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Abstract
This study asks whether innovation in smallholder production
reduces or accelerates land expansion. Even though inno-
vation in agriculture has reduced land expansion globally,
rebound effects can occur locally and often at the expense
of vital ecosystem functions. In contrast to other studies
that investigate rebound effects in response to technologi-
cal innovation, our study focuses on technical efficiency,
the remaining component of total factor productivity. We
use a short panel dataset from smallholder oil palm
farmers in Sumatra, Indonesia, and develop a two-stage
approach in which we estimate technical efficiency and
determine its land expansion effect. Our findings suggest
that technical efficiency and in particular land efficiency
are low, indicating that 50% of the currently cultivated
land could be spared. However, the land-sparing effect of
increasing technical efficiency is at risk of being offset
by about half due to a rebound effect. To maximize
the conservation potential from increasing smallholder
efficiency, policies need to simultaneously incentivize
well-functioning land markets and stricter protection
measures for land with high ecological value to mitigate
local rebound effects.
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1 | INTRODUCTION

In recent decades, the unprecedented global growth in population and income has led to a constantly
growing demand for agricultural output. Although the rise in demand has been partly met by
increases in productivity, agricultural output growth has also induced the expansion of farmland,
often at the expense of natural ecosystems and related ecosystem functions (Hooper et al., 2012;
Rasmussen et al., 2018; TEEB, 2010). Particularly tropical forests were affected by the expanse of
agricultural production having substantially receded during recent decades (Curtis et al., 2018).

Perhaps the most promising remedy is innovation in agriculture, which in the past saved large
swaths of land from conversion into agricultural production. Borlaug (2007) demonstrated that
increasing total factor productivity (TFP) in agriculture significantly reduces the pressure on agricul-
tural land. In opposition to Borlaug’s hypothesis stands the backfire-type rebound effect—also
referred to as the Jevons paradox—describing a situation in which TFP in agriculture leads to
increased profitability and eventually further agricultural expansion. Empirical evidence shows that
increasing productivity—one component of TFP—can lead to sizable land-sparing effects in the long
term (Balmford et al., 2005; Balmford et al., 2018; Feniuk et al., 2019; Folberth et al., 2020; Phalan
et al., 2014; Villoria, 2019). However, most studies on land sparing effects of innovation rely on
aggregates at the country, or even continental level and often span over decades, as opposed to
short-term and micro-level perspectives. One reason for the lack of a local focus in the literature
might stem from global balancing effects. Villoria et al. (2014), Hertel (2018), and Taheripour
et al. (2019) argue that rebound effects in one region can be offset by disproportionately higher sav-
ings in another, given that barriers to trade are negligible. However, the comparison of local expan-
sion versus global sparing is conditional on the substitutability between ecosystem functions or
services. This assumption is fairly reasonable in the case of greenhouse gas (GHG) emissions but
highly questionable regarding other ecosystem functions and services. For example, reducing biodi-
versity in one part of the world cannot be compensated with higher levels of biodiversity in another
part as many species are endemic to regional environments. Thus, for ecosystem functions that are
no spatial substitutes, global savings cannot offset local rebounds. Indeed, as farms become more
profitable, some evidence suggests that rising marginal products exacerbate instead of mitigate the
pressure on land and thereby often also on the reliant ecosystem functions either in the short term
(e.g., Desquilbet et al., 2017; Foster et al., 2011; García et al., 2020; Garrett et al., 2013) or depending
on the type of technology (Maertens et al., 2006).

Besides technical change, technical efficiency (TE)—or managerial skill—is another important
component of TFP change. In contrast to the relationship between technology and land expansion,
the link between TE and demand for land is not well researched at the micro level. Whereas new
technologies exogenously increase land productivity and induce additional costs for producers, often
with ambiguous short-term effects on farm profitability, managerial skill leads to endogenous
increases of productivity and thereby is directly linked to improved profitability. The gap in the liter-
ature is particularly striking as numerous extension service and outreach programs aim to improve
the managerial skills of farmers in an effort to improve rural livelihoods. In the absence of respective
land use policies, such measures can have unintended ecologically detrimental effects by setting pow-
erful incentives for farmers to extend their farmland and expand further into natural ecosystems, at
least in the short run.

This paper asks whether TE of oil palm smallholder farmers reduces or accelerates land expansion in
Indonesia. With about 34%, smallholders contribute remarkably to national palm oil output (Indonesian
Ministry of Agriculture, 2016). Accordingly, recent evidence shows that palm oil production has contrib-
uted to reduce rural poverty as well as food insecurity (Chrisendo et al., 2020; Edwards, 2019; Qaim
et al., 2020; Sayer et al., 2012). However, at the same time smallholders fall short of nearly 40% of yield
compared with large estates (Indonesian Ministry of Agriculture, 2016). Closing this yield gap could lead
to improved livelihoods in conjunction with mitigated area-related environmental externalities, including
deforestation (e.g., Jelsma et al., 2017; Soliman et al., 2016; Wiebe et al., 2019).
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Our empirical approach is organized in two stages. First, we estimate the TE of smallholder oil
palm farmers based on a short panel dataset from Jambi province on the island of Sumatra. We
model the production technology relying on a translog functional form and employ a random
effects model that accommodates the hierarchical structure of the data. The distance of farmers to
the best-practice frontier constitutes the farmers’ inefficiency scores and determines the extent to
which they fall short of the maximum attainable output considering their input use. Second, we
estimate an error-in-variables (EIV) land use model to test if higher efficiency levels lead to farm-
land expansion.

