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Explaining classification performance 
and bias via network structure and sampling 
technique
Lisette Espín‑Noboa1,2* , Fariba Karimi1, Bruno Ribeiro3, Kristina Lerman4,5 and Claudia Wagner1,6 

Introduction
People connect with others through online social network platforms (Hughes et  al. 
2012), scientific collaboration networks (Newman 2001), and other peer-to-peer plat-
forms (Larrimore et  al. 2011). All these connections are leveraged by certain systems 
to recommend new content and new connections. In turn, these recommendations are 
often based on algorithms that rely on individuals’ information such as gender, politi-
cal leaning or credit score. In practice, however, often only partial information about 
individuals is available due to API quotas (e.g., very large networks). In this scenario, 
collective classification1 Neville and Jensen (2000); Getoor and Taskar (2000); Macskassy 
and Provost (2007) can be used to infer individual’s attributes using information from 

Abstract 

Social networks are very important carriers of information. For instance, the political 
leaning of our friends can serve as a proxy to identify our own political preferences. 
This explanatory power is leveraged in many scenarios ranging from business decision‑
making to scientific research to infer missing attributes using machine learning. How‑
ever, factors affecting the performance and the direction of bias of these algorithms 
are not well understood. To this end, we systematically study how structural properties 
of the network and the training sample influence the results of collective classification. 
Our main findings show that (i) mean classification performance can empirically and 
analytically be predicted by structural properties such as homophily, class balance, 
edge density and sample size, (ii) small training samples are enough for heterophilic 
networks to achieve high and unbiased classification performance, even with imper‑
fect model estimates, (iii) homophilic networks are more prone to bias issues and low 
performance when group size differences increase, (iv) when sampling budgets are 
small, partial crawls achieve the most accurate model estimates, and degree sampling 
achieves the highest overall performance. Our findings help practitioners to better 
understand and evaluate their results when sampling budgets are small or when no 
ground‑truth is available.
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their neighbors and a few seeds (i.e., individuals with known attributes). The advantage 
of collective classification over traditional machine learning techniques2 is that the for-
mer does not require the data to be independent and identically distributed, which is 
important when dealing with networked data, as the class label of a node may depend on 
the class label of its neighbors in the network.

However, little is known about the impact of network structure on the performance 
and the direction of bias of collective classification. For instance, many social networks 
demonstrate a property known as homophily, which is the tendency of individuals to 
associate with others who are similar to them, e.g., with respect to gender or ethnic-
ity (McPherson et al. 2001). Furthermore, the class balance or distribution of individual 
attributes over the network is often uneven, with coexisting groups of different sizes, 
e.g., one ethnic group may dominate the other group. A challenge for inference is then 
to be accurate and unbiased with each individual and group in the network, regardless 
of its structure. However, the variety of network types—as well as many choices for the 
sampling method, modeling, and inference—make it difficult to choose the best combi-
nation of methods for a particular problem. A further complication is that ground truth 
data is not always available to evaluate results.

Therefore, it becomes crucial to understand how these algorithms work and under 
which conditions they discriminate against certain groups of people (e.g., minorities). 
To that end, our work aims at providing decision makers with: (i) evaluation guidelines 
to assess the impact of different network types and sampling techniques on collective 
classification, and (ii) a reproducible and reusable tool to identify performance and bias 
issues on new networks, sampling techniques, classifiers and inference algorithms. Our 
findings also shed light on the design of better algorithms to mitigate biases coming 
from networked data.

Research questions In this work we systematically study different factors that may 
influence the performance and bias of collective classification. These factors relate to 
structural properties of the network and the training sample (i.e., random sampled sub-
graph with labeled nodes, so-called seed nodes) involved in the beginning of the infer-
ence process (see Fig. 1).

• RQ1: How does network structure (i.e., homophily, class balance, and edge density) 
affect the overall performance of collective classification?

• RQ2: How does the choice of the sampling technique affect the overall performance 
of collective classification and its parameter estimation?

• RQ3: How does network structure and the choice of sampling technique influence 
the direction of bias in collective classification?

Approach and methods We utilize a network model that allows us to generate scale-
free networks with tunable homophily and class balance (Karimi et al. 2018). One advan-
tage of this model is that it generates node-attributed networks with power-law degree 
distributions which have been observed in many large-scale social networks (Bara-
bási 2009). More importantly, it only requires two main input parameters (homophily 

2 which rely only on node attributes and ignore relationships with other nodes
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and class balance), and thus the behavior of the model is analytically tractable (Karimi 
et  al. 2018). The homophily parameter ranges from 0 to 1, and it allows us to gener-
ate networks with a broad range of group mixing ranging from heterophilic networks 
( 0 ≤ h < 0.5 ) to neutral networks ( h = 0.5 ), and homophilic networks ( 0.5 < h ≤ 1).

Furthermore, we follow definitions and pseudo-codes from Macskassy and Provost 
(2007) to implement the network-only Bayes classifier (nBC) and the relaxation labeling 
inference algorithm (RL). We measure classification performance in terms of ROCAUC, 
assess the quality of the model parameters using squared estimation errors (SE), and 
extend the balanced accuracy (Brodersen et al. 2010) to compare the true positive rates 
(TPR) of each class—also known as sensitivity and specificity in binary classification—to 
assess the direction of bias.

Contributions Our contributions are two-fold: First, we propose a methodology to 
assess classification performance and bias on real-world networks when no ground-
truth is available. Second, we demonstrate analytically and empirically that collective 
classification mean performance, estimation error, and bias are predictable and mainly 
depend on homophily, class balance, edge density, and sample size. In particular, we 
show that: (i) Larger training samples are required in undirected networks with homo-
philic connections to achieve a similar high classification performance compared to 
heterophilic networks. (ii) Samples obtained by partial crawls allow to learn the most 
accurate model estimates, and the most accurate results are obtained when using degree 
sampling. (iii) Classification results are often less biased in heterophilic networks than in 
homophilic networks regardless of class imbalance. Last but not least, we make our code 
and data openly available (Espín-Noboa 2021).

Related work
We cover previous work on analyzing the performance of collective classification from 
both algorithmic and network bias perspectives. Additionally, we review literature on 
network sampling to identify characteristics of seed nodes (i.e., labeled nodes) that could 
potentially improve the performance of collective classification.

