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Abstract

Ordinal models can be seen as being composed from simpler, in particular

binary models. This view on ordinal models allows to derive a taxonomy of

models that includes basic ordinal regression models, models with more com-

plex parameterizations, the class of hierarchically structured models, and the

more recently developed finite mixture models. The structured overview that

is given covers existing models and shows how models can be extended to

account for further effects of explanatory variables. Particular attention is

given to the modeling of additional heterogeneity as, for example, dispersion

effects. The modeling is embedded into the framework of response styles and

the exact meaning of heterogeneity terms in ordinal models is investigated. It

is shown that the meaning of terms is crucially determined by the type of

model that is used. Moreover, it is demonstrated how models with a complex

category-specific effect structure can be simplified to obtain simpler models

that fit sufficiently well. The fitting of models is illustrated by use of a real data

set, and a short overview of existing software is given.
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1 | INTRODUCTION

Ordered categorical regression, or simply ordinal regression, aims at exploiting the ordering in the responses to obtain
simply structured models. In particular, McCullagh's seminal article (McCullagh, 1980) stimulated research in the area
and made ordinal regression a widely used tool that avoids the pitfalls of using ANOVA-type models on ordered cate-
gorical data. The distinct limitations of the use of ordinary least squares approaches to modeling ordinal responses have
been outlined, for example, by Agresti (2010). Nowadays a multitude of models and corresponding software are avail-
able, for an overview of classical models see, for example, Agresti (2010, 2013), Tutz (2012). Long and Freese (2006) and
Williams and Quiroz (2020) gave overviews with a focus on social science applications.
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Some basic ordinal models assume that an unobserved latent variable underlies the ordinal response variable. The
observed variable is considered as a categorization of the underlying continuous response. The approach yields simple
models but makes assumptions that are not really needed for the construction of ordinal models. Alternative models
are derived from sequential decision processes, which make assumption on the process that yields the final outcome.
Although we will consider such motivations for ordinal models we aim at characterizing ordinal models in a general
way by investigating how models can be constructed from simpler, in particular binary models. It also makes explicit
which binary models are contained in basic ordinal models.

Based on the construction principle a taxonomy of ordinal models is derived that covers the most prominent models
in common use and also includes more recent developments. The derivation of a taxonomy includes a survey of the
alternative ways how to model ordinal responses. Particular attention is given to the modeling of additional heterogene-
ity as, for example, dispersion effects, which has been somewhat neglected and only recently investigated more closely.
Accounting for additional heterogeneity can avoid biased estimates of the effects of explanatory variable, but also pro-
vides additional information on the effects of explanatory variables. Although several models that account for heteroge-
neity have been proposed it is not always clear what exactly is modeled. One of the objectives is to clarify the nature of
the heterogeneity that is captured by these models. We also consider hierarchical models, which seem not to be suffi-
ciently developed, although they have several advantages and it is straightforward to include heterogeneity effects.
Though hierarchical models have been considered in item response analysis their potential has not yet been exploited
sufficiently in ordinal regression. The flexible class of hierarchical models is presented in a structured way and embed-
ded into the taxonomy. The taxonomy is completed by including the more recently proposed class of mixture models
that account for uncertainty in a different way.

In Section 2, basic ordinal models are reviewed and described as composed from binary models, which yields a pre-
liminary taxonomy. In Section 2, it is demonstrated that unobserved heterogeneity may yield misleading results. It is
shown how heterogeneity can be modeled and the meaning of heterogeneity in alternative models is clarified. In Sec-
tion 4, category-specific parameter structures are investigated. Section 5 is devoted to the wide class of hierarchically
structured models with a focus on symmetric models. The finite mixture approach to modeling heterogeneity is consid-
ered in Section 6. Finally some further areas of current research are briefly mentioned.

2 | BASIC MODELS

One can distinguish between three basic models, the cumulative model, which can be derived from a latent continuous
variable, the sequential model, which is a process model, and the adjacent categories model, which is strongly related
to nominal models. In the following these models are characterized by the binary models that are contained in these
models. With Y ∈ {1, …, k} denoting an ordinal response the interesting binary responses that can be used to obtain a
simple characterization of the models are the split variables

Y r =1ifY≥r, and Y r =0,otherwise,

which split the response categories into the subsets {1, …, r − 1} and {r, …, k}. The variable Yr simply distinguishes
between low and high response categories with low and high referring to Y < r and Y ≥ r. The link between the
response and the split variables is given by

Y = r , Y 1…,Y kð Þ= 1,…,1,0,…,0ð Þ,

where Yr is the last of the sequence of binary variables with a value 1. The vectors (Y1…, Yk) form a so-called Guttman
space, all members have the form (1, …, 1, 0, …, 0), in which a sequence of ones is followed by a sequence of zeros. They
can be seen as a specific vector-valued representation of the response in k categories.

2.1 | Cumulative models

Cumulative models as considered by McCullagh (1980) are typically derived from the assumption of an underlying
latent regression model with a continuous response. Let Y* be an underlying latent variable which follows a regression
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model Y* = xTβ − ε, where ε is a noise variable with continuous distribution function F(.). Instead of observing Y* one
observes a coarser categorical version determined by Y = r , θr − 1 ≤ Y* ≤ θr, where − ∞ = θ0 < θ1 < … < θk = ∞ are
thresholds on the latent scale. Simple derivation yields the cumulative model

P Y≥rjxð Þ= F β0r + xTβ
� �

, r=1,…,k, ð1Þ

where β0r = − θr − 1. The class of cumulative models comprises many alternative models since F(.) can be chosen as
any strictly increasing distribution function.

Alternatively the cumulative model can be seen as a collection of binary response models. It is equivalent to postu-
lating that for the split variables the models

P Y r =1jxð Þ=F β0r + xTβ
� �

, r=1,…,k ð2Þ

hold. Thus, the cumulative model can be constructed from models (2). Conversely, if the cumulative model holds one
obtains the binary models for the split variables. In both cases one has to postulate that intercepts are ordered, that is,
β0k < … < β01 = ∞. It is crucial that the binary response models (2) have to hold simultaneously for the binary responses
Y2, …, Yk. The main link between the binary models is that one assumes that the effect of explanatory variables captured
in xTβ is the same in all of the models.

The link to the split variables makes explicit that the cumulative model essentially compares groups of categories. It
is a model that simultaneous compares categories that result from splitting the categories into {1, …, r − 1} and {r, …, k}.
In the construction no reference to latent variables is needed.

The most widely used model is the so-called proportional odds model, which uses the logistic distribution F(η) = exp
(η)/(1 + exp(η)), yielding

logitP Y≥rjxð Þ= θr + xTβ:

2.2 | Sequential models

Sequential models can be derived from the assumption that 1, …, k are reached successively. They reflect the successive
transition to higher categories in a stepwise fashion. The sequential model has the form

P Y≥r jY≥r−1,xð Þ=F β0r + xTβ
� �

, r=2,…,k, ð3Þ

where F(.) is again a distribution function.
The model can be seen as a step model with steps representing the transition to higher categories. Let, the process

start in category 1. The decision between category {1} and categories {2, …, k} is determined in the first step by a dichoto-
mous response model P(Y ≥ 2| x) = F(β01 + xTβ). If Y = 1, the process stops. If Y ≥ 2, the second step is a decision
between category {2} and categories {3, …, k} and is determined by P(Y ≥ 3 j Y ≥ 2, x) = F(β02 + xTβ). In general in the
rth step the decision between category {r} and categories {r + 1, …, k} is modeled by the binary model given in Equa-
tion (3). In addition to the stepwise modeling it is only assumed that the decision between the category reached and
higher categories is determined by the same binary model that has response function F(.). The collection of steps yields
the sequential model.

The sequential character of the model is visualized in Figure 1, which shows the successive steps for four categories.
The first step distinguishes between categories {1} and {2,3,4}. Given the choice was in favor of the categories {2,3,4}, in
the next step it is distinguished between categories {2} and {3, 4}. The splitting continues until end nodes are reached.
An essential characteristic of the model is that it is conditional, it uses binary models as building blocks to specify the
occurrence of the event Y ≥ r given Y ≥ r − 1.
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The model can also be represented by split variables. It is easily seen that the model is equivalent to assuming that
for the split variables the binary models

P Y r =1 jY r−1 =1,…,Y 2 =1,xð Þ= F β0r + xTβ
� �

, r=2,…,k,

hold. Since the binary variables are from a Guttman space the models can also be given by

P Y r =1 jY r−1 =1,xð Þ= F β0r + xTβ
� �

, r=2,…,k, ð4Þ

which uses the simpler condition Yr − 1 = 1. Both representations (3) and (4) show that the binary models contained in
the sequential model are conditional models, in contrast to the binary models contained in cumulative type models.

The most prominent member of the family of models is the continuation ratio model, which results from using the
logistic distribution function,

log
P Y≥r−1jxð Þ
P Y = rjxð Þ

� �
= β0r + xTβ:

The model directly compares the categories {r , …, k} to category r-1.
Sequential models were considered by McCullagh (1980), Läärä and Matthews (1985), Armstrong and Sloan (1989),

Tutz (1991), and Ananth and Kleinbaum (1997). Their strong link to discrete survival modeling is investigated, for
example, in Tutz and Schmid (2016).

