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ABSTRACT
Goodness of fit tests for two probabilisticmultigraphmodels are pre-
sented. The first model is random stubmatching given fixed degrees
(RSM) so that edge assignments to vertex pair sites are dependent,
and the second is independent edge assignments (IEA) according to
a common probability distribution. Tests are performed using good-
ness of fit measures between the edge multiplicity sequence of an
observed multigraph, and the expected one according to a simple
or composite hypothesis. Test statistics of Pearson type and of like-
lihood ratio type are used, and the expected values of the Pearson
statistic under the different models are derived. Test performances
based on simulations indicate that even for small number of edges,
the null distributions of both statistics are well approximated by
their asymptotic χ2-distribution. The non-null distributions of the
test statistics can be well approximated by proposed adjusted χ2-
distributions used for power approximations. The influence of RSM
on both test statistics is substantial for small number of edges and
implies a shift of their distributions towards smaller values compared
to what holds true for the null distributions under IEA. Two applica-
tions on social networks are included to illustrate how the tests can
guide in the analysis of social structure.
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1. Introduction

In the domain of statistical network modeling, formal principles of hypothesis testing to
assess goodness of fit are scarce. Most existing methods are computational and depend on
visual inspections [9,14,21,26], with the exception of advances made for stochastic block
models where principled statistical inference are developed by Lei [17], and those contin-
gent on large sample properties (see, e.g. [2,20]). In this paper, we present and study the
performance of goodness of fit tests for some probabilistic models on small undirected
multigraphs with applications on social networks.

A multigraph is defined as a graph where multiple edges and self-edges (edge loops) are
permitted [22]. Such data structures are either directly observed in settings where several
edges can be mapped on the same vertex pair, or obtained by different forms of data aggre-
gation. Directly observed data structures represented as multigraphs are also referred to
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as multi-relational, multiplex or multilayered networks [4,8,13,16,18]. Examples include
social networks with multiple types of relations (e.g. friendship, collaborations, advice
sharing) or the same relation with varying intensity (e.g. frequency of social exchange or
interaction). These multigraph representations commonly exclude self-edges.

When the data includes actor or vertex covariates,multigraphs can be obtained by aggre-
gating vertices into special subsets based on classified or cross-classified actor attributes.
These types of aggregations are reviewed and exemplified in [7,22,23]. The reduced aggre-
gatedmultigraphsmay be ofmuch smaller size than the initial graph since blocks of vertices
are aggregated into single meta nodes. Further, within block edges are here represented as
edge loops. These small multigraphs are the focus of this paper. This is due to the com-
putational complexity of simulating larger sized multigraphs, but also due to a renewed
interest in the statistical analyses of structure and compositions of small scale social net-
works arising from, e.g. families, personal networks, work teams and other small social
groups [27].

A random multigraph model is given by a probability distribution over some class of
multigraphs. In this article, two multigraph models introduced in [22,23] are considered.
The first model is obtained by random stub matching with fixed degrees (RSM) so that
edge assignments to vertex pair sites are dependent, and the second is obtained by inde-
pendent edge assignments (IEA) according to a common probability distribution. Further,
we present two different methods for obtaining an approximate IEA model from an RSM
model. This is done by assuming that the stubs are randomly generated and independently
assigned to vertices (ISA) and can be viewed as a Bayesian model for the stub frequencies
under RSM. Another way of obtaining an approximate IEA model is to ignore the depen-
dency between edges in theRSMmodel and assume independent edge assignments of stubs
(IEAS). As shown in [23], the analysis of local and global properties of multigraphs is sig-
nificantly simplified if the IEA approximations can be used. Thus, it is of particular interest
to statistically analyze and test differences and similarities between these two models.

In order to assess goodness of fit, we use measures between the edge multiplicity
sequence of an observed multigraph under RSM or IEA, and the expected multiplicity
sequence according to a simple or composite IEA hypothesis. Test statistics of Pearson
type and of information divergence type are used, and the expected values of the Pear-
son goodness of fit statistic under the different multigraph models are derived. The exact
distributions of the test statistics are numerically investigated and compared to different
approximations given by adjusted χ2-distributions which are useful for power analysis.
Several test illustrations are included, both for tests of simple and composite hypotheses.
The results from these test illustrations are used to guide the applicability of the tests to
real world data.

Some problems we want to specifically analyze are how the test statistics behave for
small number of edges and compare their behavior under RSM and IEA. This will provide
insight into their applicability in real world settings andwhether the test results are reliable.
Critical regions of the goodness of fit statistics with a given significance level according
to their asymptotic distributions are chosen, and answers to questions like the following
are searched for: are the actual significance levels of the test statistics for small number of
edges far from significance level of the asymptotic distribution? Is the convergence of the
cumulative distribution functions of the test statistics slow or rapid? Does it depend on
specific parameters in the models? Can better approximations to the actual distributions
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be obtained by using information aboutmoments and adjustments of theχ2-distributions?
Can power approximations be made for test statistics for small number of edges? How is
power related to parameters of the models? How can RSM be tested and how does RSM
influence the distributions of the goodness of fit statistics?

This paper as organized as follows. In Section 2, some basic notations are introduced and
the different multigraph models mentioned above are defined, including the two ways in
which an approximate IEA model can be obtained from an RSMmodel. Statistical tests of
simple hypotheses are considered in Section 3, where the hypotheses are fully specified IEA
models. For an IEAS model, the edge probability parameters are functions of a specified
degree sequence, and for an ISA model these parameters are functions of a specified stub
selection probability sequence. The Pearson goodness of fit statistic S and the divergence
statisticA for these tests are defined and the expected value of S is derived under the differ-
ent multigraph models. In particular it is shown that for the null distribution under RSM,
this expected value only depends on the numbers of vertices and edges. In Section 4, tests
of composite multigraph hypotheses are considered for IEAS, ISA and RSM models. The
composite multigraph hypotheses are unspecified IEAS or ISA where the parameters have
to be estimated from data. Test illustrations based on simulations for IEAS, ISA and RSM
models are presented in Section 5 and supplementary material, where powers, moments
and cumulative distribution functions of the test statistics are used to compare and evalu-
ate their performances. All tests are performed using the R package multigraphr [24].
In Section 6, we summarize and discuss the general results from the simulated tests, and
compare the performances of the two test statistics with respect to their error probabili-
ties. Following this section, two real world applications are given in Section 7 to highlight
the potential and versatility of the tests. We conclude with a general discussion regarding
the results and possible extensions to the presented study, where suggestions on how the
tests can be extended to also include RSM hypotheses and on how the tests can be made
applicable for larger multigraphs.

2. Randommultigraphmodels

We start by introducing some notations. A finite graph g with n labeled vertices and m
labeled edges associates with each edge an ordered or unordered vertex pair. Let V =
{1, . . . , n} and E = {1, . . . ,m} be the sets of vertices and edges labeled by integers, and
let R denote the set of available sites for the edges. For directed graphs the site space is
R = V2 and the number of sites is given by r = n2. For undirected graphs we use the site
space R = {(i, j) ∈ V2 : i ≤ j} where we consider (i, j) with i ≤ j as a canonical represen-
tation for the unordered vertex pair. The number of sites for undirected graphs is given by
r = (n+1

2
)
. The graph is thus an injective map g : E → R ⊆ V2.

