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Abstract

A widely applicable procedure of examining proximity to unidimensionality for multi-
component measuring instruments with multidimensional structure is discussed. The
method is developed within the framework of latent variable modeling and allows
one to point and interval estimate an explained variance proportion-based index that
may be considered a measure of proximity to unidimensional structure. The approach
is readily utilized in educational, behavioral, and social research when it is of interest
to evaluate whether a more general structure scale, test, or measuring instrument
could be treated as being associated with an approximately unidimensional latent
structure for some empirical purposes.

Keywords

bifactor model, global factor, index of proximity to unidimensionality, latent variable
modeling, latent structure, local factor, multicomponent measuring instrument,
unidimensionality.

Educational, behavioral, and social science research is frequently based on or utilizes

multiple-component measuring instruments (e.g., tests, scales, inventories, self-

reports, questionnaires, surveys, test batteries, testlets, or subscales; McDonald,

1999). Part of the reason for their high popularity in these and cognate disciplines is
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their widely appreciated feature of providing multiple converging pieces of informa-

tion about underlying latent constructs of main interest (e.g., Raykov & Marcoulides,

2011). A major activity routinely recommended to engage in prior to using these

instruments is the examination of their latent structure (e.g., Mulaik, 2009). While

that of unidimensionality is frequently desirable, empirical research in these sciences

oftentimes evolves within settings where primarily for validity-related reasons an

instrument under consideration may not possess a (strictly) unidimensional latent

structure. Under those circumstances it is important for a scholar to be in a position

to evaluate the degree to which its latent structure may be close to, or alternatively

far from, unidimensional, with the view of possibly employing the instrument in the

former case as approximately unidimensional for some substantive purposes in its

applications.

Over the past couple of decades, essential unidimensionality has received consid-

erable interest by educational and behavioral scientists (e.g., Reise, 2012; cf.

Nandakumar, 1991). Much of this research has developed within the framework of

the increasingly popular bifactor model (e.g., Reise et al., 2010). This model stipu-

lates that each of a given set of observed variables loads on a ‘‘global’’ factor and in

addition on a ‘‘local’’ factor related only to an appropriate subset of variables, with

the global and local factors assumed uncorrelated for identification purposes (see

also Eid et al., 2017; Eid et al., 2018; for additional discussions of model identifica-

tion and related issues). The bifactor model may be seen as being highly structured

due to having one or more local factors, which are often deemed of a lesser subject-

matter relevance than the global (overall) factor loading on all manifest measures.

These complexity-related properties of the model seem to limit though its applicabil-

ity to situations where its restrictive multifactorial structure is plausible for a given

study and/or analyzed data set. In addition, the bifactor model reflects a particular

multidimensional structure, with a single possibly dominant dimension relating to all

observed variables, whereas the question of proximity to unidimensional structure is

relevant in principle with any multidimensional structure. However, as advocated for

in the remaining discussion, the conceptual idea underlying the bifactor model can

also be utilized in empirical settings where it is of interest to address the potentially

highly relevant issue of proximity to unidimensional structure for an instrument asso-

ciated with a latent structure more complex than that of unidimensionality.

The present note is concerned with the question of how one could evaluate the

extent to which a multicomponent measuring instrument with two or more underly-

ing factors possesses a latent structure approximating unidimensionality. The follow-

ing discussion is initially concerned with a latent variable modeling (LVM; B. O.

Muthén, 2002) procedure for point and interval estimation of an index quantifying

empirically and theoretically important aspects of the ‘‘distance’’ between a two-

dimensional and a unidimensional latent structure. The extant measurement literature

does not seem to have addressed this issue to a sufficient extent, and therefore, this

article aims to contribute to closing that gap in relation to evaluation of the discre-

pancy between unidimensionality and a more general latent structure of a
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multicomponent instrument (observed variable set). The LVM method described

below is readily and widely applicable in research with measuring instruments that

owing to various validity-related reasons—for example, construct underrepresenta-

tion (e.g., Messick, 1995)—possess in particular a two-dimensional latent structure,

that is, one characterized by two factors rather than a single factor. The described

approach is straightforwardly extended, however, to cases with more than two under-

lying factors, and is illustrated using a pair of examples with empirical and simulated

data.

Notation and Assumptions

This article makes extensive use of the popular confirmatory factor analysis frame-

work (e.g., Bollen, 1989). Suppose X1, X2, . . ., Xk (k . 2) denote the k (approxi-

mately) continuous components of a given measuring instrument; that is, their

number is finite and fixed beforehand, like these k manifest variables that are thus

not sampled from a potentially infinite pool of measures (or approach such a pool).

For example, the measures X1, X2, . . ., Xk can be the k subtests in a test battery, k

testlets within an overall test, or k subscales of a psychometric scale. We advance

also the frequent assumption that the instrument is utilized with (an appropriate sam-

ple from) a studied single-level, single-class population, that is, a population with no

clustering effects and consisting of a single as opposed to multiple latent classes

(e.g., Raykov et al., 2016; see also the ‘‘Conclusion’’ section).

We further posit in the remainder the validity of the common factor model for the

above k components (e.g., Mulaik, 2009). That is, the following model, denoted M0,

is assumed to be true (correct) for them:

X = m + Lh + e, ð1Þ

where X is the k 3 1 vector of the observed measures X1, X2, . . ., Xk and m is the k

3 1 vector of their means. (Throughout this article, underlining is used to denote vec-

tor.) In Equation 1, L designates the k 3 q factor loading matrix (q� 1) that may but

need not include cross-factor loadings and reflects the assumption that each factor

loads on at least two manifest variables. In addition, h is the q 3 1 vector of factors

there, which are assumed with mean 0 and unit variance as well as with an uncon-

strained positive definite q 3 q covariance matrix F. Last but not least, in Equation

1, e represents the k 3 1 vector of unique factors (residual terms) assumed with posi-

tive variance and uncorrelated with the factors as well as among themselves.

