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Laura Laugwitz

The Right Kind of Explanation

Validity in automated hate speech detection

1 Automated content analysis: Mind the epistemological gap

As one of the core methods of communication research, content analysis 
has, for decades, provided the tool to describe, analyze, and compare content 
conveyed by the media (Krippendorff, 2019; Lacy et al., 2015). In conjuncture with 
growing amounts of digital communication, accessible tutorials, and evolving 
computing capacities (van Atteveldt & Peng, 2018), content analysis of text in 
particular is increasingly supported by computational methods (boyd & Craw-
ford, 2012; Trilling & Jonkman, 2018) to analyze larger amounts of data faster and 
in a more standardized fashion. Hate speech detection is one of the fields in which 
automated content analysis stands to reason, since it is not simply the subse-
quent analysis of hateful communication that is of interest in research but also its 
quick identification (e.g., Davidson et al., 2017), moderation (e.g., Paasch-Colberg 
et al., 2020), and prevention (e.g., Schmitt et al., 2018). As other contributions in 
this collection show, the identification of hate speech is a challenge due to vary-
ing definitions (see Part 2), context (see Litvinenko), latent features (see Baid-
er; Becker & Troschke), linguistic limits (see Baden), and bias (see Kim & Stoll). 
Computational methods add another level of challenges, as researchers not only 
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need to learn how to choose and implement these methods with regard to hate 
speech detection but also to understand and evaluate their results. While it is 
reasonable to collaborate with machine learning experts or computer scientists 
to implement computational methods well, there are fundamental differences in 
how computer science and social sciences approach the production of knowledge 
and, thus, how each evaluates the models they build.

Validity and reliability in computational methods are key issues for communi-
cation research (Scharkow, 2013; van Atteveldt & Peng, 2018), whereas machine 
learning experts are focused mainly on a sub-category of reliability, namely repro-
ducibility, of their work (Henderson et al., 2018; Lipton & Steinhardt, 2019; Stodden, 
2010). Since there is no clear equivalent for testing validity in text classification, 
communication researchers risk drawing the wrong inferences from automatically 
labeled data if they do not develop methods to ensure that such labels are based on 
“what words mean in the context of their use” (Krippendorff, 2019, S. 218).

These different focal points on criteria for research quality are rooted in dif-
ferent epistemologies: Communication research is largely conducted through the 
lens of critical rationalism in which a hypothesis’s acceptability is tested a priori 
through logic and comparison with other theories as well as a posteriori through 
empirical tests (Chauviré, 2005). Machine learning, by contrast, mainly operates 
within a technocratic paradigm, dismissing the idea that a priori knowledge about 
the behavior of a program is possible and instead relying on gaining a posteriori 
knowledge through testing (Eden, 2007). It follows that the former understands 
quality as the production of reliable, valid, and intersubjectively comprehensible 
knowledge (Brosius et al., 2009), and the latter understands quality as the devel-
opment of a satisfactory, reusable application (Stodden, 2010). Thus, these differ-
ent approaches result not only in different quality criteria for research but also 
lead to various points of friction in interdisciplinary work.

In this chapter, I will examine the consequences of such epistemological dif-
ferences, then focus on different quality criteria and how this may be alleviated 
when using supervised text classification for hate speech detection. In gathering 
various established and novel methods to establish validity in supervised text 
classification, I will show that current explainability approaches in development 
by computer scientists provide a useful starting point for deepening the under-
standing of a model’s decision process. However, only a few of these approach-
es satisfy social science’s imperative to examine a model’s validity. This leaves 
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a void that ought to be filled via diligent collaboration between communication 
and computer scientists.