Collective classification performance From the literature (Macskassy and Provost 2007; 
Sen et al. 2008; Zeno and Neville 2016), we know that each component in the collective 
classification pipeline can be implemented in different ways, and it has been shown that 
different implementations (or combinations) may perform better or worse depending on 
certain properties of the network and sample size. For instance, Macskassy and Provost 
(2007) evaluated the influence of relational classifiers (RC) together with collective infer-
ence algorithms (CI) and sample size using random node sampling, and conclude that 
the network-only Bayes classifier (nBC) is almost always significantly and often substan-
tially worse than other RCs. When samples are small, relaxation labeling (RL) is the best 
among all CIs, whereas weighted-voting (wvRN) and class-distribution (cdRN) are the 
best among all RCs. When samples are large, all CIs perform similarly well, and net-
work-only link-based (nLB) is the best among all RCs. More recent work by Zeno and 
Neville (2016) concluded that as the sample size increases it is better to learn a model 
using nBC than with wvRN. Note that this work utilizes synthetic networks and assumes 
edge weights to be wij = 1 , opposite to the work by Macskassy and Provost (2007) where 
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they run their experiments on real-world networks and thus utilize real weight values 
wij ∈ R . While all these contributions are very important and relevant, they have mostly 
focused on the performance of RCs and CIs. Besides, their findings are not compara-
ble since they use different datasets, different configurations of RC and CI, and different 
evaluation metrics. In our work we focus on the performance of nBC and RL, and sys-
tematically vary some properties of the network and the training sample. We choose this 
combination because it has been shown that RL outperforms other CIs (Macskassy and 
Provost 2007), and the model parameters of nBC are easy to interpret, i.e., they reflect 
the network properties of interest. Besides, nBC outperforms wvRN (Zeno and Neville 
2016). Moreover, we use ROCAUC as a standard measure of classification performance 
and compare the true positive rates of each class to assess the direction of bias.

Network bias The influence of homophily and edge density on both RC and CI was 
studied in Sen et  al. (2008) on synthetic networks. They found that, as homophily (or 
density) increases, the accuracy of classification improves drastically over non-relational 
classifiers. It has also been shown that certain RC such as wvRN perform poorly on het-
erophilic networks (Dong et  al. 2019). Besides, when networks are neutral (i.e., when 
nodes are connected at random), no classifier—even with the largest training dataset—
can beat a random classifier (Espín-Noboa et al. 2018). We build upon these findings and 
broaden the spectrum of network types by varying not only homophily and density, but 
also class balance (i.e., fraction of minorities). Note that a new metric called monoph-
ily shows that similarity among friends-of-friends (a.k.a., 2-hop neighbors) can improve 
relational classification results, especially in the neutral case (Altenburger and Ugander 
2018). However, we focus on 1-hop neighbors to better understand the role of homoph-
ily and class balance in collective classification.

Sampling bias on networks  Previous research has studied the robustness of network 
samples from different angles. For instance, a range of network properties such as degree 
and betweenness centrality have been found to be sensitive to the choice of sampling 
methods (Leskovec and Faloutsos 2006; Galaskiewicz 1991; Costenbader and Valente 
2003; Huisman 2009; Borgatti et  al. 2006; Kossinets 2006; Wang et  al. 2012; Lee and 
Pfeffer 2015; Li and Yeh 2011; Wagner et al. 2016). These efforts have shown that net-
work estimates become more inaccurate with lower sample coverage, but there is a wide 
variability of these effects across different measures, network structures and sampling 
errors. In terms of benchmarking network sampling strategies, Coscia and Rossi (2018) 
show that it is not enough to ask which method returns the most accurate sample (in 
terms of statistical properties); one also needs to consider API constraints and sampling 
budgets. In the context of collective classification, Yang et  al. (2017) demonstrate that 
certain sampling techniques such as snowball sampling and random walks could lead to 
biased parameter estimates, and then correct such bias by exploiting a general crawling 
method (Avrachenkov et al. 2016) that produces unbiased model estimates. We leverage 
the nature of these estimates to verify whether perfect estimates always lead to perfect 
classification performance and unbiased results while varying the sampling budget.

Fairness in classification In recent years, there has been an increase of research focus-
ing on mitigating bias (Raghavan et al. 2020; Dixon et al. 2018; Krasanakiset al. 2018) and 
guaranteeing individual and group fairness while preserving accuracy in classification 
algorithms (Dwork et al. 2018; Binns 2020; Kallus et al. 2019; Zafar et al. 2017). Many 
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definitions of fairness have been proposed (Verma and Rubin 2018; Mehrabi et al. 2019) 
and the most used are equalized odds (Hardt et  al. 2016), equal opportunity (Hardt 
et  al. 2016), counterfactual fairness (Kusner et  al. 2017), demographic parity and fair-
ness through awareness (Dwork et al. 2012). While all this body of research focuses on 
fairness influenced by the attributes of the individuals, recent research proposes a new 
notion of fairness that is able to capture the relational structure of individuals (Farnadi 
et al. 2018; Zhang et al. 2020). The main difference between this line of research and our 
methodology is that instead of ensuring a fair algorithm, we focus on explaining dis-
crimination (Mehrabi et  al. 2019) via input and sampling bias. By doing so, we gain a 
better understanding of the direction of bias (i.e., why and when collective classification 
discriminates against certain groups of people). Consequently, we simplify the classifica-
tion task to work with only one (protected) binary attribute (e.g., gender) which in turn 
plays the role of a target and a membership class.

To our best knowledge, there is no systematic study that explores the interplay 
between sampling, network structure, performance and bias in collective classification, 
and we aim to fill this gap.

Methods: classification on networks
We focus on classification on networks as a semi-supervised machine learning technique, 
where categorical class labels of records are predicted by exploiting both the labeled 
and the unlabeled part of the data (Marinho et  al. 2009). In particular, we study rela-
tional classification together with collective inference (a.k.a., collective classification Sen 
et al. 2008), two techniques used to infer missing attributes of nodes using information 
from their neighbors. Figure 1 shows the four requirements of collective classification: 
(i) Data: a network with unlabeled nodes. (ii) Training sample: a subgraph with known 
labels sampled from the network. (iii) Models: local and relational models learned from 
the training sample to encode class priors and conditional probabilities, respectively. (iv) 
Collective Inference: A systematic process where models are fitted to the ego networks 
of each unlabeled node to infer their posterior class probabilities.

Next, we describe (i) networks of interest, (ii) network sampling, and (iii) the modeling 
and inference processes utilized in this work.

Input data: an attributed network

We define the input network as: Let G = (V ,E,C) be an attributed unweighted graph 
with V = {v1, ..., vn} being a set of N nodes, E ⊆ V × V  a set of undirected edges, and 
C = {c1, ..., cn} a list of binary class labels where each element ci represents the class 
membership of node vi.

