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Distance-based logistic model for cross-classified
categorical data

José Fernando Vera
Department of Statistics and O.R. Faculty of Sciences, University of Granada, Spain

Logistic regressionmodels are a powerful research tool for the analysis of cross-classified

data in which a categorical response variable is involved. In a logistic model, the effect of a

covariate refers to odds, and the simple relationship between the coefficients and the

odds ratio often makes these the parameters of interest due to their easy interpretation.

In this article we present a distance-based logistic model that allows a simple graphical

interpretation of the association coefficients using the odds ratio in a contingency table.

Two configurations are estimated, one for the rows and one for the columns, as the

categories of a polytomous predictor and a nominal response variable respectively, such

that the local odds ratio and the distances between the predictor and response categories

are inversely related. The associations in termsof theodds ratios, or the ratios of the odds

to their geometricmeans, are interpreted through distances for themost common coding

schemes of the predictor variable, and the relationship between the distances related to

different codings is investigated in its full dimension. The performance of the estimation

procedure is analysed with a Monte Carlo experiment. The interpretation of the model

and its performance, as well as its comparison with a two-step procedure involving first a

logistic regression and then unfolding, is illustrated using real data sets.

1. Introduction

Logistic regression is the most important model for categorical response data. In logistic

regression, the odds ratio is usually the parameter of interest, due among other factors to

its ease of interpretation. The simple relationship between the coefficients and the odds

ratio in logistic regression is one of the main reasons for the widespread use of this

procedure.
The odds ratio and the joint probabilities usually receive most attention in the analysis

of contingency tables. A wide range of numerical measures, basic inferential procedures,

and graphical representations can be used to help visualize and summarize the

relationships between two categorical variables. For instance, for nominal response

variables, the IJ association factor (Good, 1956) focuses on comparing the number of

subjects in a cell with the expected number if the variables are independent, while the

uncertainty coefficient (Theil, 1970)measures the proportional reduction in entropy. For

ordinal variables, concordant and discordant pairs can be used to describe the degree to
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which a relationship ismonotonic, as in the gammameasure (Goodman&Kruskal, 1954),

or correlation-based measures, as in the tetrachoric (Pearson, 1904) or the polychoric

(Tallis, 1962) correlations. In addition, well known inferential procedures such as the

Wald confidence interval for the log odds ratio (Woolf, 1955), score-test-based confidence
intervals (Cornfield, 1956), tests for proportions such as those of Agresti and Coull (1998)

or Agresti and Caffo (2000), or independence tests such as thewell known chi-square test,

together with basic graphical procedures such as bar diagrams or mosaic plots (Friendly,

1994), are other widely employed procedures that are also used to analyse associations,

usually complementary to modelling.

However, when the analyst wishes to model the relationship between these

variables and to determine association patterns, log-linear and logistic models are

usually employed (see, e.g., Agresti, 2013). In this article we consider the particular
situation of modelling cross-classified data when two categorical variables – a response

variable and a related explanatory variable – are involved. In this situation, the odds

ratios are of particular importance because they represent parameters in models that

pattern the relationships within these cross-classification data, particularly in multino-

mial logistic regression.

The idea of parameterizing models in terms of graphical representations to facilitate

interpretation has provoked great interest as a means of analysing associations within

categorical data. For non-sparse data, graphical models for association such as the RC(M)
association model (Goodman, 1985) and the distance association (DA) model (de Rooij &

Heiser, 2005) have been proposed. Although these two models are equivalent (de Rooij,

2007, 2008), the latter is based onEuclideandistances and is easier to interpret.DAmodels

are mainly used to estimate one configuration for the row categories and another for the

columncategories of the table, such that the Euclideandistances betweenpoints inversely

describe the association between the categories of the two sets, in a log-linear analysis

framework.

Many studies have considered the case of a categorical response variable related to
several categorical explanatory variables, taking a person-oriented approach to analyse

the personal profiles of the variables (Bergman & Magnusson, 1997). In this situation,

sparse tables may arise, and the presence of a large number of zero entries may lead

the DA model estimation to fail. This problem is aggravated when multiple categorical

explanatory and response variables must be considered. When a large number of

objects are present, a useful procedure in multidimensional scaling is to combine

latent class analysis and graphical representation (Vera, Macı́as, & Angulo, 2009; Vera,

Macı́as, & Heiser, 2009a). This is also the case with unfolding (Vera, Macı́as, & Heiser,
2009b). These models are also useful for non-sparse tables involving profiles, for which

the DA model can still be estimated. However, in this case the association plot may be

difficult to interpret due to the presence of a large number of points (profiles). In this

framework, a practical alternative is to combine latent class models (Vera, de Rooij, &

Heiser, 2014) and latent block models (Vera & de Rooij, 2020), in conjunction with DA

models. This approach makes it possible to represent associations in relation to the

estimated clusters.

For cross-classified data, the expression of the odds ratio in terms of Euclidean
distances is equivalent both for theDAmodel in a log-linear analysis framework and for the

ideal point discriminant analysis (IPDA) model (Takane, Bozdogan, & Shibayama, 1987).

In the latter case, in maximum dimension it can be viewed as a multinomial logistic

regression model (de Rooij, 2009). Originally developed for discriminant analysis, the

IPDAmodel is well suited for the situation inwhich the rows are samples of amultinomial

DBL Model for Cross-Classified Categorical Data 467
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categorical variable (columns) with fixed row margins (Takane, 1987), but less so for

dealing with cross-classified data (de Rooij & Heiser, 2005). In the IPDA model (which is

originally constrained, thus reducing the number of parameters to be estimated), the

coordinates for the row categories are generally related to mixed predictor variables that
will be projected into a low-dimensional space. Moreover, the coordinates of the column

categories are not usually estimated (as they are assumed to represent known clusters to

which the row points belong), but are represented by weighted averages of the

coordinates of the row points in the reduced space. This model provides a graphical

interpretation of the conditional probability of a column category given a row category in

a multinomial sampling scheme. Some visualization singularities of the IPDA model,

together with general properties of the DA model in this framework, are described by de

Rooij (2009).
The above models are mainly used to obtain a graphical visualization of the direct

associations between row and column categories (RC(M) and DA), and of conditional

probabilities (IPDA). In both the IPDA and the DAmodels, the estimated distances can be

used to calculate the corresponding odds ratio for each model. Although this process is

simple, the graphical display of an odds ratio is not straightforward with these models, as

this would require the combined addition and subtraction of four distances representing

associations or conditional probabilities (see, e.g., de Rooij & Heiser, 2005). Therefore,

when common coding schemes are imposed to interpret parameters in a logistic
framework, the configuration derived from these models is not feasible to explain

associations in terms of the odds ratio.