A random multigraph is given by a probability distribution over some class of multi-
graphs. A multigraph with labeled vertices and undistinguished edges is represented by
the random edge multiplicity sequence M = (Mij : (i, j) ∈ R) where the edge multiplicity
Mij denotes the number of multiple edges at site (i, j) ∈ R. For undirected multigraphs,
the edge sites are listed in the canonical order (1, 1) < (1, 2) < · · · < (1, n) < (2, 2) <

(2, 3) < · · · < (n, n), so thatMii is the number of loops at vertex i, and Mij for i< j is the
number of edges between vertices i and j. In this case it is convenient to defineMij = 0 for
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i> j. The edge multiplicity sequenceM has total

M·· =
∑∑

i≤j
Mij = m (1)

and

Mi· + M·i =
n∑
j=1

Mij +
n∑
j=1

Mji = di (2)

is the degree of vertex i, which can also be interpreted as the number of edge-stubs or half-
edges at vertex i for i = 1, . . . , n. The stub multiplicity sequence d = (d1, . . . , dn) has total∑n

i=1 di = 2m.
Consider a random undirected multigraph model where the edges are independently

assigned to sites according to a common probability model [22]. Let Qij denote the proba-
bility of assigning an edge to site (i, j) ∈ R so that

∑∑
i≤jQij = 1. This independent edge

assignment (IEA) model has edge multiplicity sequenceM(IEA) that is multinomially dis-
tributed with parametersm andQ = (Qij : (i, j) ∈ R) so that the observed edge sequences
M = m have probabilities [22]

P(M(IEA) = m) =
(
m
m

)
Qm = m!∏

i≤j
mij!

∏
i≤j

Qmij
ij . (3)

Another random multigraph model is obtained by assuming that the edges are formed by
randommatching of pairs of edge stubs (half edges) in a given sequence of stubs [23]. This
random stubmatching (RSM)model has fixed stubmultiplicity sequenced = (d1, . . . , dn).
Under RSM, the edge assignments to sites are dependent. The probability that an edge is
assigned to site (i, j) ∈ R is given by

Qij =

⎧⎪⎪⎨
⎪⎪⎩

(
di
2

)/(
2m
2

)
for i = j

didj
/(2m

2

)
for i < j,

(4)

so that the edge probability sequence Q = Q(d) is a function of the stub multiplicity
sequence d. The probability of edge multiplicity sequencem under RSM is shown in [23]
to be given by

P(M(RSM) = m) = 2m2
(m
m
)

(2m
d
) = 2m2m!

∏n
i=1 di!

(2m)!
∏

i≤j mij!
, (5)

wherem2 = ∑∑
i<j mij.

There are two ways in which the distribution of M can be approximated with an IEA
model [23]. These approximations are of particular interest since they simplify the deriva-
tion of several statistics use to infer structural local and global properties of a multigraph.
We present these approximations in Figure 1 and describe them in more detail in the
following.
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Figure 1. The presented two ways (IEAS and ISA) in which an approximate IEA model can be obtained
from an RSMmodel.

A Bayesian version of the RSM model is obtained by assuming that the stubs are inde-
pendently assigned to vertices according to a probability distribution p = (p1, . . . , pn). The
stub multiplicity sequence under independent stub assignments (ISA) is multinomially
distributed with parameters 2m and p. This multinomial distribution can be viewed as
a Bayesian model for the stub multiplicities and leads to independent edge assignments.
Thus, by the Bayesian assumption, the RSMmodel is turned into a special IEAmodel with
edge probability sequence Q defined as a function of p according to

Qij =
{

p2i for i = j
2pipj for i < j. (6)

The second way to get an approximate IEA model from an RSM model is to ignore
the dependency between the edge assignments in the RSM model. The edge probabil-
ity sequence Q = Q(d) of the RSM model is used to define a model with independent
edge assignment of stubs (IEAS). Note that the IEAS model, like other IEA models, has(m+r−1

m
)
different outcomes of M, while the RSM models are restricted to outcomes that

are consistent with stub multiplicity sequence d only.
Throughout this paper, the following notations will be used for the models presented in

this section. Independent edge assignment is denoted IEA(Q), random stub matching is
denoted RSM(d), independent stub assignments is denoted ISA(p), and independent edge
assignments of stubs is denoted IEAS(d).

3. Tests of a simple multigraph hypothesis

A simple multigraph hypothesis H0 is defined as a fully specified IEA(Q0) which can be
an ISA(p0) or an IEAS(d0) with Q0 specified as a function of d0 or p0. The tests are per-
formed using goodness of fitmeasures between themultiplicity sequencem of an observed
multigraph and the expected multiplicity sequence according to H0.



6 T. SHAFIE

Asymptotic theory for likelihood ratios and goodness of fit statistics is given for instance
by Andersen [1] and Cox and Hinkley [3]. The Pearson goodness of fit statistic is given by

S0 =
∑∑

i≤j

(mij − mQ0ij)
2

mQ0ij
=
∑∑

i≤j

m2
ij

mQ0ij
− m, (7)

which is asymptotically χ2-distributed with df = r−1 degrees of freedom, where r =(n+1
2
)
, and if the multiplicity sequence is obtained according to IEA(Q) and the correct

model Q0 = Q is tested. We denote a random variable with this distribution χ2
r−1. Diver-

gence statistics are used as goodness of fit statistics for instance by Frank et al. [5,6] and
Kullback [15]. The divergence statistic is given by

D0 =
∑∑

i≤j

mij

m
log

mij

mQ0ij
, (8)

and an asymptotic χ2
r−1-statistic can be obtained as

A0 = 2mD0, (9)

[5,6,15]. For good asymptotic results, it is normally assumed thatm is large andmQij is not
too small (for instancemQij ≥ 5 andm ≥ 5r). By approximation of the logarithm function
it can be shown that S0 ≈ A0 for largem.

The critical region for the tests is taken as values of S0 and A0 above a critical value cv
given by

cv = df + 2
√
2df = r − 1 +

√
8(r − 1), (10)

which has a significance level approximately equal to 5% given by α = P(χ2
r−1 > cv).

The power functions

P(S0 > cv) = 1 − βS0(Q) and P(A0 > cv) = 1 − βA0(Q) (11)

are calculated using the distributions of S0 and A0 when M is multinomially distributed
with parameters m and Q, for Q = Q0 and for Q �= Q0. Specifically, S0 and A0 are com-
pared to χ2

r−1 via moments and cumulative distribution functions. For instance, the
expected value of S0 reveals how far from E(χ2

r−1) = r − 1 the distribution of S0 is. This
expected value is given by

E(S0) =
∑∑

i≤j

E(m2
ij)

mQ0ij
− m =

∑∑
i≤j

Qij + (m − 1)Q2
ij

Q0ij
− m, (12)

whereMij is binomially distributed with parametersm and Qij so that

E(M2
ij) = Var(Mij) + [E(Mij)]2 = mQij + m(m − 1)Q2

ij. (13)

In particular, ifQ = Q0 so thatQij = Q0ij for i ≤ j, the null distribution of S0 has expected
value

E(S0) =
∑∑

i≤j

[
1 + (m − 1)Qij

]− m = r − 1. (14)
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Under the ISA(p) model and ISA(p0) hypothesis, the expected value of S0 is given as

E(S0) =
∑n

i=1 L
2
i + (∑n

i=1 Li
)2

2
− m + (m − 1)