2.3 | Adjacent categories models

The adjacent categories model has the basic form

P Y≥r jY∈ r−1,rf g,xð Þ=F β0r + xTβ
� �

, r=2,…,k: ð5Þ

Since P(Y ≥ r j Y ∈ {r − 1, r}, x) = P(Y = r j Y ∈ {r − 1, r}, x) it specifies the probability of observing category r given
the response is in categories {r − 1, r}. The split variables representation of the model is given by

P Y r =1 jY r−1 =1,Y r+1 =0,xð Þ=F β0r + xTβ
� �

, r=2,…,k: ð6Þ

The binary response models, which are contained in the adjacent category model, are conditional models. The same
holds for the sequential model, however, in contrast to the sequential model the adjacent categories model is not a

1, 2, 3, 4

1 2, 3, 4

2 3, 4

3 4

First Step

Second Step

Third Step

FIGURE 1 The sequential model as a hierarchically structured

model
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hierarchical model. That means that the choice between categories is not determined in a hierarchical way that can be
represented as a tree as is possible for the sequential model (Figure 1). The reason is that the conditions in the binary
models are overlapping, they contain, for example, Y ∈ {1, 2} and Y ∈ {2, 3}, which share the response category 3.

The most widespread model is again the model that uses the logistic distribution function. Then logits are built
locally for adjacent categories of the form

log
P Y = rjxð Þ

P Y = r−1jxð Þ
� �

= β0r + xTβ, r=2,…,k, ð7Þ

yielding the probabilities

P Y = rjxð Þ= exp
Pr

l=2 β0l + xTβf g� �
Pk

s=1expð
Ps

l=2 β0l + xTβÞf g , r=1,…,k:

The representation (7) shows that the model directly compares adjacent categories. The model can also be seen as a
submodel of the nominal multinomial logit model

log
P Y = rjxð Þ
P Y =1jxð Þ

� �
= γ0r + xTγr , r=1,…,k, ð8Þ

where γ01 = 0, γT1 = 0,…,0ð Þ. If the general multinomial logit model (8) holds one can derive

log
P Y = rjxð Þ

P Y = r−1jxð Þ
� �

= β0r + xTβr , r=2,…,k, ð9Þ

where βr = γr − γr − 1, β0r = γ0r − γ0,r − 1. One obtains the adjacent categories model (7) by assuming β2 = … = βk = β.
This assumption implies that the model uses the ordering of the categories. The more general model (9) does not use
the order, it simply is an alternative representation of the nominal multinomial logit model. More recently, Dolgun and
Saracbasi (2014) investigated under which conditions the dependence of the parameters on the categories can be simpli-
fied to β2 = … = βk. A slightly weaker assumption is βr = αrβ, r = 2, …, k, where αr > 0 are scaling constants. The model
is equivalent to Anderson's stereotype model (Anderson, 1984), which was also considered by Greenland (1994), and,
more recently, by Fernandez et al. (2019). The adjacent categories logit model may also be considered as the
corresponding regression model that is obtained from the row-column (RC) association model considered by
Goodman (1981a, 1981b), Kateri (2014).

2.4 | Common structure

The characterization of models by the binary models that are embedded and form the building blocks yields a simple
(preliminary) taxonomy of models. While the binary models contained in the cumulative type model are unconditional
models for groups of categories, the adjacent categories models compare categories conditionally and the sequential
models compare categories and groups of categories conditionally. By focusing on the conditioning one obtains the
structure given in Figure 2.

Table 1 shows the form the models have for the ordinal response Y in k categories as well as for the split variables.
The last column shows the representation of the logistic models, which have a particularly simple form. It should be
noted that all models are represented in a way that the increase in xTβ means a tendency to higher categories. Alterna-
tive representations are in common use, in particular the cumulative model is often given in the form P
(Y ≤ r) = F(β0r + xTβ).

One should be aware that the structure shown in Figure 2 actually represents families of models since one can use
quite different link functions in the binary models. Most common choices are the logit and probit link, but also mini-
mum and maximum extreme value distributions have been used, see, for example, Agresti (2010), Tutz (2012), and
Christensen (2015). Peyhardi et al. (2015) gave a careful investigation of the relationship among ordinal models with
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different link functions and derived invariance properties for the models. For simplicity, in applications we use the
logistic versions only.

2.4.1 | Interpretation of parameters

The interpretation of parameters depends on the model that is used. By using the representation as binary models one
can use the interpretation from these (conditional) models. Interpretation becomes especially simple for the logistic ver-
sion of the models. Then the parameter of the j-th variable, βj, is directly linked to the change in specific odds if xj
increases by one unit. The corresponding odds are:

• the cumulative odds γr xð Þ= P Y≥rjxð Þ
P Y < rjxð Þ, which compare the categories {r,…,k} to {1,…, r−1}, in the cumulative logistic model,

• the conditional sequential odds γr xð Þ= P Y≥rjY≥r−1,xð Þ
P Y = r−1jY≥r−1,xð Þ =

P Y≥rjxð Þ
P Y = r−1xð Þ, which compare the categories {r,…, k} to the cat-

egory r− 1, in the sequential logistic model (continuation ratio model),

• the local odds γr xð Þ= P Y = rjY∈ r−1,rf g,xð Þ
P Y = r−1jY∈ r−1,rf g,xð Þ =

P Y = rjxð Þ
P Y = r−1jxð Þ, which compare the categories r and r− 1, in the adjacent cate-

gories logistic model.

More concise, if variable xj is increased by one unit the odds γr(x) change by the factor eβj when all other variables
are kept fixed. Thus, eβj can be directly interpreted as the odds ratio that compares the corresponding odds with value
xj+1 in the j-th variable to the odds with value xj in the j-th variable, when all other variables are kept fixed,

eβj =
γr x1,…,xj +1,…,xp
� �
γr x1,…,xj,…,xp
� � :

Interpretation is simplified by the fact that the change in odds ratio does not depend on r, variables change all odds
in the same way. For example, in the adjacent categories model the change in the odds P(Y = r| x)/P(Y = r − 1| x)
obtained by increasing the j-th variable by one unit is the same for all pairs of adjacent categories. For more on the
interpretation of effects and odds see, for example, McCullagh (1980), Agresti (2010), and Tutz (2012).

Conditional Models

Adjacent categories model:

compares categories locally

Sequential model:

compares category and groups

of categories

Cumulative model:

compares groups of categories

Ordinal Models

FIGURE 2 Structure of ordinal latent trait models

TABLE 1 Overview of ordinal models

Conditional representation
using response

Conditional representation
using split variables

Category representation
logistic version

P(.) = F(β0r + xTβ) P(.) = F(β0r + xTβ) log(.) = β0r + xTβ

Cumulative P(Y ≥ r) P(Yr = 1) log P Y≥rð Þ
P Y < rð Þ

� �
Adjacent categories P(Y = r j Y ∈ {r − 1, r}) P(Yr = 1| Yr − 1 = 1, Yr + 1 = 0) log P Y = rð Þ

P Y = r−1ð Þ
� �

Sequential P(Y ≥ r| Y ≥ r − 1) P(Yr = 1| Yr − 1 = 0) log P Y≥rð Þ
P Y = r−1ð Þ

� �
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It has to be emphasized that the odds that are used to interpret parameters are conditional odds for sequential and
adjacent categories models. If, for example, the odds used in the sequential model are presented as P(Y ≥ r| x)/P(Y = r
− 1| x) the conditioning is hidden, however, interpretation refers to the transition to higher categories given specific cat-
egories have been reached, the corresponding odds are the local odds, P(Y ≥ r j Y ≥ r − 1, x)/P(Y = r − 1 j Y ≥ r − 1, x).

For models with other link functions than the logistic one can use alternative measures that are often simpler to inter-
pret than the model parameters themselves, see Agresti and Kateri (2017) and Agresti and Tarantola (2018). One approach
to investigate the effect of explanatory variables that has been propagated in particular in the social sciences uses so-called
marginal effects. One can, for example, examine the effect of a quantitative variable xj by considering the rate of change
for specific categories at particular values of xj, that is, one considers ∂P(Y = r| x = x*)/∂xj, which is the rate of change of
category r when other variables are fixed at certain values x* (Agresti & Tarantola, 2018). Although usually referred to as
marginal effect it is rather a conditional effect because of the conditioning on x*. Consequently, curves that show the rate
of change depend on the chosen value of the other variables. One way to deal with this problem is to compute the mar-
ginal effect with every explanatory variable set at its mean to obtain the marginal effect at the mean, or to compute the
marginal effect at each of the sample values and then averaging them to obtain the average marginal effect. More details
on marginal effects measures are given in Long (1997), Long and Freese (2006), Williams (2012). Long and Mustillo (2018)
showed how this approach can be used to compare groups in binary regression models.

2.5 | Illustrating application

For illustration, we use data from the German Longitudinal Election Study, which is a long-term study of the German
electoral process (Rattinger et al., 2014). The data consist of 2036 observations and originate from the pre-election sur-
vey for the German federal election in 2017 and are concerned with political fears. In particular, the participants were
asked: “How afraid are you due to the use of nuclear energy? The answers were measured on Likert scales from 1 (not
afraid at all) to 7 (very afraid). The explanatory variables in the model are Abitur (high school leaving certificate, 1:
Abitur/A levels; 0: else), Age (age of the participant), EastWest (1: East Germany/former GDR; 0: West Germany/former
FRG), Gender (1: female; 0: male), Unemployment (1: currently unemployed; 0: else).

Table 2 shows the estimated parameters of the logit versions of the three models. It is seen that although parameter
estimates are quite different in all three models the same variables are found to have an impact on the response. The
log-likelihood values are −3,772.140 (cumulative model), −3,772.692 (adjacent categories model), and −3,776.712
(sequential model), that means, in terms of the goodness of fit the models are well comparable, in particular the cumu-
lative and the adjacent categories model show almost the same fit.