In this paper, our aim is to facilitate the interpretation of the association coefficients in

a logistic regression problem for cross-classified data when two nominal variables are

involved. We propose a distance-based logistic (DBL) model that provides a simple

representation of the associations in terms of local odds ratios in a multinomial baseline-

category logit model framework. The model is related to the analysis of cross-classified

data for a polytomous explanatory variable and amultinomial response variable, regarding
the usual set of local odds ratios in which the last two categories of the corresponding

contingency table are established as a reference. The DBL model enables us to estimate

one configuration for the row categories and another for the column categories, such that

the distances between the points inversely represent the associations in terms of the

corresponding set of local odds ratios, while the response probabilities are estimated in

terms of Euclidean distances.

Although different coding schemes for categorical variables lead to the same

substantive results concerning the effects in traditional logistic regression, differences
in the estimated parameter values are evident for different codings. In the two coding

schemes most commonly used, the local odds ratio and the parameter interpretation

are analysed in terms of distances. In general, the Euclidean distances inversely

represent the local odds ratio, while for deviations from the mean coding the

Euclidean distances also inversely represent the ratio between the corresponding odds

and the geometric mean of the odds, which facilitates the interpretation of the

parameters in this model.

In the next section, we formulate the DBL model. Section 3 then describes the
relationship of the odds ratio with the estimated distances for the two most common

coding schemes for a polytomous predictor variable, and the connection between the

estimated distances in both codings is investigated in full dimension. Section 4 gives an

overview of how the odds ratio can be interpreted in terms of distances for equivalent

log-linear models and for the related IPDA model. Section 5 focuses on the estimation
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of the parameters, the resulting indeterminacies and the problem of model selection.

In Section 6, we analyse the behaviour of the model, based on a Monte Carlo

experiment; its performance for empirical data is then illustrated and compared with

that of a two-step estimation procedure based on traditional logistic regression and
unfolding. Finally, we discuss the results obtained and present the main conclusions

drawn.

2. Distance-based response probabilities for odds ratio representation

Let us denote by A a polytomous predictor variable with I categories and by B a
multinomial response variable with J unordered categories, and consider the I × J

contingency table F = (fij) collecting the observed counts in a sample of sizeN. Under the

traditional multinomial model, let π j=i ¼ P½B ¼ BjjA ¼ Ai� be the probability of the

response Bj at the fixed setting Ai, for i ¼ 1. . ., I , j ¼ 1, . . ., J , and denote by

mij ¼ f i:π j=i the expected value of the jth response in the ith row category, where

f i: ¼ ∑J

j¼1 f ij is the fixed marginal count of this row. Hence, ∑J

j¼1π j=i ¼ 1,

8i ¼ 1, . . ., I , and the usual multinomial baseline-category logit model (setting the Jth
category as a reference) is given by the equations

L j=i ¼ ln
π j=i

πJ=i

� �
¼ ln

mij

miJ

� �
¼ α j þ τij j ¼ 1, . . ., J � 1; i ¼ 1, . . ., I , (1)

where αj is the intercept coefficient, and τij ¼ τtjai is the association coefficient, with τ j

and ai vectors of dimension I − 1, corresponding respectively to the regression

coefficients and the values of the design variables ~A1, . . ., ~AI�1, related to the i th

category of A. In this model, the response probabilities are given by

π j=i ¼
expðα j þ τijÞ

1þ∑J�1
j¼1expðα j þ τijÞ

8i ¼ 1. . ., I , j ¼ 1, . . ., J � 1, (2)

and ∑J

j¼1π j=i ¼ 1, i ¼ 1, . . ., I : As usual for categorical predictors, redundancy in

coding is avoided by imposing constraints on the design variables. If the Ith category is set,

in the most usual coding schemes aii ¼ 1 for i ¼ 1, . . ., I � 1, and ais ¼ 0, for

s≠i ¼ 1, . . ., I � 1. For reference cell coding, aI ¼ 0, whichmakes τIj ¼ 0 and therefore

α j ¼ L j=I and τij ¼ L j=i � L j=I , i ¼ 1. . ., I � 1, j ¼ 1, . . ., J � 1.Reference cell coding is

a widely used coding scheme, since estimating the risk of a group relative to a control

group is usually of interest. If there is no particular group of interest, deviation from the

mean coding is the most commonly used method, for which aIs ¼ �1, s ¼ 1, . . ., I � 1,
and then it is assumed that τIj ¼ �∑I�1

i¼1τij, 8j ¼ 1, . . ., J � 1. Hence, it follows that

α j ¼ ð1=IÞ∑I

i¼1L j=i, and τij ¼ L j=i � α j.Parameter τij represents the effect as the

deviation of the logit for the ith category from that for the Ith category in reference cell

coding, or from the average logit over all categories of the predictor variable in deviation

frommean coding. It is easy to show that for fixed Bj if τij > τi0j the logit for the ith row is

larger than the logit for the i0th row, and hence the oddsΩij ¼ π j=i=πJ=i will be larger than

the odds Ωi0j ¼ π j=i0=πJ=i0 .For reference cell coding, exponentiation of the coefficient

produces the corresponding odds ratio eτij ¼ Ωij=ΩIj, while for deviation from the mean
coding it yields the ratio of the odds for a given category to the geometricmean of the odds,

DBL Model for Cross-Classified Categorical Data 469
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eτij ¼ Ωij

eα j
¼ ΩijQI

i¼1ðΩijÞ1=I
: (3)

In general, the interpretability of this coefficient depends onwhether the average odds

value is meaningful. However, a simple graphical interpretation of the estimated

coefficients can be obtained in terms of Euclidean distances in a model related to
unfolding.

2.1. Distance-based logistic model (DBL)

In logistic regression, the estimated value of a given parameter only makes sense when

compared with that for another category. However, a suitable parameterization may

provide an interesting graphical role for the association parameter values. In a baseline

logistic regression framework for cross-classified data with a nominal predictor and a
multinomial response variable, a new formulation is introduced to obtain a better

interpretation of the association parameters in terms of the odds ratio (or the ratio of the

odds to their geometric means), by Euclidean distances.

Let us define the I � 1ð Þ �M matrix X and the J � 1ð Þ �M matrix Y, whose row

vectors, xi and y j, are the coordinates of the points representing the row and column

categories of the table, respectively, in dimension M. Note that the representation of

categories I and J is not considered in this model, and therefore the dimension for the

unfolding representation is M ≤ min I , Jð Þ � 2. In the DBL model, we introduce the
expression

τij ¼ log
1

d2
ij

 !
, (4)

where d2
ij ¼ d2 xi, y j

� �
represents the non-zero squared Euclidean distance between

points representing categories Ai and Bj respectively in a space of low dimensionM, for

i ¼ 1. . ., I � 1, j ¼ 1, . . ., J � 1, and d2
Ij ¼ exp �τIj

� �
, j ¼ 1. . ., J � 1, is defined

according to each coding scheme to avoid redundancy in the parameter estimation.

