set). The samples are married women who were either not pregnant or

did not know if they were pregnant at the time of interview. The response is the con-

traceptive method used (1 = no use, 2 = long-term use, 3 = short-term use). The expla-

natory variables are wife’s age in years (agew), wife’s education (eduw; 1 = low, 2, 3,

4 = high), husband’s education (eduh; 1 = low, 2, 3, 4 = high), number of children ever

born (children), and wife’s religion (relw; 0 = non-Islam, 1 = Islam). The sample size

is n = 1,473. Fitting models shows that for most variables, there is no heterogeneity

effect. The exception is wife’s education. Table 3 shows the models without and with

heterogeneity in that variable. The effect strengths of variables is much weaker if we

account for heterogeneity in wife’s education. For example, the effects of children are

.33 and .34 if the MLM is fitted but .24 and .25 if the HMLM is fitted. The effects of

variables might be overestimated if heterogeneity is ignored.

Table 1. Data Fit for Party Choice Data with and without Heterogeneity in Age

Estimates without Heterogeneity Estimates with Heterogeneity in Age

Intercept Gender West Age Intercept Gender West Age

Parameters
2 –.7161 .1585 .5670 –.2001 –.6098 .1617 .4641 –.0610
3 –1.2655 .6416 –.1055 –.4179 –1.2751 .7091 –.0773 .0568
4 –1.5812 .3795 .4687 –.7962 –1.2741 .4433 .2897 –.3227
5 –.7417 .7914 –.6794 –.2730 –.6192 .6942 –.7563 .0377
Heterogeneity .4813

Standard error
2 .2061 .1855 .2145 .09424 .1918 .1446 .1900 .1034
3 .2473 .2424 .2532 .12249 .2375 .2226 .2160 .1970
4 .2696 .2372 .2760 .12637 .2876 .2361 .2818 .2534
5 .2133 .2245 .2226 .11275 .1951 .2111 .1883 .1501
Heterogeneity .1725

Log-likelihood –1,201.429 –1,194.916
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Figure 5. Effects of age on probabilities with age as heterogeneity variable for party choice
data.
Note: Dotted lines show effects in the multinomial model without heterogeneity; gray lines represent

effects in the heterogeneous model.
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Satisfaction Data

The data contain students’ satisfaction with the faculty at Universita degli Studi di

Napoli Federico II, available in the R package CUB (data set CUBevaluation2008).

Response categories are level of global satisfaction: 1 = neutral, 2 = not satisfied, 3 =

satisfied, and 4 = very satisfied, which is only partially ordered. Explanatory variables

are gender (0 = male, 1 = female), age in years, and change of faculty (1 = changed

faculty, 0 = did not change faculty). Sample size is n = 4,042. Change was the only

variable to show significant heterogeneity, which seems sensible as students who

change faculty should be less certain about the new faculty. Table 4 shows the fits of

the model without and with heterogeneity in the variable change. We again see that

the effect of variables might be overestimated if heterogeneity is ignored. For

Table 3. Model Fits with and without Heterogeneity in Wife’s Education for Contraception
Data

Estimates without
Heterogeneity

Estimates with Heterogeneity
in Wife’s Education

agew Children relw eduw eduh agew Children relw eduw eduh

Parameters
2 –.0349 .3321 –.5247 .9918 .0485 –.0266 .2429 –.3244 .7698 .0452
3 –.1054 .3476 –.3803 .3800 .1175 –.0724 .2570 –.2461 .3111 .0807
Heterogeneity .1304

Standard error
2 .0114 .0420 .1982 .1090 .1290 .00835 .04824 .14346 .12483 .08643
3 .0107 .0380 .1967 .0819 .0970 .01573 .04846 .12994 .06658 .06947
Heterogeneity .0704