The homophily parameter H is the probability of nodes with the same class label to be 
connected. Homophily values range from 0 to 1. Networks with homophily H = 0.5 are 
referred to as neutral, otherwise they are heterophilic if H < 0.5 , or homophilic when 
H > 0.5 . Class balance B captures the fraction of minority nodes—with respect to C—in 
the network. A network is balanced when all class labels have the same number of nodes 
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( B = 0.5 ), otherwise it is unbalanced ( B < 0.5 ). Edge density d =
2|E|

N (N−1) represents the 
fraction of existing edges out of all possible edges in G.

To generate such networks, we refer to the preferential attachment-based model 
with adjustable homophily proposed in Karimi et al. (2018). In this model, each node is 
assigned one binary class label, e.g., color ∈ {white, black}3. The probability of node vi to 
connect to node vj is given by:

where ki is the degree of node vi and hij is the homophily between nodes vi and vj . For 
simplicity, in our synthetic networks, we assume that homophily is symmetric and com-
plementary: haa = hbb = H and hab = hba = 1−H.

Example. Figure  1 shows an attributed network (see the ground-truth in “1. Input 
data”), where nodes are assigned one color, either white or black. Since only 3 out of 7 
edges are same-color connections, this network is heterophilic ( H ≈ 0.43 ). This network 
is also unbalanced ( B = 2

5 = 0.4 ) because the number of black nodes ( Nb = 2 ) is differ-
ent from the number of white nodes ( Nw = 3).

Note that in practice, often the list of class labels C is unknown or incomplete. There-
fore, values for B and H are either not available or inaccurate. However, in our experi-
ments we assume that the ground-truth is given (see section “Discussion and future 
work” for a real use case).

Sampling: the observed network

The goal of sampling is to split the network into training and testing samples. First, a sub-
graph Gseeds = (V̂ , Ê, Ĉ) is extracted from G in order to learn the model parameters (see 
section “Modeling and collective inference: estimates”). Nodes V̂ ⊂ V  that belong to the 
training sample Gseeds are called seed nodes, and they are a percentage pseeds of nodes 
selected by the sampling method. Similarly, edges Ê ⊆ V̂ × V̂  are all links ( Ê ⊂ E ) in the 
induced subgraph between seed nodes V̂  . Class labels Ĉ ⊂ C are automatically known 
by the classification algorithm after sampling. The testing sample includes all nodes 
and edges of G, but only nodes vi ∈ V − V̂  are target for classification. In this paper we 
explore four widely used sampling methods: random nodes, random edges, degree rank-
ing, and partial crawls.

Random nodes This is the most used and basic sampling method where a percent-
age pseeds of random nodes is selected. The training sample then contains the selected 
nodes and all edges among them. Note that in the case of unbalanced networks, this 
sample will be biased towards the majority class.

Random edges This technique randomly selects edges (and their nodes) until it reaches 
a specific percentage pseeds of nodes. The training sample then contains this percentage 
of nodes and the selected edges. Note that when sampling by edges, the resulting sample 
will be biased towards hubs since they get higher chances to be picked multiple times 
through their multiple connections.

(1)�ij =
hijkj∑
l hilkl

3 Minority group always refers to black nodes.
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Degree rank We rank all nodes by their degree in descending order and select the top 
pseeds% of nodes. While computing the degree of all nodes is expensive, the idea is to 
verify whether high degree nodes improve the inference (Lin and Cohen 2010). The 
main difference compared to edge sampling is that degree sampling selects hubs without 
their neighbors (which may have low degree).

Partial crawls Yang et al. (2017) proposed a crawl-aware parameter estimator of peer-
effect based on random walk tours. The procedure is detailed in Avrachenkov et al. (2016), 
but roughly described as follows. First, a fraction psn of nodes in V is sampled by some 
arbitrary sampling procedure (the method is insensitive to sampling biases in this phase). 
These sampled nodes are called a super node S. Second, t different random walks are per-
formed starting at nodes in S, ending when the random walker encounters any node also 
in S. The starting node is chosen from S proportional to the number of edges from nodes 
in S to nodes outside S. The random walk progresses by moving to a random neighbor of 
the current visited node. Note that all nodes in the super node together with the crawled 
nodes in every tour belong to Gseeds

4. The random walker stops once Gseeds contains a 
percentage pseeds of the total number of nodes in G. It has been shown that partial crawls 
can provide unbiased estimates of network statistics (Avrachenkov et al. 2016). Thus, we 
verify whether perfect model estimates always lead to perfect classification.

In RQ2 we compare the influence that each of these sampling techniques has on clas-
sification performance and parameter estimation. In RQ3 we examine their bias with 
respect to minority and majority groups. In RQ1 we explore the impact of the network 
structure on classification performance. Thus, to ensure that the sampling method does 
not influence the performance we only use random node sampling.

Example. Following the example in Fig. 1 (see “2. Sampling”), the subgraph extracted 
via random nodes consists of: 40% randomly selected nodes V̂ = {B,D} , their class labels 
(color) ĉB = white and ĉD = black , and all edges between them Ê = {(B,D)}.

Modeling and collective inference: estimates

Collective classification in networked data  (Macskassy and Provost 2007; Getoor and 
Taskar 2000; Jensen et al. 2004) learns correlations between attributes of linked nodes from 
observed data, and transfers this knowledge simultaneously to the unseen nodes. This pro-
cess consists of three components: local model, relational model, and collective inference. 
To isolate the effects of network and training sample, we fix the classification algorithm as 
follows. We (i) learn the local model LC from the nodes in the training sample, (ii) learn 
the relational model RC from the nodes and edges in the training sample using Bayesian 
statistics, and (iii) infer class values using relaxation labeling as the collective inference pro-
cess CI . Therefore, the probability of a node vi ∈ V − V̂  with neighbors Ni taking on class 
xi = c is given by:

(2)

posterior︷ ︸︸ ︷
P(xi = c|Ni) =

prior︷ ︸︸ ︷
P(x = c) ·

likelihood︷ ︸︸ ︷
P(Ni|xi = c)

P(Ni)︸ ︷︷ ︸
marginal likelihood

4 This is an adaptation of the original algorithm to work with semi-supervised learning. That is, instead of crawling an 
unknown network, we extract a subgraph by sampling class labels of nodes from a known network.
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where P(Ni|xi = c) =
∏

vj∈Ni

P(xj = x̃j|xi = c) and x̃j is the actual class observed at node 

vj . Parameters in the local and relational model include the prior probability P(x = c) of 
any node being of class c, and conditional probabilities P(xj = x̃j|xi = c) that a neighbor-
ing node vj has class x̃j given that node vi has class c.