As indicated earlier, this article will be concerned primarily with model M0 when

q = 2, which for convenience we will refer to as a ‘‘two-dimensional latent struc-

ture,’’ but its method is directly extended to more general models with q . 2 along

the lines of the following discussion (see the ‘‘Conclusion’’ section). A version of

model M0 with k = 10, q = 2, and m = 5 observed measures per factor is depicted in

Figure 1; this model will be of particular interest in the illustration section. In addi-

tion, we would argue that using robust estimation the method outlined next can be in
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general applied in a trustworthy way also in empirical studies involving items with at

least five to seven categorical response options (e.g., Rhemtulla et al., 2012; see also

Raykov & Marcoulides, 2016). Thereby, as alluded to earlier, the approach discussed

below is applicable with no cross-loadings as free parameters in the matrix L (e.g.,

Figure 1), as well as alternatively with such cross-loadings, as long as the initial

model M0 and model M1 defined in the following section are identified (e.g., using

loading or latent variance fixing at 1 or appropriate covariance fixing at 0; this iden-

tifiability assumption, possibly after suitable parameter restrictions, is made for all

models used in the article).

A Latent Variable Modeling Procedure for Examining Latent
Structure Proximity to Unidimensionality

Prior Research

The general issue of latent structure proximity to unidimensionality has received

considerable attention in the methodological and substantive literature over the past

several decades. In the context of a bifactor model for example, Raykov and Pohl

(2013) discussed a proportion-explained variance-based index as a possible measure

of essential unidimensionality. (As indicated earlier, a bifactor model is defined as

one where each manifest measure is related to a pair of factors—a global factor that

loads on all observed variables and a local factor loading only on a subset of them

including the measure; for example, Reise, 2012; see also, Eid et al., 2017; Eid et al.,

2018.) This index was defined as the proportion of observed overall scale variance

attributable to the global factor (see Equation 2 for a formal definition), and due to

some of its characteristic features it is also of relevance to the present article.

An alternative approach to essential unidimensionality was discussed in

Nandakumar (1991) and based on the consequential assumption of the number of

observed binary items increasing without bound (see also Stout, 1987, 1990). That

Figure 1. Model M0, for k = 10, q = 2, and m = 5 indicators per factor (short one-way
arrows represent the unique factors that are not additionally symbolized to avoid graphical
clutter).
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earlier approach is not of concern for the aims of this article, however, since the for-

mer possesses arguably very limited applicability in contemporary empirical

research. The reason is that its above asymptotic assumption with respect to number

of observed components is violated in all present-day educational and behavioral

studies, which in addition oftentimes utilize measures that are not binary or binary

scored as assumed by that approach (see also Raykov & Marcoulides, 2018a).

Furthermore, unlike that past research, this note is concerned with the setting where

the number k of nonbinary measures is finite and prefixed (typically up to a few doz-

ens at the most). As explicitly stated in the preceding section, in the current article

this number of used components, k, is not increasing or approximating in any sense a

set of items with an unbounded number of elements that are only of relevance for the

setup underlying Nandakumar’s (1991) work (see also Stout, 1987, 1990).

Returning to the setting of concern to this note, as described before (see previous

section), in order to outline the procedure of relevance in the remainder let us denote

by g the global factor in a bifactor model assumed for a multicomponent measuring

instrument under consideration, and by f1, . . ., fr (r . 0) its local factors (e.g., Figure

1 in Raykov & Pohl, 2013; cf. above Equation 1 as well as Figure 2). The earlier

mentioned proportion-explained variance-based index, denoted by pg, was defined in

the last cited source as

pg ¼
l2

1g + l2
2g + � � � + l2

kg

l2
1g + l2

2g + � � � + l2
kg +

P
j;s

l2
js +

Pk
j¼1

uj

: ð2Þ

In Equation 2, ljg are the observed measure loadings on the global factor g, ljs are

those on the respective local factors f1, . . ., fr, and uj are the unique factor variances

(residual variances) (j = 1, . . ., k, s = 1, . . ., r; we note that in general some of the

loadings on a local factor may be additionally assumed vanishing; see below). That

is, pg is the proportion of observed variance, accumulated across all manifest mea-

sures, which is explained in terms of the global factor. With this property, pg is

Figure 2. Model M1, for k = 10, q = 2, and m = 5 indicators of the ‘‘local’’ factor (short one-
way arrows represent the unique factors; cf. Figure 1).

Raykov and Bluemke 323



distinct from related essential unidimensionality indices in the bifactor modeling lit-

erature that have been also considered, in that pg is defined as a proportion of

observed variance, rather than proportion of latent variance, which is explained by

the global factor (cf. Reise, 2012).