It is not uncommon that all three models yield similar results in terms of goodness of fit and relevance of explana-
tory variables. The main difference is that they use differing odds but the simple linear structure in the explanatory
term is the same. If the goodness of fit is comparable one can choose the odds that one prefers for the interpretation. In
particular, the odds for the cumulative and the adjacent categories model, which tend to yield very similar results, are
simple to explain to practitioners. The sequential model is somewhat different, since its odds refer to a sequence of tran-
sitions, which is appropriate in particular if the response might be seen as the result of a process, for example, in catego-
rized time of unemployment where long-term unemployment can only be observed if the person was previously short-
term unemployed. In cases like that one observes the end of a process.

3 | ACCOUNTING FOR ADDITIONAL HETEROGENEITY

The basic models considered in the previous section are simple to apply but often do not meet the requirements of the
modeling task at hand. The main reason is that, the parameterization focuses on location but ignores potential hetero-
geneity in the population. One specific form of heterogeneity is unobserved dispersion, which, if ignored, may yield
strongly misleading results. In the following approaches to model heterogeneity are considered. We will use the general
framework of response styles to embed more traditional approaches as well as the approaches that have been proposed
more recently. The models used are from the given taxonomy but the focus is on parameterization, which is modified
to address potential heterogeneity. We first consider the simplest case, namely binary regression. The problems that
may arise if heterogeneity is ignored are already seen from this simple case, and it is useful for generalizations.
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3.1 | Ignoring variance heterogeneity

Let a latent regression model be given by Y �
i = β0 + xTi β−σiεi , where σi now depends on the specific observation i. In

the simplest case one has σi = exp(ziγ), where zi is an indicator variable, which takes the value one for group 1 (e.-
g., males) and the value zero for group 0 (e.g., females). By assuming that the observed response is determined by
Yi = 1 if Y �

i ≥0 one obtains the binary response model

P Y i =1jxið Þ= F β0r=σ+ xTi β=σð Þ� �
for observations from group1, and

P Y i =1jxið Þ= F β0r + xTi β
� �

for observations from group 0:
ð10Þ

Although the effects are the same in the underlying regression model, effects of covariates in the binary models dif-
fer between the groups. One has β/σ in group 1 and β in group 0. If, for example, σ = 0.5 the effect strength in the
binary model in group 1 is twice the effect strength in group 0. The dependence on the group is simply ignored if one
sets σi = 1, which is typically assumed in categorical regression to obtain identifiability. It means that in both groups
the same scaling is used, although different ones are needed.

Thus, ignoring variance heterogeneity may yield rather misleading effect strengths when comparing parameters.
The effect has been demonstrated in particular by Allison (1999) who considered an example with the binary response
being the promotion to an associate professor from the assistant professor level. It turned out that the number of publi-
shed articles had a much stronger effect for male researchers than for female researchers, which seems rather unfair,
but could be due to variance heterogeneity.

The distortion of effects is not restricted to binary models, it occurs also in ordinal models. In addition, the problem does
not arise only when effects of separate fits are compared, it is also present if one fits a closed model in which group effects
are included as covariates. Allison's article stimulated extensive research that aimed at avoiding such misleading results, see,
for example, Williams (2009), Mood (2010), Karlson et al. (2012), Breen et al. (2014), Rohwer (2015), and Tutz (2019).

3.2 | Modeling variance heterogeneity: The location-scale model

One way to introduce variance heterogeneity is to model it explicitly as depending on covariates. In the cumulative type
model this approach has been used by McCullagh (1980). If the underlying latent variable is given by Y* = xTβ - σε with
σ = exp(zTγ), where z is an additional vector of covariates, and one assumes the category boundaries approach, that is,
Y = r , θr − 1 ≤ Y* ≤ θr one obtains the location-scale model

TABLE 2 Estimates of logit versions of ordinal regression models for fears of the use of nuclear energy

Cumulative model Adjacent categories

Estimate Std. error z value Pr (>jzj) Estimate Std. error z value Pr (>jzj)
Age 0.0162 0.0021 7.492 0.0000 0.0049 0.0007 6.946 0.0000

Gender 0.5819 0.0789 7.368 0.0000 0.1967 0.0260 7.559 0.0000

Unemployment −0.0290 0.2483 −0.117 0.9077 −0.0139 0.0794 −0.176 0.8602

EastWest −0.5144 0.0845 −6.087 0.0000 −0.1671 0.0274 −6.089 0.0000

Abitur −0.0456 0.0813 −0.561 0.5755 −0.0190 0.0264 −0.720 0.4716

Sequential model

Estimate Std. error z value Pr (>jzj)
Age 0.0136 0.0016 8.460 0.0000

Gender 0.3620 0.0585 6.183 0.0000

Unemployment 0.1241 0.1844 0.673 0.5008

EastWest −0.3180 0.0624 −5.090 0.0000

Abitur −0.0457 0.0604 −0.757 0.4491
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P Y≥rjx,zið Þ=F
β0r + xTβ
exp zTγð Þ

� �
: ð11Þ

The model contains two terms that specify the impact of covariates, the location term β0r + xTβ and the variance or
scaling term exp(zTγ), which derives from the “variance equation” σ = exp(zTγ). If x and z are distinct the interpretation
of the x-variables is the same as in the proportional odds model.

The location-scale model was introduced by McCullagh (1980) and considered by Nair (1987) and Hamada and
Wu (1990). In the social sciences, the model is also known as heterogeneous choice model or heteroscedastic logit model
(Alvarez & Brehm, 1995; Williams, 2009). The logistic version is also related to the logistic response model with propor-
tionality constraints proposed by Hauser and Andrew (2006) and extended by Fullerton and Xu (2012).

It is important to note that the scaling component does not necessarily represent variance heterogeneity. If one
derives the model from an underlying continuous regression model one typically thinks of variance heterogeneity, how-
ever, the parameters of the proportional odds model can also be interpreted without reference to an underlying continu-
ous response. For simplicity, let us consider the case where z ∈ {0, 1} is binary denoting two groups (male/female).
Then the effect strength of the j-th variable in the location scale model is given by βj/e

γ for observations from group
1 and βj for observations from group 0. That means gender is an effect modifying variable. It changes the effect of the
covariates as a function of gender without any reference to an underlying continuous response. It can easily be embed-
ded into the general framework of varying coefficient models proposed by Hastie and Tibshirani (1993).

3.3 | Modeling heterogeneity: The location-shift model

An alternative way to model heterogeneity, which has some advantages, specifies that covariates modify the thresholds.
Instead of allowing the variance in the underlying continuous response to vary across groups of individuals one
assumes that the intercepts, which refer to thresholds, vary across individuals.

Let the intercept (or thresholds) β0r in the cumulative model (1) be replaced by

β0r + k=2−r+1ð ÞzTα, ð12Þ

to obtain the location-shift model

P Y≥rjxð Þ=F β0r + k=2−r+1ð ÞzTα+ xTβ
� �

, r=2,…,k, ð13Þ

which (in a more elementary form) has been proposed by Tutz and Berger (2017). The scaling (k/2 − r + 1) in the linear
term (k/2 − r + 1)zTα is chosen such that the difference between adjacent predictors ηr = β0r + (k/2 − r + 1)zTα + xTβ
has the form

ηr−ηr+1 = β0r−β0,r+1 + zTα:

That means the difference between adjacent predictors is widened or shrunk by zTα. The effect of adding zTα
becomes obvious if one considers the thresholds on the latent variables. The thresholds are given by θr = − β0,r + 1.
Adding the term yields the new thresholds ~θr = θr− k=2−r+1ð ÞzTα , and differences ~θr−~θr−1 = θr−θr−1 + zTα . For
illustration, let us consider concrete examples with odd and even numbers of categories. For k = 5 one obtains with
c = zTα the thresholds.

For k = 6 one obtains the thresholds.
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If z ∈ {0, 1} is a simple indicator variable, yielding zTα = zα, one obtains for positive α that the difference between
adjacent categories are widened by α in group 1 indicating more concentration in middle categories than in group
0. For negative α the difference is shrunk indicating more concentration in the extreme categories in group 1. Therefore,
the parameter α indicates a tendency to middle categories. It explicitly models how covariates change the response
behavior of respondents concerning a tendency to middle or extreme categories with regard to the tendency to extreme
or middle categories.

Typically large α and therefore more concentration in middle categories means smaller variation of responses,
and small α, with more concentration in extreme categories, means higher dispersion. Thus, Tutz and Berger (2017)
described the heterogeneity effects in the location-shift model as dispersion effects, which was supported by applica-
tions in which the location-scale model and the location-shift model showed comparable goodness of fit. However,
the modeled effects are not exactly the same, differences in interpretation will be investigated later.

Location-scale and location-shift models use different parameterizations but both model types aim at separating the
location from response behavior that is not determined by location. While the location-scale model uses a multiplicative
structure (motivated by variance heterogeneity in the underlying continuous response) yielding a dispersion effect, the
location-shift model uses an additive structure (motivated by the shifting of thresholds) yielding a tendency to middle
or extreme categories.