( n∑
i=1

Lipi

)2

(15)

where Li = pi/p0i is the likelihood ratio for stub assignments. The derivation of this
expected value is given in Appendix A.1. As seen, the variation of E(S0) depends on∑n

i=1 Li,
∑n

i=1 L
2
i and

∑n
i=1 Lipi. In particular, for a uniform ISA(p0) hypothesis where

poi = 1/n,

E(S0) = n2
∑n

i=1 p
2
i + n2

2
− m + (m − 1)n2

( n∑
i=1

p2i

)2

, (16)

which by letting s2 = ∑n
i=1 p

2
i can be simplified to

E(S0) = m(n2s22 − 1) + n2

2
(1 + s2 − 2s22). (17)

From this we see that E(S0) grows linearly withm having coefficients depending on n and
s2. By using

E(S0) = s22n
2(m − 1) + s2

n2

2
+ n2

2
− m (18)

and 1/n ≤ s2 ≤ 1, it follows that

r − 1 ≤ E(S0) ≤ m(n2 − 1). (19)

We also note that if p = p0 so that pi = p0i, the null distribution has

E(S0) = n + n2

2
− m + (m − 1) =

(
n + 1
2

)
− 1 = r − 1 (20)

which is consistent with the result shown previously for Q = Q0.
The expected value of S0 can also be considered for the RSM(d) model when H0 is

RSM(d0) or IEAS(d0) sinceQ0 of IEAS and RSM are identical. The moments ofMij under
RSM are given by Shafie [23] as

E(Mij) = mQij for i ≤ j, (21)

and

Var(Mij) = σ 2
ij + �ij for i ≤ j, (22)

where σ 2
ij = mQij(1 − Qij) is the variance under IEA, and�ij is the difference between the

variances ofMij under RSM and IEA:

�ij = m(m − 1)(Qijij − Q2
ij), (23)
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where

Qijij =

⎧⎪⎪⎨
⎪⎪⎩

Qii

(
(di − 2)(di − 3)

(2m − 2)(2m − 3)

)
for i = j

Qij

(
2(di − 1)(dj − 1)
(2m − 2)(2m − 3)

)
for i < j.

(24)

A general expression for the expected value of S0 under RSM is obtained as

E(S0) =
∑∑

i≤j

mQij(1 − Qij) + �ij + m2Q2
ij

mQ0ij
− m. (25)

The derivation of this expected value is given in Appendix A.2. ForQ = Q0, so that Qij =
Q0ij for i ≤ j, this simplifies to

E(S0) = (m − 1)n(n − 1)
2m − 3

. (26)

This simplification is shown in detail in Appendix A.2 and implies that the expected value
of the null distribution only depends on the number of vertices and edges. Using this
expression we can now show for which values of m and n the expected value of S0 under
RSM is smaller than r−1, i.e.

E(S0) = (m − 1)n(n − 1)
2m − 3

< (r − 1) = n(n + 1)
2

− 1. (27)

Solving the inequality form gives the following results:

E(S0) < r − 1 for m >
n + 6
4

,

E(S0) = r − 1 if m = n + 6
4

is integer,

E(S0) > r − 1 for m <
n + 6
4

.

(28)

Note that the restriction 2m ≥ n imposed by no isolated vertices implies thatE(S0) > r − 1
only for some degenerate cases (n = 2, m = 1) and the extreme cases n = 3 or 4, and
m = 2. Therefore, under RSM the null distribution of the test statistic S0 has for all other
cases an expected value below r−1, and its cumulative distribution function will tend to lie
on or above that ofχ2

r−1 for all practical useful cases. Exceptional cases withm < (n + 6)/4
have so few stubs to be matched that they are unlikely to be useful in practice. Compare
the requirement of large m needed for good χ2 asymptotic behaviors. Note however that
the test statistics may not have asymptotic χ2-distributions under RSM due to dependency
between edges.
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Any test statistic S, like S0 or A0, can be approximated by an adjusted χ2-distribution
which is useful for improving power calculations. Such approximations are given by

S∗ = μ

k
χ2
k , (29)

where μ = E(S). For any positive integer k the approximation S∗ has the same mean as S
and a variance given by

Var(S∗) = 2μ2

k
. (30)

Two particular approximations S′ and S′′
are given by S∗ for k chosen as the integer part of

μ and for k = r−1, respectively. Their variances are

Var(S′) = 2μ2

�μ� and Var(S
′′
) = 2μ2

r − 1
, (31)

and the preferred approximation is the one with variance closest to Var(S) = σ 2. Equiva-
lently, the preferred adjusted χ2-distribution is the one with degrees of freedom closest to
2μ2/σ 2.

4. Tests of a composite multigraph hypothesis

The composite multigraph hypothesis might be ISA for unknown p or IEAS for unknown
d. The parameters have to be estimated from data m. These estimates are denoted p̂ =
p̂(m) and d̂ = d̂(m), and they are related according to

p̂ = d̂
2m

, (32)

where

d̂i =
n∑
j=1

(mij + mji) = mi· + m·i for i = 1, . . . , n, (33)

and mij = 0 for i> j. Thus, we have estimated sequences Q̂ = (Q̂ij : (i, j) ∈ R) in the two
cases with composite ISA and IEAS hypotheses. Note that for ISA

Q̂ij =
{

p̂2i for i = j

2p̂ip̂j for i < j,
(34)

and for IEAS

Q̂ij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
d̂i
2

)/(
2m
2

)
for i = j

d̂id̂j
/(

2m
2

)
for i < j.

(35)



10 T. SHAFIE

The Pearson goodness of fit and divergence statistics are given as

Ŝ =
∑∑

i≤j

(mij − mQ̂ij)
2

mQ̂ij
=
∑∑

i≤j

m2
ij

mQ̂ij
− m, (36)

and

D̂ =
∑∑

i≤j

mij

m
log

mij

mQ̂ij
. (37)

Here, Ŝ and Â = 2mD̂ are asymptotically χ2
(n2)

-distributed when the correct model is tested
(this follows from the same logic and derivation as Equation (9)). Note that the number of
degrees of freedom here is given as the difference in numbers of estimated free parameters
without and with the hypothesis, i.e. df = (r − 1) − (n − 1) = r − n = (n

2
)
. The critical

regions for these tests are given by values of Ŝ and Â above a critical value cv which can be
chosen as

cv = df + 2
√
2df =

(
n
2

)
+
√
8
(
n
2

)
(38)

to get a significance level close to 5% given by α = P(χ2
(n2)

> cv). The power functions

P(Ŝ > cv) and P(Â > cv) are functions of p or d depending on whether an ISA(p) or
IEAS(d) model is considered. The error probabilities of false rejection and false non-
rejection are denoted by α and β , respectively, and indexed by Ŝ and Â.

Similar to the test statistic approximations described in Section 3, S′ and S′′
are here

given by S∗ for k chosen as the integer part of μ and r−n, respectively. These approxima-
tions can be used as alternative test statistics provided the expected values of Ŝ and Â are
known. Formal expressions for the expected values are complicated to obtain due to that
m is involved also via Q̂ that depends on d̂ which is determined by m. However, for our
theoretical investigation we use complete enumerations of all outcomes ofm and find the
expected values and variances numerically. Under an RSM(d) model the estimated d̂ is
always (for any datam) equal to the d specified in the model which implies that

E(Ŝ) = E(S0) = (m − 1)n(n − 1)
2m − 3

, (39)

as shown in Section 3 and Appendix A.2. The preferences between approximations to the
test statistics and adjusted χ2-distribution are determined by comparing variances and
degrees of freedom closest to 2μ2/σ 2, as mentioned in Section 3.