Our contributions to the empirical literature on the link between TFP change and natural
resource use are threefold. First, in contrast to most other studies, our analysis focuses on TE as
opposed to technical change, and it directly estimates and classifies its rebound effect. Second, to our
best knowledge, the only similar study that estimates the effect of TE on land use expansion, employs
a Tobit model (Marchand, 2012) that could potentially neglect the measurement error stemming
from the parametrically estimated efficiency score. Here, we apply an EIV approach to address the
attenuation bias and compare its performance to its ordinary least squares (OLS) counterpart.
Finally, we contribute to the evidence base of the linkage between TFP change in smallholder farm-
ing and farmland expansion, and our findings have implications for conservationist and develop-
ment policies.

The key finding of this study is that TE is an important junction within the land-sparing debate.
Although we show that closing the yield gap provides remarkable land-sparing opportunities, we also
find that about half of the land-sparing effect is at risk of being offset by increased land demand. We
conclude that outreach and extension services as well as agricultural cooperatives that target the
managerial skill of farmers should be combined with land use policies that impede further encroach-
ments of natural ecosystems to limit the unintended consequences of increasing TE in the small-
holder sector. These include policies that enable well-functioning land markets, improve farmers’
land rights and protect areas of high conservation value.

The remainder of this paper is organized as follows. In the next section, we define our conceptual
framework and provide a brief discussion of key findings from the literature with regard to the
rebound effect in agriculture. Then we describe the smallholder oil palm sector in Indonesia and our
data. The following section explains our two-stage empirical approach and the empirical specifica-
tions of the stochastic frontier and land expansion models. Finally, we present the results and calcu-
late the rebound effect and conclude the paper.

2 | LAND SPARING AND REBOUND EFFECTS

The role of TE within the land sparing versus land expansion debate is not well understood. Before
approaching the problem empirically, we briefly discuss some key literature and revisit essential
empirical and theoretical aspects. Subsequently, we set the stage for our case study and provide rele-
vant insights into the smallholder oil palm sector in Indonesia.

During recent decades, two distinct views regarding the role of intensified agriculture in mit-
igating land-use change (LUC) induced deforestation or other externalities have emerged. The
Borlaug hypothesis (Borlaug, 2002) states that more than one billion hectares of land have been
spared from agricultural production since the 1950s as a result of intensified cereal production.
During the Green Revolution, most of the growing demand for food was met by technological
innovation and the resulting higher yields as opposed to further area expansion of agriculture.
From a policy perspective, the land sparing view postulates that deforestation—and other envi-
ronmental externalities—around the world can be mitigated by increasing productivity through
the invention and adoption of new technologies as well as more efficient management of
resources.
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In sharp contrast to the Borlaug hypothesis stands the backfire-type rebound effect or Jevons
paradox1, which denotes a contrary situation where the intensification in agriculture leads to a fur-
ther expansion of agricultural area (Desquilbet et al., 2017; García et al., 2020). In this view, innova-
tion and more efficient management set further incentives to shift supply outwards as long as
demand is elastic. Given such circumstances, any policy aiming at sparing land while relying solely
on boosting innovation and performance is bound to backfire.

2.1 | Conceptual framework

In Figure 1, we illustrate land sparing and rebound effects using an input oriented representation of
the technology, adapting similar considerations in Berkhout et al. (2000) to the land case. We assume
technically inefficient production at A where output is produced using land (L0) and other inputs (O).
The maximum land saving potential occurs if the farmer becomes technically efficient by saving land,
for instance through dedicated policy measures. In the left panel of the diagram, this is represented by
a horizontal movement from A to B, which is on the isoquant Y0. However, if producers keep factor
intensities constant, input savings will not be achieved through the land factor alone, but savings will
result along a constant factor intensity which is at C in the diagram. The total potential for land sparing
is thus reduced, resulting in a first rebound effect (Rebound I).

The second part of the rebound effect depends on market features and is shown in the right
panel of Figure 1. As the sector becomes more efficient, profitability will increase. Under perfect
competition, output prices will decrease until the point where profits are equal as in the initial equi-
librium. If consumer demand is price elastic, producers respond further and shift supply outward to Yt,
which supports a higher level of output at a higher level of input use. Thus, the final technically effi-
cient equilibrium is at point D where the increased use of all factors of production then leads to a
further rebound effect (Rebound II) and net land savings are L0 � L3. An exception is the case of
perfectly inelastic demand, where producers will not respond with a supply shift and limit the

F I G U R E 1 Rebound effects

1The hypothesis goes back to Jevons (1879) who observed that in response to the invention of more efficient coal ovens, overall coal
consumption increased instead of declined.
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rebound effect to L2 � L1 and land savings are L0 � L2. By contrast, if demand is highly elastic such
that L3 > L0, net savings are negative and the efficiency gains backfire (Berkhout et al., 2000;
Desquilbet et al., 2017; Hertel, 2018; Villoria et al., 2014).