Model Comparison, Testing, and Relation to Studying Proximity to
Unidimensionality

In the context of proximity to unidimensional structure, we would like to make sev-

eral important points before proceeding further. First, the question of proximity does

not necessarily imply the need for relative model testing in most empirical settings

where this query is raised. That is, whenever an applied researcher asks a question

about proximity to unidimensional structure, he or she is in effect primarily inter-

ested in quantifying the ‘‘distance’’ between unidimensionality on one hand and the

latent structure of an instrument under consideration (observed variable set) on the

other hand. It is this specific question that the present article is concerned with and

in this sense complements the voluminous literature on model comparison (see also

next). Second, we would like to argue that the question of model testing, particularly,

of a more complex model relative to that of unidimensionality, is not nearly as rele-

vant then—if at all—owing to the fact that test statistics are affected potentially to

an intolerable degree by sample size. In these cases, as is well known, the associated

p-value is not sufficiently informative. For this reason, one needs alternative and

complementary quantities, such as effect size measures, in order to conduct a more

informed model comparison. To respond to this need, the present article is dealing

with an application of what may be seen as an effect-size measure, namely, the index

pg from Equation 2 (see also the discussion in the next section), which may be very

useful for the purpose of comparing the latent structure of a given measuring instru-

ment with that of unidimensionality. Third, empirical researchers are frequently con-

cerned with the query whether they could use an instrument (observed component

set) as effectively unidimensional in a practical application. This may well be the

case irrespective of whether the more complex (i.e., multidimensional) model may

be fitting a given data set in some sense better than that of unidimensionality. The

interest in this article lies instead with quantifying the proximity to unidimensional

structure to begin with, and none of the following discussion is meant to imply that

model comparison or testing should be abandoned when concerned with examining

this proximity. Last, and no less important, the multidimensional models of concern

in the rest of the article are not nested in each other since neither of them is obtain-

able from the other by merely restricting (or only adding/releasing) parameters.1

How to Quantify Proximity to Unidimensional Structure—A Useful Proposal

The above cited research, despite being focused on the bifactor model, provides

as indicated earlier a useful approach to quantification of proximity to
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unidimensionality. In particular, based on that prior work, we propose employing (a)

the index pg in Equation 2 and (b) the method for its point and interval estimation

described in Raykov and Pohl (2013), as a means of evaluating the ‘‘proximity’’ of a

two-dimensional latent structure to that of unidimensionality (see also the

‘‘Conclusion’’ section for extension to a more general multidimensional structure).

In order to facilitate this use of pg however, we observe that it has been originally

defined for the bifactor model, which in general does not possess a two-dimensional

latent structure that is of particular concern to this note. In fact, even if r = 1 when a

corresponding bifactor model is characterized by q = 2 latent factors (1 global and 1

local factor), the latter model is not identical or equivalent to a model with a general

two-dimensional latent structure, that is, model M0 with q = 2 as defined in Equation

1 (see Figures 1 and 2).

Therefore, in order to make it possible to utilize the above index pg (Equation 2)

for our purposes, we introduce a ‘‘bridging’’ model between model M0 and a bifactor

model. The bridging model has a two-dimensional structure (i.e., it is characterized

by q = 2 factors), is denoted M1 in the rest of this article, and retains many features

of M0. Specifically, model M1 is defined as follows:

X = m + Gk + d ð3Þ

where X and m are the same vectors as in Equation 1 and d is the k 3 1 vector of asso-

ciated unique factors (assumed uncorrelated among themselves and with the latent

factors; see next). In addition, in Equation 3, k denotes the 2 3 1 vector of uncorre-

lated and appropriately reconceptualized factors as follows, with 0 mean and unit var-

iance, in order to achieve the relevant parameterization for our aims of the loading

matrix G (1\ m\ k):

G ¼

g11 0

g21 0

g31 :::
::: g12

gk�1;1 :::
gk1 gm2

2
6666664

3
7777775
: ð4Þ

In Equation 4, all loadings on the first factor k1—which can be conceived of as a glo-

bal factor here—are free parameters and denoted by gj1 (j = 1, . . ., k). Furthermore,

the second factor k2—conceived of as a local factor—loads only on the same m

observed measures that the factor h2 in model M0 loads on. (That is, in the second

column of G only g12, . . ., gm2 are free parameters.) Moreover, in model M1 all

cross-loadings that are present in M0 (if any) are retained as loadings of the factor

k2. Last, all loadings of the factor h2 in model M0 are also loadings of the factor k2

in M1, while all observed measures load on the global factor k1. A special case

of model M1, with k = 10, q = 2, and m = 5 indicators of the local factor, which cor-

responds along the lines of this discussion to the initial model M0, is depicted in
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Figure 2 (compare with Figure 1) and will be of particular interest in the illustration

section, where it will be employed in an instrumental fashion in its data examples.

It is worthwhile emphasizing that model M1 is neither identical to model M0 nor

equivalent to it. The sole purpose of considering M1 is to introduce a model that (a)

is as close as possible to M0, and at the same time (b) accounts for the factor interre-

lationship in M0 by the loadings of the global factor in M1 on the observed measures

that in M0 load on its second factor, h2. At the same time, model M1 could be con-

sidered a bifactor model if in the definition of the latter it is included that some factor

loadings may be (additionally) equal to 0. (We note that within their general defini-

tion, and as indicated earlier, bifactor models may differ in the extent to which they

are restricted, permitting in particular further loadings to vanish; e.g., Gibbons &

Hedeker, 1992; Hyland, 2015; Reise et al., 2010.) These loadings would then be

those of the factor k2 in M1 on the manifest measures, that in M0 load on its factor

h1 (e.g., Figure 1 in Raykov & Pohl, 2013; see also Figures 1 and 2 in the present

article). With this in mind, we can view M1 as the closest to M0 bifactor model, that

is, a bifactor model that approximates maximally the two-factor model M0 of initial

concern.

The benefit of considering model M1 lies in the fact that based on the preceding

developments we can revisit the earlier mentioned proportion-explained variance-

based index pg in Equation 2, which was originally defined for bifactor models. To

be more concrete, in line with the earlier discussion, pg can now be utilized to evalu-

ate the degree to which the global factor, k1, in model M1 dominates its local factor,

k2. Granted the concern of the present note with approximation of a multidimensional

latent structure by a unidimensional one, when applied to model M1 we will refer to

pg as an index of proximity to unidimensionality (IPU).