The location-shift model has several advantages over the location-scale model. It is a (multivariate) generalized lin-
ear model. Therefore, all the inference techniques, including diagnostic tools and asymptotic results that have been
shown to hold for this class of models can be used. Also selection of variables can be done within that framework by
using regularization methods as the lasso. In contrast, the location-scale model with its multiplicative structure is not a
generalized model and such general inference tools seem not yet available. More important than the finer differences
between the modeling approaches is that one should account for potential heterogeneity in some form since otherwise
results may be untrustworthy. In particular,

ignoring variance heterogeneity might yield spurious effects of explanatory variables as described in Section 3.1,
estimates of the location parameters can be strongly biased if heterogeneity is present but not modeled (see simulation
results in Tutz and Berger(2017)),
modeling of heterogeneity provides additional information about the effects of covariates, they show, for example, which
groups of persons have strong variability, and which groups can be considered as homogeneous, see the following example.

3.4 | Nuclear fear data

Table 3 shows the estimates of the location-scale and location-shift model for the nuclear fear data. The upper part
shows the effects of variables in the location term, the lower part shows the parameters in the heterogeneity term. The
names of the variables in the latter term are appended by“H.” It is seen that heterogeneity effects should not be
neglected. At least three of the explanatory variables show significant effects. For example, the estimates for the
location-scale model show that females tend to have lesser dispersion than men, also younger people show lesser vari-
ability than older people in both models. In accordance, the location-shift model shows that females have a stronger
tendency to middle categories than men, and the same holds when older people are compared to younger ones. The p-
value of the heterogeneity variable EastWest is smaller in the location-scale model than in the location-shift model, but
in both models it is not far from 0.05. It should be noted that the estimates of the location term have changed by includ-
ing heterogeneity effects. Comparison with Table 2 shows that effects are stronger if one accounts for heterogeneity, the
increase is more distinct in the location-scale model.

A visualization of the parameter estimates of the location-shift model can be obtained by using star plots (Tutz &
Berger, 2016). Figure 3 shows the tuples eα̂,eβ̂

� �
for the linear effects of the location-shift model. The first value, eα̂, rep-

resents the heterogeneity effect on the odds, for values larger than one there is a tendency to middle categories, for
values smaller than one there is a stronger tendency to extreme categories than in the simple proportional odds model.
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The second value, eβ̂, represents the location effect on the odds. For values larger than one high response categories are
favored, for values smaller than one low response categories are favored. Also pointwise 95% confidence intervals are
included, represented by stars with the horizontal and vertical lengths corresponding to the confidence intervals of
eα̂ and eβ̂, respectively. If stars cross the horizontal or/and vertical lines the corresponding effects cannot be consid-
ered as significant. For example, the star for Abitur crosses both lines since both effects are not significant, while
the star for Age is very small and far away from both lines, indicating strong significance. It should be noted that
the plotted effect of Age refers to age measured in decades (age/10), otherwise the star would be too close to the
“zero effect” point (1,1).

3.5 | Generalized models and response styles

A general framework, in which the modeling of heterogeneity can be embedded, is the modeling of response styles.
Response styles have been described as a consistent pattern of responses that is independent of the content of a
response (Johnson, 2003). They are commonly used to describe an individual's tendency to choose a certain kind of
response category, for example extreme or middle categories, irrespective of the content-related response. The heteroge-
neity considered here may be seen as response style in a wider sense. It does not describe specific response behavior on

TABLE 3 Estimates of location-scale model and location-shift model for nuclear energy fear data

Location scale-model Location shift-model

Estimate Std. error z value Pr (>jzj) Estimate Std. error z value Pr (>jzj)
Age 0.0201 0.0030 6.670 0.0000 0.0136 0.0022 −6.115 0.0000

Gender 0.7467 0.1115 6.697 0.0000 0.6839 0.0830 −8.236 0.0000

Unemployment −0.1159 0.4307 −0.269 −0.7881 −0.1193 0.2500 −0.477 0.6331

EastWest −0.6152 0.1162 −5.294 0.0000 −0.5344 0.0862 6.196 0.0000

Abitur −0.0656 0.0996 −0.659 0.5102 −0.0378 0.0840 0.451 0.6519

AgeH 0.0054 0.0011 4.573 0.0000 −0.0043 0.0009 −4.375 0.0000

GenderH −0.1603 0.0438 −3.659 0.0002 0.1374 0.0371 3.697 0.0002

UnemploymentH 0.3477 0.1540 2.257 0.0239 −0.2514 0.0898 −2.800 0.0051

EastWestH 0.0982 0.0465 2.111 0.0347 −0.0641 0.0373 −1.717 0.0859

AbiturH −0.0188 0.0443 −0.426 0.6702 0.0116 0.0371 0.314 0.7535

0.7 0.8 0.9 1.0 1.1 1.2
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FIGURE 3 Effect stars for location-shift model
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the individual level but on the group level (or determined by a linear term). Moreover, it applies in regression settings,
in which just one observation per person is available.

General treatments of response styles are found in particular in the social sciences and item response theory, where
more than one measurements per person are available. An overview was given by Van Vaerenbergh and Thomas (2013),
see also Messick (1991), Baumgartner and Steenkamp (2001), Bolt and Newton (2011), and Johnson (2003).

In the next sections we investigate which choice behavior is modeled by specific heterogeneity effect terms by con-
sidering extreme values of parameters. It will be seen that the modeled behavior depends on the model that is used. Dif-
ferent model types can yield different response styles for the same term.

3.5.1 | Extensions of cumulative models

Let us again consider the location-scale model, which contains the term exp(zTγ) in the denominator of the predictor.
The essential modifying term is the “standard deviation” given by c = zTγ = z1γ1 + … + zmγm. In particular, extreme
values show what exactly is implied by the inclusion of this term. It can be shown that for c ! − ∞ the probability
for one of the response categories becomes 1, all other probabilities become zero. If c ! ∞ one obtains full concen-
tration in the extreme categories, more concrete, one gets for symmetric distribution functions P(Y = 1) = P
(Y = k) = 0.5. That means, for positive zj large parameters γj indicate a tendency to a distinct response while small
parameters γj indicate a tendency to extreme categories. If, for example, zj is an indicator variable with zj = 1 rep-
resenting female responders positive values γj indicate that females have more distinct preferences than males.
Females tend to choose specific categories in rating scale responses, with the categories that are chosen being deter-
mined by the location term, while males tend to choose one of the extreme categories. Thus, a response style is
modeled that covers the continuum between a distinct choice and a choice of extreme categories. The response style
is in accordance with the dispersion concept, small dispersion means a deliberate choice while large dispersion
means extreme categories, however, no reference to latent traits is needed if one sees it as modeling of response
behavior that is characterized by a distinct choice or strong variability.

It should be noted that the concept of response styles used here is not restricted to questionnaires where people con-
sciously choose one of the categories. If, for example, the categories refer to income brackets and zj = 1 again represents
females, large parameters γj indicate that females are more concentrated in specific response categories than males.
Males show stronger heterogeneity, they have more probability mass in extreme categories. Thus, the response style
captured in the multiplicative term refers more general to a tendency to stronger or weaker dispersion.

In the location-shift model the effect-modifying term is the additive term c = zTα. If c ! ∞ the probability is concen-
trated in the middle categories, if c is small the probability mass is in the extreme categories 1 and k. Thus, c determines
the tendency to middle or extreme categories. This is a response style that is slightly different from the style obtained by
the location-scale model. Both models are able to capture the tendency to extreme response categories. They differ in
the other extreme, the tendency to middle categories or one specific category, which is not necessarily the middle cate-
gory. Since both are able to model the tendency to extreme categories they often yield similar fits and can be used to
identify which individuals show strong dispersion.

3.5.2 | Other models with response style

In the previous section, extensions of the cumulative model have been considered. But the link between ordinal models
and binary models investigated in the previous section allows to construct more general ordinal models that account
for heterogeneity or varying effects. In all models given in Table 1 one can replace the predictor ηr = β0r + xTβ by
(β0r + xTβ)/exp(zTγ) to obtain a scaled version, or by β0r + xTβ − (k/2 − r)zTα to obtain the shift version. For example,
the scaled adjacent-categories model has the form

P Y≥r jY∈ r−1,rf g,xð Þ= F
β0r + xTβ
exp zTγð Þ

� �
, r=2,…,k,

the shifted adjacent-categories model is given by
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P Y≥r jY∈ r−1,rf g,xð Þ=F β0r + xTβ+ k=2−r+1ð ÞzTα� �
, r=2,…,k,

In this shifted version positive values of the term c = zTα increase the probabilities of higher categories for r = 1, …,
m but decrease them for r = m+1, …, k (k odd, m=(k+1)/2). Thus, c determines if middle categories or extreme cate-
gories are preferred. For c = zTγ ! ∞ one obtains πm ! 1 and therefore a tendency to the middle category while c !
− ∞ entails π2, …, πk − 1 ! 0 and therefore a preference of the extreme categories.

In the scaled version, the modeled effect is different. One obtains for large c = zTγ that specific categories obtain
very high probability whereas for c small (c ! ∞) one obtains the discrete uniform distribution P(Y = 1) = … = P
(Y = k) = 1/k. It is tedious to show in the general case which specific categories are chosen when c ! ∞. For illustra-
tion, we consider the simple case k = 3 and β02 > β03. Then, for c ! ∞, one obtains P(Y = 1) = 1 if xTβ < − β02, P
(Y = 2) = 1 if −β02 < xTβ < − β03, and P(Y = 3) = 1 if −β03 < xTβ. If β02 < β03, one obtains P(Y = 1) = 1 if xTβ <
− (β03 + β02)/2 and P(Y = 3) = 1 if xTβ > − (β03 + β02)/2. That means it depends on the value xTβ and the thresholds
which category is preferred. Overall, the response style in scaled versions of adjacent categories models represents a
continuum between a distinct response (a person with large c prefers a specific category) and a random response, that
is, each category gets the same probability. The latter has been described in the literature as noncontingent response
style, which is found if persons have a tendency to respond carelessly, randomly, or nonpurposefully (Baumgartner &
Steenkamp, 2001; Van Vaerenbergh & Thomas, 2013). It may also be seen as uncertainty in response behavior. Alterna-
tive approaches to modeling uncertainty will be considered in Section 6.