2.2 | Empirical evidence

Villoria et al. (2014) provide a review of empirical evidence regarding rebound effects in agricultural
production. The study finds that intensifying production is overwhelmingly associated with land
sparing as opposed to land expansion, particularly in the long run. Furthermore, a number of recent
studies confirm that innovation reduces biodiversity loss, GHG emissions, and deforestation
(e.g., Abman et al., 2020; Abman & Carney, 2020; Balmford et al., 2005; Balmford et al., 2018; Feniuk
et al., 2019; Folberth et al., 2020; Pelletier et al., 2020; Phalan et al., 2014; Villoria, 2019). Further-
more, Villoria et al. (2014) find that empirical support for the existence of backfiring rebound effects
in agriculture is scarce. The few empirical examples refer to short-term horizons or very small
datasets. One such example is provided in Gutiérrez-Vélez et al. (2011), who find overall land saving
in response to increasing oil palm yields in Peru, albeit at the expense of increased deforestation.
The authors furthermore highlight the importance of local policies to mitigate local leakage effects.

In a more recent study, García et al. (2020) confirm the long-term sparing effect of innovation in
agriculture using global aggregate data over a 50-year period but nonetheless find strong rebound
effects in middle-income countries for commodities with elastic consumer demand. Another case for
the presence of rebound effects is found in Desquilbet et al. (2017), who consider global aggregate
production and biodiversity conservation.

Strikingly, much of the existing work relies on remote sensing data and aggregates at the country,
or even continental level while often also spanning over decades, as opposed to short-term and
microlevel perspectives. Only a few studies take a local approach. For instance, Garrett et al. (2013),
Birkenholtz (2017), and Song et al. (2018) find short-term rebound effects for country level soybean
yields in Brazil, the introduction of drip irrigation in India, and agricultural water use in China,
respectively. Also regarding water technology, Li and Zhao (2018) find rebound effects of farmers in
the United States when granted more extensive water rights. In the case of oil palm, the literature
does not offer any microlevel analyses on rebound effects. However, macrolevel analyses have shown
that if TFP growth promotes deforestation and LUC resulting in accelerated GHG emissions in
South-East Asia, global GHG emissions could still decline. As the comparably less resource intensive
palm oil replaces other more resource intensive vegetable oils, GHG are saved in other parts of the
world (Meyfroidt et al., 2013; Taheripour et al., 2019). Nonetheless, local expansion versus global
sparing dynamics are conditional on the perfect substitutability between ecosystem functions or ser-
vices. By contrast, many ecosystem functions are endemic and not substitutable across the globe,
providing strong motivation for microeconomic approaches. Particularly biodiversity is a point in
case as it is endemic and highly threatened by deforestation (Ando & Langpap, 2018).

At present, TE has received minimal attention in the land sparing versus expansion literature as
opposed to technological innovation or aggregate TFP growth. To our knowledge, the only exception
is Marchand (2012), who finds a quadratic relationship between TE and land expansion among
farms in Brazil. All other relevant studies consider technical change as part of TFP change and
refrain from distinguishing between TE and technology. This is fair enough in cases where technol-
ogy is homogeneous, and all producers are operating close to the production frontier, namely in the
absence of inefficiency. Such production systems are typically characterized by advanced technology
as well as highly competitive producers. However, in developing countries, where technology adop-
tion is still catching up and market inefficiencies are more severe, gains in TE could translate into
large yield increases. Consequently, both considerable sparing as well as rebound potentials are
conceivable.
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Thus far we synthesize that despite a multitude of research on innovation in agriculture amid the
land sparing and land expansion debate, the literature lacks (i) local microeconomic evidence on
rebound effects in agriculture and (ii) approaches that assess innovation in farm performance as
opposed to technology. As ecosystem services are not spatially substitutable and TE is a particularly
important part of TFP growth—at least in low and middle-income countries—both shortcomings
could manifest in a shaky evidence base for designing local conservation policies, particularly in the
face of agricultural commodity booms.

3 | CASE STUDY AND DATA

Amid the oil palm boom and the related ecological crisis in South-East Asia, smallholder oil palm farmers
in the Indonesian province of Jambi constitute a relevant case to explore how gains in performance affect
factor demand for land from a microeconomic perspective. First, even though smallholder farmers in
Indonesia significantly contribute to national palm oil output, they do so at low land productivity com-
pared with large estates. On average, smallholders in Indonesia fall short of nearly 40% of potential oil
palm output (Euler et al., 2016; Indonesian Ministry of Agriculture, 2016; Jelsma et al., 2017; Woittiez
et al., 2017), which highlights the sizable potential of performance improvements from a production per-
spective. Second, the sector has been subject to heavy government intervention from its very beginning.
From the 1970s onward, the government launched several development programs—often in conjunction
with international organizations—aiming to promote smallholder palm oil production. The measures
ranged from migration programs and allocation of land for oil palm cultivation (trasmigrasi program) to
credit and fertilizer provision as well as extension services (Jelsma et al., 2017).