When the IPU is salient in an empirical study, that is, the global factor dominates

to a substantial extent the local factor in a pertinent model M1, one may argue that

with its dominance in terms of explained observed variance its global factor k1 makes

the local factor k2 in effect superfluous (see also below). In those cases, for certain

empirical and substantive purposes one could consider the instrument consisting of

the above components X as being associated with an approximately unidimensional

structure. Conversely, if the IPU index pg is not (sufficiently) salient, an argument

may be advanced that the instrument is inherently multidimensional (two-dimen-

sional), and hence that it would not be reasonable to use it as an approximately unidi-

mensional scale or test. In either case, the IPU point and interval estimates obtained

thereby with the method in Raykov and Pohl (2013) play an important role—in addi-

tion to essential then substantive considerations—in supporting a conclusion in favor

of one of these two alternative interpretations (see also the ‘‘Conclusion’’ section).

(The respective interpretation guidelines for the point estimate and confidence inter-

val of the index pg that have been offered in the last cited source can be used thereby

as well, as exemplified in the next section.) The empirical implications of either con-

clusion, its justification, and the delineation of the area of corresponding use of the

326 Educational and Psychological Measurement 81(2)



instrument in subsequent research, would in general be deferred to subject-matter

experts in the substantive field of its utilization.

The next section presents a couple of applications on empirical and simulated data

of the described method for examining the proximity of the latent structure underly-

ing a multicomponent measuring instrument to a unidimensional structure.

Illustration of Unidimensional Proximity Evaluation
Procedure on Empirical and Simulated Data

We commence here with the consideration of an empirical example involving a study

of one of the most widely used scales in behavioral and social research, the Positive

and Negative Affect Schedule (PANAS; Watson et al., 1988; Watson & Tellegen,

1985). Although affect might be construed along a circumplex structure with positive

and negative affect forming polar opposites (e.g., Russel, 1980; Warr, 1990), the

PANAS questionnaire is known to represent a two-dimensional instrument with

weakly correlated factors for positive and negative affectivity, respectively (see also,

Tellegen et al., 1999, for a discussion of the dimensionality of affect). Therefore,

aggregating items that reflect positive and negative affectivity in order to form an

index of overall affectivity (after appropriate recoding of ‘‘inverse’’ items) need not

be legitimate, as it could incur substantial loss of information since proximity to uni-

dimensionality may be a far from tenable hypothesis (and in fact unidimensionality

was not originally intended for the PANAS instrument; cf. Watson et al., 1988).

In this context, we analyze next the 10 (= 2 3 5) items of the international

PANAS short form using publicly available data from U.S. (n = 346) respondents

found at https://osf.io/a5pze (Anvari & Lakens, 2019). This scale has been developed

with the aim of maximizing cross-cultural comparability, and is oftentimes referred

to as the I-PANAS-SF instrument (Thompson, 2007). In the following analyses, we

wish to examine the proximity of its latent structure to that of unidimensionality. In

line with the preceding discussion, we first fit the single-factor model of (strict) uni-

dimensionality (i.e., model M0 with q = 1), which is found to be associated with poor

fit: chi-square value (x2) = 330.816, degrees of freedom (df) = 35, p value (p) = .0,

and root mean square error of approximation (RMSEA) = .156 with a 90% confi-

dence interval (CI) being [.141, .172]. When fitting model M0 with two correlated

factors, however (see Figure 1), the resulting overall fit indices suggest a tenable

model: x2 = 43.425, df = 34, p = .129, and RMSEA = .028 (90% CI = [.000, .051]).

The factor correlation estimate is thereby .045, which additionally indicates that the

data are not close to supporting a (strictly) unidimensional latent structure. Fitting

then model M1 with a global and a local factor (see Figure 2) yields also tenable and

markedly better fit indices relative to M0: x2 = 34.764, df = 30, p = .251, RMSEA =

.021 (90% CI = [.000, .048]). (The Mplus input file that can be used for this purpose

is provided in Appendix A.) Table 1 contains its parameter estimates along with their

standard errors, t values, and p values.2

The above results, along with the earlier discussion in this note, may suggest that

an empirical scholar could be tempted to use model M1 in subsequent research with
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Table 1. Parameter Estimates in Model M1 for the Empirical Data Example (Used Software
Presentation Format).

Parameter Estimate Standard error t-value p-value

F1 BY
Y1 0.488 0.056 8.708 0.000
Y2 0.587 0.059 9.973 0.000
Y3 0.712 0.059 12.017 0.000
Y4 0.619 0.058 10.614 0.000
Y5 0.668 0.062 10.760 0.000
Y6 0.114 0.070 1.616 0.106
Y7 0.004 0.055 0.079 0.937
Y8 0.039 0.058 0.662 0.508
Y9 0.060 0.057 1.054 0.292
Y10 20.102 0.074 21.366 0.172

F2 BY
Y6 0.755 0.074 10.248 0.000
Y7 0.343 0.069 5.000 0.000
Y8 0.696 0.066 10.467 0.000
Y9 0.546 0.067 8.184 0.000
Y10 0.775 0.074 10.446 0.000

F1 WITH
F2 0.000

Intercepts
Y1 3.127 0.050 63.060 0.000
Y2 2.841 0.054 52.980 0.000
Y3 2.835 0.058 49.197 0.000
Y4 3.405 0.052 65.919 0.000
Y5 3.075 0.059 52.417 0.000
Y6 4.104 0.059 69.600 0.000
Y7 4.445 0.049 90.713 0.000
Y8 4.283 0.053 81.306 0.000
Y9 4.393 0.051 85.704 0.000
Y10 3.705 0.063 59.265 0.000