Parameter estimation The model parameters are inferred from the nodes and edges in 
the training sample. The estimates learned using the partial crawls algorithm are defined in 
Yang et al. (2017). The estimates learned using random nodes, random edges, and degree 
ranking are calculated as follows:

Inference (relaxation labeling) Once the model parameters are learned, relaxation labe-
ling initializes each unlabeled node with the prior probabilities. Then, rather than esti-
mating one node at a time and updating the graph right away, the current estimations 
are frozen so that at step t + 1 all vertices will be updated based on the estimations of 
step t. The updating step takes into consideration a decay constant to regulate the influ-
ence of neighboring nodes in every iteration (Macskassy and Provost 2007).

Example. During the modeling phase in Fig.  1 (see “3. Modeling”) we learn the 
prior probabilities (e.g., P(x = black) = 0.5 ) and the conditional probabilities (e.g., 
P(xj = white|xi = black) = 0.66 ). Continuing to the inference phase in Fig. 1 (see “4. Col-
lective Inference”), the relaxation labeling first initializes the posterior probabilities of all 
unlabeled nodes using the class priors, and then iterates through all unlabeled nodes simul-
taneously to infer their posterior probabilities using the Bayes theorem, see Equation 2.

Experimental setup
To explore the interplay between network structure, sampling techniques, and the per-
formance and bias of classification, we systematically vary structural properties of the 
network and the training sample by fixing the classification algorithm as explained below.

Synthetic networks We generate 330  undirected networks G using the model by 
Karimi et al. (2018), referred to as BA-Homophily5, and adjust four parameters: number 
of nodes N = 2000 , class balance B ∈ {0.1, 0.3, 0.5} , homophily H ∈ {0.0, 0.1, . . . , 1.0} , 
and edge density d ∈ {0.004, 0.02}6. Networks are generated 5 times in each configu-
ration to control for random fluctuations. We omitted results using smaller and larger 
networks, i.e., N ∈ {500, 10000}.  The main difference  across network sizes is that the 
variance of ROCAUC reduces with larger networks. However,  their mean ROCAUC 

(3)P(x = c) =
1

|V̂ |

∑

v̂i∈V̂

1{ĉi = c}

(4)P(xj = a|xi = c) =

∑

(v̂i ,v̂j)∈Ê

1{ĉi = c} · 1{ĉj = a}

∑

(v̂i ,v̂j)∈Ê

1{ĉi = c}

5 The acronym for Barabási-Albert Homophilic network.
6 Density in the BA-Homophily model was  originally adjusted (indirectly)  via minimum degree m ∈ {4, 20} . Since 
degrees are power-law distributed and nodes have minimum degree of m, the larger the value of m the higher the den-
sity d.
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scores are very similar to the ones obtained with N = 2000 (see Figure A2 in the Addi-
tional file 1). Due to this similarity we decided to show only results with N = 2000.

Training samples Subgraphs Gseeds contain a percentage pseeds of nodes from G that 
are selected by one of the following sampling methods: random nodes (nodes), random 
edges (edges), degree rank (degree) and partial crawls ( partial_crawls ). We assume that 
Gseeds is completely observed, which means that we know the class labels of nodes and 
all or some edges among them. We vary pseeds ∈ {5%, 10%, 20%, ..., 90%} to measure the 
impact of sample size on classification. In the particular case of the partial crawls, we set 
the size of the super node to |S| = psn × N  , where psn = 0.01 , and the number of tours t 
to as many as necessary until reaching pseeds × N  of nodes in Gseeds . For each pseeds, we 
run the classification algorithm 10 times.

Classification algorithm We focus on uni-variate network classification, which means 
that the linkage structure in the network is modeled with the class label of the nodes and 
no information from additional node attributes. In particular, we choose the network-
only Bayes classifier (nBC) as the relational model (RC), and apply relaxation labeling 
(RL) as the collective inference algorithm (CI). We use this combination for two rea-
sons. First, it has been shown that RL outperforms other CIs when training samples are 
small, and when training samples are large any CI performs equally well  (Macskassy 
and Provost 2007). Second, the nBC model parameters are easy to interpret since they 
are based on network structure (i.e., class priors relate to class balance, and conditional 
probabilities to homophily). Additionally, we show that the overall trend of classifica-
tion performance vs. network structure does not vary with a different RC, namely LINK 
classifier (Zheleva and Getoor 2009) (see “To what extent do these results depend on the 
algorithm?”).

Evaluation We quantify the performance of the classification using three different 
metrics: (i) ROCAUC score7 to estimate the overall performance of the collective clas-
sification, (ii) squared estimation errors (SE) between global and sample parameters to 
assess the quality of the parameter estimation, and (iii) a comparison between the true 
positive rates of each class to measure the direction of bias. Note that when working 
with unbalanced data, a classifier may achieve high overall performance even if it often 
misclassifies instances of the minority class. By comparing the positive rates—sensitivity 
and specificity in binary classification—we disentangle the direction of bias and assess 
how well the algorithm classified both, minority and majority classes.

Results
Using naive Bayes and relaxation labeling, we classify nodes as either white or black 
using different sample sizes and different evaluation metrics (see section  “Experimental 
setup”). Next, we will discuss our results and answer the three research questions which 
we raised before.

RQ1: How does network structure affect the overall performance of collective classification?

We analyze to what extent the structure of the network (i.e., homophily, class balance 
and edge density) impacts classification performance. We measure performance of 

7 Area under the receiver operating characteristic curve.



Page 11 of 25Espín‑Noboa et al. Appl Netw Sci            (2021) 6:78  

collective classification using ROCAUC scores, where each value can be interpreted as 
the probability of distinguishing between classes.