Although productivity boosts through technology and managerial performance are possible consider-
ing the large yield gap, oil palm cultivation is also closely connected to deforestation in the region. At pre-
sent, the expected returns of land conversion in Indonesia are high and constitute a major barrier for
conservation policy that intends to change incentive structures (Shah & Ando, 2016). Regarding land use
policy, the Indonesian government has implemented several initiatives to halt deforestation. Most promi-
nently, since 2011 a moratorium prohibiting the conversion of primary forest has been in place. Studies
evaluating the efficacy of the policy find mixed results. Although some studies have found remarkable
reduction rates of deforestation associated with the introduction of the moratorium (e.g., Busch
et al., 2015; Chen et al., 2019), others find relative inefficacy of the ban (e.g., Suwarno et al., 2018). Addi-
tionally, Miyamoto (2006) and Krishna et al. (2017) find that weak property rights favor the direct appro-
priation of forestland. Similarly, despite such regulatory efforts, Kubitza, Krishna, Urban, et al. (2018)
and Krishna et al. (2017) find that direct forest appropriation has been common regardless of such insti-
tutional developments among smallholder farmers. More precisely—and relevant to our case study—
Krishna et al. (2017) find that 18% of existing oil palm plantations were acquired through direct forest
land appropriation among smallholder farmers in Jambi province. Moreover, the study finds that in
2012, 9% of land expansion occurred at the direct expense of forests. At present, lowland forests are lim-
ited and few opportunities to appropriate forest land exist, whereas direct forest land appropriation rates
have plummeted. Nevertheless, the smallholder experience in Jambi province during the past decade
could be similar to that of other parts of Indonesia, where oil palm cultivation started more recently
(e.g., in Kalimantan or Papua) or other regions in the world where agricultural commodity booms are
closely linked to deforestation (Kubitza, Krishna, Urban, et al., 2018).

Our case study relies on a farm survey conducted in Jambi province on Sumatra island,
Indonesia. A multistage random sampling approach was used, stratifying at the regency, district, and
village level to reflect geographical and regional differences. The survey was first conducted in 2012
and repeated in 2015 and 2018, resulting in a short panel dataset.2 The data are hierarchical as

2A more detailed description of the data is available in Krishna et al. (2017) and Kubitza et al. (2018a). Although the survey also included other
types of farmers, we only selected oil palm farmers for our analysis.
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farmers own one or more plots. All plots of a farmer were sampled during the first round in 2012. In
the subsequent rounds only one randomly selected plot per farmer and per crop was recorded due to
time and budget constraints. In addition to the unbalanced plot dimension, the sample is also unbal-
anced as some farms of the random sample became only productive after 2012. Moreover, the sam-
ple is subject to attrition at 4.4% and 5% in 2015 and 2018, respectively. Overall, the dataset
comprises 363 observations (plots), which belong to 181 unique groups (farm households). In 2012,
a total of 131 farms that cultivate 187 plots were surveyed. In 2015, the sample includes 163 farms
and 175 plots. This results in a multilevel dataset with small and heterogeneous groups that is unbal-
anced in both the time and group dimensions.

For our second stage, we use detailed data on farm households’ land acquisition and LUCs
from all three survey rounds to construct our land expansion variable between 2012 and 2018. All
181 unique farms surveyed in 2012 and 2015 were also surveyed in an additional wave in 2018 and
were asked in all rounds to report each single change in farm size over time. They reported the
year of change and type of acquisition, such as a land purchase, inheritance, or forest encroach-
ment. If ownership changed, the original land cover was also recorded, such as forest, grass land,
or agriculture.

Table 1 presents descriptive statistics of our sample. On average, farm households own two
oil palm plots that are on average 1.9 ha large and yield a harvest of 14 tons of fresh fruit
bunches per year per ha. This is in line with other studies but well below occasionally observed
maximum yields of about 40 tons/ha (Euler et al., 2016). The farms cultivate on average 5.3 ha
of land as they partly also cultivate rubber and less than 2.5% of the sampled households own
more than 15 ha. The distribution of the farm size matches other surveys on Sumatra that focus
on small-scale farms (Jelsma et al., 2017). Farm households expanded their oil palm land by 0.8
hectares on average between 2012 and 2018, which results in a share of 0.2 of the landholding
size in 2012.

4 | METHODS

The methodology to measure the rebound effect of performance innovation of smallholder oil palm
farmers is organized in two main stages. In the first stage, we estimate TE scores of oil palm small-
holders and employ a translog production function in a hierarchical random intercepts model. In
the second stage, we predict the land expansion of farmers based on TE scores by means of an EIV
model that accounts for the measurement error in the estimated efficiency score introduced in
stage one.