Under this formulation, the DBL model is given by the equations

L j=i ¼ ln
π j=i

πJ=i

� �
¼ α j � log d2

ij

� �
j ¼ 1, . . ., J � 1; i ¼ 1, . . ., I , (5)

and the expression for the response probabilities is given in terms of the distances by

π j=i ¼
expðα jÞ=d2

ij

1þ∑J�1
j¼1expðα jÞ=d2

ij

, 8i ¼ 1, . . ., I , 8j ¼ 1, . . ., J � 1, (6)

where log d2
Ij

� �
¼ 0 for reference cell coding or log d2

Ij

� �
¼ �∑I�1

i¼1 log d2
ij

� �
, in deviation

from the mean coding, j ¼ 1, . . ., J � 1. From these constraints, the values d2
Ij,

j ¼ 1, . . ., J � 1, are obtained without the need to assume that they are Euclidean

distances, so the estimation of xI is not required. In the DBL model d2
ij ¼ exp α j � L j=i

� �
,

and therefore for a fixed category Bj it follows that d2
ij ≤ d2

i0j if and only if L j=i ≥ L j=i0 .

Hence, the distance from response categoryBj to explanatory categoryAi is less than that

470 José Fernando Vera
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to explanatory category Ai0 when logit L j=i is greater than logit L j=i0 . This relationship is

more readily interpreted in terms of the odds ratio.

3. Local odds ratio, odds, and distances

Although both coding schemes in logistic regression produce similar results regarding the

odds ratio, the interpretation of the parameters is usually more complicated with

deviation from themean coding (see, e.g., Hosmer, Lemeshow,& Sturdivant, 2013). In the

DBL model, different coding schemes lead to different configurations, which facilitates

the interpretation of the model.
In the DBL model, eτij ¼ 1=d2

ij, which allows the model parameters to be interpreted

directly in terms of distances. As mentioned above, exponentiation of the estimated

coefficients τij using deviation from themean coding (3) expresses the odds relative to the

corresponding geometric mean of the odds, but this cannot be considered a true odds

ratio because the values in the numerator and denominator do not represent the odds for

two different categories. However, this expression is of interest when we wish to

investigate the main effect for each category without referring to a fixed one. In the DBL

model, this parameter can more readily be interpreted in terms of distances: the shorter
the distance between an observed category Ai and a response categoryBj, the greater the

deviationof the corresponding odds from the overall (geometric)mean of the odds for this

response. For reference cell coding, the distance relationship is obtained directly in terms

of the local odds ratio.

The usual basic set of local odds ratio when categories AI and BJ are set as a reference

can be expressed as

Θij ¼
π j=iπJ=I
πJ=iπ j=I

¼ exp τij � τIj
� � ¼ d2

Ij

d2
ij

, 8i ¼ 1, . . ., I � 1; j ¼ 1, . . ., J � 1, (7)

and their interpretation is easier in terms of distances. Thus,Θij > 1meansdij < dIj,Θij < 1
means dij > dIj, and independence would be equivalent to dij ¼ dIj, 8i ¼ 1, . . ., I � 1,

j ¼ 1, . . ., J � 1. The latterwould correspond to a representation inwhich all the points

for the row (column) categories are condensed into one point while the column (row)

points are located equidistant around it. This also applies to a configuration of only two

point-clusters, that is, a configuration in which all the row points are condensed into one

point and all the column points into another. Any odds ratio can bewritten in terms of the

distances as follows:

Θ Ai, Ai0 , Bj, B j0
� � ¼ mijmi0 j0

mi0jmi j0
¼ π j=iπ j0=i0

π j=i0π j0=i
¼ ΘijΘi0 j0

Θi0jΘi j0

¼ exp τij
� �

exp τi0 j0
� �

exp τi0j
� �

exp τi j0
� � ¼ d2

i j0d
2
i0j

d2
ijd

2
i0 j0

:

(8)

As usual, when category BJ is considered the baseline category in the response variable,

the odds ratio are more readily interpretable in terms of distances, since for any Bj,

j ¼ 1, . . ., J � 1,

DBL Model for Cross-Classified Categorical Data 471
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Θ Ai, Ai0 , Bj

� � ¼ Θij

Θi0j
¼ d2

i0j

d2
ij

: (9)

Then, as for the logits, for a fixed effect Bj, d
2
ij ≤ d2

i0j if and only if Θ Ai, Ai0 , Bj

� �
≥ 1.

Hence, when the distance from response category Bj to explanatory category Ai is less

than that from explanatory category Ai0 , the odds of response category Bj versus BJ are

higher for predictor category Ai than for Ai0 and vice versa.

For deviation from the mean coding, d2
Ij ¼

QI
i¼1Θij

� �1=I
is the geometric mean of the

set of local odds ratios related toBj. This follows from the fact that d2
Ij ¼ Θijd

2
ij, and that in

this coding scheme α j ¼ ð1=IÞ∑I

i¼1L j=i, and therefore we can write

d2
ij ¼

expðα jÞ
π j=i

πJ=i

¼
YI
m¼1

π j=m

πJ=m
π j=i

πJ=i

 !1=I

¼
QI

m¼1Θ
1=I
mj

Θij

: (10)

For reference cell coding, the estimated configuration allows for much easier

interpretation. Since d2
Ij ¼ 1, j ¼ 1, . . ., J � 1, it follows that dij ≤ di0 j0 if and only if

Θij ≥ Θi0 j0 .

Different coding schemes produce different estimated configurations. In full dimen-
sion, the DBL model can be viewed as a multinomial logistic regression model (see

Section 5). In this situation, let us denote by ~D the matrix of Euclidean distances

~dij ¼ d ~xi, ~y j

� �
for the configurations ~X, ~Y obtained under deviation from the mean

coding, and by _D thematrix of distances _dij ¼ dð _xi, _yiÞ for the configurations _X, _X given

under reference cell coding. Then, from (7) if follows that ~d
2

ij ¼ ~wj
_d
2

ij, where

~wj ¼
Q
i

Θ1=I
ij , is the geometric mean of the local odds ratio involving Bj,

j ¼ 1, . . ., J � 1ð Þ. Then ~D ¼ _D ~W, where ~W is the diagonal matrix of elements ~wj,

j ¼ 1, . . ., J � 1. Therefore, in terms of distances, the two coding schemes are related

through the geometricmeans of the local odds ratio, and the two configurations would be

equivalent in the case of independence.

4. Related odds ratio representations

The relationship between log-linear and logistic regressionmodels is well known. For the

IPDA and DA models, this relationship is shown in similar additive expressions for the

odds ratio in terms of the estimated distances (de Rooij & Heiser, 2005). As observed by
Takane (1987), the IPDA model can also be formulated in terms of joint probabilities

rather than conditional probabilities, like the DA model.