Overall performance vs. network structure

Figure  2 shows the classification performance on synthetic networks with num-
ber of nodes N = 2000 and edge density d ∈ {0.004, 0.02} (rows)8. Class balance is 
defined by the parameter B (columns). Homophily H ranges from 0 to 1 (x-axis). Sam-
ple size, using random node sampling is shown as the percentage pseeds of nodes 
(colors), and the overall performance as ROCAUC scores (y-axis). At first glance, 
from Fig.  2 we notice four main patterns. (i) As expected, classification performance 
on neutral networks ( H = 0.5 ) is always similar to a random classifier. (ii) Surpris-
ingly, heterophilic networks ( H < 0.5 ) require smaller samples to achieve high and 
stable classification performance compared to homophilic networks ( H > 0.5 ). (iii) 
ROCAUC scores are neither stable nor consistent (i.e., high variance) in the homo-
philic regime when samples are very small. In other words, classification perfor-
mance varies widely. (iv) Dense networks (d=0.02) achieve higher classification 
performance compared to sparse networks (d=0.004) around H = 0.5± 0.3 , i.e., 
ROCAUCd=0.02,H=0.5±0.3 = 0.82 > ROCAUCd=0.004,H=0.5±0.3 = 0.74.
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Fig. 2 RQ1: Network structure, sample size and overall performance using random node sampling and 
network‑only Bayes classifier (nBC). Classification performance, measured by ROCAUC scores, is shown on the 
y‑axis for networks with N = 2000 nodes and different levels of homophily (x‑axis), edge density (rows), class 
balance (columns), and sample size (colors). Dots represent mean ROCAUC scores over 50 runs, and error bars 
their respective standard deviation. In general we see that: (i) neutral networks H = 0.5 cannot be classified 
better than a random classifier; (ii) heterophilic networks H < 0.5 require smaller samples to achieve high and 
stable classification performance compared to homophilic networks H > 0.5 ; (iii) Dense networks d = 0.02 
achieve higher ROCAUC compared to sparse networks d = 0.004

8 A different visualization can be found in Figure A1 in the Additional file 1.
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Why is heterophily easier to predict?

In Fig. 2 we see an asymmetry between homophilic ( H > 0.5 ) and heterophilic ( H < 0.5 ) 
regimes for small samples (red lines) and all class balance levels B (columns). To explain 
this discrepancy, we turn to the properties of the sampling error9 and the network struc-
ture: Undirected networks only contain three types of edges, e.g., black-white, white-
white, and black-black. In the heterophilic regime, only one type of edge is prevalent 
(black-white), while in the homophilic regime two types are equally prevalent (white-
white, black-black). In general, for small training samples (e.g., pseeds ≤ 30% ), the prob-
ability of correctly observing each type of edge is very low. Consequently, the parameter 
estimation is prone to be wrong. However, its impact depends on the class balance and 
homophily of the network.

Balanced networks, B=0.5 First, note that the probability of observing a black-black 
edge in the synthetic network can be calculated analytically given the homophily (H), the 
class balance (B), and the degree exponents of the groups ( β ) as follows:

where, Z is a normalization constant, and βb and βw are the exponents of the degree 
distribution for the black and white nodes, respectively. For the detailed analytical deri-
vations and values of β see (Karimi et al. 2018). Similarly, the probability of observing a 
black-white edge is given by:

In the heterophilic case ( H = 0.2 ), the probability of observing a black-white edge in 
the whole graph is 0.8. Thus, the sampling error in a small sample follows (0.8|Ê|)−

1
2 , 

where |Ê| is the total number of edges in the sample. In the homophilic case ( H = 0.8 ), 
the probability of observing a black-black edge is 0.4 and a white-white edge is also 0.4. 
The sampling error for each homophilic class is then (0.4|Ê|)−

1
2 which individually are 

smaller than the error in the heterophilic case but adding them together they are larger. 
These sampling errors are reflected in the estimation error calculated here as the squared 
distance between the model parameter inferred from the training sample ( P{.} ) and the 
global network ( θ{.}):

We see these errors in the left-most column of Fig. 3, where the x-axis refers to SEmaj|maj , 
and the y-axis to SEmin|min . Note that large errors in homophilic networks ( H = 0.8 ) lead 
to low overall performance (brown). However, there are some cases where performance 
is also low even though such errors are small. This means that homophilic networks 
are more sensitive to the precision of the parameter estimation because it requires: 
Pmaj|maj = Pmin|min.

Unbalanced networks, B<0.5 In addition to the sampling error explained above, the 
group size differences and the inherent structure of the network add additional 

(5)Pbb =
B2H(1− βw)

Z

(6)Pbw =
B(1− B)(1−H)[(1− βb)+ (1− βw)]

Z

(7)SE{.} = (P{.} − θ{.})2

9 The error caused by observing a sample instead of the whole population.
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complexity to the learning process. This happens because of the interplay between 
homophily and preferential attachment which enables the formation of all different types 
of connections. For instance, in homophilic networks ( H = 0.8 ), minority nodes will be 
mainly attracted by other minority nodes. However, due to the preferential attachment, 
minority nodes will also be partly attracted to majority nodes. On the other hand, major-
ity nodes will be mostly connected to other majority nodes due to both mechanisms. 
Therefore, the estimation error of the conditional probability Pmaj|maj is on average lower 
than the estimation error for Pmin|min , as shown at the bottom-right plot in Fig. 3. The 
same principle applies to heterophilic networks ( H = 0.2 ). In this case, even though most 
edges are heterophilic, networks will also contain edges between nodes of the same type 
but in significantly different proportions. Since there is only a very limited number of 
minority nodes, there can only be a very limited number of edges between them. That is 
not the case for majorities because they can connect to many more majorities. There-
fore, though locally they connect to a few other majorities, globally there are many edges 
within this group. This gives an advantage to small samples because the randomly 
selected majority nodes are likely to be either disconnected10 or connected to other 
minority nodes that are in the training sample. Thus, the classifier learns that the net-
work is heterophilic. This explains why heterophilic networks can achieve high overall 
performance even when estimation errors are high for Pmaj|maj as shown in the top-right 
plot in Fig. 3. This holds as long as Pmaj|maj

Pmin|maj
×

Pmin|min

Pmaj|min
< 1 , otherwise the classifier believes 

that the network is extremely homophilic.
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Fig. 3 RQ1: Estimation errors on small samples using random node sampling. These are the squared 
estimation errors (SE) of the conditional probabilities Pmaj|maj (x‑axis) and Pmin|min (y‑axis) learned from small 
samples ( pseeds ≤ 30% ) using random nodes on sparse networks ( N = 2000, d = 0.004 ) with different levels 
of homophily (rows) and class balance (columns). Mean ROCAUC scores within each type of network is 
shown as ROCAUC  . In general we see that homophilic networks require lower estimation errors—especially 
within majorities—to achieve high performance (green)

10 When their neighbors belong to the majority group but are not in the sample.
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Finally, besides these conditional probabilities, class priors are also important in the 
collective inference. Thus, in the balanced case ( B = 0.5 ), we expect the class priors to 
be the same: Pmin = Pmaj = 0.5 ; if this condition is not fulfilled, the classifier initially 
believes that one group is more prevalent than the other11. In the unbalanced case 
( B = 0.1 ), however, it is enough to identify the minority group correctly, regardless of its 
actual group size.

To what extent do these results depend on the algorithm?