4.1 | Technical efficiency and production frontier

Since the seminal works of Aigner et al. (1977) and Meeusen and van Den Broeck (1977), empirical
production frontiers have been widely used to model production processes of firms and determine
their TE. In essence, production functions aim to evaluate the provision of outputs against the usage
of inputs and determine how well individual units perform compared with each other. Critically,
they enable distinguishing the production technology from TE, which ultimately is a measure of
managerial skill. We define the latter as the ratio between an individually realized outcome and a
best practice outcome. From an output perspective, TE designates the difference between the maxi-
mum attainable output and individually achieved, that is,

TEi ¼ yi
y�i
, ð1Þ
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T A B L E 1 Descriptive statistics

Statistic Unit Mean SD Min Pctl(25) Pctl(75) Max

2012–2015

Plot level (n = 363)

Production kg 28,133.1 31,851.2 900 9600 36,000 240,000

Size ha 1.9 1.6 0.3 1.0 2.0 12.0

Labor Working hours year�1 2807.0 5887.2 45 1260.5 2868 100,500

Agrochemicals kg 789.9 1108.4 0 67 1085.5 12,050

Palm age Years 12.6 6.4 4 7 18 25

Palm density No. palms ha�1 119.4 26.2 30 105 130 234

Yield kg ha�1 year�1 14,414.2 7946.1 900 8400 19,680 38,860

Farm level (n = 181)

No. plots No. 2.06 1.1 1 1 2 10

2012

Farm level (n = 181)

Landholding ha 5.3 5.2 0 2.0 6.0 45.5

Age (household head) Years 45.4 12.1 23 36 55 77

Gender (household head) Binary 0.02 0.1 0 0 0 1

Education (household head) Years 3.5 1.2 0 3 4 6

Transmigrant Binary 0.3 0.5 0 0 1 1

Household size No. people 4.1 1.4 2 3 5 10

Employed Binary 0.4 0.5 0 0 1 1

Self-employed Binary 0.2 0.4 0 0 0 1

Wealth index Quintiles 2.7 1.5 1 1 4 5

Rubber Binary 0.6 0.5 0 0 1 1

Farmer group Binary 0.1 0.3 0 0 0 1

Cooperative Binary 0.2 0.4 0 0 0 1

Credit formal Binary 0.3 0.5 0 0 1 1

Credit informal Binary 0.1 0.3 0 0 0 1

Distance to palm oil mill Distance (m) in log 9.4 0.7 8.0 8.7 9.9 11.7

Village level (n = 40)

Transmigrant village Binary 0.4 0.5 0 0 1 1

Land title share Share 0.7 0.4 0 0 1 1

Migrant share Share 0.5 0.3 0.002 0.2 0.9 1.0

Nearby large estate Binary 0.8 0.4 0 1 1 1

Non-random village Binary 0.1 0.4 0 0 0 1

Suitability for oil palm Max. att. yield (kg) in log 7.7 0.02 7.6 7.7 7.7 7.7

2012–2018

Farm level (n = 181)

Change of oil palm area Share 0.2 0.5 �1.0 0 0.3 3.7

Non-agricultural land change Share 0.1 0.3 0 0 0 2.0

Agricultural land change Share 0.2 0.4 �1.0 0 0.2 2.7

Inherited land change Share 0.02 0.2 �1.0 0 0 1.0

Purchased land change Share 0.1 0.4 �1.0 0 0 2.7

Note: Change of oil palm area is calculated as oil palm area change in hectares between 2012 and 2018 divided by landholding size in hectares
in 2012.
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where yi and y�i designate the output of firm i and the best-practice scenario respectively.3 However,
aside from TE, output is conditional on a set of inputs and the transformation process, which—in
contrast to TE—is not adjustable and in the short term and exogenous to the manager. The stochas-
tic version of the production function is generally expressed as

ln yi
� �¼ lnF xi, β,ð Þ�uiþ vi, ð2Þ

where xi are inputs used in the production process and β is a vector of technological parameters
(O’Donnell, 2018; Parmeter & Kumbhakar, 2014). The error components ui and vi capture ineffi-
ciency and statistical noise, respectively. Estimating the production frontier parametrically requires
choosing (i) an appropriate functional form for the production process F(x), and suitable distribu-
tions for (ii) the efficiency term and (iii) the random error term.

4.2 | Random intercept frontier

The productivity and efficiency literature provides a variety of parametric and non-parametric
frontier models to empirically determine both the production technology and efficiency scores
of decision-making units fitting a vast set of data types (O’Donnell, 2018; Parmeter &
Kumbhakar, 2014). Multilevel data are common as panel datasets where the levels result from
the time dimension are typically modeled making use of fixed and random effects. For
instance, the “true” random effects model of Greene (2005a, 2005b) allows to disentangle
time-invariant unobserved heterogeneity of the production technology from inefficiency. By
contrast, the problem of hierarchical data where heterogeneity arises from within production
units has received little attention in the literature, even though data aggregation can result in
biased estimates of efficiency scores (Brorsen & Kim, 2013; Cook et al., 1998; Mehta &
Brümmer, 2020). In the case of smallholder farms in Jambi, such heterogeneity could arise
from distance to the house, to other plots, or differences in the accessibility of the plots.
However, separating the random and time-invariant fixed effects on both the time and
unit levels from inefficiency requires sufficiently large numbers of observations in both dimen-
sions. Given the limitations of the data, we express the production frontier as a random
intercept model4 and allow for group-specific effects to vary between as well as across groups,
whereas the technology is homogeneous across units (e.g., Gelman & Hill, 2006; Mehta &
Brümmer, 2020).