Variances
F1 1.000
F2 1.000

Residual variances
Y1 0.613 0.056 10.896 0.000
Y2 0.650 0.065 9.998 0.000
Y3 0.642 0.065 9.933 0.000
Y4 0.540 0.062 8.710 0.000
Y5 0.745 0.080 9.292 0.000
Y6 0.619 0.083 7.505 0.000
Y7 0.713 0.072 9.896 0.000
Y8 0.475 0.061 7.835 0.000
Y9 0.607 0.069 8.757 0.000
Y10 0.741 0.102 7.270 0.000

New/additional parameters
IPU_G 0.188 0.017 10.978 0.000
IPU_L 0.200 0.018 10.949 0.000
IPU_E 0.612 0.020 30.498 0.000

Note. F1 = ‘‘global’’ factor; F2 = ‘‘local’’ factor. New/additional parameters: PI_G = IPU = pg, PI_L = pl, PI_R =

pr (see Notes 1 and 2, Appendix A, and main text); IPU = index of proximity to unidimensionality.
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the I-PANAS-SF instrument. To examine further a possible rationale behind such a

suggestion, we turn to the critical IPU estimate in this model (see Table 1), which is

p̂g ¼ .188 (.017) (using a circumflex to denote estimate, with standard error follow-

ing in parentheses, as in the rest of this article). Employing next the R-function

‘‘ci.ipu’’ provided in Appendix C we obtain the following 95% CI for the IPU =

[.157, .224]. Furthermore, the estimate of the proportion of observed variance

explained by the local factor is thereby p̂i ¼.200 (.018) (95% CI = [.167, .238]).3 In

addition, the proportion of observed variance due to the unique factors (residual var-

iances) is estimated as p̂r ¼.612 (.020) (95% CI = [.572, .650]).4

For the interpretation of the above IPU estimate, we use now the informal guide-

lines provided by Raykov and Pohl (2013). (See in particular the discussion of the

70:20:10 interpretation guides offered there—accordingly, a global factor underlying

an instrument under consideration may be viewed for some empirical purposes as

dominating its local factors if it explains at least 70% of the variance in the analyzed

set of observed variables; the remaining variance would then be explained by the local

factors and residuals; for further details, we refer to the above-cited source.) With this

in mind, we observe that the CI of the IPU, pg, overlaps to a substantial degree with

the CI of the proportion of observed variance due to the local factor, pi, with both of

these intervals not exceeding the mid .20s and positioned entirely to the left of the CI

of the residual proportion of observed variance, pr. These results indicate a lack of

dominance of the global factor, which along with the comparable variance explana-

tory power of the local factor reveals a finding of a marked distance of the latent struc-

ture of the PANAS short scale under consideration from that of unidimensionality.

Therefore, one may conclude that the latent structure underlying the I-PANAS-SF

instrument consisting of the 10 items in question is not approximately unidimensional.

In the second example, we employ simulated data to demonstrate further the utility

and applicability of the discussed unidimensionality proximity estimation procedure.

The benefit of using here simulated data derives from the observation that unlike the

last example where the true structure was unknown, we have now access to the model

having generated the data and can thus judge the degree to which the described IPU

evaluation method leads to results consistent with that model’s features. More specifi-

cally, we utilize next multinormal data generated for n = 1,000 cases on k = 10 com-

ponents using the following two-factor model (see Figure 1):

X1 ¼ h1 + e1;

X2 ¼ 1:3h1 + e2;

X3 ¼ 1:5h1 + e3;

X4 ¼ 1:7h1 + e4;

X5 ¼ 1:3h1 + e5;

X6 ¼ :8h1 + e6;

X7 ¼ :3h2 + e7;

X8 ¼ :4h2 + e8;

X9 ¼ :5h2 + e9;

X10 ¼ :5h2 + e10;

ð5Þ
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where h1 and h2 were standard normal random variables with correlation r = .55,

while the error terms e1 through e10 were independent zero-mean normal variables

with variance .3 each. (The Mplus command file used for data simulation is provided

in Appendix B, including the seed employed, in order to facilitate replication of the

following results; L. K. Muthén & Muthén, 2020.)

Fitting first model M0 (with k = 10, q = 2, and m = 5 indicators per factor and no

cross-loadings; see Figure 1) to the so-generated data set yields, as expected, tenable

overall fit indices, since this model is identical in structure to that utilized in the simu-

lation process: x2 = 49.806, df = 34, p = .039, and RMSEA = .022 (90% CI = [.005,

.034]). Like earlier, when fitting instead the model of (strict) unidimensionality—that

is, the single-factor model M0 with q = 1—these fit indices are found to be clearly far

from tenable: x2 = 952.900, df = 35, p = .0, RMSEA = .162 (90% CI = [.153, .171]).

The results indicate that the data do not comply with a (strictly) unidimensional latent

structure, a correct conclusion since the latter seriously misspecified structure did not

underlie the data generation process. Yet fitting model M1 (see Figure 2) to the simu-

lated data set is associated with tenable fit indices: x2 = 47.436, df = 30, p = .022,

RMSEA = .024 (90% CI = [.009, .037]). (The Mplus command file for fitting model

M1 is provided in Appendix A.) These findings suggest that model M1 (which is dis-

tinct from the model used in the data generation process) is plausible for the analyzed

data set. Table 2 contains its parameter estimates along with their standard errors and

associated t values as well as p values. (We note in passing that the individual mea-

sure R2 indices are correspondingly nearly identical in models M0 and M1.)

As seen from Table 2, the estimate of the critical IPU quantity is p̂g ¼ .752 (.009).