The response style contained in the shifted version of the adjacent categories model is the same as the response style
in the shifted version of the cumulative model. Both are able to model the tendency to extreme categories and therefore
strong dispersion. In contrast, the scaled versions are different, the response style in the cumulative model captures dis-
persion while the response style term in the adjacent categories model represents the degree of uncertainty. The
response styles arising from the modifications of the linear predictor are summarized in Table 4. A simplified version of
the shifted adjacent categories model was proposed by Tutz and Berger (2016), the scaled adjacent categories model
seems to have not yet been investigated.

4 | MODELS WITH CATEGORY-SPECIFIC EFFECTS

The basic models from Section 2 can be made more flexible by using a more complex parameterization that yields
models often referred to as nonproportional odds models. These models are widely used if the basic models show poor
fit. Although the models seem to use quite different parameterizations than the heterogeneity modeling considered in
the previous section, there are strong links between the modeling approaches, which are considered in the following.

Basic models can be extended to more flexible models by allowing for category-specific effects of explanatory vari-
ables. More concise, the linear predictor ηr = β0r + xTβ in the basic models is replaced by the predictor

ηr = β0r + xTβr ,

in which the effects of covariates, βTr = β1r ,…,βpr
� �

, depend on r and therefore may vary across categories. Of course it
is possible that only some of the variables have category-specific effects while the rest of the variables have so-called
global effects, that is, effects that do not vary across categories.

In particular, extensions of the cumulative logistic model with category-specific effects have been considered in the
literature. The resulting nonproportional odds model and partial proportional odds model have been investigated exten-
sively, see, for example, by Brant (1990), Peterson and Harrell (1990), Bender and Grouven (1998), Cox (1995),
Kim (2003), and Liu et al. (2009). Distinguishing between variables that are category-specific and variables that have

TABLE 4 Response styles in cumulative and adjacent categories models

Cumulative Adjacent categories

Location-shift ((k/2 − r)zTα) Middle versus extreme categories Middle versus extreme categories

Location-scale (xTβ=ez
Tγ) Distinct category versus extreme categories Distinct category versus uniform
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global effects can be obtained by tests that investigate if a specific variable is global, see, for example, Peterson and
Harrell (1990). For the interpretation of effects in the generalized ordered logit models, as models with category-specific
effects are often called in the social sciences, see also Williams (2016), Hedeker and Mermelstein (1998).

The nonproportional odds model typically shows a better fit to data but has some disadvantages. One of them is that
the simple interpretation of parameters gets lost. Also, severe restrictions are postulated. While the simple proportional
odds model only postulates the ordering of the intercepts β02 ≥ … ≥ β0k the extended version postulates
β02 + xTβ2 ≥ … ≥ β0k + xTβk for all values x, which can severely restrict the possible values of explanatory variables.
Even if estimates exist, in future observations with more extreme values in the explanatory variables the estimated
probabilities can be negative. For problems with the model see also Walker (2016) who even argues that it is impossible
to generalize the cumulative class of ordered regression models in ways consistent with the spirit of generalized cumu-
lative regression models.

We do not think that extensions to category-specific effects are in principle useless. They can provide a better way to
explore how explanatory effects determine responses and yield models that show better fit, however, we think that they
are rarely useful in the general form considered above. The most relevant information can be obtained in a simpler way
by using a much sparser parameterization. The basis for the simplification is the link between models with category-
specific parameters and the modeling of heterogeneity.

Let us consider the shift versions of heterogeneity models, which, in the most general case x = z uses the predictor
β0r + xTβ + (k/2 − r + 1)zTα, which can be rewritten as

β0r + xT β+ k=2−r+1ð Þαð Þ= β0r + xTβr ,

where βr = β + (k/2 − r + 1)α is a category-specific effect. Thus, the location-shift model is a model with category-
specific effects, but typically with a much sparser parameterization. For k = 3, the model with category-specific effects
and the shift-version model are even equivalent since each model with category-specific parameters can be rep-
arameterized by β = (β2 + β3)/2, α = β2 − β3. While the parameter β contains the location effect, the parameter α repre-
sents the response style effect. That means there is a reparameterization of the model with category-specific effects that
has easy-to-interpret parameters.

In the general case, one obtains the simple hierarchy given in Figure 4 for the logistic cumulative model, however,
the same hierarchy applies to all extended versions of the basic models. This allows to use likelihood ratio tests to inves-
tigate if the general model with category-specific effects can be reduced to the location-shift model, which typically con-
tains much fewer parameters. With p explanatory variables the full model contains (k − 1)(p + 1) parameter while the
location-shift model contains k − 1 + 2p parameters, which yields the difference (k − 3)p. If one has in a questionnaire,
for example seven categories the difference is 4p, which already for a moderate number of explanatory variables yields
a much sparser model. The test itself it easily performed, one compares the likelihhood of the model with category-
specific effects to the likelihood of a global effects model with two sets of predictors, x and xT(k/2 − r + 1) (see
Figure 4).

Of course, the sparser model can only be used if the tests are in favor of the restricted model. But this is the case in
many applications. Typically, if the model with global effect does not fit well, it suffices to fit the shift version of the
model to improve the fit distinctly (see also the application in the following). It is not necessary to use the general
model with category-specific effects since tests that compare the full model and the location-shift model turn out to be
nonsignificant, for various examples, see Tutz and Berger (2020). One might even conclude that the nonproportional

Non Proportional Odds Model

ηr = β0r + x ⊤ β r

Location-Shift Model

ηr = β0r + x T β + x T (k/ 2 − r)γ

Proportional Odds Model

ηr = β0r + x β⊤
FIGURE 4 Model hierarchy
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model is widely dispensable, only in very extreme data settings it might still be useful to apply this parameter intensive
model. The shift model has the additional advantage that parameters have a straightforward simple interpretation,
which is not the case in the most general model with separate parameters for all categories.

4.1 | Nuclear fear data

Table 5 shows the fit of the models in the hierarchy given in Figure 4. The deviance is used to test if models may be sim-
plified. More concrete, the given deviances are conditional deviances (or differences of deviances) that test if there is a
significant difference between the sub model ~M and the model M. It is seen that the difference between the location-
shift model and the general nonproportional odds model is not significant (deviance 22.90 on 20 df ). Thus, the model
may be simplified to the location-shift model. Further simplification seems not warranted because the difference
between the proportional odds model and the location-shift model is highly significant (deviance 46.06 on 5 df ). There-
fore, the location-shift model captures the essential structure in the data that has to be modeled (beyond the effects
modeled by the proportional odds model), but the general nonproportional odds model is not needed. This is in particu-
lar fortunate since the nonproportional odds model always contains many parameter to be interpreted, in the present
case 30 (without intercepts) in contrast to the location-scale model with only 10 (without intercepts), two for each
variable.

5 | HIERARCHICALLY STRUCTURED MODELS

So far, the only conditional hierarchical model that has been considered is the sequential model. However, in particular
for Likert-type items hierarchical models are very flexible and useful tools to obtain parsimonious parameterizations. In
Likert-type items or Likert scales the categories 1, …, k are assumed to be ordered and reflect agreement/disagreement
or approval/disapproval of the respondent with respect to the value statement. In five-grade Likert scales, the grades
are typically interpreted by strongly disagree, disagree, neutral (undecided), agree, and strongly agree. A specific trait of
responses of that type is that response categories are naturally (by design) partitioned into groups of homogeneous cate-
gories, a partitioning that can be exploited in regression modeling.

In general, a hierarchical model is obtained by successively modeling the response in groups of response categories,
with groups that typically are formed by collecting homogeneous categories. Let, the response categories K = {1, …, k}
be subdivided into basic ordered sets S1, …, Sm, where K = S1 [ … [ Sm, and r < s for r ∈ Sj, s ∈ Sj + 1. In the first step
one models the grouping variable defined by Y1 = g if Y ∈ Sg, for example, by using a cumulative model,

P Y 1≥gjxð Þ=F xTβ 1ð Þ
� �

:

In the next step, the conditional responses given Sg are modeled by partitioning Sg into Sg1,…,Sgmg
, where Sg = Sg1[

…[Sgmg
. If one uses again a cumulative model one has for the conditional response

P Y≥rjY∈Sg,x
� �

=F xTβ Sgð Þ� �
:

All subsets that contain more than one category can be subdivided further, and can be described by adding further
indices to Sgl for each new partition.

TABLE 5 Model hierarchy

Log-likelihood Number of parameters Deviance df

Nonproportional odds model −3,738.21 36

Location-shift model −3,749.66 16 22.90 20

Proportional odds model −3,772.69 11 46.06 5
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The sequential model considered previously uses the partitioning S1 = {1}, S2 = {2, …, k}, S21 = {2}, S22 = {3, …, k},
and so on. Each set of categories is split into two subsets and a binary model is used to model the splits.