For the DA model, the corresponding logistic model is given by the I � J � 1ð Þ
equations,

log
mij

miJ

� 	
¼ λ j � λJ
� �þ _d

2

iJ � _d
2

ij

� �
, 8i ¼ 1, . . ., I , 8j ¼ 1, . . ., J � 1: (11)

where the λ j are the column effect parameters, and the _d
2

ij denote the estimated squared
Euclidean distances in the DA model. The logit for the IPDA model is defined by a similar
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expression, with the corresponding distances, in which λ j is replaced by log wj

� �
, with

∑ jw j ¼ 1. In terms of the traditional logistic regressionmodel, for reference cell coding it

should be _d
2

Ij ¼ _d
2

IJ , 8j ¼ 1, . . ., J � 1, while for deviation from the mean coding,

∑i
_d
2

ij ¼ ∑i
_d
2

iJ , 8j ¼ 1, . . ., J � 1. Furthermore, after defining wj ¼ exp λ j

� �
, the

response probabilities derived from the above relation adopt the expression

_π j=i ¼
wje

� _d
2

ij

∑J

j¼1wje
� _d

2

ij

, i ¼ 1, . . ., I , j ¼ 1, . . ., J , (12)

where _d
2

iJ ¼ λJ , i ¼ 1, . . ., I , which also defines the conditional probabilities for the
IPDA model assuming ∑ jw j ¼ 1. These constraints on distances mean that the direct

estimationof the configuration using thesemodels is not feasible in logistic regression.The

representation of theodds ratiowith theDAmodel adopts the sameexpression aswith the

IPDA model, each with respect to its corresponding estimated probabilities (de Rooij &

Heiser, 2005), and the local odds ratios are given by

π j=iπJ=I
πJ=iπ j=I

¼ exp � _d
2

ij � _d
2

IJ þ _d
2

jJ þ _d
2

iJ

� �
: (13)

This expression is difficult to interpret. For example, even in the simple situation of a

variable that is supposedly measured twice, and the two categories denoted a and b, de

Rooij and Heiser (2005, p. 103) indicate that the log-odds of staying in either of the

categories versusmaking a transition is _d
2

a1b2
þ _d

2

b1a2
� _d

2

a1a2
� _d

2

b1b2
, where _d

2

a1b2
denotes

the squared distance between the point representing categorya at the first timepoint, and

the point representing category b at the second in the DA model. Therefore, the log-odds

of staying versus moving is equal to the sum of the squared intercategory distances

_d
2

a1b2
þ _d

2

b1a2

� �
minus the sum of the squared intracategory distances _d

2

a1a2
þ _d

2

b1b2

� �
.

Hence, the greater the distances between categories a and b, the stronger the chance of

staying; the greater the distances between the categories of the same variable

_d
2

a1a2
, _d

2

b1b2

� �
at the first and second time points, the weaker the chance.

For the DBL model, the odds ratio in this simple situation has a simpler interpretation,

derived by comparing two distances: that between category b at the first time point and

category a at the second time point, and that between category a at the first and second

time points,

Θ ¼ d2
b1a2

d2
a1a2

: (14)

5. Parameter estimation, indeterminacies, and model selection

In multinomial logistic regression, parameter estimation is usually performed uncondi-

tionally, and parameter values in each coding scheme are obtained by simple reparam-
eterization.With theDBLmodel, on the other hand, parameter estimation is performedad

hoc for each coding scheme using constrained maximum likelihood in a multinomial
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baseline-category logit framework, which aims to provide optimal results in terms of the

Euclidean distances in relation to the coding of interest.

Only the estimation of ðI � 1Þ þ ðJ � 1Þ points in dimension M ≤ min I , Jð Þ � 2 is

required, together with the values of the J – 1 intercept coefficients. The log-likelihood
function to be maximized is given by

logL ¼ ∑
I

i¼1

∑
J

j¼1

f ijlogðπ j=iÞ: (15)

In addition to the usual constraints for response probabilities πJ=i ¼ 1�∑J�1
j¼1π j=i, for

reference cell coding d2
Ij ¼ 1, j ¼ 1, . . ., J � 1, and the log-likelihood function can be

written as

logL0 ¼ ∑
J�1

j¼1

α j f :j � ∑
I�1

i¼1

∑
J�1

j¼1

f ij log d2
ij

� �
� ∑

I�1

i¼1

f i:log 1þ ∑
J�1

j¼1

exp α j

� � 1

d2
ij

 !

� f I :log 1þ ∑
J�1

j¼1

exp α j

� � !
,

(16)

while for deviation from the mean coding d2
Ij ¼ �∑I�1

i¼1d
2
ij, j ¼ 1, . . ., J � 1, and the log-

likelihood function can be expressed as

logL1 ¼ ∑
J�1

j¼1

α j f :j � ∑
I�1

i¼1

∑
J�1

j¼1

f ij log d2
ij

� �
þ ∑

J�1

j¼1

f Ij ∑
I�1

i¼1

log d2
ij

� �

� ∑
I�1

i¼1

f i:log 1þ ∑
J�1

j¼1

expðα jÞ 1

d2
ij

 !
� f I:log 1þ ∑

J�1

j¼1

expðα jÞ
QI�1

i¼1

d2
ij

 !
:

(17)

Since Euclidean distances remain invariant under isometries, as usual, for identification

problems regarding translational and rotational invariance the centroid of each dimension

can be set to zero, and the solution in the orientation of the principal axis is considered.

This entails estimating np ¼ J � 1ð Þ þ I þ J � 2ð ÞM �M M þ 1ð Þ=2 parameters in the

model, after imposing constraints. Accordingly, let q X, Yð Þ be a scalar function of the

configuration matrices X and Y to be maximized, written in terms of the overall

I þ J � 2ð Þ �M configuration Z ¼ X0;Y0½ �0 as

qðX , Y Þ ¼ � 1

2
∑
M

m¼1

∑
IþJ�2

k¼1

zkm

� 	2

� 1

2
∑
M

m¼1

∑
M

n¼mþ1

∑
IþJ�2

k¼1

zkmzkn

� 	2

: (18)

This is the simultaneous maximization of logL X, Y, αð Þ and q X, Yð Þ, which is
assumed to define the maximum likelihood estimate (see, e.g., Ramsay, 1982). Different

iterative optimization procedures can be used to solve this system of non-linear equations.

In the present case, we use a general optimization procedure based on a quasi-Newton

algorithm together with the BFGS method (Fletcher, 1970) implemented in the fminunc

function of MATLAB (see the Appendix 1 for further details).