Log likelihood –1,407.99 –1,406.361

Table 2. Data Fit for Party Choice Data with and without Heterogeneity

Estimates with Full Heterogeneity Estimates with Reduced Heterogeneity

Intercept Gender West Age Intercept Gender West Age

Parameters
2 –.8495 –.0510 .5463 .0209 –.7777 .01241 .6569 –.0234
3 –1.2483 –.5066 –1.4617 .3610 –1.2070 .01351 –.1880 .2139
4 –1.1776 –1.5490 –.9876 .0408 –1.1977 –.50054 .2303 –.1779
5 –.6078 .3647 –2.7186 .2810 –.4775 .39998 –1.1826 .1469
Heterogeneity –1.1324 –.6914 .7140 –.8514 .6542

Standard error
2 .2800 .4315 .3598 .2113 .2513 .2305 .3001 .1711
3 .3401 .8377 2.0124 .3246 .2880 .4723 .2878 .4036
4 .3390 1.3548 1.8483 .4972 .3344 .6645 .4072 .5923
5 .2875 .4125 2.3691 .2116 .2359 .3070 .3076 .2350
Heterogeneity .3231 .7541 .1764 .3680 .3341

Log-likelihood –1,191.405 –1,191.634
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example, the effects of gender are –.53, –.42, and –.64 if the MLM is fitted but merely

–.18, –.15, and –.24 if the HTML is fitted.

FURTHER ISSUES

We now briefly consider marginal modeling and how models behave when applied to

subsets of response categories. It is also investigated how the heterogeneous model can

be used to deal with the problem of irrelevant alternatives. In a change of perspective,

I emphasize that subsets of response categories refer to differing populations.

Marginal Effects and Modeling Strategies

One approach to circumvent identifiability problems uses the predicted probability

metric to investigate marginal effects of predictors. Long and Mustillo (2018) show

how this approach can be used to compare groups in binary regression models. With

g 2 f0; 1g denoting the group the basic concept is to fit the interaction mod-

el,PðY ¼ 1jx; gÞ= Fðg 3 xT bð1Þ + ð1� gÞ3 xT bð0Þ, where Fð:Þ is a response function

(e.g., the logistic distribution function). The parameters bð1Þ;bð0Þ represent the coeffi-

cients in the two groups. The predicted probabilities can be used to test if the groups

differ in response probabilities or to investigate the marginal effects of covariates, that

is, if the change in the probability of the outcome is the same in both groups when a

covariate changes. Long and Mustillo gave an example that demonstrates the useful-

ness of the concept. The basic approach can also be used for multinomial responses by

fitting MLMs separately in groups or by using a single equation model with

interactions.

Using probabilities instead of focusing on coefficients is helpful if one wants to

compare specific groups, but it is less appropriate as a general modeling strategy that

includes potential heterogeneity. Avoiding investigating coefficients is an advantage,

Table 4. Model Fits with and without Heterogeneity in Change of Faculty for Satisfaction
Data

Estimates without Heterogeneity Estimates with Heterogeneity in Change

Gender Age Change Gender Age Change

Parameters
2 –.5343 –.0159 –.0324 –.18014 –.01490 –.6220
3 –.4218 –.0246 .1951 –.15867 –.01403 –1.1198
4 –.6420 .0320 .6118 –.24159 .00885 –1.2253
Heterogeneity — — 1.0593

Standard error
2 .1953 .0283 .2532 .1338 .0117 .2939
3 .1771 .0254 .2301 .1138 .0109 .4582
4 .1723 .0242 .2250 .1542 .0117 .6082
Heterogeneity — — .5797

Log likelihood –4,144.275 –4,141.711
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but this approach has some limitations. In particular, the focus is on comparison of

groups, not investigating general marginal effects. In addition, the comparisons work

under the assumption that the variables that are not currently investigated are held

fixed at specific values. This means conditional effects are investigated, not marginal

effects in the sense of collapsing over the other variables. As Agresti and Tarantola

(2018) noted, the “marginal effect” terminology is a bit misleading but seems to be in

common use. Because the effects are conditional, the conclusions depend on the spe-

cific chosen values of the other variables, and it is harder to do when some of these

variables are continuous. One also must select what sort of change, discrete or aver-

age, one wants to investigate.