5. Some test illustrations

5.1. Simplemultigraph hypotheses against IEAmodels

In this section, we simulate tests of IEA models, including both ways (IEAS and ISA) in
which this model can be approximated by the RSM model (see Figure 1). We start by
looking at multigraphs with 4 vertices and 10 edges and test IEAS(d0) hypotheses against
IEAS(d) models. The degree sequences are chosen to include both skew and flat (uniform
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Figure 2. Power according to test statistics S0 and A0 when some simple IEAS(d0) hypotheses are tested
against IEAS(d)models formultigraphswithn = 4andm = 10. The significance level for the asymptotic
χ2
9 -distribution is 0.04.

and close to uniform) cases. The number of edge sites is here given by r = 10 and the
test statistics S0 and A0 are thus asymptotically χ2

9 -distributed when the correct model
with d0 = d is being tested. The critical value is cv = 17.49 and α = P(χ2

9 > cv) = 0.04.
The powers of these tests according to S0 and A0 are shown in Figure 2, where the degree
sequences are ordered from skew to flat cases.

We first consider the diagonal cases d0 = d in Figure 2, representing tests of correctly
specified models. Generally for these cases, we note that the probabilities of false rejection
are αA0 = 1 − βA0 < α ≤ 1 − βS0 = αS0 , indicating a better performance of the statistic
A0. Specifically, for flat d0 = d, both statistics have significance levels equal or close to α,
but for skew d0 = d, the significance level of A0 is much below α and that of S0 is much
above α.

For majority of the off diagonal cases d0 �= d in Figure 2, we note that larger differences
between the degree values inmodels andhypotheses result in powers being close or equal to
one for both statistics. However, the inequalities between the two statistics persist indicat-
ing that their cumulative distribution functions can approach an asymptotic distribution
from either below or above.

To illustrate the fit of the distributions of the statistics S0 and A0 to χ2
9 , their cumulative

null and non-null distribution functions are shown in Figure 3. For flat d0 = d, the null
distribution of S0 almost coincides with that of χ2

9 . For skew d0 = d, the null distributions
of both statistics give poor fit to χ2

9 -distribution. This poor fit is also noted for both flat and
skew d0 �= d shown in Figure 3, with the exception of a slightly better fit to χ2

9 -distribution
when a flat or almost flat d0 is tested against a flat or almost flat d, making it harder to
detect the wrongly specified hypotheses for these cases. Overall, when d0 �= d, both S0 and
A0 have distributions that would be better approximated by χ2 with degrees of freedom
chosen to be higher than r−1.

The convergence speed of the cumulative distribution functions of S0 and A0 is illus-
trated in Section 1 of supplementary material, where both flat and skew degree sequences
are considered. The number of edges m increases as multiples of the chosen flat degree
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Figure 3. Null and non-null distributions of S0 and A0, and the χ2
9 -distribution when some simple

IEAS(d0) hypotheses are tested against IEAS(d) models for multigraphs with n = 4 andm = 10.

sequence d = (3, 3, 3, 3) and skew degree sequence d = (6, 2, 2, 2), when d0 = d and d0 �=
d. We note that even for small m, the null distributions of both statistics are fairly well
approximated by their asymptotic χ2-distribution. A similar investigation of the non-null
distributions of S0 and A0 for flat and skew d0 �= d is shown in supplementary material
where d0 is kept fixed and d is varied. For both flat and skew d0, the deviations between
the non-null distributions of S0 andA0 and their asymptotic null distribution increase with
the number of edges, and even form = 12 this deviation is clearly notable. Thus, even for
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Figure 4. Preferred adjusted test statistics (top) and the degrees of freedom for preferred adjusted
χ2-distribution (bottom) for S0 (left) and A0 (right), when some simple IEAS(d0) hypotheses are tested
against IEAS(d) models for multigraphs with n = 4 andm = 10.

these rather smallm = 6 andm = 12, it easy to detect simple hypotheses about false mod-
els. This is noted in particular when there are large differences between the degree values
in models and hypotheses.

In Figure 4, we illustrate how test statistics can be approximated by adjusted
χ2-distributions. The approximated goodness of fit statistics are S′

0 and S
′′
0, and the approx-

imated divergence statistics areA′
0 andA

′′
0, as presented in Section 3. These approximations

are evaluated by comparing their variances to Var(S0) and Var(A0), and the best approxi-
mations are the ones with variances closest to Var(S0) and Var(A0), respectively (note that
means of the test statistics and their respective approximations are always equal). We note
the following tendencies in Figure 4. For majority of S0 cases (top left), S

′′
0 is preferred with

the exception of testing correctly specified models as given in the diagonal d0 = d. For the
majority ofA0 cases (top right),A′

0 is preferred overA
′′
0. The inconclusive cases are due the

variances of adjusted statistics being equal.
Similarly, the preferred adjusted χ2-distributions for S0 and A0 are the ones having

degrees of freedom closest to 2E(S0)2/Var(S0) and 2E(A0)
2/Var(A0), respectively. The

degrees of freedom for these preferred adjusted χ2-distributions are shown in the bottom
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rowof Figure 4. For example, consider the test of the IEASmultigraphhypothesiswithd0 =
(6, 6, 6, 2) tested against the IEASmodel with d = (8, 8, 2, 2). The adjusted χ2-distribution
for S0 has df = r−1 = 9 since it is closer to 2E(S0)2/Var(S0) = 7.31 than df = �μ� = 13
(bottom left in Figure 4). The adjusted χ2-distribution for A0 has df = �μ� = 13 since it
is closer to 2E(A0)

2/Var(A0) = 18.19 than df = r−1 = 9 (bottom right in Figure 4). We
note that the majority of S0 cases (bottom left), have correctly specified degrees of free-
dom of r−1, with a few exceptions. For the A0 cases (bottom right), we note a much larger
variation. The results here indicate that distributions are better approximated by χ2 with
degrees of freedom chosen to be higher than r−1, in particular when d0 �= d. This also
means that the cumulative non-null distribution functions of A0 approach the asymptotic
χ2-distribution from below.

We now turn our attention to the second way in which an IEA model can be obtained
and focus on ISA(p0) hypotheses tested against ISA(p) models and consider tests of differ-
ent multigraphs of the same size. The stub selection probability sequences are here chosen
as the already considered degree sequences for the IEAS models divided by total num-
ber of edges, i.e. p0 = d0/2m and p = d/2m. Thus, we cover both skew and flat cases of
stub selection probabilities. Similar figures as those for the IEASmodels above are given in
Section 1 of supplementary material and briefly summarize below.

The results from these tests are very similar to those for the IEAS models already pre-
sented, and these similarities are due to resemblances between the twomodels. Test powers
follow the same patterns as those already discussed for IEAS models. For p0 = p, αS0 and
αA0 are on opposite sides of α = 0.04 but they are both close to α except for very skew
cases. For the majority of cases with p0 �= p, both test statistics have reasonable powers
unless p0 and p are too close. The fit of the cumulative distributions of the statistics S0
and A0 to that of χ2

9 when ISA(p0) hypotheses are tested against ISA(p) models also show
similar results as those for IEAS models: even for small m, there is a fairly good fit for
all illustrated cases, including both flat and skew p0 = p, and p0 �= p. Furthermore, the
impact on the null and non-null distributions of S0 and A0 for skew and flat p0 when m
increases show that the convergence to the asymptotic distribution is rapid for null distri-
butions of both statistics, and the deviations between the non-null distributions of both
statistics and their asymptotic null distribution increase with m. The latter result implies
that adjusted χ2-distributions should be used to approximate the non-null distributions.
The results regarding these preferred adjusted test statistics and χ2-distributions are also
consistent with those already presented for the IEAS models. For the majority of S0 cases,
S

′′
0 is preferred and have correctly specified degrees of freedom of r−1. For the majority of
A0 cases, A′

0 is preferred over A
′′
0, and the distributions are better approximated by χ2 with

degrees of freedom chosen to be higher than r−1.