yic ¼ α0þx0ic βþ ucþ vicð Þ
yic ¼ αcþx0ic βþ vic

vic �N 0, σ2vic

� �
:

ð3Þ

Where x and y are now logarithmized and individuals i are clustered in groups c. The errors vic
are assumed to be normally distributed with mean zero and variance σ2v . The group intercepts αc =

α0+ uc and uc captures the group level errors, which are also N 0, σ2uc

� �
by assumption. In contrast

to asymmetric distributional assumptions that are often employed in the SFA literature, this
specification allows for the possibility of only few efficient firms as opposed to assuming that the

3One could also define efficiency from an input perspective. In this case efficiency refers to the difference between individually used inputs and
minimum level of input use.
4In context of the Stochastic Frontier Analysis (SFA) literature, this model is discussed and extended in Greene (2005a).
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majority of producing units are relatively efficient (Almanidis et al., 2014). The model accommo-
dates small and heterogeneous group sizes for multiple levels, whose aggregation could otherwise
introduce severe bias, for instance resulting from rotating sampling schemes or missing observa-
tions. We model uc and thereby αc as time invariant because of the unbalanced structure of the
data and the fact that palms are perennial crops where management and input use take prolonged
effects. TE can be retrieved following the transformation proposed in Schmidt and Sickles (1984)
where

TEc ¼ exp �max αcf g�αcð Þ: ð4Þ

Efficiency is hence expressed in relation to the best performer. One of the drawbacks of the
model is that in case of correlation between inputs and the group level predictor, the estimator is
biased as the Gauss-Markov assumption of independence is violated. To overcome the problem, we
make use of the modification proposed in Bafumi and Gelman (2006), and allow for correlation
between inputs and group effects by introducing group level predictors.5

αc ¼ α0þ z0c γþuc: ð5Þ

Here zc are predictors at the group level (c). If no additional group characteristics are available,
simple group means of the next level predictors (xic) could be employed to resolve the correlation
problem. Besides addressing the potential correlation between individual-level predictors and group
effects, the group-level predictors can also be interpreted as determinants of efficiency.

Accordingly, we implement the first-stage production frontier as a mixed linear estimator in a
multilevel model. Farm plots represent the lower level i and farms the group level c. We express the
production of fresh fruit bunches of oil palm in kg (yict) as a function of plot size in ha (x1ict), labor
in working hours (x2ict), agrochemical application in kg (x3ict), the age of the palms (x4ict), as well as
the density of the palms (x5ict).

6 Based on conventional tests for nested models, we choose the
translog functional form that offers more flexibility as opposed to Cobb–Douglas or quadratic pro-
duction functions, and we thereby estimate output as

yict ¼ αcþ
X5
j

βjxjict þ
1
2

X
j

X
k

βjkxjictxkict þρtþ vict: ð6Þ

The group intercept is modeled as described in Equation (5) where the specific independent vari-
ables (z1, … , z4)

0
are the age of the farm manager in years, education of the farm manager in years,

the household size, migration status, rubber cultivation, presence of a formal land title, membership
in cooperatives or farmers groups, and credit access. Moreover, we include a time trend t to capture
technical change between the two periods. All variables enter the equation in mean scaled form such
that we can interpret the coefficients as elasticities at the sample mean. We estimate Equation (6) by
means of restricted maximum likelihood (REML).

4.3 | Land expansion model

After estimating the TE of smallholder farmers in the first stage, we model the effect of TE on
farmers’ land expansion in a second stage. The most pertinent issue we need to specifically account

5Note that this is similar to the Mundlak (1978) correction in panel models.
6Note that with regard to capital, the oil palm smallholders own land and palm trees, which we include explicitly in the production model.
None of the farms operate machinery or storage facilities.
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for is confoundedness that is likely to arise from simultaneity between TE and land expansion, mea-
surement error from the efficiency estimates, and other unobserved confounders.

To begin with, it is conceivable that both inputs and the intercepts reversely cause each other
in the first stage model. In other words, farms that are efficient are likely to expand and conversely,
expanding farms are also likely to become less efficient. To address input endogeneity in produc-
tion frontier models, Kumbhakar et al. (2009), Amsler et al. (2016), Tran and Tsionas (2015),7 and
Kutlu et al. (2019) propose joint estimation with a selection equation, instrumental variables, cop-
ula function, and time-varying true individual effects combined with an additional decomposition
of the irregular error term, respectively. However, such approaches build on binary technology
variables, questionable assumptions on the distribution of potential endogeneity, the presence of
proper instruments, or the availability of data with cross-sectional units observed at multiple
points in time.

Another solution is lag identification. Even though lagged variables have been shown to
often not solve identification problems, they are still valid under some explicit assumptions
(Bellemare et al., 2017; Reed, 2015). Bellemare et al. (2017) establish three specific scenarios
under which lagged explanatory variables identify a causal effect: first, in case of no reverse cau-
sality and no contemporaneous causality from TE to land expansion; second, in presence of only
contemporaneous reverse causality and no contemporaneous causality; third, in presence of
reverse causality and contemporaneous causality only from TE to land expansion. For valid lag
identification in this scenario, it must be the case that there are dynamics in TE but not in the
land expansion variable.