2 Validity of automated content analysis for hate speech detection

Automated content analysis can merge communication studies’ manual 
content analysis and machine learning’s supervised text classification; a model 
is trained to reproduce the labeling of concepts developed for and coded within a 
manually created corpus (Boumans & Trilling, 2016; Scharkow, 2013). In manual 
content analysis, human coders are given instructions in the shape of a codebook 
and are trained thoroughly for their classification task. The main strategies to 
ensure content validity—suggesting that the theoretical constructs are exhaus-
tive and adequate (Krippendorff, 2019) – involve creating these codebooks based 
on a comprehensive literature review, training coders, improving the codebooks 
through their feedback, and checking for the use of catch-all or open categories 
after classification. These strategies, as well as intercoder reliability scores, rea-
sonably create qualitative and quantifiable confidence that coders have integrat-
ed the knowledge derived from theory and research into their mental models. 
Additionally, the results may be compared with results from similar studies us-
ing the same or other methods (Krippendorff, 2019). Ensuring validity in content 
analysis specifically for hate speech is a challenge due to different reasons. First, 
hate speech is a complex construct, and separating it from adjacent concepts, 
such as incivility, toxicity, or offensive speech in theory, is still in progress; doing 
so in practice has only been attempted by a few researchers (e.g., Stoll et al., 2020). 
Second, some dimensions of hate speech show a manifestation in specific words 
(Davidson et al., 2017), whereas others are more latent (Nielsen, 2002) or contra-
dictory (van Aken et al., 2018), such as generalizations or irony. Even in thorough 
manual content analysis, intercoder reliability can vary immensely (Poletto et al., 
2020; Ross et al., 2017), which poses a challenge in reliably measuring the difficult 
concept of hate speech. Third, and most important to this paper, translating any 
attributes or dimensions of hate speech into technologically traceable features is 
a challenge that is rarely recognized. In a literature review, Fortuna and Nunes 
(2018) showed different strategies currently in use for hate speech detection. One 
strand leverages existing generic methods from natural language processing, 
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such as topic classification, sentiment analysis, named entity recognition, and 
deep learning, to identify hate speech. A second, much smaller strand identifies 
specific linguistic features, such as othering language, objectivity-subjectivity, 
declarations of superiority of an in-group, and particular stereotypes. The lat-
ter strand approximates operationalizations from manual content analysis closer 
than the former; however, the former is much more common.

In supervised text classification, no fixed rules or instructions are given to the 
machine learning model. Rather, it derives classification rules inductively from 
previously coded material (Scharkow, 2013). While multiple strategies to measure 
reliability for automated content analysis and to increase reproducibility have 
recently been suggested (Krippendorff, 2019; Mitchell et al., 2019; Pineau, 2020; 
Scharkow, 2013), testing the validity of supervised text classification has yet to 
be expanded. Most simply, some researchers rely on manual coding as the gold 
standard, and rule that validity is established if the automated results are similar 
enough to the manual classification (Lee et al., 2020). The assumption here is that 
quality can be assured through the creation of a valid and reliable manually cod-
ed dataset, since an algorithm will then simply reproduce these classifications. 
However, computer science itself is currently raising doubts about whether mod-
els actually learn content-related features at all, or instead are trained on spu-
rious correlations and artifacts in the dataset (Lapuschkin et al., 2019), raising 
the issue of validity without explicitly naming it. Other scholars, then, suggest 
applying their model to a second dataset to test the validity of inferences (Pilny 
et al., 2019). Beyond these, some communication scholars have also attempted 
to examine content validity. To show whether a model has learned to identify 
concepts previously derived from theory, the weights for individual features can 
be examined (Stoll et al., 2020).

Examining examples from sentiment analysis, which aims to automatically 
identify mood in text and is occasionally used as a proxy to identify hate speech, 
Liu and Avci (2019) claimed that models may assign a negative mood to text as 
soon as it contains identity terms, such as “Jew” or “Black.” Similarly, a hate 
speech classifier may learn to classify any sentence containing the term “Islam” 
as toxic (Waseem & Hovy, 2016). While this type of error may be acceptable for an 
application designed to help companies in the private sector identify potentially 
problematic discussions, such a lack of validity is fatal in communication research, 
as inferences based on invalid classifications will result in flawed inferences. More 



387

 The Right Kind of Explanation

recently, it has been shown that the reasoning of well-performing models for hate 
speech classification tasks does not necessarily align with the reasoning that cod-
ers for manual classification have provided (Mathew et al., 2020), adding to the 
limited trust in the validity of these models. Relying on a manually coded dataset 
with high validity is not sufficient to examine whether the theoretical constructs 
informed the model’s classification decision. Applying the same model to another 
dataset may hint at its capacity to generalize. However, trying to understand how 
a model made a decision, for example, via feature weights, appears to be the most 
fruitful and necessary strategy to date in examining the content validity of super-
vised text classification. In the following chapter, I present strategies currently 
explored in machine learning that intend to show the reasoning behind a model’s 
classification decisions.