For interpretability reasons we chose the network-only Bayes classifier (nBC) as rela-
tional model, since its model parameters correlate with the homophily and class balance 
of the network. However, it is unclear whether the results shown in Fig. 2 are to some 
extent a product of the relational classifier. Therefore, we run the classification algorithm 
on the same networks by changing the relational model. We choose the LINK classi-
fier (Zheleva and Getoor 2009; Altenburger and Ugander 2018), which learns a regular-
ized logistic regression. The features of a node are the entire row of the adjacency matrix 
and the outcome variable is the node’s class. In this case, the model parameters are not 
based on the classes of the nodes (as in nBC), but purely on all nodes in the network. 
Results using this new setup are shown in Figure A3 in the Additional file 1. We see that 
the main patterns—compared to the results using nBC—persist. Classification perfor-
mance achieves its best scores in the extreme levels of homophily, and it drops when 
networks are neutral. Also, classification on heterophilic networks is just slightly bet-
ter than classification on homophilic networks. However, the most notorious difference 
between LINK and nBC is the performance across sample sizes. First, we notice that 
when using nBC, performance drops drastically when using small training samples on 
homophilic networks. Second, in this regime performance is not stable (i.e., high vari-
ance), see Fig. 2. These two issues do not appear in the results when using LINK, see 
Figure A3 in the Additional file 1. Therefore, we can conclude that performance, in terms 
of ROCAUC scores, is mainly driven by the type of network (i.e., the interplay between 
homophily, class balance, edge density and preferential attachment). When it comes to 
sample size, nBC gets penalized by small samples since their fluctuations introduce noise 
in the model parameters, while the parameters of LINK never change.

RQ2: How does the choice of the sampling technique affect the overall performance 

of collective classification and its parameter estimation?

In section “RQ1: How does network structure affect the overall performance of col-
lective classification?” we learned that certain properties of the network structure 
help in the parameter estimation even when training samples are very small. Now, we 
compare random node sampling with three other sampling methods, two of them are 
biased towards high degree nodes (random edge sampling and degree ranking), and one 
is unbiased (partial crawls); more details in section “Sampling: the observed network”.

Since the focus is on the sampling techniques, we fix the number of nodes and edge 
density of networks to N = 2000 and d = 0.004 , respectively. We also omit results on 

11 In fact, larger fluctuations are more likely in small samples
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neutral networks, and large sample sizes since their performance is either consistent 
or often very high. Results are shown in Fig. 4. The x-axis represents the sum of the 
squared estimation errors of conditional probabilities Pmaj|maj and Pmin|min , the y-axis 
shows the squared estimation error of the class prior Pmin , and colors represent the 
overall performance.

Random nodes vs. other sampling techniques: First, if we look at the estimation errors 
from the class prior and the conditional probabilities separately (as shown in Fig. 4) we 
notice that random edges, degree sampling, and partial crawls are better at estimating 
conditional probabilities than random nodes. This is because conditional probabilities 
are based on connections between nodes and all three sampling methods exploit these 
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(d) Partial Crawls
Fig. 4 RQ2: Parameter estimation and overall performance on small samples. These are the squared 
estimation errors of class priors (y‑axis) and conditional probabilities (x‑axis) with their respective overall 
performance (colors) on small samples ( pseeds ≤ 30% ) using different sampling techniques: a random 
nodes, b random edges, c degree sampling, and d partial crawls. Class balance and homophily values are 
shown as columns B and rows H, respectively. Mean ROCAUC scores per network type (B,H) are shown 
as ROCAUC  . Conditional probabilities obtained by partial crawls ( SEmaj|maj + SEmin|min < 0.18 ) are the 
most accurate, followed by random edges, degree sampling and random nodes. However, the most 
accurate class priors are obtained by random nodes ( SEmin < 0.02 ), followed by random edges, partial 
crawls, and degree rank. In terms of performance, on average degree sampling achieves the highest 
ROCAUC followed by random edges, partial crawls, and random nodes. Surprisingly, perfect estimates 
( 
∑

SE = SEmin + SEmaj|maj + SEmin|min ≈ 0 ) do not guarantee perfect performance ( ROCAUC ≈ 1.0 ), and vice 
versa
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connections during the sampling. Second, not surprisingly, random node sampling is 
on average better at estimating class priors since it observes a random sample of nodes, 
and the class prior only depends on the prevalence of node attributes. Third, on aver-
age degree sampling achieves the highest performance ( ROCAUC ≈ 0.91 ) followed by 
random edges, partial crawls, and random nodes ( ROCAUC ≈ 0.81 ). On the other hand, 
partial crawls sampling provides the most accurate estimates followed by random edges, 
random nodes, and degree ranking. However, depending on the structure of the net-
work these sampling techniques may improve or worsen their overall performance and 
parameter estimation as described below.

Trade-off between homophily and class balance: In terms of overall performance, 
all sampling techniques perform equally well in heterophilic networks in both the 
balanced and unbalanced regimes ( ROCAUCH=0.2 ≈ 0.97 ). Similarly, all sampling 
techniques perform equally well in homophilic networks ( ROCAUCH=0.8 ≈ 0.76 ). 
However, this performance is proportional to the class balance: low for unbal-
anced networks ( ROCAUCH=0.8,B=0.1 ≈ 0.67 ), and high for balanced networks 
( ROCAUCH=0.8,B=0.5 ≈ 0.85 ). Last but not least, we also see in Fig.  4 that the most 
accurate estimates across sampling techniques are obtained in balanced networks, espe-
cially when they are also heterophilic (more details in Figure A4 in the Additional file 1).

Which sampling technique should we use?

If the goal is to achieve high overall performance ( ROCAUC ≈ 1.0 ) with a small sample, 
random edge sampling or partial crawls should be used in heterophilic networks12, and 
degree sampling in homophilic networks, as long as the degree of nodes is available, oth-
erwise random edges should be considered. However, if the goal is to achieve good qual-
ity of estimates ( 

∑
SE = SEmin + SEmaj|maj + SEmin|min ≈ 0 ) with a small sample, then 

the most accurate estimates are obtained by degree ranking (followed by partial crawls) 
when networks are balanced, and partial crawls when networks are unbalanced (see Fig-
ure A4 in the Additional file 1).

RQ3: How does network structure and the choice of sampling technique influence 

the direction of bias in collective classification?