Initial values for the iterative algorithm are given as follows. First, initial values for the

logits, L
0ð Þ
j=i ¼ log f ij

� �
� log f iJ

� �
, for i ¼ 1. . ., I � 1, j ¼ 1, . . ., J � 1, are

474 José Fernando Vera

 20448317, 2022, 3, D
ow

nloaded from
 https://bpspsychub.onlinelibrary.w

iley.com
/doi/10.1111/bm

sp.12264 by G
E

SIS - L
eibniz-Institut fur Sozialw

issenschaften, W
iley O

nline L
ibrary on [30/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



considered, and initial values for α 0ð Þ
j are given according to the corresponding coding

scheme. The I � 1ð Þ � J � 1ð Þ matrix Δ2 with elements δ2ij ¼ exp α 0ð Þ
j � L j=i

� �
is

calculated, and as is usual in the unfolding framework the matrix U ¼ �0:5HΔ2J is

considered, where H and J are the centring matrices in dimensions I � 1ð Þ and J � 1ð Þ
respectively. The initial values for the configurations in dimension M are thus estimated

using the eigenvectors associated with theM largest (positive) eigenvalues of the singular

value decomposition of U ¼ KΓG0, given by Xð0Þ ¼ KΓ1=2, and Yð0Þ ¼ GΓ1=2.

5.1. Model selection

In general, there is no guarantee that a perfect low-dimensional solution will be found in

metric unfolding (Gold, 1973; Schönemann, 1970). Like the IPDA model, the DBL model
can be considered a multinomial logistic regression model in full dimension because, in

full dimension, the baseline-category logit model can be reparameterized algebraically in

terms of a DBL model. The same equivalence in terms of distances is obtained for the DA

model in the framework of a saturated log-linear model but in any dimension, since the

linear relationship is preserved when all the effects are included in the model, which is

one of the main advantages of this method.

The traditional baseline-category logit model can be parameterized in the form

τij ¼ �log δ2ij þ c

� �
, where δ2ij ¼ exp α j

� � πJ=i
π j=i

, and 0< c<minδ2ij is a known additive

constant, which for the DBL model is set to zero for an efficient approximation in low

dimension (see, e.g., Mardia, 1978; Vera & Macı́as, 2021).
For the estimated parameter values in traditional logistic regression, a suitable value of

c can be set such that d2
ij ¼ δ2ij þ c are squared Euclidean distances (Lingoes, 1971; Vera &

Macı́as, 2021). Thus, in full dimension M ≤ I þ J � 3ð Þ, X and Y are identified using

classical scaling in unfolding (Busing, 2010). Furthermore, both configurations will be of

full rank, that is,M ¼ min I , Jð Þ � 2, if the conditions for the exact estimation procedure

for metric unfolding given by Gold (1973) are met (see also Schönemann, 1970).

In general, the chi-square (χ2) statistic, given by

χ2 ¼ ∑
I

i¼1

∑
J

j¼1

ð f ij � f i:π j=iÞ2
f i:π j=i

, (19)

can be used to determine the goodness of fit of the model, and as for the IPDA model to

determine the number of dimensions. In general, in selecting a model from a set of

candidates in this framework, an information criterion can be employed (Agresti, 2013,
Ch. 6; Takane, 1987). We consider the Bayesian information criterion (BIC; Schwarz,

1978) under the sample size adjustment suggested by Rissanen (1978),where the number

of individuals in this model is adjusted by h ¼ N þ 2ð Þ=24 (Raftery, 1995). Thus, the

adjusted BIC criterion adopts the expression

BIC ¼ �2logLþ nplogh, (20)

where the model with the lowest BIC value is usually preferred.
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6. Experimental results

The behaviour of the estimation procedure is first analysed with a Monte Carlo
experiment. The interpretation of themodel and its performance for empirical data is then

illustrated, and compared with that of a two-step estimation procedure based on

traditional logistic regression and unfolding.

6.1. Monte Carlo experiment

The performance of the estimation procedure was tested in a Monte Carlo experiment.

For each coding scheme and sample size of N = 500, 1,000, 1,500, 20 matrices were
simulated for the values of I ¼ 8 and J ¼ 7, and analysed with the DBL and the traditional

logistic regression models. For each combination of design factors, two sets of I � 1 and

J � 1 points were simulated in two dimensions with an intermixedness index score

(Busing, 2010) below 0.05 to avoid degenerate solutions (see, e.g., D’Ambrosio, Vera, &

Heiser, 2021), and then the I � 1ð Þ � J � 1ð Þ matrix of squared Euclidean distances was

calculated. The τij ¼ �log d2
ij

� �
values were obtained, and the values of τIj were set in

consonance with the corresponding coding constraints, thus establishing the reference

category. Hence, the π j=i probabilities were calculated using (2), taking the values of
α j ¼ 0. For eachmatrix simulated, the marginal frequencies were randomly set under the

condition ∑i f i: ¼ N . To minimize the presence of zeros in the table, only values of

f i: ≥ N=4 were considered, and the value of f I: was adjusted so that the sum of the

marginal frequencies was N .

With the probabilities thus obtained, each contingency table was simulated according

to a multinomial sampling scheme, where BA
1 , . . ., BA

I

� �
are independent multinomials

with E½BA
i ðjÞ� ¼ E½B ¼ Bj=A ¼ Ai� ¼ ni:π j=i (see, e.g., Agresti, 2013). In summary, two

sets of 60 contingency tables were analysed in two and three dimensions to facilitate their
visualization, and the results were then compared with those given in full dimension.

In practice, there is no guarantee that a certain logistic regressionmodelwill produce a

good fit to the data, and the likelihood ratio test can be used to compare one model with

other more complex ones that may also contain a non-linear effect. Since the DBL model

can also be viewed as a low-dimensional approximation to the traditional baseline-

category logit model, the likelihood-ratio test can be used to determine whether the

estimated values differ significantly from those given with the model in full dimension.

The statistic LR ¼ �2 logLDBL � logLFULLð Þ is considered, where logLDBL and logLFULL are,
respectively, the log-likelihood values for the DBL model in low and in full dimensions.

Table 1 shows the averaged results obtained in each coding scheme. Each configuration

estimated in two dimensions was compared with the simulated one after Procrustes. As

canbe seen in terms of the averaged values, in all situations Procrustes error values close to

zerowere obtained, which indicates that the original configurationwaswell recovered by

the DBL model in all situations. The average least squares error was obtained for the

estimated probabilities with respect to the original ones, and was normalized by applying

the sum of the squared values of the original probabilities, in a similar way to the
normalized stress function in unfolding. In addition, averaged values are shown for theBIC

statistic, and for the p-values of both the chi-square and LR statistics. In full dimension, the

average least squares error between the estimated association coefficient τ and the

simulated values �log d2
ij

� �
is also shown.

For both coding schemes, the goodness-of-fit test suggests that the model achieves a

good fit in all situations, and as expected the BIC statistic suggests that the two-
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dimensional solution is preferable. Furthermore, the likelihood ratio test revealed no

significant differences with respect to the results in full dimension in any situation.

Together, these findings show that themodel performswell. The normalized least squares

error in terms of the estimated probabilities is negligible in all situations and decreases as

the sample size increases. Furthermore, the values are similar to those obtained in full

dimension, which correspond to the response probabilities estimated using the

multinomial logistic model.