3 Explaining supervised text classification

A recurring theme in machine learning is the question of why a model made 
a specific decision (local explanation) or how it works in general (global explana-
tion), which is currently mostly found under the umbrella term “explainability.” 
Efforts to increase the explainability of automated results (Samek & Müller, 2019) 
have gained more relevance in machine learning since the wider use of auto-
mated decision-making in business, banking, and the public sector (Mittelstadt et 
al., 2016). Following the introduction of the general data protection regulation in 
2018, users even have a right to be provided with an explanation for an automat-
ed decision (§ 14 2 g GDPR). Two main strategies are currently pursued in explain-
ability research (Vilone & Longo, 2020): Model-agnostic methods are meant to 
provide generic solutions, creating explanations that do not require access to the 
model itself. In using solely the input and output of a model, they can be consid-
ered reverse engineering. Model-specific methods examine particular aspects of 
a model, such as revealing word relations in different layers of a neural network. 
They require access to the model and are dependent on its functionality. Beyond 
explainability strategies, interpretable methods use ab initio algorithms that can 
be understood by humans (Rudin, 2019), such as linear classifiers, Bayesian clas-
sifiers, or support vector machines. Based on the systemic literature reviews by 
Guidotti et al. (2019) and Vilone and Longo (2020), five model-agnostic methods, 
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five methods specific to neural networks, and three interpretable models can be 
identified. These solutions aim to explain models for supervised text classifica-
tion. They will be summarized to show the general breadth of solutions and give 
communication scholars an idea of the state of research in machine learning.

3.1 Model-agnostic methods

Developing an additional simplified model based on the input and output of 
the original model is the general strategy for model-agnostic methods. More spe-
cifically, the partition aware local model (PALM) consists of two kinds of models: 
a meta-model partitions the training dataset, and then individual sub-models ap-
proximate local patterns of the partitions (Krishnan & Wu, 2017). The meta-mod-
el is a decision tree that can be used to compare single misclassifications with the 
relevant training data (if available), and thus offers human users an intuition for 
the relation between training input and classification.

With a similar focus on proximity, local interpretable model-agnostic explana-
tions (LIME) trains a linear classifier for a single classification by approximating 
further cases from the immediate neighborhood of the example (Ribeiro et al., 
2016). Thus, complex models are broken down into single, locally interpretable 
models. Anchors is an extension of LIME that leverages if-then-rules that anchor 
an explanation locally to a point at which a change of values to other features 
of that instance does not lead to a different classification (Ribeiro et al., 2018). 
Similar instances almost always share the same classification, thus providing ex-
amples of how features are relevant to a classification.

Simple rules are also used in a model explanation system (MES), which as-
sumes that explanations are simple logical statements and uses a Monte Carlo 
algorithm to find the best explanation for a single classification via a scoring 
system (Turner, 2016). Although it is intended to work for text as well, Turner 
(2016) has only provided examples of computer vision and credit scoring (tabular 
data). Whether meaningful automatically generated explanations for text can be 
achieved with MES is an open question.

The last model-agnostic approach is based on game theory, using the idea that 
each feature represents a player, and each classification represents the profit. 
Shapley values indicate how this profit must be fairly distributed between features. 
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For this purpose, every possible feature combination and its effect on classification 
are compared. Thus, if all classifications are considered, a statement can actually 
be made about the global relevance of each feature as well as the local relevance 
of the feature in a single classification. Practically, these values are impossible to 
compute due to the large set of features and their possible combinations; however, 
simplified versions of this approach are used as intuition in various explainability 
methods (e.g., Chen et al., 2019).