Using again the R-function ‘‘ci.ipu’’ (Appendix C), we obtain the following 95% CI

for the IPU = [.734, .769]. Similarly, the estimate of the proportion of observed var-

iance explained by the local factor is p̂i ¼.064 (.004), with a 95% CI being [.056,

.072]. Furthermore, the proportion of observed variance due to the unique factors

(residual variances) is p̂r ¼.185 (.007), with a 95% CI of [.172, .199]. Employing

then the above indicated, informal 70:20:10 guidelines for interpretation of the essen-

tial unidimensionality index pg (Raykov & Pohl, 2013), which for model M1 is, as

mentioned, the IPU of relevance in this article, the following may be suggested.

Since (a) the CI of the IPU is entirely above .70, (b) the CI of pl is wholly within [0,

.10], and (c) the CI for pr is completely under .20, one may suggest that the latent

structure underlying the multicomponent instrument consisting of the above X mea-

sures (Equations 5) is plausibly approximated by that of unidimensionality. The spe-

cific implications of this conclusion as well as the delineation of the extent of its

empirical relevance and utility, as indicated earlier, are generally deferred to subject-

matter experts in the substantive field of instrument application.

Conclusion

This note addressed the query of how one could ascertain whether a multidimen-

sional multicomponent measuring instrument may be associated with a latent
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Table 2. Parameter Estimates in Model M1 for the Simulated Data Example (Used Software
Presentation Format).

Parameter Estimate Standard error t-value p-value

F1 BY
X1 0.996 0.028 35.020 0.000
X2 1.315 0.034 38.590 0.000
X3 1.494 0.038 39.621 0.000
X4 1.713 0.042 40.489 0.000
X5 2.020 0.048 41.653 0.000
X6 0.434 0.030 14.620 0.000
X7 0.150 0.020 7.503 0.000
X8 0.240 0.022 10.830 0.000
X9 0.264 0.023 11.561 0.000
X10 0.254 0.024 10.684 0.000

F2 BY
X6 0.721 0.028 25.388 0.000
X7 0.237 0.021 11.155 0.000
X8 0.343 0.023 15.109 0.000
X9 0.409 0.023 17.879 0.000
X10 0.432 0.024 18.177 0.000

F1 WITH
F2 0.000

Intercepts
X1 20.087 0.036 22.415 0.016
X2 20.044 0.045 20.971 0.331
X3 20.071 0.050 21.415 0.157
X4 20.099 0.057 21.729 0.084
X5 20.092 0.066 21.391 0.164
X6 20.019 0.031 20.620 0.535
X7 0.000 0.020 20.019 0.985
X8 0.015 0.023 0.684 0.494
X9 20.034 0.023 21.453 0.146
X10 20.014 0.024 20.566 0.571

Variances
F1 1.000
F2 1.000

Residual variances
X1 0.304 0.015 20.494 0.000
X2 0.287 0.015 18.896 0.000
X3 0.295 0.016 18.019 0.000
X4 0.311 0.018 16.902 0.000
X5 0.297 0.021 14.442 0.000
X6 0.247 0.027 9.156 0.000
X7 0.325 0.015 21.295 0.000
X8 0.334 0.017 19.992 0.000
X9 0.307 0.017 18.576 0.000
X10 0.332 0.018 18.511 0.000

New/additional parameters
PI_G 0.752 0.009 81.324 0.000
PI_L 0.064 0.004 15.350 0.000
PI_E 0.185 0.007 26.747 0.000

Note. F1 = ‘‘global’’ factor; F2 = ‘‘local’’ factor. New/additional parameters: PI_G = IPU = pg, PI_L = pl, PI_R =

pr (see Notes 1 and 2, Appendix A, and main text); IPU = index of proximity to unidimensionality.
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structure that is approximately unidimensional. A point and interval estimation pro-

cedure based on latent variable modeling was discussed, which can be used to evalu-

ate the ‘‘distance’’ between a two-dimensional latent structure of a set of observed

measures (instrument components) and a unidimensional structure (see also below).

An IPU aimed at quantifying this distance, in the metric of proportion-observed over-

all variance attributable to a suitably defined global factor, was discussed as a mea-

sure of the discrepancy between two-dimensional and unidimensional latent

structures. Due to its particular definition (see Equation 2), the IPU may also be

viewed as an effect size measure of the ‘‘distance’’ between the latent structure

underlying a given multicomponent measuring instrument and the corresponding uni-

dimensionality structure. It was argued that when the IPU is deemed sufficiently

large based on substantive considerations in a subject-matter domain, the instrument

may be used as essentially unidimensional for certain empirical purposes (see illus-

tration section for some informal interpretation guidelines of possible utility then).

While the discussion in this article evolved predominantly within the framework

of a two-factor model with correlated factors (model M0 with q = 2; e.g., Figure 1),

its approach is applicable as mentioned also in more general settings with a larger

number of underlying factors. To this end, a suitable subset of q 2 1 from these fac-

tors are formally reconceptualized as ‘‘local’’ factors in a bridging model (M1), fol-

lowing relevant substantive considerations, which factors are then assumed unrelated

to the remaining, ‘‘global’’ factor in M1. The latter factor explains in M1 all original

relationships of an appropriately chosen factor in M0 with the rest of the factors

there, via this global factor’s loadings on their own indicators in M1 that are unal-

tered relative to M0 (e.g., Figure 2). The same index of proximity to unidimensional-

ity in Equation 2 can then be used as a measure of the degree of approximation of

the original latent structure by that of unidimensionality.5

Several limitations of the procedure discussed in this article are worth indicating

at this point. One, the note does not imply and is not meant to suggest that any mea-

suring instrument’s latent structure can be approximated (well) by a unidimensional

structure. It is for this reason that we discussed the IPU measure as applied within the

bridging model M1. Two, the note does not mean to suggest that with its procedure

one can identify the true model having generated a given data set in an empirical

study. Three, while we argued in favor of using the IPU quantity pg in educational,