In Figure 5, we show the taxonomy of models that is obtained by including hierarchically structured models,
which are specific conditional models. We distinguish between symmetric and asymmetric models. Symmetric
models are defined by invariance, if a model for Y ∈ {1, …, k} is equivalent to the corresponding model for the
inverse ordering, that is, for ~Y = k+1−Y , it is called a symmetric model. In the terminology of Peyhardi et al. (2015)
they are invariant under permutation. The sequential model is a nonsymmetric model even if F(.) is a symmetric distri-
bution function. Thus it is found in Figure 5 as a sub model of nonsymmetric models. We do not consider alternative
asymmetric models since the structuring is strongly determined by the specific application, see Peyhardi et al. (2016)
for examples. Instead we consider modeling strategies that can be used for symmetrically structured data as Likert
scales.

5.1 | Two level ordinal models

Let the number of categories in a Likert scale be even, and subdivided into disagreement categories S1 = {1, …, k/2} and
agreement categories S2 = {k/2 + 1, …, k}. When using these grouping, in the first step one has a binary response, and
can specify

P Y 1≥2jxð Þ=P Y≥k=2+ 1jxð Þ= F β 1ð Þ
0 + xTβ 1ð Þ

� �
:

In the second step one can use, for example, cumulative models,

P Y≥rjY∈Sg,x
� �

= F β
Sgð Þ

0r + xTβ Sgð Þ
� �

,g=1,2:

The hierarchical model assumes that the effect of explanatory variables on the initial decision between agreement
and disagreement categories is determined by the parameter β(1). If a respondent's answer is positive the effect of
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explanatory variables on the degree of agreement is determined by β S2ð Þ, if the respondent's answer is negative it is β S1ð Þ.
As Böckenholt and Meiser (2017) noted with reference to latent trait modeling, there is empirical evidence “that respon-
dents arrive at an initial response based on retrieval processes and, subsequently, decide whether to edit this response
and report a more positive or less revealing answer instead.” This stage-wise process is explicitly captured by the model.
It allows to investigate if the effects of explanatory variables are the same in the initial response and in the selection of
a particular category. Since the models are generalized linear models one can use all the test procedures that are avail-
able for generalized linear models.

A particular strength of hierarchical models is that they are able to disentangle attitudinal measurements, that is,
the location effects, from effects like dispersion or a tendency to extreme categories. It is straightforward to include
response style effects by using the second level models

P Y≥r jY∈S1,x,zð Þ=F β S1ð Þ
0r + xTβ+ zTα

� �
,

P Y≥r jY∈S2,x,zð Þ=F β S2ð Þ
0r + xTβ−zTα

� �
,

where, for simplicity, it is assumed that process parameters are the same. The crucial elements are the linear terms zTα,
which are included with a positive sign for disagreement categories and a negative sign for agreement categories. That
means zTα represents the tendency to middle or extreme categories. For an uneven number of categories the basic
structure remains the same, but at the first level one uses a model for three categories by grouping the categories into
agreement categories, disagreement categories and the neutral category.

The model allows for a finely tuned investigation of covariate effects but often simplifies when effect strengths are
the same across different stages of the process and some effects are nonsignificant. Examples of simple models with no
location effect but non-neglectable dispersion were given by Tutz (1989), although the considered compound models
were not embedded into the general framework of hierarchical models. Latent trait models of this form were used by
Thissen-Roe and Thissen (2013).

5.2 | Symmetric binary splits model

Rather simply structured hierarchical models are obtained by using only binary splits that are symmetrically structured.
A model of this type is visualized in Figure 6. In the first step the model distinguishes between agreement categories, in
the second step it is modeled if the response is moderate or not (extremity I), and in the third step it is modeled if the
response is extreme or not (extremity II). The models at each level are binary and have the form

P Y∈S1 jY∈S,xð Þ=F β S1ð Þ
0r + xTβ S1ð Þ

� �
, ð14Þ

where S is partitioned into S1 and S2, S = S1 [ S1. Thus at each stage of the process one has a binary decision which sepa-
rates the response in S1 and S2 given Y ∈ S. In latent trait modeling the binary decisions are considered to refer to mental
queries and have been called pseudo items (Böckenholt and Meiser, 2017). The corresponding regression model contains
many parameters if one assumes that each binary model has its own parameter. More parsimonious models are obtained by
assuming that some of the parameters are identical. For example, one might assume that the tendency to more extreme cate-
gories is the same, that is, β({1,2}) = β({5,6}) given {1,2,3} for Y ∈ {1, 2} and {4,5,6} for Y ∈ {5, 6}. The most parsimonious model
is obtained if one assumes β(S) = β for all S and specifies the binary models such that S1 contains the higher categories.

Symmetric binary split models have been considered extensively in item response theory under the name item
response trees (Böckenholt, 2017; Böckenholt & Meiser, 2017; De Boeck & Partchev, 2012; Khorramdel & von
Davier, 2014; Meiser et al., 2019; Plieninger & Meiser, 2014). However, in item response theory the focus is on measur-
ing latent traits, not the impact of explanatory variables. In contrast to the treatment here no covariates are included.
Moreover, in item response trees typically in each split new person and trait parameters are specified. The consequence
is that in most steps response styles are modeled but the tendency to higher categories gets lost. An exception is the
parameterization given by Meiser et al. (2019), they include content related parameters in all steps of item response
models.

TUTZ 17 of 28



5.3 | The case of the neutral category

Likert scales with an odd number of categories include a neutral middle category. It is often unclear which role this
neutral category plays. It can be part of the ordered scale or it can be viewed by the respondent as a “dumping ground”
for unsure or nonapplicable response (Kulas et al., 2008). If it is used as a dumping ground and one fits an ordinal
model that includes the middle category estimates will be distorted.

Hierarchically structured model offer a possibility to separate the neutral category and investigate if the impact of
explanatory variables changes if the neutral category is separated. Let the set of response categories be partitioned into
S1 = {1, …, m − 1}, S2 = {m}, S3 = {m + 1, …, m}, where m = (k + 1)/2 denotes the middle category. A model that sepa-
rates the middle category within a hierarchical model is

P Y =mjxð Þ=F β mð Þ
0r + xTβ mð Þ

� �
,

P Y≥rjY∈S1[S3,xð Þ=F β0r + xTβ
� �

:

The first part of the model investigates the effect of covariates on the choice of the middle category by using a binary
model, the second part investigates the effect of covariates if the respondent shows some degree of agreement or dis-
agreement by using a cumulative model. It is straightforward to include dispersion in the second part of the model.

In the second part one can also use a model that lets effects be different in agreement or disagreement categories by
using(comment! in the following formula replace Y \in S_1 by Y \in S_g)

P Y≥rjY�S1,xð Þ=F β
Sgð Þ

0r + xTβ Sgð Þ
� �

,g=1,3:

Alternatively, one can use a tree-model for the categories S1 [ S3. In both cases it is easy to include dispersion
effects. For illustrations, see Tutz (2020).

5.4 | Fitting of hierarchical models

Binary splits models have the advantage that one can use software for binary response models. Since all responses are
binary, and the structure is hierarchical, one only has to compute the design variables that correspond to specific binary
responses. When constructing the design one has to account for the fact that one has various binary decisions. Let us
consider the pseudo item Y ∈ Sj1 from the binary model P Y∈Sj1jY∈Sj,x

� �
=F β

Sj1ð Þ
0r + xTβ Sj1ð Þ

� �
, Sj1� Sj, which is the

model (14), but with more indices. A pseudo item can be characterized by the set of categories Sj that is split. Let the
sets be given by S1…, Sm. Then the binary response when splitting Sj is defined by YSj =1 if Y∈ Sj1 Thus, the explanatory
variables linked to the binary response Y Sj are xT1 ,…,xTm

� �
, with xj = x and xs = 0 if s≠ j, where 0 is a vector of zeros.

In the general case with a mixture of binary and multi-categorical pseudo items specific software is needed. There
are some exceptions. For example, in a 7-point Likert item the initial response in categories {1,2,3}, {4}, {5,6,7} has three

1, 2, 3, 4, 5, 6

1, 2, 3 4, 5, 6

1, 2 3 5, 64

1 2 5 6

Agreement/Disagreement

Extremity I

Extremity II

FIGURE 6 A tree for six ordered categories, categories 1,2,3 represent levels of disagreement, categories 4,5,6 represent levels of

agreement
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categories, and the response within {1,2,3}, {5,6,7} also has three categories. Then one can proceed in the same way as
for binary splits by constructing the design variables that correspond to these pseudo items.

5.5 | Nuclear fear data

We restrict consideration to a simple two level model with cumulative components. Table 6 shows the estimates of
the model with the logistic link function in the components. The left columns show the estimates of the basic hier-
archical model, the right columns show the estimates if response style parameters that represent a tendency to
middle or extreme categories are included (response style parameters have the ending R). It is seen from the left
columns that the same variables show significant effects as in the simple cumulative model given in Table 2. Thus,
the hierarchical model may be used as an alternative to the cumulative model. However, for this data set the fit of
the cumulative model (log-likelihood −2772.14) is better than for the hierarchical model (log-likelihood −3782.21).

The inclusion of response style parameters does not strongly change the parameters of significant variables in the
location term, but provides additional information. For example, women show a stronger tendency to middle categories
than men. The response style effects are similar to the effects seen in the location-shift model, with which they can be
directly compared (Figure 3). Goodness of fit is better for the location-shift model (log-likelihood −3749.66) than for the
hierarchical model with response style (log-likelihood −3758.99).

6 | MIXTURE MODELS

A quite different class of ordinal models that has been proposed in the last decades are finite mixture models. Although
originally the focus was on modeling uncertainty more recently extensions to alternative response styles have been con-
sidered. Mixture models are different from other ordinal models and therefore are included in the taxonomy in Figure 5
as a separate class of models.