3.2 Model-specific methods

Methods that inspect or retrace the partial mechanics of a model are called 
model-specific. Each approach depends on the model itself; thus, there is no gen-
eral solution that can be transferred to a different type of model. However, all 
relevant solutions from the literature have been developed for some versions of 
a neural network. For example, a rationale generator is trained in parallel with a 
neural network, learning to select a subset of the input sequence as an explana-
tion for classification (Lei et al., 2016). The rationale then contains a reduced set 
of meaningful words, which should result in the same classification as the origi-
nal input sequence if given to the classifier.

This strategy to identify salient input features is also applied in DeepLIFT (Deep 
Learning Important FeaTures). Here, the principle of layer-wise relevance prop-
agation traces a single classification of a neural network backwards through said 
network. DeepLIFT then analyzes the difference in the activation values of sin-
gle neurons for that input-output pair compared to a reference input-output pair 
(Shrikumar et al., 2017) and indicates which features (e.g., individual words) were 
most in favor of a classification or its opposite. This approach has the potential to 
provide counterfactual explanations if the reference input-output pair is inten-
tionally chosen. However, for the application to text, it seems customary to simply 
choose zero values (Lertvittayakumjorn & Toni, 2019; Sundararajan et al., 2017).

Integrated gradients explain a neural network by analyzing its sensitivity to 
differences in input (Sundararajan et al., 2017). They create a sequence of gra-
dients leading from the baseline to the input and compute their average, thus 
measuring the correlation between the uncertainty in the output of a classifier 
and its input.
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With the recent and extremely rapid success of transformer models, the visual-
ization of attention and hidden states has gained popularity for explanatory pur-
poses (see van Aken et al., 2020). Transformer models are a special form of deep 
neural networks that first learn basic language structures before being trained in 
specific tasks (see Minaee et al., 2020). Van Aken et al. (2020) proposed consider-
ing the feature embeddings of individual layers to visualize the learning process 
of a transformer model for individual classifications. For this purpose, the vec-
tors with which the individual inputs are technically represented are reduced in 
dimension after each layer with principal component analysis and mapped on 
a two-dimensional surface. Across the layers, the proximity of different words 
becomes apparent (see van Aken et al., 2020), exposing the inner structures of the 
neural network. It is then left to the researcher to decide on the layer in which a 
structure is clear enough to be used as an explanation for a classification.

Another approach that employs human interaction is concept-based explana-
tions. In testing with concept activation vectors, people are asked to choose ex-
amples and counterexamples for certain concepts (e.g., stripes in pictures) after 
training a model (see Kim et al., 2018). An additional linear classifier will then be 
trained to discriminate between activations for each set of examples, generating 
global explanations for the influence of concepts on classes. However, these con-
cepts depend on what the researcher chooses in terms of content, and it is unclear 
whether they cover all concepts relevant to the model. Further development of 
this method adds a step of unsupervised learning, automatically extracting con-
cepts that are sufficiently predictive for classification (see Yeh et al., 2019).

Communication research might benefit from experimenting with a combina-
tion of the analysis of different layers in neural networks, where different linguis-
tic concepts are also recognized in different layers (van Aken et al., 2019), and the 
concept-based analysis of Yeh et al, (2019). Different linguistic layers could be 
responsible for different concepts. To detect hate speech, for example, it would 
be possible that manifest insults could be identified at early levels, while latent 
concepts such as dehumanization would only be identified in later layers. Empir-
ical testing of this assumption could be extremely valuable.
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3.3 Interpretable models

Instead of using complex neural networks or proprietary systems for text 
classification, researchers can also make use of models that are interpretable by 
default. Ante hoc methods are intended to keep models explainable from the be-
ginning and are therefore also called white box or transparent models (Rosenfeld 
& Richardson, 2019). They include decision trees and decision rules or k-near-
est neighbors, as well as discrete choice probabilities, such as logistic regression 
or Naive Bayes (Molnar, 2020). However, these models are typically heavily do-
main-specific and, if the data are not well structured and clear, they can require 
an enormous amount of computational effort (Rudin, 2019). In a recent and com-
mendable study on incivility and impoliteness in text, Stoll et al. (2020) used Na-
ive Bayes for global explanations that give weight to individual words. The weight 
of a feature is calculated by its probability of appearing in a given classification. 
The global explanation thus outputs a list of features that are relevant for a class. 
Risch et al. (2020) also used this strategy in comparison with explainable models 
and found that the Naive Bayes model showed the lowest performance. Unlike 
Stoll et al. (2020), who used various preprocessing methods, however, Risch et al. 
(2020) did not show whether further steps were taken to improve the data, which 
would be necessary for interpretable models according to Rudin (2019).