A crucial difference with models that explicitly specify heterogeneity components is

that marginal approaches use classical regression models with interactions. The model

PðY = 1jx; gÞ= Fðg 3 xT bð1Þ + ð1� gÞ3 xT bð0Þ has linear predictors and group-

specific coefficients. It allows for all interactions between the covariates and the spe-

cific group under consideration but does not use a multiplicative term. Thus, it avoids

the potential instability of models with multiplicative terms (Keele and Park 2006).

Heterogeneity models assume specific interactions are generated by interactions, but

further interactions can always be included in the location term. The models could also

be used to evaluate predicted marginal effects, although that seems not to have been

done yet. As the party choice example shows, predicted probabilities for the MLM and

HMLM need not be very different; both models indicate that age is relevant when

modeling party choice (Figure 5).

The curves in Figure 5 show the effect of explanatory variables on the probabilities,

which is a main objective of marginal approaches. This allows researchers to test if

groups differ in terms of predicted probabilities. Within the heterogeneity model

approach, the effect on probabilities is an effect of parameters. A variable such as age

has an effect if it cannot be neglected in the location or the heterogeneity term, which

can be tested. Then, the effect on probabilities is tested indirectly, but not directly as

in marginal approaches. The advantage is that one does not have to condition on spe-

cific values of the other variables; the downside is that one does not use the natural

marginal effect metric, which uses the probabilities. But as in binary response cases,

one can compare groups regarding their marginal effects by using the predicted prob-

abilities, as proposed by Long and Mustillo (2018) (see the Appendix for details).

Simple ways to interpret effects of explanatory variables using the marginal metric

may also be obtained by deriving generalizations of descriptive measures (see Agresti

and Tarantola 2018).

One advantage of pure location models as used in the marginal approach is that

estimates are easier to obtain than in multiplicative models. Keele and Park (2006)

demonstrated this for the binary heteroskedastic model and showed that larger sample

sizes are needed to obtain reliable estimates in heterogeneity models. Also, misspecifi-

cation might have a stronger effect in heterogeneity models than in simple location

models. This means care is needed when selecting variables in the location and the

heterogeneity term. In some applications, one might suspect heterogeneity in specific

variables for substantive reasons, and investigate if this suspicion is warranted. If there
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are no clear candidates but one wants to account for possible heterogeneity, one must

select the variables that actually contribute to improve the fit. It seems sensible to

include variables in the heterogeneity term only if they have strong effects that should

not be neglected. If effects are weak, models that ignore heterogeneity might be pre-

ferable. Keele and Park even argued that in some cases it might be better to estimate

standard models. However, the choice certainly depends on the strengths of the effects

and therefore on the concrete application.

The location term is less critical, but it can be useful to include interaction effects,

which might affect the relevance of variables in the heterogeneity term. In general, model

choice and therefore variable selection is harder than in classical models, because one has

two terms in which variables can be present, and because of the multiplicative structure.

Even in classical regression models, stepwise selection procedures have some disadvan-

tages and have been widely replaced by selection tools that are based on penalization as

the lasso and its various extensions (Tibshirani 1996; Yuan and Lin 2006; Zhao, Rocha,

and Yu 2009). In future research, similar methods could be used to address selection

problems in heterogeneity models using differing penalties for inclusion in the location

and the heterogeneity term, but methods for this advanced form of variable selection are

not yet available even for the simpler binary heteroscedastic model.

Effect Modifiers and Independence from Irrelevant Alternatives

The MLM has a property typically referred to as independence from irrelevant alterna-

tives, which has been called a blessing and a curse (McFadden 1986). It may be seen

as a blessing because if it holds, it makes it possible to infer choice behavior with mul-

tiple alternatives using data from simple experiments like paired comparisons. Yet it is

a rather strict assumption that may not hold for heterogeneous patterns of similarities

among alternatives. In the following, we consider how this property can be addressed

by allowing for the presence of effect modifiers.