The basic mixture model for ordinal responses including uncertainty has the form

P Y i = rjxið Þ= πiPM Ci = rjxið Þ+ 1−πið ÞPU U i = rð Þ, ð15Þ

where Yi represents the observed response and Ci, Ui are unobserved random variables taking values from {1, …, k}. The
variable Ci represents the deliberate choice, that is, the content related response determined by the preferences of a per-
son while Ui represents the uncertainty of the respondent arising from factors like amount of time devoted to the
response, fatigue, partial understanding, and so on. What is observed is not the content related response but a response

TABLE 6 Estimates of hierarchical model for fears of the use of nuclear energy

Hierarchical model Hierarchical model with response style

Estimate Std. error z value Pr (>jzj) Estimate Std. error z value Pr (>jzj)
Age 0.0125 0.0017 7.251 0.0000 0.0104 0.0017 5.860 0.0000

Gender 0.4375 0.0633 6.907 0.0000 0.5056 0.0659 7.667 0.0000

Unemployment 0.0448 0.2033 0.221 0.8254 −0.0244 0.2034 −0.120 0.9044

EastWest −0.3528 0.0677 −5.210 0.0000 −0.3556 0.0690 −5.150 0.0000

Abitur −0.0282 0.0650 −0.434 0.6653 −0.0029 0.0670 −0.044 0.9648

AgeR −0.0116 0.0026 −4.422 0.0000

GenderR 0.3077 0.0969 3.175 0.0015

UnemploymentR −0.7592 0.3086 −2.460 0.0139

EastWestR −0.1502 0.1015 −1.479 0.1392

AbiturR 0.1612 0.0973 1.657 0.0976
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that results from a mixture of content related response and uncertainty. Iannario and Piccolo (2010a) discuss exten-
sively the logical foundations and psychological motivations of the mixture.

Essential components of the modeling strategy are:

• the model for the content related response PM(Ci = r| xi), which can be any ordinal model M,
• the model for uncertainty, which is typically chosen as a uniform discrete distribution, PU(Ui = r) = 1/k,
• the mixture weights, which are determined by explanatory variables in the form logit πið Þ= xTi γ.

The model contains two sets of parameters, one for the content related response in the linear predictor xTβ of the
ordinal model for Y, and one in the specification of the mixture components,

logit πið Þ= xTi γ:

The latter is used to investigate which group of individuals tends to uncertainty.
The uncertainty mixture model has been propagated in a series of articles, including Piccolo (2003), D'Elia and Pic-

colo (2005), Iannario and Piccolo (2010b), Iannario (2012a), Iannario (2012b), Manisera and Zuccolotto (2014), Pic-
colo (2015). An extensive overview has been given more recently by Piccolo and Simone (2019). In most of the
approaches the model for the content-related response was specified as a shifted binomial model as proposed in one of
the early articles on uncertainty mixture models (Piccolo, 2003). This classical version was named CUB model for Com-
bination of a discrete Uniform and a shifted Binomial random. A more general model, which allows for any ordinal
model in the content related component, was considered by Tutz et al. (2017). It links the more conventional models as
the cumulative and the adjacent categories model to uncertainty. In the CUB model literature the mixture has also been
interpreted in a different way. Instead of assuming that a person comes from one of the two groups, content driven
responders or responders affected by uncertainty, it is assumed that the response of each subject is a mixture between
feeling and uncertainty (Piccolo & Simone, 2019).

Whatever the interpretation, the way uncertainty is modeled in mixture models of the form (15) differs crucially
from the way uncertainty is modeled, for example, by the shifted adjacent categories model. In mixture models it is
assumed that a person responds driven by content or randomly. In contrast, in the shifted adjacent categories model it
is assumed that persons show uncertainty to a specific degree. The parameter α compares (groups of) persons, which
show differing degrees of uncertainty.

An advantage of the uncertainty mixture model over classical mixture models is that it clearly specifies the
meaning of the mixture components. In classical mixture models for generalized linear models the components are
typically left unspecified, see Greene and Hensher (2003); Grün and Leisch (2008); Breen and Luijkx (2010). It is
assumed that the mixture components are from the same class of models. After fitting various models one selects a
number of mixture components and tries to interpret the estimated parameters in the final model. However, one
gets quite different parameter estimates if one fits two, three or four components, and choice of the right number
of mixtures is difficult. It seems much better to use a mixture model that clearly specifies the meaning of the com-
ponents. Then one uses a tool that is explicitly tailored to investigate a specific structure like uncertainty that may
or may not be present in the data.

More recently alternative mixture models have been considered that allow to model response styles beyond
uncertainty. Instead of using for U the discrete uniform distribution, which represents a rather extreme way of
responding, one can include a preference for specific categories or a tendency to extreme or middle categories by
using alternative distributions for U, see Gottard et al. (2016), Simone and Tutz (2018), and Tutz and
Schneider (2019).

In general, mixture models are an interesting tool if one suspects heterogeneity in a population. However, esti-
mation can be difficult since log-likelihoods are not concave and one might end up in local maxima. Typically large
data sets are needed to obtain stable estimates. If one suspects uncertainty it might be preferable to include uncer-
tainty explicitly in the predictor as is done in the adjacent categories model. Moreover, then one works within the
generalized linear model framework. In mixture models it is assumed that a person is a content-related responder
or the person chooses a category at random, showing maximal uncertainty. What one can estimate is the posterior
probability of being a content-driven responder. In models that include uncertainty in the linear predictor
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uncertainty of persons or groups of persons is determined by parameters in the predictor. A person's response is
simultaneously determined by its location and uncertainty term. In the following we briefly compare these alterna-
tive strategies.

Nuclear fear data

Table 7 shows the estimates of the adjacent categories model with an uncertainty term and the classical CUB model.
The parameters that model uncertainty have the ending“U.” They refer to the mixture component in the CUB model
and the uncertainty term in the adjacent categories model. Of course parameter values cannot be compared since the
distributional assumptions are quite different. Concerning relevance of explanatory variables, the location term parame-
ters are comparable, although for unemployment one obtains a rather extreme parameter value in the CUB model. For
the effect of the explanatory variables on uncertainty one obtains differing effects, in particular for age (needed in the
adjacent categories model, not significant in CUB model) and EastWest (needed in CUB, not significant in the adjacent
categories model) one gets quite different results. Thus, the choice of the model determines which variables are found
influential. We also fitted a CUB model that contains significant effects only, since the estimates of the other variables
are almost unchanged the results are not given.

7 | FURTHER DEVELOPMENTS

In the following we briefly consider some further topics in ordinal modeling. Additive models allow to relax the
assumptions on the predictor, regularization, and variable selection are important in high dimensional settings, in
which one has to select the most important components of models. The last section is devoted to tree-based models,
which are especially useful in prediction.

7.1 | Additive models

Most of the models considered so far are members of the generalized linear models family. The models are nonlinear
because of the link function, but nonetheless they are parametric, because the effect of covariates is contained in the
linear term xTβ. Often parametric models are too restrictive and nonparametric models are warranted.

A general class of models that are well developed for univariate responses are generalized additive models. The
model class may be extended to ordinal models, which are multivariate. It is straightforward to replace in basic models
the predictor ηr = β0r + xTβ by the additive predictor

TABLE 7 Estimates of the adjacent categories model with an uncertainty term and the classical CUB model

Adjacent categories
location shift-model CUB model

Estimate Std. error z value Pr (>jzj) Estimate Std. error z value

Age 0.0041 0.0007 5.629 0.0000 −0.0206 0.0026 −7.7484

Gender 0.2162 0.0274 7.871 0.0000 −0.4586 0.1083 −4.2329

Unemployment −0.0264 0.0706 −0.375 0.7077 −10.4195 66.7125 −0.1561

EastWest −0.1671 0.0275 −6.072 0.0000 0.3871 0.1620 2.3895

Abitur −0.0149 0.0272 −0.548 0.5840 −0.0337 0.0998 −0.3378

AgeU −0.0040 0.0007 −5.236 0.0000 −0.00418 0.0061 −0.6765

GenderU 0.0758 0.0285 2.657 0.0078 1.19185 0.2347 5.0773

UnemploymentU −0.1983 0.0800 −2.478 0.0132 −1.63231 0.647 −2.5206

EastWestU −0.0194 0.0292 −0.666 0.5055 −1.29106 0.2857 −4.5174

AbiturU 0.0111 0.0285 0.390 0.6963 −0.12217 0.2407 −0.5075
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ηr = β0r + f 1ð Þ x1ð Þ+…+ f pð Þ xp
� �

,

where the f( j)(.) are unspecified functions. As in univariate models the unknown functions may be expanded in basis func-
tions (Eilers & Marx, 1996), smoothing splines (Gu, 2002) or thin-plate splines (Wood, 2004). An overview of available
methods for classical metric regression is found in Wood (2004). Ordinal models with additive predictors were considered
by Yee (2010) within the framework of vector generalized additive models, for which also software is available.