Instead of these weighted features, interpretable models can also be used to 
create prototypes. Bien and Tibshirani (2011) developed the prototype selec-
tion approach in which, instead of focusing on reducing the number of features 
to a manageable amount, the data itself is bundled by selecting a prototype 
from the neighborhood of each instance that has the same label. The authors 
aimed to have as few prototypes as possible and ensure that no instance had a 
prototype with a different label. Prototype selection requires inference from 
the researchers, since it does not show which specific features of the prototype 
were relevant for its selection.

This lack of causal explanation is addressed in the Bayesian case model (BCM) 
by first clustering the data and then generating prototypes as well as feature 
weights for these clusters (Kim et al., 2015), thus providing global explanations. 
However, if too many clusters are formed, both the computational time and 
the number of explanations are too high, which in turn no longer allows for 
interpretability. Guidotti et al. (2019) pointed out several improvements for 
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BCM: humans can interact with the model to improve the prototypes (Kim et al., 
2015), or instances in which the classification does not fit well into the model 
can provide counterexamples (Kim et al., 2016). Subsequently, the overall strat-
egies will be investigated with respect to how they may be leveraged to examine 
content validity in automated content analysis.

4 Using explanations to examine validity

Model-agnostic methods, such as LIME, Anchors, and MES, aim to explain 
individual classifications, whereas PALM identifies partial patterns, and Shapley 
values have the potential to trace the weight of features across the entire model, 
where it is not for the computational limits. However, given the fact that these 
solutions do not actually inspect or retrace the mechanics of the initial model, 
their usefulness regarding validity is limited. Whether the model has identified 
the same concepts technologically that have previously been defined for manual 
analysis remains unknown. While they may be useful for identifying discrepan-
cies in classifications, they do not make use of but instead approximate the initial 
model (Rudin, 2019), thus creating an additional layer of uncertainty instead of 
alleviating it.

Model-specific methods provide a tool to partially inspect the model’s validity; 
the fact that they create insight into the internal mechanics of a model suggests 
that they may be used to examine whether the theoretical concepts have been 
transferred to the technological operationalization. However, it is not sensible 
to infer how the model works as a whole from explanations for individual clas-
sifications (Mittelstadt et al., 2019), which would be an inductive fallacy. In fact, 
these methods also do not contribute to giving users a more comprehensive un-
derstanding of model behavior (Lertvittayakumjorn & Toni, 2019), may also give 
misleading explanations (Rudin, 2019), and should thus be used only with proper 
contextualization and caution.

Interpretable models provide “their own explanations, which are faithful to 
what the model actually computes” (Rudin, 2019, p. 1) and are thus especially 
interesting to researchers already competent in statistics. Their simplicity can 
offer insight into how the model has transferred theoretical operationalizations 
into technical features so that their explanations can actually act as indicators 
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for content validity. Note that some researchers have also critiqued Rudin’s 
assumption that models can be inherently interpretable yet do not provide 
any data to substantiate their critique (Jacovi & Goldberg, 2020). Nevertheless, 
well-performing interpretable models also require time and effort, so the costs 
and benefits of the research project in question must be weighed. Due to the 
data structure and the inherent ambiguity of text, interpretable models for text 
classification currently do not receive much attention. Even Kim et al. (2015) 
who clearly advocated for interpretable models in 2015 and 2016, have moved on 
to developing model-specific methods by 2018. Although interpretable methods 
show the most promise for validity checks, interpretable methods in general are 
underrepresented in explainability research (Vilone & Longo, 2020). The aim of 
machine learning to develop generalized solutions (Fortuna et al., 2020) that can 
be applied to many problems does not necessarily overlap with that of the social 
sciences to consider problems in context.