We confidently assume no contemporaneous causality from TE to land expansion, given the
time that it takes to either establish new oil palm area or purchase existing plantations. Second, we
assume no reverse causality also because of the prolonged effects in oil palm production. The data
allow to test this assumption, which we discuss in detail in the results section. The third assumption
is the absence of unobserved confounding variables (Bellemare et al., 2017), which is perhaps the
most questionable one to make. Yet again, we report several empirical tests and specifications that
allow us to at least mitigate the issue of unobserved confounding variables.

Altogether, under the assumptions of (i) no reverse causality, (ii) lagged causality, and (iii) no
unobserved confounding, we specify the land expansion model as follows:

Aiv2018�Aiv2012ð Þ=Fiv2012 ¼w0
iv2012 δþTE0

ivτþdvþ eiv , ð7Þ

where Aiv2018 � Aiv2012 is the change in farmers’ oil palm area between 2012 (t) and 2018
(t + 1) relative to the total farm size Fiv2012 of farmer i in village v in year t. TEiv is TE from the
first stage and dv is a village fixed effect. The matrix wiv2012 gathers additional control variables.
In particular, we include variables on age, education, gender, rubber production, migratory sta-
tus, household size, employment status, wealth, cooperative membership, and credit access. For
other specifications than the village fixed-effects models, we include as further controls the
village-level share of land titles and migrants, villages’ oil palm suitability and vicinity to large
estates, as well as regency fixed effects. The error term eiv is assumed to be normally distributed
with mean zero and variance σ2e .

Finally, we need to address the attenuation bias arising from the stochastically estimated
variable uc. However, we obtain TEc from αc, which is modeled depending on group-specific
covariates as well as a measurement error. Thus, Equation (7) can be interpreted as an EIV
model (e.g., Fuller, 2009) where land use expansion is the observed dependent variable and
TEiv the measured variable with known deviation uc and variance σ2uc . Consequently, we estimate
Equation (7) as an EIV model by means of total least squares (TLS) adjusting the estimator by σ2uc .

7The online supplementary appendix C.4 provides an application of the approach by Tran and Tsionas (2015) on the two cross sections as a
robustness check of the main model.
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5 | RESULTS

The two-stage empirical approach delivers several layers of results.8 First, we examine the parameter
of the production frontier and assess the technology of smallholder oil palm farmers. Second, we
evaluate the TE scores of the farmers and their determinants. Third, we assess the validity of the
assumptions that govern the identification strategy. Fourth, we gauge the land expansion effect
resulting from the land expansion model of the second stage and calculate the rebound effect.

5.1 | Production technology

With regard to model choice, likelihood ratio (LR) tests of nested models confirm the translog func-
tional form to be superior to the Cobb–Douglas specification and the use of random intercepts com-
pared to an alternative plot-level specification. Moreover, the intra-class correlation is 0.41
suggesting that the random intercepts are useful in explaining overall variation.

Table 2 details the REML estimates and associated standard errors of the first- and second-order
terms as well as the group predictors, which we can interpret as drivers of efficiency.9 The first-order
coefficients can be interpreted as elasticities at the sample mean as the variables have been scaled by
their means. The parameters associated with the first-order terms of the productive inputs are signif-
icant with expected sign. Notably, the model reveals a considerable effect of land size, although the
elasticity of agrochemical use is quite low, confirming the experimental findings of Darras
et al. (2019). The effect of labor is also comparably small yet reasonable as both direction and magni-
tude find support in the relevant literature on the low labor intensity of oil palm cultivation
(Chrisendo et al., 2021; Kubitza, Krishna, Alamsyah, & Qaim, 2018). Palm age and density exhibit
first-order nonsignificant and second-order significant negative coefficients and thereby only partly
confirm the quadratic relationship with output of both variables that is often found in the plant
growth literature (e.g., Corley et al., 2003). However, the sample includes only productive plots that
are older than 3 years, which leads to an omission of the growth patterns at the early stage of oil
palm plantations.

The time trend coefficient is quite large and negative, which we attribute to a particularly strong
El Niño–Southern Oscillation (ENSO) that induced a severe drought and widespread fires and haze
that negatively affected yields throughout the region (Meijide et al., 2018; Stiegler et al., 2019).

Another notable finding of the production function is increasing returns to scale of smallholder
oil palm farming. The sum of the size, labor, and agrochemical use coefficients amounts to a scale
elasticity of 1.15. In other words, average farm size is smaller than the equilibrium size where mar-
ginal returns to scale are constant. Increasing returns to scale could manifest in strong incentives for
smallholders to expand their farm.