Vector generalized additive models are useful tools that allow to use an additive predictor in basic models like the
cumulative, sequential and adjacent categories model. However, additive versions of models are not yet available for
models that contain more than a location effect. For example, one can obtain an additive modeling of response styles
by using the shifting framework considered here. In the predictor

ηr = β0r + f 1ð Þ x1ð Þ+…+ f pð Þ xp
� �

+ sign k=2−rð Þ g 1ð Þ x1ð Þ+…+ g qð Þ
� �

,

the smooth, unspecified functions g( j)(.) represent response styles that are potentially nonlinear. Models of this type
allow for nonlinear location effects but also account for nonlinear dispersion effects. They aim at modeling the relevant
features in a flexible way but forgo the problems that arise if one wants to model category-specific smooth effects as an
extension of linear predictors with category-specific effects. Extensions of this sort were considered by Tutz (2003), but
call for rather complex regularization methods to obtain estimates.

More flexible models can be obtained for all of the models given in Figure 5. Although the basic concept is simple,
namely replacing the linear predictors by additive predictors, several problems have to be addressed. In mixture models
identifiability issues might be relevant, in all models one has to carefully select tuning parameters that determine the degree
of smoothness, and one has to decide which basis functions perform best. While software is available for additive versions of
basic models, for most additive hierarchically structured models software has yet to be provided. An exception are symmetric
models that use binary splits only, as, for example, the model specified by the tree in Figure 6. For these binary splits models
software for additive binary models can be used after construction of the corresponding design matrix.

7.1.1 | Nuclear fear data

We briefly consider a model in which age is included as a smooth predictor, all other variables have linear effects,
which is sensible because they are categorical variables. The first plot in Figure 7 shows the smooth effect of age if the
cumulative logit model with additive effects is fitted. The second plot shows the effect if one fits a hierarchical two step
model with cumulative components. The third plot shows the fit if one adds a tendency to middle or extreme categories.
It is seen that the effect of age changes slightly across models but remains rather stable. We just focus on the effect of
the metric variable age and do not give all the parameter estimates.

7.2 | Regularization and variable selection

Since the introduction of the lasso (Tibshirani, 1996) various regularization methods that are able to improve regression
model coefficient estimation and prediction accuracy have been considered. In particular, variable selection tools are
important if more predictors are available than can reasonably be included in a model. Selection methods that are
derived from maximum likelihood estimates use the penalized log-likelihood lp(β) = l(β) − Jλ(β), where l(β) is the usual
log-likelihood, λ is a tuning parameter, and J(β) is a penalty term. For basic ordinal models with predictor β0r + xTβ var-
iable selection is obtained by using the lasso type penalty

J βð Þ= λ
Xp
j=1

j βj j :

The number of parameters that are selected depends on the tuning parameter λ, which typically is chosen in a data
driven way. In the so-called elastic net penalty one uses J βð Þ= λ1

P
j j βj j + λ2

P
jβ

2
j , which uses two tuning parameters.

22 of 28 TUTZ



For basic ordinal models Archer and Williams (2012) used the L1 penalty and Archer and Williams (2012) used elastic
net versions. Both methods are made available as program packages (Archer et al., 2014; Wurm et al., 2017). Also the
M-estimators, which yield robust inference for classical ordinal response models, proposed by Iannario et al. (2017),
can be seen as regularization based methods.

Selection and regularization is harder in more complex parameterizations. If the predictor contains category-specific
effects with predictor β0r + xTβr, one has to distinguish several levels, effects can be category-specific, global or negligi-
ble. Regularization methods that are able to distinguish between these levels will include fusion terms that distinguish
between global and category-specific effects. First steps toward addressing the complexity of the selection problem were
taken by Pössnecker and Tutz (2016). In the light of the discussion on the need for category-specific effects (Section 4)
it seems more appropriate to restrict consideration to the selection of the most important effects, that is, location and
response style effects like dispersion. If the predictor has the form (β0r + xT β)/exp (xT γ) penalties have to account for
both effect types by using, for example,

J βð Þ= λ1
Xp
j=1

j βj j + λ2
Xp
j=1

j γj j :
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Some care is needed in the selection of the tuning parameters λ1, λ2 since they determine which parts of the predic-
tor are considered relevant. Similar problems occur when selecting variables in mixture models, which also contain dif-
ferent components that contribute to the complexity, namely the effects on the mixture probabilities and effects on the
location. In the case of mixture model an additional difficulty is that one has to rely on the EM algorithm when estimat-
ing (penalized) parameters. For both models regularization methods seem not too have been developed sufficiently,
and are not available in program packages.

7.3 | Tree-based models and random forests

All the models considered here can be used to investigate the impact of explanatory variables on an ordered response.
Consequently, they can be used to predict ordinal outcomes for new observations. Applications of parametric models to
predict have some tradition, they were considered, for example, by Rudolfer et al. (1995), Campbell and Donner (1989),
Campbell et al. (1991), and Anderson and Phillips (1981). However, if prediction is the objective, parametric models are
typically not be the best choice. It has been shown that in classification nonparametric alternatives like random forests
are hard to beat. The same is to be expected for classification of ordinal data.

Recursive partitioning or simply trees, may be seen as a nonparametric way of investigating the effect of explanatory vari-
ables with a focus on interactions. The basic concept is very simple: by binary recursive partitioning the predictor space is
partitioned into a set of rectangles and on each rectangle a simple model (e.g., a constant) is fitted. The most popular versions
are CART (Breiman et al., 1984) and conditional inference trees, abbreviated by CTREE (Hothorn et al., 2006). Several
approaches to handle ordinal responses have been proposed and some software packages are available. The packages
rpartOrdinal (Archer, 2010) as well as the improved version rpartScore (Galimberti et al., 2012) are based on the Gini impu-
rity function, Janitza and Boulesteix (2016) focus on variable selection and variable importance measures.

A problem with existing software is that they assume that scores are assigned to the ordered categories of the
response. The assignment of scores can be warranted in some cases, in particular if ordinal responses are built
from continuous variables by grouping. It is rather artificial and arbitrary in genuine ordinal response data, for
example, if the response represents ordered levels of severeness of a disease. When using scores implicitly a metri-
cally scaled response is assumed, which is not what a tree for ordinal responses should do. Trees that take the ordi-
nal scale level seriously seem not yet available. A strategy that can be used is to use an ordinal model but replace
the linear predictor by a tree. This modeling strategy yields a hybrid tree, which brings together parametric models
and trees. Approaches of this type have been used to investigate varying coefficients, see Berger et al. (2019). They
differ from recursive partitioning methods that fit models in subsets of the predictor space as proposed by Zeileis
et al. (2008), and used in ordinal mixture models by Cappelli et al. (2019). The latter are able to identify subsets in
which models differ most strongly but do not focus on separating populations which show responses in high or
low categories.

If several trees are combined one obtains a random forest, see Breiman (2001) for the general concept of random
trees. In random forests the main objective is prediction, not the detection of interactions. Then, the use of assigned
scores can be considered justified, if it serves the purpose of obtaining the best prediction. For available software, see
Section 8.

8 | CONCLUDING REMARKS AND SOFTWARE

Let us make some comments on the modeling approaches that were brought together in the previous sections.

• The given taxonomy yields a structured overview on ordinal models that includes the wide class of hierarchically
structured models.

• Basic models as the cumulative, adjacent categories, and sequential model often yield similar results in terms of the
impact of explanatory variables. In particular, for practitioners who are mainly interested in detecting, which vari-
ables have an effect on the response they are often well comparable.

• It is worthwhile to include additional heterogeneity effects, which are treated here as response styles in a wider sense.
They typically provide better fit to the data and additional information on the effects of explanatory variables. If they
are ignored estimates may be biased.
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• Category-specific effects, which were treated extensively in the literature, can often be replaced by much simpler
models that contain an heterogeneity term yielding much simpler and easy to interpret models.

• Hierarchical models offer a simple alternative modeling strategy that is able to incorporate response style effects in a
straightforward way. They are very flexible tools that may also be used to investigate the use of the neutral category
in Likert type responses. Their great potential to model ordinal response data has not yet been exploited and is only
sketched in the present article.

• Mixture models are an alternative to model heterogeneity, in particular concerning uncertainty that varies in the
population. In contrast to modeling heterogeneity by linear or multiplicative effects they assume that persons are
from specific classes of responders.

Available software includes the following:

• Basic models. Basic models as the proportional odds model, the adjacent categories model and the sequential models
can be fitted by using vglm from the package VGAM (Yee, 2010, 2015). The very flexible program also allows the
fitting of models with category-specific effects and to reverse the order of categories. The proportional odds model
can also be fitted with function lrm from the package Design and the function polr from the MASS library. Attention
has to be paid to the algebraic signs of the coefficients. In Stata the program gologit2 can be used to fit ordered cate-
gories logit models with global and category-specific effects (Williams, 2006). In SAS one can use PROC GENMOD.

• Models with additional heterogeneity. The location-scale model can be estimated by using the function clm from the R
package ordinal (Christensen, 2015), the Stata function oglm (Williams, 2010) or PROC NLIN when working with
SAS. Location-shift versions of the cumulative and adjacent categories model can be fitted by using the R package
ordDisp, which has been used in Section 2. Bayesian location-scale models can be fitted by using the function clm
from the package brms (Bürkner, 2017).

• Mixture models. The package CUB (Iannario et al., 2020) fits finite mixture models with a binomial response distribu-
tion but also allows for other distribution models. It has been used to obtain estimates in Section 7. The package
FastCUB (Simone, 2020) performs best-subset selection.

• Variable selection. The package ordinalgmifs (Archer et al., 2014) selects variables by using the lasso penalty, the
package ordinalNet (Wurm et al., 2017) uses elastic net penalties.

• Additive models. The VGAM package (Yee, 2010) allows to fit multinomial and ordinal additive models. Cumulative
models with identity link may also be fitted with mgcv (Wood, 2015).
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