In summary, existing strategies developed to explain the overall functioning 
or individual decisions of a text classification model offer limited help in exam-
ining a model’s validity. Model-agnostic explanations may be used to gain some 
intuition when models are complex or proprietary but can be considered insuf-
ficient for a validity check. Similarly, model-specific explanations do not satisfy 
this use case either. While they access the model itself to provide explanations, 
they rarely explain it in its entirety, and local explanations should not be used to 
infer the functionality of the model as a whole. Interpretable models show the 
most promise for our use case. If trained carefully and with sufficient domain 
knowledge, they perform well and provide explanations that are appropriate for 
testing content validity. Nonetheless, since both explainability methods for text 
(as opposed to images or tabular data) and interpretable models are rare in the 
current body of research, an opportunity to collaborate beyond a simple splitting 
of tasks in automated content analysis emerges for communication scholars and 
computer scientists.
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5 A call to develop methods to establish validity of automated  
content analysis

A critical rationalist perspective on automated content analysis substanti-
ates the need to explain how a model works to examine its validity. Failure to 
provide adequate explanations creates opacity within the scientific process, pre-
venting researchers from ensuring that their model has learned on informative 
features that sufficiently consider context instead of learning on artifacts or spu-
rious correlations. Hence, only validated models should lead to inferences about 
the data’s context. Whereas standardized content analysis has established strat-
egies to strengthen and examine content validity, no such strategies have been 
established for supervised text classification. In creating a codebook informed by 
theory and empirical research, comprehensive coder training, feedback loops, and 
discussions in training sessions, as well as reliability scores, researchers gain con-
fidence about the validity of their data and subsequent inferences. An automated 
model, however, is not involved in gaining a shared understanding of what is sup-
posed to be coded; instead, it merely aims to mimic. The strategies to strength-
en and examine validity thus look different for supervised text classification. As 
argued above, validity can be strengthened by using interpretable methods and 
examining whether the features that a model has learned preserve the context of 
meaning. Explainability methods partially enable such an examination; however, 
their current applications are not specific enough for scientific use.

The development of the explainability methods discussed above has mostly 
been motivated by the need to establish trust, identify bias or errors, and prevent 
damage by a faulty system. The quality of these methods, in line with a techno-
cratic paradigm, tends to be evaluated a posteriori, for example, via a user’s reac-
tion, feedback, or subsequent performance (cf. Gilpin et al., 2019)—framing quality 
as the plausibility of the explanation. However, to verify the validity of a model, 
explanations cannot be measured with regard to their effects on users (see Her-
man, 2017). What matters in examining validity is not an explanation’s effect on a 
user but that it explains a model concisely. Jacovi and Goldberg (2020) identified 
a difference between the plausibility and faithfulness of an explanation, which de-
scribes “how accurately it reflects the true reasoning process of a model” (p. 4198). 
In the context of using explanations as a tool to examine a model’s validity, the 
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distinction between plausibility and faithfulness is especially valuable: here, faith-
fulness is not a measurement of explanation quality but a prerequisite.

To fully leverage the advantages of supervised text classification in automated 
content analysis, profound collaboration and innovation are needed from com-
munication and computer scholars. Through the example of hate speech detec-
tion, this contribution has posited a need for quality control and has shown that 
adequate methods to establish the validity of a model are rare. While a concept 
such as hate speech presents a rather extreme example due to its complexity, it 
nonetheless illustrates the intricacies of two disciplines joining one method rath-
er well. Since research on this specific topic is currently growing in both fields, 
the outlook of building better-performing and explainable models may motivate 
closer collaboration despite the additional effort. Scholars should collaborate on 
theoretical and empirical work to resolve epistemological differences, align re-
search processes, develop joint measures for quality, and collect requirements 
for models that show what they actually compute in a way that is seminal to au-
tomated content analysis. This could, for example, result in the development of 
standardized strategies and criteria for validity in automated content analysis, 
specific interpretable models, and faithful explanations. As much as the research 
community and practitioners in the realm of hate speech will benefit from this 
work, we shall not underestimate how it may contribute to methodological im-
provements in computational communication studies in general.

Laura Laugwitz is a PhD candidate at the Institute for Journalism and Communication 
Studies at Universität Hamburg, Germany. https://orcid.org/0000-0001-8527-2504
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