behavioral, and social research, we do not imply that there ought to be hard and fast

cutoffs for it, especially with respect to how to interpret its point and interval esti-

mates in an empirical setting. We referred thereby to the preliminary guides offered

in Raykov and Pohl (2013; specifically, the 70:20:10 relation between pg, pr, and pl,

respectively) only as informal and tentative guidelines, rather than as such approach-

ing a rule-of-thumb status. With this in mind, we leave to future research the exami-

nation of the degree to which they could be trustworthy as well as in particular the

conditions under which they may be so. Four, we do not suggest that a conclusion in

a given study that a used instrument may have approximately unidimensional struc-

ture would be valid for all purposes in its possible applications. In particular, one
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could imagine that for some of them, especially where it is relevant to capitalize on

the discrepancy between the instrument’s actual latent structure and that of unidimen-

sionality, it may not be meaningful to consider a test or scale under consideration as

having approximately unidimensional structure, even if the associated IPU appears to

be high. As always, substantive considerations are called for and of higher relevance

while assessing (a) whether a particular empirical setting and research question(s)

pursued warrant the consideration of a measuring instrument as effectively unidimen-

sional when interpreting its IPU, and (b) for which analytic, modeling, or interpreta-

tion purposes this may be the case. Five, we do not imply that in any given empirical

study a scholar will need to make a decision of sufficient proximity to unidimension-

ality, or lack thereof, for a used multicomponent instrument. Future studies with the

same instrument (and population) may provide additional important information per-

mitting then, rather than before them, drawing such a conclusion. In this context, we

wish to also point out that we do not necessarily expect the described IPU evaluation

procedure to allow one reaching an unambiguous decision in this respect in any sin-

gle application or in a series of its applications with a particular measuring instru-

ment. Six, we do not mean to suggest that the IPU discussed in this note is the only

possible index (effect-size measure) that could be used when examining proximity to

unidimensionality. In addition, as indicated earlier we have only considered the IPU

as one possible complementary measure to model comparison that a researcher may

as well be interested in during such an examination. Seven, we presumed throughout

the article that the standard confirmatory factor analysis model M0 (Equation 1) is

correct, or at least plausible in a given empirical study, which is basic for the entire

preceding discussion. This implies that all prior work on exploring and confirming

the latent structure of a multicomponent measuring instrument in question has been

already conducted before considering an application of the procedure of this note,

including exploratory and confirmatory analyses (factor analyses) if need be, which

are recommended to be carried out on an independent sample(s) from the same stud-

ied population (e.g., Mulaik, 2009).

Moreover, we assumed the instrument components to be (approximately) continu-

ous, and so the discussed IPU need not be meaningfully applicable when they are

binary, binary scored, or highly discrete (e.g., with say three or four possible

response options). As alluded to earlier, one may conjecture that the robust maxi-

mum likelihood (ML) method (e.g., L. K. Muthén & Muthén, 2020) may be used

with components possessing at least five to seven possible categorical values, as in

the empirical example of the previous section, unless some items possess excessive

skewness like in cases with preponderance of floor or ceiling values (cf. Rhemtulla

et al., 2012). Whereas the normality assumption is made when utilizing the discussed

procedure with ML as in the second example of the illustration section, we point out

that its use with an application of weighted least squares with large samples is possi-

ble under nonnormality of the (approximately continuous) components. In addition,

we would submit that up to mild violations of normality may be handled then also

by the robust ML method. With highly discrete items, an extension of the discussed
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IPU evaluation procedure or the development of a corresponding analogue may well

be possible along the lines of Raykov and Marcoulides (2018b), which is beyond the

confines of this article. Furthermore, as explicitly indicated earlier we assumed a

single-class studied population. Therefore, we would like to raise caution that the

proposed method—like all conventional, single-class statistical and measurement

approaches—may be misleading when applied to samples from populations with

substantial unobserved heterogeneity if the latter is not accounted for (cf. Raykov

et al., 2016; Raykov et al., 2019). Relatedly, we presumed also no clustering effects

in a studied population, but it may be suggested that minor such effects may be

accommodated by the robust ML method especially with normality or under up to

limited violations of it. Last but not the least, being based on ML or its robust ver-

sion, or alternatively on the weighted least squares estimation method, the procedure

of concern in this note is asymptotic (with respect to units of analysis rather than

components), and thus, best applied with large samples. We encourage future

research into possible guidelines as to when samples may be considered sufficiently

large (and under which circumstances) in order for the underlying large sample the-

ory to be viewed as having obtained practical relevance.

In conclusion, this article offers to educational, behavioral, and social scientists a

readily and widely applicable procedure for evaluation of the degree to which the

multidimensional latent structure of a studied multicomponent measuring instrument

may be considered (well) approximated by a unidimensional structure for certain

empirical purposes.

Appendix A

Mplus Input File for Fitting Model M1

TITLE: FITTING MODEL M1 TO THE SIMULATED DATA SET (SEE APPENDIX B AND

ILLUSTRATION SECTION).