Subsets of Response Categories and the Red Bus–Blue Bus Problem. If the logit

model holds, we obtain for a subset of response categories S � f1; . . . , kg

PSðY = rjxÞ= PðY = rjY 2 S; xÞ = expðxT brÞP
s2S expðxT bsÞ

; r 2 S;

which is a logit model with response categories S. Let us look at a simple problem, in

which the linear term reduces to a category specific intercept xT br = b0r, which repre-

sents the utility of alternative r. Consider the “red bus–blue bus” problem (see

Hausman and Wise 1978). Suppose a commuter has the initial choices of driving or

taking a red bus, with the odds given by

Pfdriving;red busgðdrivingÞ
Pfdriving;red busgðred busÞ = 1;

which means b01 ¼ b02 in the binary choice problem. Then, an additional choice

becomes available: a blue bus that is identical in all respects, except color, to the red
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bus. Let the logit model hold for the choice among the three alternatives: driving (cate-

gory 1, parameter b01), red bus (category 2, parameter b02), and blue bus (category 3,

parameter b03). Choosing among subsets, the same parameters apply, and the odds of

choosing between driving and the red bus, and between the red bus and the blue bus,

should be the same; thus, b01 = b02 = b03 and therefore

Pf1;2;3gðdrivingÞ= Pf1;2;3gð red busÞ= Pf1;2;3gðblue busÞ= 1=3:

This is a counterintuitive result because the additional “irrelevant” blue bus substan-

tially decreases the choice probability of driving. Similar problems hold for all choice

systems that share a property called simple scalability (see Hausman and Wise 1978;

Tversky 1972).

The Presence of Effect Modifiers. The independence of irrelevant alternatives raises

problems if one wants to combine results from different choice sets and one assumes

the multinomial model holds. These problems can be avoided when using the heteroge-

neous logit model if we assume the choice is an effect modifier. We now demonstrate

this for the red bus–blue bus problem.

Let us assume the heterogeneous logit model holds with predictor bore
zg for the r th

alternative instead of b0r as in the MLM. Let z denote an indicator for the choice set;

z ¼ 0 if we have three alternatives, and z = 1 if we have a binary choice:

PðY = rjY 2 f1; 2; 3gÞ= expðb0rÞP3
s¼1 expðb0sÞ

;

and

PðY = rjY 2 fr; 1gÞ= expððb0r � b01ÞezgÞ
ð1 + expððb0r � b01ÞezgÞÞ ; r = 2; 3;

PðY = 2jY 2 f2; 3gÞ= expððb02 � b03ÞezgÞ
ð1 + expððb02 � b03ÞezgÞÞ :

With b01 = 0;b02 = b03 = � 0:693, we obtain for the full choice set

PðY = 1jY 2 f1; 2; 3gÞ= 0:5;

PðY = 2jY 2 f1; 2; 3gÞ= PðY = 3jY 2 f1; 2; 3gÞ= 0:25;

which are sensible values if one chooses from the three alternatives. For binary

choices, we have z = 1 and therefore obtain

PðY = 2jY 2 f2; 3gÞ= 0:5;

because b02 = b03, and with g = �5

PðY ¼ rjY 2 fr; 1gÞ= 0:499; r = 2; 3:

Thus, if we allow z to indicate the setting of alternatives presented, we obtain much

more sensible probabilities in the red bus–blue bus problem. The variable z acts as an
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effect modifier, which determines the choice probabilities as a function of the setting.

It is an explanatory variable that must be included. Of course, if the effects of an expla-

natory variable are to be investigated, one needs some variation of the explanatory

variable when collecting data. In the present case, that means it is not sufficient to col-

lect data from the setting with three alternatives; one must also have data from settings

with two alternatives. In more general cases, z can be seen as a factor that represents

the alternatives that are presented with the values of the g parameter varying across

the factor levels. In sociology, the objective is often to analyze the response behavior

in questionnaires without assuming that relationships would be identical if response

options differed. Then no alternative settings are needed, and the problem of irrelevant

alternatives is of no relevance.