Now, we explore how classification mistakes are distributed across both classes. If mis-
takes are concentrated in one class, the classifier is biased against that class. For exam-
ple, when data is unbalanced, a majority class classifier will be highly accurate, but 
misclassify—or be biased against—the minority class. To disentangle how well the algo-
rithm classifies both minority and majority classes, we extend the balanced accuracy 
(Brodersen et al. 2010) to assess the direction of bias. We then compare the true positive 
rates (TPR) of each class as follows:

(8)bias =
TPRmin

TPRmin + TPRmaj

12 In this regime these sampling techniques are on average slightly better than the other methods, though all of them 
perform equally well.
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Since our classification task is on a binary attribute, TPRmin refers to sensitivity and 
TPRmaj refers to TNRmin

13 or specificity. This bias score ranges from 0 to 1. Depending on 
its value, classification can be interpreted as: (a) bias < 0.5 : biased towards majorities (or 
against minorities), (b) bias > 0.5 : biased towards minorities (or against majorities), and 
(c) bias = 0.5 : unbiased.

Results on networks with fixed number of nodes ( N = 2000 ) and fixed density 
( d = 0.004 ), using the four sampling techniques, are shown in Fig.  5. Large samples 
( pseeds > 30% ) are not shown since bias scores converge at that point for almost all 
cases14.

On average, classification results are unbiased in balanced networks ( B = 0.5 ). Addi-
tionally, when class balance decreases ( B < 0.5 ), classification results are often biased 
towards majority nodes. However, depending on the level of homophily of the network, 
the bias score decreases considerably in neutral and homophilic networks ( H ∈ {0.5, 0.8} ), 
or just slightly in heterophilic networks ( H = 0.2 ). Notice as well that in the homophilic 
regime the standard deviation is high. This means that the variation with respect to which 
group is classified correctly is high. These results are consistent across all sampling meth-
ods, and indicates that unbiased results are more robust to changes in group-size and 
sampling choice in heterophilic networks than in neutral and homophilic networks.
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Fig. 5 RQ3: Direction of bias. We measure the direction of bias by comparing the true positive rates of each 
class. The unbiased case is bias = 0.5 , when both classes have the same true positive rates. Otherwise, results 
are biased towards majority nodes bias < 0.5 , or towards minority nodes bias > 0.5 . These are observations 
on small samples ( pseeds ≤ 30% ) where fluctuations are high, after this point bias scores converge or get 
better (i.e., towards bias = 0.5 ). We see that classification on heterophilic networks is less biased than in 
neutral and homophilic networks

13 True negative rates of the minority class.
14 For larger samples in networks with B = 0.1 and H = 0.8 , the bias score slightly increases (but it is still biased against 
the minority nodes).
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Surprisingly, there are a few cases where classification is biased against majority nodes 
( bias > 0.5 ). Specifically in homophilic networks when nodes are sampled randomly 
(blue) or by degree (green). Thus, their classification performance is low ROCAUC < 0.6 
(see Figure A5(a) and Figure A5(c) in the Additional file 1). On the other hand, when 
classification results are unbiased ( bias = 0.5 ) or biased against minority nodes 
( bias < 0.5 ), their classification performance is high ROCAUC > 0.8 and inversely pro-
portional to the sum of estimation errors (see Figure A5 in the Additional file 1).

Future work should investigate new sampling methods or classifiers that focus on 
overcoming the bias issue of collective classification especially in homophilic and neutral 
networks. For instance, one promising direction that has been proven to improve per-
formance, especially for neutral networks, is to look at friends-of-friends similarities in 
the parameter estimation (Altenburger and Ugander 2018).

Empirical networks
Finally, we focus on five real-world networks, described in Table 1, and show that the 
utilized network model (Karimi et al. 2018), allows for computing a baseline for the per-
formance that a collective classifier can achieve on empirical social networks.

Real-world networks: Sexual contact network: The Escorts dataset represents a net-
work of sexual contacts from Brazil (Rocha et al. 2010). Nodes are of two types: client 
or escort. Friendship networks: Swarthmore42 and Caltech36 are University networks 
which include friendship links between user’s Facebook pages (Traud et al. 2012). Every 
node in each network represents a member of the school. For the purpose of our experi-
ments we choose the attribute gender ∈ {1(female), 2(male)} as class label. Hyperlink 
network:  This is a hyperlink network of American politicians in Wikipedia (Wagner 
2017). We consider reciprocal edges in order to treat it as an undirected network. We 
use the politician’s gender as class label. Following network:  The GitHub dataset is a large 
social network of GitHub developers (Rozemberczki et al. 2019). Nodes are developers 
who have starred at least 10 repositories and edges are mutual follower relationships 

Table 1 Empirical networks Structural properties of five real‑world networks: Escorts, Swarthmore42, 
Caltech36, Wikipedia, and GitHub

In addition to the properties of interest, we report β , the power‑law exponent of the degree distribution computed as 
described in Karimi et al. (2018). Nfit and mfit represent the number of nodes and minimum degree utilized to generate 
synthetic networks, respectively

Dataset Escorts Swarth. Caltech Wiki. GitHub

N 16730 1519 701 2132 37700

m 1 1 1 1 1

class role gender gender gender dev

minority escort 2 (m) 1 (f ) female 1 (ML)

B 0.40 0.49 0.33 0.15 0.26

E 39044 53726 15464 3143 289003

d 0.0003 0.05 0.06 0.001 0.0004

β 2.87 5.50 4.90 2.87 2.54

H 0.00 0.52 0.54 0.64 0.84

Nfit 14338 208 179 2893 9830

mfit 2 2 2 2 2
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between them. Nodes possess a binary attribute that describes whether the user is a web 
or a machine learning developer.

We remove nodes without class label, and nodes with no edges. Note that all these net-
works are scale-free (i.e., power-law degree distributed). Table 1 shows the value of the 
power-law exponent β of each dataset, and Figure A6 (see the Additional file 1) shows 
their degree distributions.