DATA: FILE = IPU_1.DAT;

VARIABLE: NAMES = Y1-Y10;

MODEL:

F1 BY Y1*(L1)

Y2-Y10 (L2-L10);

F2 BY Y6*(L21)

Y7-Y10(L22-L25);

F1@1 F2@1;

Y1-Y10(TH1-TH10);

F1 WITH F2@0;

MODEL CONSTRAINT:

NEW(PI_G, PI_L, PI_E);

PI_G = (L1^2+L2^2+L3^2+L4^2+L5^2+L6^2+L7^2+L8^2+L9^2+L10^2)/

(L1^2+L2^2+L3^2+L4^2+L5^2+L6^2+L7^2+L8^2+L9^2+L10^2

+L21^2+L22^2+L23^2+L24^2+L25^2

+TH1+TH2+TH3+TH4+TH5+TH6+TH7+TH8+TH9+TH10);

PI_L = (L21^2+L22^2+L23^2+L24^2+L25^2)/
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(L1^2+L2^2+L3^2+L4^2+L5^2+L6^2+L7^2+L8^2+L9^2+L10^2

+L21^2+L22^2+L23^2+L24^2+L25^2

+TH1+TH2+TH3+TH4+TH5+TH6+TH7+TH8+TH9+TH10);

PI_E = (TH1+TH2+TH3+TH4+TH5+TH6+TH7+TH8+TH9+TH10)/

(L1^2+L2^2+L3^2+L4^2+L5^2+L6^2+L7^2+L8^2+L9^2+L10^2

+L21^2+L22^2+L23^2+L24^2+L25^2

+TH1+TH2+TH3+TH4+TH5+TH6+TH7+TH8+TH9+TH10);

OUTPUT: CINTERVAL;

Note. The same input file is applicable for the empirical data example, with the inclu-

sion of the subcommand ‘‘ESTIMATOR = MLR;’’ in its added ANALYSIS com-

mand (utilized with all analyses reported for that example in the illustration section;

there is no need for using this estimator in the simulated data example, given the spe-

cifics of its [multinormal] data generation, as explicated in the respective part of that

section).

Appendix B

Mplus Input File for Data Simulation

TITLE: SIMULATING DATA WITH A TWO-FACTOR MODEL (MODEL M0—SEE FIGURE 1). THE

GENERATED DATA SET IS USED IN THE SECOND EXAMPLE IN THE ILLUSTRATION

SECTION.

MONTECARLO:

NAMES = Y1-Y10;

NOBSERVATIONS = 1000;

NREPS = 1;

SAVE = IPU_1.DAT

SEED = 5011071666;

MODEL MONTECARLO:

F1 BY Y1*1 Y2*1.3 Y3*1.5 Y4*1.7 Y5*2;

F2 BY Y6*.8 Y7*.3 Y8*.4 Y9-Y10*.5;

F1@1 F2@1;

Y1-Y10*.3;

F1 WITH F2*.55;

MODEL:

F1 BY Y1*1 Y2*1.3 Y3*1.5 Y4*1.7 Y5*2;

F2 BY Y6*.8 Y7*.3 Y8*.4 Y9-Y10*.5;

F1@1 F2@1;

Y1-Y10*.3;

F1 WITH F2*.55;

OUTPUT: TECH9;
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Appendix C

R-function for Interval Estimation of Observed Variance Proportions

ci.ipu = function(r2, se){ # This function yields a 95%-CI for the IPU index

l = log(r2/(1-r2)) # Initial monotone transformation

sel = se/(r2*(1-r2)) # SE of transformed IPU

ci_l_lo = l-1.96*sel # Lower endpoint of CI for transformed IPU

ci_l_up = l + 1.96*sel # Upper endpoint of CI for transformed IPU

ci_lo = 1/(1 + exp(-ci_l_lo)) # Lower endpoint of CI for original IPU

ci_up = 1/(1 + exp(-ci_l_up)) # Upper endpoint of CI for original IPU

ci = c(ci_lo, ci_up) # Print to computer screen the resulting

ci # 95%-confidence interval of the original IPU

} # Close function.

Note. This R-function is a minor modification, for the purposes of this article, of the

R-function ‘‘ci.pev’’ in Raykov and Pohl (2013). Annotating comments are added

after the ‘‘#’’ sign within pertinent row.
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Notes

1. As can be readily seen, model M1 is not nested in model M0 (see also Note 2). In particu-

lar, for a given set of k . 2 observed measures (e.g., k = 10), the model in Figure 1 is not

nested in the model in Figure 2, or conversely, because none of them is obtainable from

the other by only adding (or only constraining) appropriate of its parameters.

2. The last fitted model, M1, is not nested in the previously considered model M0 with q = 2

(see also Note 1) due to the fact that the factor correlation is a free parameter in M0 but not

in model M1. (This correlation would not be identifiable in M1 and for this reason is fixed

at 0 in it, as indicated earlier.) Hence, a nested model test is not applicable for the aims of

their comparison.

3. The proportion of observed variance due to local factors in the bifactor model, as described

by Raykov and Pohl (2013), is defined as pl ¼

P
j;s

l2
js

l2
1g + l2

2g + ��� + l2
kg

+
P

j;s

l2
js +
Pk

j¼1

uj

; using the nota-

tion of Equation (1) and the discussion following it. When this definition is applied to the

local factor in model M1, the estimates reported in the current sentence of the main text

result (see also, Table 2 and Appendices A and C).

4. By analogy to the definition of the IPU and the proportion of observed variance due to the

local factor (see Note 1), one can define also the proportion of observed variance due to

the unique factors (residual variance) as pr ¼

Pk

j¼1

uj

l2
1g + l2

2g + ��� + l2
kg

+
P

j;s

l2
js +
Pk

j¼1

uj

(see also Table 2

and Appendices A and C). We note that this index is to be modified by the additional inclu-

sion of twice the sum of error covariances in its numerator and denominator when some of

them are nonzero in model M1 (assuming identified then), as needed correspondingly for

the IPU pg and the index pl (viz. by inclusion, in each of them, of twice this sum only in

their denominators).

5. In general, if a model M0 with q� 2 is correct (plausible) for a given multidimensional

measuring instrument, one may define the IPU for that instrument as the highest index in

Equation 2 that is obtainable across all possible choices for a global factor (as available

from the factors in M0). All IPU-related discussions and interpretations in this article

remain valid then for that highest index.
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