Prior approaches to address the problem of similar alternatives in the choice set use

more general distributions in the underlying latent trait model. In particular, the nested

logit model and more general models based on the generalized extreme-value distribu-

tion have been developed (McFadden 1978, 1981). These models are derived from

underlying random utilities but have the disadvantage that one must specify before-

hand which alternatives are to be considered similar; they are used mainly in transpor-

tation research (see, e.g., Cai et al. 2000; Wen and Koppelman 2001) and less to

analyze questionnaire data in the social sciences. Olsen (1982) proposed an alternative

approach to address the problem.

The Heterogeneous Logit Model in Subpopulations

The red bus–blue bus problem arises if people must choose from different subsets of

alternatives. The question is what can be inferred from the choice of categories if a

different set of categories has been presented earlier. In the previous section, it was

shown that it might be sensible to include the choice set in the predictors as heteroge-

neity components.

Subsets of categories can also be seen from a different view: the problem is not the

transfer to other presented categories, but if models and parameters are the same given

that one fits models to varying subsets. If the heterogeneous logit model holds for k

categories, it should also hold if one considers the conditional response Y jY 2 S for a

subset of categories S. However, that means one fits a model to a subpopulation,

namely the subpopulation with chosen categories from S. Although the basic prefer-

ence for categories captured by the location term should not change too much, the het-

erogeneity component, which is not category specific, might differ in subpopulations.

Let us consider the party choice data, in which there were five parties—the CDU

(category 1), the SPD (category 2), the FDP (category 3), the Green Party (category

4), and the Left Party (category 5)—and we found heterogeneity for the variables west

and age. If we fit the model in a reduced set, say the first three parties, we have a dif-

ferent population, because we exclude everyone who tends to strongly favor left-wing

parties or is strongly interested in ecological issues. Thus heterogeneity might differ.

We briefly consider the variation in estimates for the party data set. Table 5 shows

estimates of the heterogeneity parameters for the variables west and age for varying
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sets of response categories. They are given in the exponential form egvariable , which rep-

resents the multiplicative modification of the parameters in the location term if the het-

erogeneity variable changes by one unit.

Although there is some variation in estimates, the tendency is the same in all subpo-

pulations: people living in western Germany have a stronger tendency to specific cate-

gories than do people from the East, and the same holds for older versus younger

respondents. Heterogeneity for the variable age is comparatively stable across subsets,

but there is some variation in heterogeneity linked to the variable west.

CONCLUDING REMARKS

The proposed heterogeneous logit model is able to account for heterogeneity that is

typically ignored in MLMs. This heterogeneity can be seen as unobserved variance

heterogeneity but also as representing uncertainty without reference to latent variables.

The model contains multiplicative terms, which are typically harder to estimate than

simple linear terms and show greater variability. Models of this type have been criti-

cized in the binary case because they are less stable than simple binary logit models

(Kuha and Mills 2017). However, this is to be expected. Estimation of variance is usu-

ally harder to do than estimation of location. The alternative, ignoring heterogeneity,

yields stable estimates, but they can be severely biased. Therefore, it seems worthwhile

to account for potential heterogeneity.

Nevertheless, stable estimation of variance components typically calls for larger

data sets. In small data sets, they are hard to identify and estimate. Fortunately, they

often turn out to be negligible and can be ignored. For example, in a data set that con-

tains high school students’ choices among general, vocational, or academic programs

from the UCLA Statistical Consulting site (n = 200; https://stats.idre.ucla.edu/stat/data/

hsbdemo.dta) and a data set on absenteeism from school in rural New South Wales

from R package MASS (n = 146), heterogeneity can be ignored. However, in some

larger data sets, heterogeneity is also not needed, for example, Agresti’s (2013:330)

political party identification data set, even though the sample size was n = 1,001.

These applications have not been included, but are mentioned because they illustrate

that the modeling of heterogeneity is not always needed.

In principle, one could allow for category-specific heterogeneity terms letting uncer-

tainty depend on alternatives. One disadvantage is that one loses the derivation from

the random utilities. More seriously, the number of parameters would be much higher

Table 5. Heterogeneity in Variables West and Age for Varying Response Categories in Party
Choice Data

Parties in Response egwest egage

CDU, SPD, FDP 1.93 1.99
CDU, SPD, FDP, Greens 4.34 1.36
CDU, SPD, FDP, Greens, Left Party 3.26 1.63
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and stability of estimates would suffer. Therefore, we abstained from considering the

more general model with alternative dependent heterogeneity terms.