5.2. Simplemultigraph hypotheses against RSMmodels

When performing tests of IEA models, multigraphs are known to have multiplicity
sequences that are multinomially distributed, which implies that the distributions of the
test statistics S0 and A0 are asymptotically χ2-distributed when the correct model is being
tested. However, for RSM models, there is dependence between edges, and the distribu-
tions of S0 and A0 are unknown. In this section, we illustrate some of the consequences of
using the previously described tests of simple hypotheses against a false IEA model, when
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the true model is RSM. Here, both IEAS(d0) and ISA(p0) hypotheses are tested for flat and
skew d0 and p0. The true model is RSM(d) so that only non-null distributions of S0 and
A0 are considered. Note that the restraint of number of multigraphs given degree sequence
reduces the outcomes space for edgemultiplicity sequences, allowing us to testmultigraphs
of larger size with respect to number of edges.

Multigraphs with 4 vertices and 30 edges are considered and all simulation outputs are
shown in supplementary material Section 2. The powers of these tests according to S0 and
A0 show the following. For the diagonal cases where d0 = d, both αS0 and αA0 are below
α = 0.04 implying that it is difficult to detect hypotheses about wrong models. This holds
in particular for A0 as the test statistic, and for S0 when testing ISA hypotheses. For cases
with d0 �= d and p0 �= d0/2m, both test statistics have very good or reasonable powers in
the majority of cases. This holds if d is not too close to d0, that is when testing skew against
flat degree sequences, and vice versa, and is a consequence of similarities between IEAS
and ISA models for large m. This is further illustrated in figures where the fit of the non-
null distributions of the statistics S0 andA0 to that of χ2

9 are shown for some selected cases.
We note similar trends as those for IEA models considered in Section 5.1; it is generally
difficult to detect differences between how the models RSM, IEAS and ISA effect the test
statistics. The similarity between modeled and hypothetical degree sequences determine
the goodness of fits, and whether hypotheses about wrong models can be detected or not.

Further in Section 2 of supplementary material, non-null distributions of S0 and A0 for
some RSM(d) models are illustrated where m increases as multiples of different specified
d. This includes both IEAS hypotheses with flat d0, and IEAS hypotheses with skew d0.
The following can be noted and summarized. When d0 = d, the non-null distributions
of both S0 and A0 lie above the asymptotic null distribution. We see that as m increases,
these distributions still lie above the asymptotic null distribution, and a χ2-distribution
with lower degrees of freedom provides a better approximate to these distributions. For
cases with d0 �= d, the non-null distributions of both statistics move further away from
the asymptotic null distribution as m increases. This implies a need to use adjusted
χ2-distributions for better fit.

Illustration of how increasing m affects the fit between the non-null distributions of S0
and A0 and the asymptotic null distribution for ISA hypotheses with flat and skew p0 are
almost identical to those presented for IEAS hypotheses.

Looking at how how test statistics can be approximated by adjusted χ2-distributions for
IEAS and ISA hypotheses tested against RSM models reveal the following tendencies: in
almost all cases when d0 �= d, the preferred adjusted test statistic is S′

0 and A
′
0 as they have

variances closest to Var(S0) and Var(A0), respectively. For the majority of diagonal cases
d0 �= d, A

′′
0 is the preferred option, while the results are varying for statistic S0. We also

note large discrepancies between the adjusted χ2-distributions of the two test statistics. In
particular for d0 = d, the adjusted χ2-distribution for S0 seems to be closer to r−n rather
than r−1 degrees of freedom under RSM. This is also supported by the expected value of
S0 which according to the result in Section 3 is (m − 1)n(n − 1)/(2m − 3) which is about
r − n = n(n − 1)/2. As these cases represent non-null distributions, we would needmuch
higher discrepancies between the degrees of freedom to the χ2 distributions in order to
detect hypotheses about wrongmodels. For the off diagonal cases d0 �= d also representing
non-null distributions, these discrepancies are much more evident (in particular for A0),
making it easy to detect these hypotheses about wrongmodels.We also note that it is easier
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to detect wrongly specified IEA hypotheses with skew d0 tested against d, than wrongly
specified ones with flat d0 tested against d.

Note that we in in this section only considered the consequences of replacing IEA
models with RSM models, but only tested IEA hypotheses. We provide a discussion and
suggestion for the extension of testing RSM hypotheses in Section 6 of this paper and will
not pursue details of this test further here.

5.3. Compositemultigraph hypotheses against IEAmodels

Consider composite IEAS and ISA hypotheses against IEAS(d) and ISA(p) models where
p = d/2m, for multigraphs with 4 vertices and 10 edges. When testing IEAS models, the
composite IEAS hypotheses include the correct model and when testing ISA models, the
composite ISA hypotheses include the correct model. For these cases, the probabilities of
false rejection according to Ŝ and Â are given in Section 3 of supplementary material.

When testing composite IEAS hypotheses against IEAS models, both αŜ and αÂ for flat
d are close or equal to α = 0.04. For skew d, αŜ remains close or equal to α while αÂ is
much below. If the composite ISA hypothesis is instead tested against the IEAS(d) model,
the powers of Ŝ are much below that of αŜ and the powers of Â almost equal to the values
αÂ. Thus, both statistics have very poor powers of detecting differences between composite
ISA and IEAS hypotheses, and these poor powers are due to the resemblances between the
two models.

Similar tendencies are also evident when composite ISA and IEAS hypotheses are
tested against ISA(p) models. However, note that when testing composite IEAS hypotheses
against ISA models, αŜ are greater or equal to α, implying it is marginally easier to detect
tests of the wrongly specified IEAS models against ISA models, than detecting tests of the
wrongly specified ISA models against IEAS models.

Given the similarities between the two IEA models, we only consider composite ISA
and IEAS hypotheses tested against IEAS models in the study of cumulative distributions
of the test statistics which are shown in Section 3 of supplementary material. The fit of the
distributions of Ŝ and Â to that of χ2

6 show the following. For the very skew and very flat d,
there are larger deviations from χ2

6 . Moreover, for skew d, both Ŝ and Â have distributions
that would be better approximated by χ2 with lower degrees of freedom chosen, while for
flat d, the distributions of the test statistics would be better approximated byχ2 with higher
degrees of freedom chosen.

Studying the null and non-null distributions of Ŝ and Â for some IEAS(d) models with
flat and skew d, we note the following whenm increases as multiples of the specified d. The
convergence of the null and non-null distributions for flat d is rapid towards the asymp-
totic distribution, while the convergence of the distributions for skew d is slower for both
statistics. Thus, for small and largem, it is difficult to detect differences between composite
ISA and IEAS hypotheses.