6.2. German Longitudinal Election Study

To illustrate the performance of the model, we considered a data set consisting of a

sample of 1,000 respondents from the 2017 German Longitudinal Election Study (GLES,

2019). The gles data set is available in the R package MNLpred (Neumann, 2020), in

which the influence of the ego-position towards immigration (egoposition-immigration)

on the vote decision (vote) for Germany’s political parties was analysed. To prevent the

existence of zero-value entries in the table while enhancing the categorical nature of the
variable (Ramsay, 1973), the egoposition-immigration responses, ranging from 0 = very

open to 10 = very restrictive, were recoded into five categories from a to e by merging

every two consecutive response categories, except for the last one, in which the

remaining three responses were merged. The political parties in the variable vote were

AfD (Alternative for Germany), FDP (Free Democratic Party), Gruene (Green party),

LINKE (The Left), SPD (Social Democratic Party), and CDU/CSU (Christian Democratic–
Social Union). CDU/CSUwas taken as the baseline category. Table 2 shows the resulting

contingency table, with a chi-square value of 251.22 and 20 degrees of freedom, in which

Table 1. Averaged results for simulated data sets

Dim 2 Dim 3

Size pr-err π-err BIC p(χ2) p(LR) π-err BIC p(χ2) p(LR)

Reference cell coding

500 0.0031 0.00043 1,691.11 1 1 0.00051 1,721.22 1 1

1,000 0.0058 0.00017 3,166.71 1 1 0.00014 3,203.62 1 1

1,500 0.0011 0.00004 3,863.51 1 1 0.00005 3,904.71 0.9999 1

Deviation from the mean coding

500 0.0096 0.00071 1,572.39 1 1 0.00063 1,602.37 1 1

1,000 0.0085 0.00013 2,688.10 1 1 0.00015 2,725.30 1 1

1,500 0.0036 0.00006 3,630.35 1 1 0.00007 3,671.23 0.9998 1

Reference cell coding Deviation from the mean coding

Size π-err BIC τ-err π-err BIC τ-err

Full dimension

500 0.00062 1,766.48 0.0186 0.00071 1,647.76 0.0393

1,000 0.00015 3,259.40 0.0061 0.00015 2,780.90 0.0486

1,500 0.00005 3,966.23 0.0014 0.00006 3,732.68 0.0018

Note. The Procrustes error (pr-err) and the normalized least squares error for the probabilities (π-
err), and in full dimension for the association coefficient (τ-err), are considered. TheBIC statistic, and

the p-values for the χ2 and for the LR statistic are also shown.
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the reference categories for the set of local odds ratios are located in the final position. A
log likelihood value of�1, 557:49 was also obtained in SPSS when the multinomial logit

model was fitted.

This data set was first analysed using the DBL model. Deviation from the mean coding

was considered for the predictor variable, and the lowest BIC value was obtained in two

dimensions (3,193.2)with respect to three dimensions (3,213.7). A log-likelihood value of

�1, 559:27 was obtained in two dimensions in relation to the configuration shown in

Figure 1. A value of LR ¼ 3:5564 was obtained for the likelihood ratio statistic, which is

related to a p-value of pLR ¼ 0:9651 with five degrees of freedom, while a value of
χ2 ¼ 3:0712 was obtained with a p-value of pχ2 ¼ 0:6890. Both of these results suggest

that the DBL model obtains a good fit. Table 3 shows the local odds ratio values together

with the corresponding distances. For instance,Gruene is almost as close to a as to b. It is

also somewhat closer to e, a position very restrictive towards immigration

(d2
4;3 ¼ 3:3056), than to d, a moderately restrictive position (d2

3;3 ¼ 3:7886), which

means that the value of Θ3;3 is somewhat lower than the value of Θ4;3, as can be

appreciated in Table 3.

This data set has also been analysed using the generalized multinomial logistic
model under deviation from the mean coding for the predictor variable with the

multinom() function of the R package nnet (Ripley Venables, 2020). Table 4 shows

the estimated parameter values obtained, for a log-likelihood value of �1, 557:50. The
first row (Intercept) corresponds to the α j parameters, while the remaining values in

the table are the τij coefficient values for i ¼ 1, . . ., I � 1 and j ¼ 1, . . ., J � 1,

where the I th category is c ¼ neutral and the J th category is the political party CDU/

CSU. The values δ2ij ¼ exp �τij
� �

were obtained, and the smacof package (Mair, de

Leeuw, Groenen, & Borg, 2020) of R was used to perform metric unfolding in two
dimensions for the I � 1ð Þ � J � 1ð Þ matrix Δ ¼ δij

� �
. Figure 2 shows the resulting

configuration, which is related to a log-likelihood value of �1, 650:877, significantly
lower than that obtained with the DBL model. Therefore, the DBL model outperforms

the solution given by a two-step procedure in which first a general multinomial logistic

model is fitted and then the configuration is estimated by unfolding. This is more

apparent when the local odds ratios are calculated from the unfolding distances

estimated using this approach, as shown in Table 5. If we look again at the Gruene

category, the distance is now smaller with respect to d (d2
3;3 ¼ 1:97), than it is with

respect to e (d2
4;3 ¼ 4:37), in contrast to the result obtained with the DBL model

according to the odds ratio values.

Table 2. Vote decision data set for 1,000 respondents

AfD FDP Gruene LINKE SPD CDU/CSU

a 2 6 27 21 40 21

b 4 18 62 48 82 50

d 21 30 9 10 31 72

e 38 15 1 8 20 30

c 4 52 44 36 82 116

Note. The rows represent the ego-position towards immigration with the categories from a = very

open, b = moderately open, c = neutral, d = moderately restrictive, and e = very restrictive,

while the columns represent the five main political parties in Germany.
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6.3. Personal profiles

We also illustrate the performance of the model in a person-oriented approach to data

analysis, focusing on the personal profiles of the categorical variables (Bergman &

Magnusson, 1997). To do so, we considered a personality data set (Spinhoven, de Rooij,
Heiser, Penninx, & Smit, 2009) that was previously analysed, taking a person-oriented

approach, by Vera and de Rooij (2020) for sparse tables. In this paper, we analyse a non-

sparse data set in which the row profiles are based on the personality variables of

Agreeableness and Conscientiousness, while the column profiles are cross-classifications

of the four mental disorders Major Depressive Disorder, Generalized Anxiety Disorder,

Social Phobia, and Panic Disorder. The personality variables are categorized as High,