In the applications, an R program was used. The code for fitting the models will be

made available on GitHub (GerhardTutz/GHMNL).

APPENDIX

Extreme Heterogeneity

Let us consider the heterogeneous logit model in the form

log
PðY = rjx; zÞ
PðY = 1jx; zÞ

� �
= xT bre

zT g;

which implies that bT
1 = ð0; . . . , 0Þ. We examine which probabilities are obtained if one of the

heterogeneity parameters tends to infinity. In the following proposition, we distinguish between

several cases. If no alternative is preferred (bT
r = ð0; . . . , 0Þ for all r), the heterogeneity has no

effect. However, if parameters differ, it depends on the values xT br if one category tends to

probability one, or several of them tend to the same positive probabilities, and the rest get prob-

ability zero.

More concretely, if gj ! ‘ for one of the components in gT = ðg1; . . . , gmÞ, and zj . 0 from

zT = ðz1; . . . , zmÞ, we obtain the following:

(a) If b1 ¼ � � � = bk holds no category is preferred and PðY = rjx; zÞ = 1=k.

(b) If there is one category r0, for which xT br0
. xT br for all r, we obtain

PðY ¼ r0jx; zÞ= 1.

(c) If there is a group of categories S, such that xT br0
. xT br for r0 2 S, r 62 S, and

xT br0
= xT br1

for r0, r1 2 S, we obtain PðY ¼ r0jx; zÞ= 1=jSj, where jSj is the car-

dinality of S.

Proof: (i) If all b parameters are zero, PðY = 1jx; zÞ= � � � = PðY = kjx; zÞ follows directly

from the model.

(ii) Let S be a subset of categories such that xT br0
. xT br for r0 2 S, r 62 S.

Then we have

log
PðY = r0jx; zÞ
PðY = rjx; zÞ

� �
= ðxT br0

� xT brÞe~zT ~gezT
j

gj ;

where ~z is the z-vector without the j th component and ~g is the corresponding parameter vector.

Because xT br0
� xT br0

is positive, we obtain for gj ! ‘ that logðPðY = r0jx; zÞ=
PðY = rjx; zÞÞ ! ‘ and therefore PðY ¼ rjx; zÞ ! 0.

For two categories from S, r0; r1 2 S, we have xT br0
� xT br1

¼ 0, and therefore

logðPðY ¼ r0jx; zÞ=PðY ¼ r1jx; zÞÞ = 0 yielding PðY ¼ r0jx; zÞ ¼ PðY = r1jx; zÞ. That means

for all categories from S the probability is the same. In the special case where S contains just

one category, we obtain the result in (b).
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Identifiability of Parameters

We now consider the heterogeneous MLM given in equation (2).

(1) First, we look at the more difficult case x ¼ z. Let the predictors in the model be

given by two sets of parameters, b1; . . . , bk ;g and ~b1; . . . , ~bk ; ~g. The logits,

defined by logitrðxÞ ¼ PðY = rjxÞ=PðY = 1jxÞ, are given by logitrðxÞ ¼
fbr0 + xT brgexT g = f~br0 + xT ~brgexT ~g, where the intercepts are explicitly included,

and b10 ¼ ~b10 = 0;b1 ¼ ~b1 = 0. Because linear transformation of explanatory vari-

ables does change the parameters but not the validity of the model, we can, without

restriction of generality, assume that each covariate contains the values 0 and 1,

which is natural for binary predictors but can also be assumed for continuous vari-

ables after centering and scaling. Let the number of predictors p be larger than 1,

and at least one variable have no dispersion effect, gj = 0, and xT ¼ ðx1; . . . , xpÞ
denote a vector of explanatory variables.