By looking at how test statistics can be approximated by adjusted χ2-distributions for
composite hypotheses tested against IEAS(d) and ISA(p) models (where p = d/2m) we
note the following (see Section 3 in supplementary material). The preferred statistics Ŝ′,
Ŝ

′′
, Â′ and Â′′

vary in different cases so no clear tendency can be noted. For majority of
Â cases, the adjusted χ2-distributions have correctly specified degrees of freedom of r−n,
with the exceptions of themost skew and themost flat cases which approach the asymptotic
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χ2-distribution from below. The flat cases for statistic Ŝ also have approximately correct
specified degrees of freedom while the skew cases have lower degrees of freedom than
r−n, showing that the cumulative distribution functions of Ŝ approach the asymptotic
distribution from above.

5.4. Compositemultigraph hypotheses against RSMmodels

In this section we illustrate some of the consequences of using previously described tests of
composite hypotheses against a false IEA model, when the true model is RSM. The output
from these simulations are given in supplementary material Section 4, where IEAS(d) and
ISA(p), with p = d/2m, are tested against RSM(d) models. We consider multigraphs with
4 vertices and 30 edges. The note poor powers according to Ŝ and Â of rejecting IEAS and
ISA when RSM is true. We see that αŜ is close to α = 0.04 for all cases shown, while αÂ
moves from being below α for skew d to being greater than αÂ for flat d. Thus, it is slightly
easier to detect wrongly specified models for flat d when using test statistic Â.

To illustrate the fit of the distributions of the statistics Ŝ and Â to that of χ2
6 , we look at

their cumulative distribution functions. For all cases, there is a reasonably good fit to χ2
6 ,

indicating the variances of both test statistics are roughly twice their expected values which
are equal to 6. Thus, the approximations of test statistics are mostly unnecessary for this
rather largem. This is further noted when looking at the effects of increasingm on the non-
null distributions of Ŝ and Â for some RSM(d) models with flat and skew d, as illustrated
in Section 4 of supplementary material. For all cases we see that these distributions are
very close to the asymptotic null distribution. Further, the effect from increasingm on the
non-null distributions is small.

6. Summary of test results

We summarize the main results from the tests performed in Section 5 in light of the prob-
lems and questions posed in Section 1. The convergence of the null distributions of S and
A to their asymptotic χ2-distributions is rapid and even for small number of edges m, a
good fit is seen between the null distributions and the asymptotic χ2-distribution. In other
words, the asymptotic behavior of the test statistics is such that it can produce reliable
results even for small multigraphs. This holds true for testing simple as well as compos-
ite hypotheses with different asymptotic distributions. Moreover, the influence of RSM on
both test statistics is substantial for small number of edges and implies a shift of their dis-
tributions towards smaller values compared to what holds true for the null distributions
under IEA. As the number of edges increases, the non-null distributions of both statistics
move further away from the asymptotic null distribution implying a need to use adjusted
χ2-distributions for better fit. Tests of RSM can be made by critical regions for m, but S
and A cannot distinguish RSM from IEA. The non-null distributions of S and A needed
for determining power can be well approximated by adjusted χ2-distributions and it is
possible to judge how powers depend on the parameters of the IEA models.

For the simple IEA hypotheses tested against IEAS, ISA and RSMmodels in Sections 5.1
and 5.2, we note the following. For cases when flat d or p is tested against skew d or p (or
vice versa), both statistics have good powers of rejecting a simple hypothesis about a false
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model. The non-null distributions of S0 and A0 needed for determining power can be well
approximated by presented adjusted χ2-distributions.

For composite IEASor ISAhypotheses including the correctmodel, the following results
are noted from the tests performed in Section 5.3. The null distributions of Ŝ and Â con-
verge faster to their asymptotic χ2-distributions for flat d or p than for skew d or p, but
even for rather smallm, there is a good fit between these distributions and their asymptotic
χ2-distributions. However, both statistics have very poor powers of detecting differences
between IEAS and ISA hypotheses for small as well as for large m. From the tests in
Section 5.4, it can be concluded that no matter the size of m, it is difficult to detect a false
composite hypothesis under an RSM model, just as it is difficult to detect false composite
hypotheses under IEA models.

The general trends regarding error probabilities α and β with respect to the two test
statistics S and A are summarized in Table. 1 for all tests performed. When testing cor-
rectly specified simple IEA hypotheses against IEA models with d0 = d, A0 gives lower
probabilities of false positives α, especially for skew d. However, for all other simple tests
in which d0 �= d, the probabilities of false negatives β are higher for A0 than for S0. When
simple IEA hypotheses are tested against RSM models, we get varying results and while
most of these tests have good powers using both statistics, there are cases where a general
trend cannot be determined.

For the composite tests, the error probabilities according to Ŝ and Â in Table 1 can be
summarized as follows. For flat d, the probabilities of false rejection are lower for Ŝ than
Â, while the opposite holds for skew d. The probabilities of failed rejection of incorrectly
specified hypotheses are higher for IEAS models and not possible to determine for ISA
models (can be either higher or lower). However, for incorrectly specified IEA hypothe-
ses tested against RSM models, we note consistently better powers when Â is used, for
both skew and flat d. For RSM models, this is due to better asymptotic behavior since
tests are performed on multigraphs with three times the number of edges as those for IEA
models.

Table 1. Summary of error probabilities according to S0 and A0 when simple IEAS(d0) or ISA(d0/2m)
hypotheses, and according to Ŝ and Â when composite IEAS and ISA hypotheses, are tested against
IEAS(d), ISA(d/2m) or RSM(d) models.

Simple IEAS(d0) hypothesis Composite hypothesis

Model d0 = d Flat d0 �= d Skew d0 �= d IEAS ISA

IEAS Flat d αS0 > αA0 βS0 < βA0 βS0 < βA0 αŜ ≤ αÂ βŜ > βÂ
Skew d αS0 > αA0 βS0 < βA0 βS0 < βA0 αŜ > αÂ βŜ ≥ βÂ

Simple ISA(d0/2m) hypothesis Composite hypothesis

d0 = d Flat d0 �= d Skew d0 �= d IEAS ISA

ISA Flat d αS0 ≥ αA0 βS0 ≤ βA0 βS0 < βA0 inconclusive αŜ ≤ αÂ
Skew d αS0 > αA0 βS0 ≤ βA0 βS0 < βA0 βŜ < βÂ αŜ > αÂ

Simple IEAS(d0) or ISA(d0/2m) hypothesis Composite hypothesis

d0 = d Flat d0 �= d Skew d0 �= d IEAS ISA

RSM Flat d βS0 ≥ βA0 Inconclusive βS0 = βA0 βŜ > βÂ βŜ > βÂ
Skew d βS0 ≤ βA0 βS0 = βA0 βS0 < βA0 βŜ ≥ βÂ βŜ > βÂ
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7. Applications

7.1. Outline of included real world examples

Local and global structural features of directly observed or aggregated multigraphs can
be analyzed by applying the probability models presented in Section 2. However, statis-
tics under the IEA model are far easier to apply since explicit formulas for their moments
are derived in [22,23]. Some of these closed expressions are missing for the RSM model
due to the combinatorial complexity it entails. Thus, testing the fit of the RSM approxi-
mations is important as it reveals the potential to apply statistics under the IEA models
instead. Examples of mentioned statistics include number of loops which can be used to
analyze homophily (i.e. higher likelihood to connect to those with similar vertex attributes)
and statistics related to edge multiplicity counts to analyze multiplexity (i.e. edge entrain-
ment for networks with multiple types of edges). Such statistics and their applications are
presented in [22,23,25].