Moderate, or Low which results in 32 ¼ 9 row profiles. The subjects are diagnosed as

beingwith orwithout the disorder, which produces 24 ¼ 16 different column profiles, all
in a sample consisting of 2, 938 subjects. Table 6 shows the resulting frequencies related

to the profiles. Regarding independence, a chi-square value of 537.8 with 120 degrees of
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Figure 1. Representation of the row and column categories related to the set of local odds ratios for

the vote data set using deviation from the mean coding. The DBL model was used taking a neutral

ego-position towards immigration (c) and the CDU/CSU party as the reference categories for the

basic set of odds ratios.
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freedom was obtained, and a log-likelihood value of �5, 786:2 was obtained for the

multinomial logistic model using SPSS.
The DBLmodel was run in two dimensions, taking the last column (no disorder) as the

baseline category in the response variable. A log-likelihood value of �5, 815:03 was

found taking the last row as the reference category in a reference cell coding scheme for

the personality profiles. A value of LR ¼ 57:6175 was obtained for the likelihood ratio

statistics, which is related to a p-value of pLR ¼ 0:9981with 92 degrees of freedom,while a

value of χ2 ¼ 56:4315 was obtained with a p-value of pχ2 ¼ 0:9623. Both of these results

suggest that the DBL model obtains a good fit. Table 7 shows the values obtained for the

odds ratio with the DBL model, together with the confidence intervals given with SPSS,
when the last category is taken as the reference category in both variables. The estimated

squared distances are shown at the top of Table 8.

Figure 3 shows the estimated configuration, which makes it easier to interpret the

association patterns in terms of the odds ratio than just looking at the table. Various

patterns can be clearly appreciated. For the personality variables, the set {31, 21, 12},

represents profiles with a moderate-low degree of Agreeableness and a high one of

Conscientiousness, or high andmoderate degrees respectively. A second set consisting of

{11, 22} represents, in general, profiles with a low or moderate degree of both variables.
Finally, the set {32, 13, 23} corresponds to those profiles without high degree of any

variable except when a high degree of Agreeableness but a low one of Conscientiousness

Table 3. Local odds ratio and squared distances for the vote data set

AfD FDP Gruene LINKE SPD

Local odds ratio

a 2.12 0.79 3.30 3.30 2.57

b 2.02 0.74 3.26 3.02 2.35

d 7.90 0.94 0.25 0.48 0.58

e 36.03 1.11 0.28 0.81 1.03

Squared distances

a 1.94 1.14 0.28 0.397 0.50

b 2.04 1.22 0.29 0.431 0.55

d 0.52 0.96 3.78 2.73 2.22

e 0.11 0.81 3.30 1.61 1.24

c 4.14 0.90 0.95 1.31 1.29

Note. The reference categories are c for the ego-position towards the immigration variable and

CDU/CSU for the political party variable.

Table 4. Estimated parameter values for the vote data sets using multinomial logistic regression

with deviation from the mean coding

AfD FDP Gruene LINKE SPD

(Intercept) −1.85 −0.93 −1.20 −0.90 −0.09
a −0.50 −0.32 1.45 0.90 0.74

b −0.68 −0.09 1.41 0.86 0.59

d 0.62 0.05 −0.88 −1.07 −0.75
e 2.08 0.24 −2.21 −0.42 −0.31
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Figure 2. Representation of the unfolding configuration for the vote data set after performing

generalized multinomial logistic regression in a two-step estimation procedure.

Table 5. Basic set of odds ratio and square distances for the vote data set obtained using a two-step

procedure of logistic regression and unfolding

AfD FDP Gruene LINKE SPD

Local odds ratio

a 2.81 6.42 4.55 10.18 11.87

b 2.79 6.36 4.70 9.83 11.53

d 6.55 8.29 0.68 2.24 3.52

e 14.50 10.59 0.31 2.68 4.28

Unfolding squared distances

a 1.34 0.80 0.30 0.35 0.39

b 1.34 0.81 0.29 0.37 0.40

d 0.57 0.62 1.98 1.60 1.31

e 0.26 0.49 4.38 1.34 1.07

Note. The reference categories are c for the ego-position towards immigration andCDU/CSU for the

political parties.
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occurs simultaneously. With respect to mental disorder, three sets of profiles with similar

characteristics can be seen, together with a single profile corresponding to individuals in

whom only Panic Disorder is present. For instance, categories {1211, 1212, 1221} are

closer to {31, 21, 12}, followed by {11, 22} and {32, 13, 23}. This indicates a reverse

ordering for the odds ratios involving the column profiles in this set. Thus, comparedwith
the profile of low degree of personality in both variables (33), the odds of presenting

simultaneously Major Depressive Disorder, no Generalized Anxiety Disorder, and one or

both of the remaining two disorders, with respect to having no disorder, are higher for

personality profiles with a moderate–low degree of Agreeableness and a high degree of

Conscientiousness, or high and moderate degrees, respectively. These sets are followed

by those related to the profiles presenting a low ormoderate degree in both variables, and

finally by those in which there is no high degree in any variable except when high

Agreeableness is accompanied by a low degree of Conscientiousness. Similarly, profiles
{1111, 1112} are closer to 11 and 22, which means that the odds of presenting at least the

first three disorders, compared with not having any, are greater for profiles with a high or
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Figure 3. Representation of the row and column categories related to the set of local odds ratios for

the profiles data set taking (33) as the reference cell for personality. The DBLmodel was used taking

(2222) as the baseline category.
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moderate degree in both personality variables, with respect to a low degree in both

variables, as could be expected.

This data set was also analysed using the deviation from the mean coding for the

personality profiles. A log likelihood value of�5, 813:80was obtained in two dimensions
when the last column (no disorder) was set as the baseline category in the response

variable. The small values of LR ¼ 55:1606 and of χ2 ¼ 54:1063 indicate that there is no

evidence of ill fitting (p-values of pLR ¼ 0:9992 and of pχ2 ¼ 0:9779 respectively). The

squared Euclidean distances between the row and column points for this coding scheme

are shown at the bottom of Table 8, and Figure 4 shows the configuration related to the

ratio of the odds to the geometricmeanof the odds. Here, the set {31, 21, 12}, representing

profiles with a moderate-low degree of Agreeableness and a high degree of Conscien-

tiousness, or high and moderate degrees, respectively, again presents a similar pattern, as
is also the casewith profiles {13, 23}, while profile 32 is now isolated. This is also apparent

for profiles 11 and 22. In general, the locations of the disorder profiles do not reveal well

defined sets of different patterns with respect to those of personality.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

Dimension 1

D
im

en
si

on
 2

a b
cd

e
f

g

h

ij
kl m

n
oA

B

C

D

E

F

G

H

a

b
c

d
e

f
g

h
i
j

k
l

m
n
o

A
B
C
D
E
F
G
H

1111
1112
1121
1122
1211
1212
1221
1222
2111
2112
2121
2122
2211
2212
2221

11
12
13
21
22
23
31
32

Figure 4. Representation of the row and column categories related to the set of local odds ratio for

the profiles data set using deviation from the mean coding. The DBL model was used taking (2222)

and (33) as the reference categories for the basic set of odds ratios.
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For instance, in this context 1111 is near to 11, followed by 21, 12, 31, and somewhat

further from 22, and finally to 32, 13, and 23. This means that, when the average