(a) We obtain for the differences

drðxÞ ¼ logitrðx1; . . . , xpÞ � logitrðx1; . . . , xj + 1; . . . , xpÞ= brje
xT g:

Let for s 6¼ j xs ¼ ð0; . . . , 1; . . . , 0Þ denote the s th unit vector, which has a 1 in the s th

component:

drðxsÞ
drð0Þ

=
brje

gs

brj

¼ egs ;

where 0T = ð0; . . . , 0Þ. Thus, gs s = 1; . . . , p is determined by the probabilities, which

holds for any parameterization yielding gs ¼ ~gs.

(b) In

logitrðxÞ= fbr0 + xT brgexT g = f~br0 + xT ~brgexT ~g; r = 1; . . . , k

we set x ¼ 0 so that br0 ¼ ~br0 holds for r ¼ 1; . . . , k.

(c) For the i th unit vector xi ¼ ð0; . . . , 1; . . . , 0Þ, we have

logitrðxiÞ � logitrð0Þ= ðbr0 + briÞegi � br0 = br0ðegi � 1Þ+ brie
gi :

Thus, for the two parameterizations

br0ðegi � 1Þ+ brie
gi ¼ ~br0ðe~gi � 1Þ+ ~brie

~gi :

Because g ¼ ~g and br0 = ~br0 has been shown to hold, we have bri ¼ ~bri, which con-

cludes the proof.

(2) In the case where x and z are distinct, we have for the differences considered in (a)
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drðx; zÞ ¼ logitrðx1; . . . , xp; zÞ � logitrðx1; . . . , xj + 1; . . . , xp; zÞ= brje
zT g:

With zT ¼ ðz1; . . . , zmÞ, one obtains

logitrðx; z1; . . . , zl + 1; . . . , zmÞ = fbr0 + xT brgezT g + gl

and

logitrðx; zÞ = fbr0 + xT brgezT g;

yielding

logitrðx; z1; . . . , zl + 1; . . . , zmÞ
logitrðx; zÞ

= egl :

Thus g, and therefore also brj for all r; j are identifiable.

Obtaining Estimates

The HMLM for observations i ¼ 1; . . . , n has the form

pir = PðYi ¼ rjxi; ziÞ=
expðxT

i bre
zT

i gÞPk
s¼1 expðxT

i bse
zT

i
gÞ
; j = 1; . . . , k: ð6Þ

The response given covariates follows a multinomial distribution given by the vector

yT
i ¼ ðyi1; . . . , yikÞ, in which a response in category r is represented by yir ¼ 1 and yij ¼ 0 for

j 6¼ r. With parameters br collected in bT = ðb2; . . . , bkÞ, p-dimensional vector xi, and m-

dimensional vector zi, we obtain for the kernel of the log-likelihood

lðb;gÞ=
Xn

i = 1

f
Xk

r = 2

yir log
pir

1� pi2 � . . .� pik

� �
+ logð1� pi2 � . . .� pikÞg

=
Xn

i = 1

f
Xk

r = 2

yirðxT
i brÞezT

i g � logð1 +
Xk

s = 2

expðxT
i bse

zT
i gÞg:

When maximizing the log-likelihood it is helpful to use the first derivatives, also known as

score functions. They are given by

∂lðb;gÞ=∂brj =
Xn

i = 1

fyijxije
zT

i g � xije
zT

i g expðxT
i bre

zT
i gÞ

1 +
Pk

s = 2 expðxT
i bse

zT
i

gÞ
g,

for r ¼ 2; . . . , k, j ¼ 1; . . . , p, and

∂lðb;gÞ=∂gj ¼
Xn

i = 1

f
Xk

r = 2

yirðxT
i brÞezT

i
gzij �

Pk
s = 2 zijx

T
i bse

zT
i g expðxT

i bse
zT

i gÞ
1 +

Pk
s = 2 expðxT

i bse
zT

i
gÞ

g,

for j ¼ 1; . . . , m. As approximation of the covariance covðd̂Þ of the total vector dT = ðbT ;gT Þ,
we use the observed information �∂2lðd̂Þ=∂d∂dT .
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