Below, we provide two applications in which aggregated multigraphs are used to test
whether the observed data follows IEA approximations of the RSM model. By compar-
ing the models and degree sequences to those simulated in earlier sections, our anal-
ysis can be guided and we can conclude whether test results can be trusted. However,
given the uncertainty connected to the test results for composite multigraph hypothe-
ses shown in Section 4, we only focus on simple null hypotheses specified for the tests
performed. Non-rejection of the null implies that the approximations fit the data, thus
implying that above mentioned statistics can be used to further analyze the observed
network.

7.2. Florentine family networks

The first considered application is the well known network data on renaissance Florence
families and how these families strategically formed alliances with each other to obtain a
more powerful and important position in society [10,19]. In this subset of the original data
set, we have 15 financial (F) and 20 marital (M) undirected ties between pairs of 16 fam-
ilies, together with three attributes observed on each family measuring economic, politic
and social influence, respectively: net wealth in thousands of lira in 1427 (W), number of
priorates i.e. number of seats on the Civic Council between 1282 and 1344 (P), the number
of business and marriage ties in the total network data set consisting of the 116 families
(T). Following the multigraph application in [22], we use binarized values to reflect weak
(= 0) and strong (= 1) influences based on each attribute, thus simplifying the multigraph
aggregations. Multigraphs on 2, 4 or 8 vertices can then be aggregated based on single or
combined vertex attributes, as shown in Figure 5. The data set and edgelists for the aggre-
gated multigraphs are given in Section 5.1 of the supplementary material (for more details
regarding multigraph aggregations, see [22]).

The goodness of fit tests for all considered multigraphs in Figure 5 are summarized in
Table 2. The p-values for testing whether there is a significant difference between observed
and expected edge multiplicity values according to the two approximate IEA models are
presented. These two approximations of the RSM model are IEAS(d0) and ISA(d0/2m)
where d0 is observed degree sequence. The tests where the null is rejected are shaded since
they indicate that the model approximations, thus also the model statistics, cannot be used
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Figure 5. Aggregated multigraphs of the 16 Florentine families with marital (red) and financial (green)
relations moving between and within categories based on vertex attributes political (P), social (T) and
economic (W) influence. Thicker lines indicate higher edge multiplicity counts.

to further analyze structural properties. For these cases, adjusted test statistics and χ2-
distributions presented in this paper can be considered for performing a power analysis.

We note the following from Table 2. First, observed degree sequences for all aggregated
multigraphs are skewed. Following our summary in Table 1, we can therefore conclude te
Pearson statistic S0 is more reliable in terms of minimizing the error probabilities α and
β . Second, with a few exceptions, both statistics and approximations yield the same test
results.

In order to exemplify how non-rejection of the specified null can facilitate the structural
analysis, we focus on the networks aggregated based on all three vertex attributes. When
testing the fit of the IEAmodels on thesemultigraphs, we get the highest p-values implying
the strongest evidence for the null such that we fail to reject it. Thus, there is not a signif-
icant difference between the observed and the expected edge multiplicity sequence based
on the two IEA models. Statistics derived under these models can thus be used to analyze
the structure of these multigraphs. To illustrate this, we focus on the following two statis-
tics: number of loops denoted M1 and number of non-loops denoted M2. Because these
statistics have the linear relationshipsM2 = m − M1, their expected values are given by

E(M1) = m
n∑

i=1
Qii and E(M2) = m − E(M1), (40)
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Table 2. P-values when testing if there is a significant difference between observed and expected edge
multiplicity values according to IEAS(d0) and ISA(d0/2m) models in the Florentine multigraphs aggre-
gated based on single or combined binary vertex attributes representing political (P), social (T) and
economic (W) influence (see Figure 5).

Marital ties Financial ties

Multigraph df d0 IEAS(d0) ISA(d0/2m) d0 IEAS(d0) ISA(d0/2m)

mPTW 35 (13, 9, 7, 4, 3, 3, 1, 0) S0 0.998 0.997 (9, 8, 5, 3, 2, 2, 1, 0) S0 1.000 0.999
A0 0.988 0.983 A0 0.998 0.996

mPT 9 (20, 12, 5, 3) S0 0.553 0.504 (14, 8, 4, 4) S0 0.857 0.800
A0 0.060 0.050 A0 0.497 0.422

mPW 9 (16, 16, 7, 1) S0 0.616 0.600 (12, 10, 6, 2) S0 0.906 0.860
A0 0.090 0.078 A0 0.494 0.431

mTW 9 (16, 10, 7, 7) S0 0.957 0.934 (17, 5, 5, 3) S0 0.930 0.885
A0 0.366 0.303 A0 0.252 0.200

mP 2 (32, 8) S0 0.004 0.004 (18, 12) S0 0.314 0.300
A0 0.000 0.000 A0 0.002 0.002

mT 2 (23, 17) S0 0.037 0.047 (22, 8) S0 0.000 0.046
A0 0.000 0.000 A0 0.000 0.000

mW 2 (23, 17) S0 0.239 0.242 (22, 8) S0 0.046 0.045
A0 0.000 0.000 A0 0.000 0.000

Note: Cases where the null is rejected based on a significance level of 0.05 are shaded.

and they have a common variance given by

Var(M1) = Var(M2) =
n∑

i=1

n∑
j=1

Cov(Mii,Mjj) = m

⎡
⎣ n∑

i=1
Qii(1 − Qii) −

∑∑
i≤j

QiiQjj

⎤
⎦ ,

(41)
under the IEA model [22]. These statistics can be used to analyze homophily and het-
erophily, i.e. stronger tendency to connect to those with similar attributes and to those with
dissimilar attributes Figure 6 illustrates approximate 95% interval estimates forM1 andM2

given by Ê ± 2
√
V̂ar. These are shown for the two relations in the multigraphsmPTW and

when applying the IEAS(d0) and ISA(d0/2m) model with observed degree sequence d0.
The observed counts fall within each interval and are given as filled circles.

The following can be concluded from Figure 6. Given the similarity between the
IEAS and ISA model, the intervals are almost perfectly overlapping. We observe fewer
homophilous ties than expected under models, while the number of non-loops indicates
a higher number of heterophilous ties than expected. Thus, we can conclude that there is
a higher propensity to connect to those with dissimilar attributes in this multigraph. We
also not that marriage and finance intervals forM1 and those forM2 are overlapping. This
could be an indicator that there is covariation between the two relation such that an analy-
sis of multiplexity or edge entrainment should be considered as a next step in the structural
analysis. How to perform such multiplexity analysis using a multigraph representation is
shown in [25].

7.3. Friendship networks in a Dutch school class

The second example is performed using a longitudinal friendship network in a Dutch
school class collected and applied by [11,12]. Here, strong and symmetrized friendship
ties, together with constant and changing actor covariates on 26 students, were studied
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Figure 6. Approximate 95% interval estimates for the statistics number of loops and number of non-
loops in the FlorentinemultigraphmPTW shown in Figure 5. These intervals are calculated for the IEAS(d0)
and the ISA(d0/2m) model where d0 is the observed degree sequence. The observed counts of number
of loops and non-loops are given as filled circles in each interval.