BA-Homophily networks: For each dataset we generate 5 synthetic networks using the 
BA-Homophily model with symmetric homophily (e.g., haa = hbb ), and adapt the algo-
rithm to fulfill the edge density condition (Espín-Noboa 2021). We pass to the algorithm 
five parameters shown in Table 1: number of nodes Nfit , class balance B, homophily H, 
edge density d, and minimum degree mfit

15.
Results on empirical networks: As in section “Experimental setup”, we run the collec-

tive classification algorithm 10 times for each sample size, and report its performance 
using mean ROCAUC scores. In Fig. 6 we see the classification performance (y-axis) on 
five real-world networks (columns) for different sample sizes (x-axis). The (expected) 
ROCAUC using each synthetic network is shown as “BA-Homophily” (light blue), and 
the (observed) ROCAUC using the real networks is shown as “empirical” (dark blue). 
Note that results have been sorted by H (homophily) in ascending order. We see a simi-
lar pattern in Fig. 2, where ROCAUC scores besides getting higher with larger sample 
sizes, they also get higher upper-bounds with values of homophily far from H = 0.5 . 
Moreover, we see that the synthetic networks are able to mimic the collective classifica-
tion performance of real-world networks. As expected, the Escorts network has the best 
fit between data and model, because it is extremely heterophilic (see section “RQ1: How 
does network structure affect the overall performance of collective classification?”). The 
Caltech and Wikipedia networks also show very good fit. Note that Swarthmore42 has a 
perfect fit only for small samples ( pseeds < 50% ). Conversely, when training samples are 
small, GitHub shows high variance. These discrepancies might be due to other network 
properties that the model does not capture. For instance, rich mixing patterns might get 
ignored by summarizing homophily with a global statistic (Peel et al. 2018; Peel 2017). In 
other words, while the global behavior is captured in the sample, some nodes can exhibit 
local differences. Similarly, real-world networks might exhibit asymmetric homophily 
( haa  = hbb ) and high clustering (Holme and Kim 2002).

Discussion and future work
Many popular applications rely on peer information and other types of relational data. 
For instance, peer-to-peer lending systems (Bachmann et al. 2011) allow people to bor-
row/lend money to connected friends. Such systems utilize machine learning algo-
rithms to infer credit scores of individuals using the credit score of their friends (i.e., 
high/low risk)  (Lin et al. 2013; Hadji Misheva et al. 2019; Liet al. 2020). In such cases, 
it is extremely important to understand and explain the overall performance of these 
algorithms, as well as their impact on different groups, especially minorities. Our results 
highlight that especially in homophilic and neutral networks, minorities may be at a dis-
advantage when the classifier is trained on a small sample.

15 Although m is required for the BA-Homophily model, it does not affect the classification results because the behavior 
of the network is independent of m (Karimi et al. 2018).
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Additionally, we show that homophily, class balance, edge density, and sample size 
impact the performance and the direction of bias of collective classification. Interestingly, 
we find that larger training samples are required in undirected networks with homophilic 
connections to achieve a similar high classification performance compared to heterophilic 
networks. This fundamental difference between heterophilic and homophilic networks 
can be explained by the sampling error and the network structure; in particular undirected 
edges, class balance, homophily, and preferential attachment (see  section “RQ1: How does 
network structure affect the overall performance of collective classification?”). This sug-
gests that the structure of a social network can help to infer the needed sample size to 
achieve high classification performance, and to be aware of potential bias issues.

Our comparison of sampling techniques suggests that although partial crawls sam-
pling provides the most accurate estimates (i.e., the prior and conditional probabilities 
learned from their training samples are closest to what we observe in the full network), 
the inherent bias of degree and edge sampling (towards high degree nodes), help the 
classifier to achieve very high performance. This suggests that accurate estimates do 
not always lead to perfect classification performance, and vice versa. Concretely, we 
observed that when sampling by degree on heterophilic and unbalanced networks, per-
fect classification performance can also be achieved based on imperfect estimates, in 
particular the class prior. This can be explained by the fact that in heterophilic networks, 
minority nodes have high degree, and heterophilic edges are predominant. Thus, a very 
small sample (sampled by degree) will mostly contain minority nodes and a few majority 
nodes that are linked to the minorities (see section “RQ1: How does network structure 
affect the overall performance of collective classification?”). Surprisingly, we also find 
that perfect estimates do not guarantee perfect classification performance, especially 
in homophilic and unbalanced networks across all sampling techniques. One explana-
tion could be that only a few unlabeled nodes are connected to the seed nodes as 1-hop 
neighbors. Thus, long cascades of unlabeled nodes (in k-hops; k > 1 ) might propagate 
erroneous information. Further studies are needed to explain this behavior.

Use case. Due to the design of our experiments, we always had access to the class bal-
ance and homophily of the network. In a real scenario, however, these properties might 
be unknown. Then, how can we evaluate results on new datasets if the structure of 
the network is unknown? It has been shown in Avrachenkov et  al. (2016) that partial 
crawls may obtain unbiased and reliable node and edge statistics. We corroborated that 
in section “RQ2: How does the choice of the sampling technique affect the overall per-
formance of collective classification and its parameter estimation?”. Therefore, in cases 
when these properties are unknown, a small sample taken by partial crawls can already 
capture accurately the structure statistics of the whole network, e.g., class priors and 
conditional probabilities (see section “Modeling and collective inference: estimates”).

Limitations. Our results are limited to undirected networks to simplify our exposition. 
However, results may and should be extended to directed networks including larger sets 
of attributes per node, and different levels of asymmetric homophily in both directed and 
undirected networks. Additionally, while in this work we focused on social networks with 
preferential attachment and homophily, further research may investigate the impact of 
other mechanisms of edge formation on relational classification. For instance, by disentan-
gling the effects of homophily and triadic closure (Holme and Kim 2002; Asikainen et al. 
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2020). Finally, we focus on one specific collective inference method (relaxation labeling) 
and mostly on one relational model (network-only Bayes classifier, nBC). The comparison 
of multiple methods is a potential avenue to disentangle algorithmic bias. For instance, 
when we compared results using nBC and LINK (see section “To what extent do these 
results depend on the algorithm”), we learned that their main differences rely on the train-
ing sample size. In particular, we found that the model parameters of nBC get distorted 
when training samples are small. These fluctuations affect performance since the nBC 
parameters must learn the correct class balance and homophily of the network in order 
to increase the chances of achieving high performance. Even when these parameters are 
correct, if the training sample is too small, unlabeled nodes might not reach sufficient seed 
nodes and this might lead to erroneous collective inference. This does not occur in LINK 
since its parameters only depend on the presence or absence of a node as a neighbor.

Conclusions
Collective classification is often used to infer missing attributes of nodes in networks. 
However, which factors impact its performance? And under which conditions is infer-
ence biased towards minority or majority groups? This paper provides answers to these 
questions by systematically analyzing the impact of network structure and sampling 
technique on the performance of collective classification. Our findings suggest that (i) 
mean classification performance can empirically and analytically be predicted by homo-
phily, class balance, edge density, and sample size, (ii) networks with homophilic connec-
tions require larger training samples than heterophilic networks to achieve comparable 
performance, (iii) when sampling budgets are small, on average, partial crawls and edge 
sampling achieve the most accurate model estimates, and (iv) classification results are 
often less biased in heterophilic networks than in homophilic networks regardless of 
class imbalance.
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