(geometricmean) across all personality profiles is considered for the odds of eachdisorder

profilewith respect to 2222 (nodisorder), for individuals in the category 1111 the odds for
the profile featuring a high degree of Agreeableness and Conscientiousness versus no

disorder 33, compared with the corresponding average odds across all personality

profiles, are higher than the odds of profileswith a lowdegree of Agreeableness and a high

degree of Conscientiousness, or a high–moderate degree of Agreeableness and a low one

of Conscientiousness, versus no disorder 33, compared with the corresponding average,

followed by the odds of the profile with a moderate degree for both personality of

variables 22 versus nodisorder 33 comparedwith its average, and successively by the odds

of profiles 32, 13, and 23 versus 33, compared with the average in each case.
Finally, this model was analysed using the two-step procedure described above, in

which first a general multinomial logistic model is fitted and then the configuration is

estimated by unfolding. The analysis obtained a log-likelihood value of�6, 141:22 using

reference cell coding and �5, 868:70 for the deviation from the mean coding, which

shows that the DBL model outperforms the solution given by a two-step procedure.

7. Discussion

This paper presents a DBL model for the analysis of cross-classified data for a polytomous

predictor variable and a multinomial response variable. As well as estimating response

probabilities based on Euclidean distances, themodel represents associations in terms of a

basic set of odds ratios, facilitating their interpretation in a baseline-category multinomial

logit model framework.

In this approach,weconsider the twomost commoncoding schemes for apolytomous
predictor variable, each of which generates a configuration that facilitates the interpre-

tation of the associations. In general, Euclidean distances inversely represent the local

odds ratio; for the deviation from the mean coding, Euclidean distances also inversely

represent the ratio between the corresponding odds and the geometric mean of the odds,

thus facilitating the interpretation of the model parameters. The simplicity of the

relationship between the odds ratio and the distances is contrasted with the more

complicated relationships apparent between the estimated distances in other related

models, such as the DA and the IPDA.
Considering the main effect for each category without referring to a fixed one, the

smaller the distance between an observed category and a response category, the greater

the deviation of the corresponding odds from the overall (geometric)mean of the odds for

this response. For reference cell coding, the relationship between the local odds ratios can

be directly obtained as the inverse relationship between the distances in the estimated

configuration. The relationship between the two configurations is also discussed in terms

of their corresponding Euclidean distances in full dimension.

Since it is impossible to assure a perfect low-dimensional solution in metric unfolding,
the DBLmodel can be used as amultinomial logistic regressionmodel in full dimension, in

a similar way to the IPDA model. Parameter estimation in the DBL model is performed ad

hoc for each coding scheme using constrained maximum likelihood in a multinomial

baseline-category logit framework. The results thus obtained are optimal for the coding of

interest in terms of Euclidean distances. The values estimated in different dimensions and

coding schemes are compared and analysed with a Monte Carlo experiment.
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The likelihood ratio test is used to determine whether the estimated values in the DBL

model differ significantly from those derived using the logistic regression model, and the

performance of the model is analysed using the traditional goodness of fit test. The BIC is

applied to select the appropriate dimension for the rows and column representation. The
ease of interpretation provided by the DBL model is illustrated for two real data sets. The

model results are also comparedwith those of a two-step procedure inwhich a traditional

baseline-categorical multinomial logistic model is fitted for a polytomous predictor, after

which a related configuration is estimated using unfolding. In general, the results obtained

show that the model we propose recovers the simulated values in the Monte Carlo

experiment almost perfectly, and that as expected in all the data sets considered there are

no statistically significant differences between the estimated values and those given in full

dimension.
The model presented in this paper can be extended to other experimental situations.

For example, several categorical explanatory variables combined to conform profiles in a

sparse table is an interesting case. In addition, we are currently investigating the

application of the DBL model to an ordinal response variable, and the extension of this

model, as well as related ones, for the analysis of multi-way contingency tables.
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Appendix 1:

Gradient vector for maximizing the constrained log-likelihood

Given the initial values for the parameters, the unconstrained function to be minimized is
given by

Lqi α, X, Yð Þ ¼ �logLi α, X, Yð Þ þ q X, Yð Þ (21)

where α ¼ α1, . . ., αJ�1

� �0
, and logLi, i ¼ 0, 1, is the log-likelihood for the correspond-

ing coding scheme (16) or (17). This function is minimized using a quasi-Newton

algorithm together with the BFGS method (Fletcher, 1970) implemented in the fminunc

function of MATLAB. The partial derivatives conforming the gradient vector in each

coding scheme are given by the following expressions:

∂

αr
Lq ¼ f :r � ∑

I

i¼1

f i:πr=i (22)

where the expression of π j=i is given by (6) and the corresponding distances for each

coding scheme. Hence, for reference cell coding the partial derivatives of the log-

likelihood (16) adopt the expression

∂

xsm
logL0 ¼ ∑

J�1

j¼1

f s:π j=s � f sj

� � 2 xsm � yjm

� �
d2
sj

, (23)

∂

yrm
logL0 ¼ � ∑

I�1

i¼1

f i:πr=i � f ir
� � 2 xim � yrmð Þ

d2
ir

, (24)

while for deviation from themean coding the partial derivatives for the log-likelihood (17)

have the expression

∂

xsm
logL1 ¼ ∑

J�1

j¼1

f s:π j=s � f I :π j=I

� �� f sj � f Ij

� �� � 2 xsm � yjm

� �
d2
sj

, (25)

∂

yrm
logL1 ¼ � ∑

I�1

i¼1

f i:πr=i � f I :πr=I
� �� f ir � f Irð Þ� � 2 xim � yrmð Þ

d2
ir

: (26)

The penalty function q Zð Þ can be written in terms of X and Y as

qðX, Y Þ ¼ � 1

2
∑
M

m¼1

∑
I�1

i¼1

xim þ ∑
J�1

j¼1

yjm

 !2

� 1

2
∑
M

m¼1

∑
M

n¼mþ1

∑
I�1

i¼1

ximxin þ ∑
J�1

j¼1

yimyin

 !2

(27)

and therefore the partial derivatives with respect to xsm and yrm are given by
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∂

xsm
q ¼ � ∑

M

l¼1

∑
I�1

i¼1

xil þ ∑
J�1

j¼1

yjl

 !
� ∑

M

l<n

∑
I�1

i¼1

xilxin þ ∑
J�1

j¼1

yjlyjn

 ! !
∑
M

l¼1

xsl

" #
(28)

∂

yrm
q ¼ � ∑

M

l¼1

∑
I�1

i¼1

xil þ ∑
J�1

j¼1

yjl

 !
� ∑

M

l<m

∑
I�1

i¼1

xilxin þ ∑
J�1

j¼1

yjlyjn

 ! !
∑
M

l¼1

yrl

" #
: (29)
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