Figure 7. Aggregated multigraphs of friendship networks in a Dutch class over three time periods. The
aggregations are based on combined binary attributes representing delinquent behavior, smoking and
gender. Thicker lines indicate higher edge multiplicity counts.

over their first year at a secondary school and at four time points at intervals. Complete
observations on all attribute variables were only collected for three of the time periods and
we consider these three in our application here. The two changing covariates are ’delin-
quent behavior’ and ’drinking alcohol’, both binarized to reflect if the pupils are never or at
least once part of such behavior. These attributes together with the third constant covari-
ate ’sex’, were used to create the multigraphs on 8 vertices shown in Figure 7. The data set
and edgelists for the aggregated multigraphs are given in Section 5.2 of the supplementary
material.
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Table 3. P-values according S0 and A0 when simple IEAS(d0) or ISA(d0/2m) hypotheses, and according
to Ŝ and Â when composite IEAS and ISA hypotheses, are tested against IEAS(d), ISA(d/2m) or RSM(d)
models.

Multigraph df d0 IEAS(d0) ISA(d0/2m)

time 1 35 (24, 19, 11, 8, 2, 2, 0, 0) S 0.004 0.008
A 0.000 0.000

time 2 35 (21, 19, 17, 9, 7, 3, 0, 0) S 0.002 0.005
A 0.001 0.002

time 3 35 (15, 14, 13, 8, 6, 5, 4, 1) S 0.000 0.000
A 0.000 0.000

Note: Cases where the null is rejected based on a significance level of 0.05 are shaded.

We test if there is a significant difference between observed and expected the edge mul-
tiplicities given the IEAS(d0) and ISA(d0/2m) where d0 is replaced by the observed degree
sequence which we note is skewed for all cases. Table 3 summarizes these tests and as
previous example, cases where we find significant difference are shaded implying we reject
the null models. We note that this occurs for all tested multigraphs such that the statistics
under the IEA model cannot be used to analyze these multigraphs further.

However, another conclusion based on these test results in Table 3 can be reached. The
p-values are decreasing over time implying an increased shift away from the null distribu-
tions. This could be due to two things. First, we may have a correctly specified null model
but an incorrect specified degree sequence. A systematic check whether different degree
sequences (flat and skew) lead to different results over time would inform on such degree
based effects. Second, we move further away from the IEA models and the independence
assumption that they entail over time. Thus, social processesmight be governing tie forma-
tion over time and the interdependence between their occurrences. A descriptive analysis
of different network configurations might reveal such tendencies. For example, by doing a
triad census over time, one can assess whether the effect of ’the friend of a friend is also a
friend’ is generatingmore closed triads over time given the actor covariates. Note that such
assessments need to be performed on the original data, and not the aggregated multigraph
representations.

8. Final remarks and future directions

Wehave presented and studied goodness of fit tests for randommultigraphmodels defined
by RSM and the closely related IEA models using the edge multiplicity sequence m of an
observed multigraph with n vertices and m edges. Two particular kinds of IEA models
are studied, both of which can be considered as approximations to the RSMmodels. These
types of approximation have previously been shown to significantly facilitate the structural
analysis of local and global properties of multigraphs [22,23]. Thus, it is of interest to know
when the IEAmodels fit the data in such that statistics under these models can be used. To
that end, the proposed goodness of fit tests can be used.

Note that we only have considered the consequences of replacing IEAmodels with RSM
models, but have only tested IEA hypotheses. We include here some suggestions for future
research on testing RSM hypotheses. A simple RSM(d0) hypothesis has the sameQ0 as the
IEAS(d0) hypothesis, and S0 and A0 can not distinguish between these two hypotheses.
Should themodel be RSM(d), there is a dependency between edges when they are assigned



24 T. SHAFIE

to vertex pair sites, which could be used to distinguish between the two hypotheses. This
requires a test not using S0 orA0, but a test using the full potential ofm having as its critical
region the set M(d0) consisting of all outcomes m that are not compatible with d0. This
test has zero probability of false rejection of RSM(d0), and its power can be determined as
the sum of the probabilities according to RSM(d) of the outcomes in the critical region.
These RSM(d) probabilities and specifies outcomes of m compatible with a fixed degree
sequence are presented in [23]. We leave this as suggestion for future research.

While the expected values of the Pearson statistic for simple hypotheses under the
different models are derived, the exact expressions of both test statistic distributions are
unknown. This implies that the numerical solutions which the presented tests depend
upon are computationally expensive, thus restricting the tests to be practical on large scale
multigraphs. A suggested extension to this work is to use Monte Carlo methods to study
the distribution of test statistics and making the proposed tests applicable on larger multi-
graphs. This will also provide further insight to the asymptotic behavior of the test statistics
and, in particular, how the dependence arising from edge assignments in the RSM model
affects this behavior. Moreover, we have only considered the asymptotic analysis of power
with respect to number of edges. Finding numerical and analytical ways in which this can
be done based on number of vertices is yet another suggestion for future work.
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Appendix. Derivations of expected values of test statistic E(S0)

A.1 E(S0) under ISA(p)model and ISA(p0) hypothesis

E(S0) =
n∑

i=1
L2i
[
1 + (m − 1)p2i

]+
∑∑

i�=j

LiLj
2
[
1 + (m − 1)2pipj

]− m

=
n∑

i=1
L2i + (m − 1)

n∑
i=1

(Lipi)2 +
n∑

i=1

n∑
j=1

LiLj
2

+ (m − 1)
n∑
i=1

n∑
j=1

LiLjpipj −
n∑

i=1

L2i
2

− (m − 1)
n∑

i=1
(Lipi)2 − m

=
∑n

i=1 L
2
i + (∑n

i=1 Li
)2

2
− m + (m − 1)

( n∑
i=1

Lipi

)2

https://cran.r-project.org/package=multigraphr
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A.2 E(S0) under RSM(d)model and RSM(d0) or IEAS(d0) hypothesis

E(S0) =
∑∑

i≤j

E(M2
ij)

mQ0ij
− m

=
∑∑

i≤j

σ 2
ij + �ij + m2Q2

ij

mQ0ij
− m

=
∑∑

i≤j

mQij(1 − Qij) + �ij + m2Q2
ij

mQ0ij
− m

For Q = Q0, this simplifies to

E(S0) = r − 1 +
∑∑

i≤j

�ij

mQij
= r − 1 +

∑∑
i≤j

m(m − 1)(Qijij − Q2
ij)

mQij

= r − 1 + (m − 1)

⎡
⎣∑∑

i≤j

Qijij

Qij
−
∑∑

i≤j
Qij

⎤
⎦ = r − m + (m − 1)

⎡
⎣∑∑

i≤j

Qijij

Qij

⎤
⎦

= r − m + (m − 1)

⎡
⎣∑∑

i<j

2(di − 1)(dj − 1)
(2m − 2)(2m − 3)

+
n∑
i=1

(di − 2)(di − 3)
(2m − 2)(2m − 3)

⎤
⎦

= r − m + 1
2(2m − 3)

⎡
⎣∑∑

i�=j

(di − 1)(dj − 1) +
n∑
i=1

(di − 2)(di − 3)

⎤
⎦

= r − m + 1
2(2m − 3)

⎡
⎣( n∑

i=1
(di − 1)

)2

−
n∑
i=1

(di − 1)2 +
n∑

i=1
d2i − 5

n∑
i=1

di + 6n

⎤
⎦

= r − m + 1
2(2m − 3)

[
4m2 + 4mn + n2 − 6m + 5n

]
= (m − 1)n(n − 1)

2m − 3
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