5.2 | Technical efficiency

The TE scores are illustrated in Figure 2. The mean TE is 0.59, implying that palm oil output falls
short by 41%, on average. Interestingly, mean TE, which describe shortfalls compared with the best-
practice benchmark, aligns well with the size of the yield gap of 40% between smallholders and large
estates that has been reported by the Indonesian Ministry of Agriculture (2016) and in the literature
(Woittiez et al., 2017). Although generally TE is rather low, in combination with the production
function parameter estimates, which suggest the relatively strong importance of land size as a

8The econometric analysis is carried out in R (R Core Team, 2019). We estimate the random intercept model using the lme4 package (Bates
et al., 2015) and the EIV model using the eivtools package (Lockwood, 2018).
9The full results of the estimated translog production function—including the cross-terms—are reported in the online
supplementary Appendix A.
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productive input, we additionally note further evidence for the apparent low land productivity of
smallholder farmers.

With regards to the drivers of inefficiency, we find that being member of a cooperative as well as
being part of the transmigrant program is associated with higher efficiency (Table 2). These findings
suggest that institutional efforts to support smallholder yield growth have been effective to some
extent. Farmers that also cultivate rubber exhibit significantly lower efficiency in palm oil production
compared with those who do not. The remaining coefficients of the intercept model exhibit relatively
large standard errors, failing to result in statistical significance.

T A B L E 2 First and second order terms and group predictors of the linear mixed model (LMM)

Production

Technology

β0 (Intercept) 0.18 (0.49)

β1 (Size) 0.87 (0.07)***

β2 (Agrochemicals) 0.15 (0.04)***

β3 (Labor) 0.13 (0.05)***

β4 (Palm age) 0.07 (0.09)

β5 (Palm density) �0.17 (0.20)

β11 (Size
2) 0.40 (0.14)***

β22 (Agrochemicals2) 0.04 (0.02)**

β33 (Labour
2) �0.10 (0.05)**

β44 (Palm age2) �0.80 (0.22)***

β55 (Palm density2) �1.50 (0.41)***

ρ (Time) �0.20 (0.09)**

Group predictors

γ1 (Rubber) �0.17 (0.07)**

γ2 (Age) �3e–3 (0.02)

γ3 (Age
2) 4e–5 (2e–4)

γ4 (Education) 0.01 (0.01)

γ5 (Gender) �0.08 (0.20)

γ6 (Household size) �0.03 (0.02)

γ7 (Transmigrant) 0.17 (0.09)*

γ8 (Land title) 0.05 (0.04)

γ9 (Farmer group [= 1]) 0.03 (0.09)

γ10 (Cooperative [= 1]) 0.18 (0.09)**

γ11 (Formal credit [= 1]) �0.03 (0.07)

γ12 (Informal credit [= 1]) �0.05 (0.08)

Num. obs. 362

Num. groups: 181

σαc 0.12

σv 0.17

Mean TE 0.59

Note: Standard errors are in parentheses. ***p < 0.01; **p < 0.05; *p < 0.1.
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5.3 | Land expansion

The efficiency scores obtained from the first-stage estimation serve as an explanatory variable in the
land expansion model. We estimate the effect of efficiency jointly with other control variables on
land expansion between 2012 and 2018 relative to farm size in 2012 by means of OLS and EIV
models.

Table 3 juxtaposes the OLS estimates and associated standard errors in column (1) with the EIV
parameter estimates in column (2), where we additionally correct for attenuation bias in the TE vari-
able.10 In column (3), we additional control for village fixed effects. Except for the error-prone vari-
able, the coefficients of the other covariates are of comparable dimension in both the OLS and EIV
models. Nevertheless, the OLS model shows a considerably smaller estimate of the effect of TE due
to attenuation bias. Both the lower precision of estimates as well as the bias of the error-prone vari-
able are in line with the relevant theory (Nelson, 1995). The difference in parameter estimates high-
lights the importance of EIV estimation in the case of variables measured with error as OLS results
can lead to different outcomes and thus misguided coefficient interpretation.

Aside from these methodological considerations, all models suggest a significant positive effect of
TE on oil palm area expansion. With TE being bounded between 0 and 1, real unit changes hardly
occur and the coefficients can be interpreted in percentage point changes. For instance, based on the
models in Table 3, an efficiency improvement of 10% points is associated with an area expansion of
7%, 8%, and 6.7%, on average in the OLS, EIV, and village fixed effects EIV models, respectively.

Tables 4 and 5 report the effect of TE on land expansion while only considering land that has
already been under agricultural production and on land expansion into non-agricultural land such
as forests and grass and bush land, respectively. Again, we employ OLS, EIV, and village fixed effects
EIV models. The results show that increasing TE is mostly related to farmers acquiring land that is
already used for agricultural production. Given that most of the research region’s lowland forests
already disappeared before 2012, this is not a surprising result. Nonetheless, we still find a positive
effect of TE on non-agricultural area change. Moreover, underreporting of farmers on deforestation
could additionally downward bias our estimates. The positive effect of rubber cultivation on oil palm
expansion on agricultural land could indicate a shift from rubber to oil palm within farms. In online
supplementary Appendix C.3 we show, however, that mainly land purchases are driving the effect of
TE on oil palm expansion.

Another concern is the sample attrition of 4.4% per round. We provide however three pieces of
evidence that attrition is unlikely to affect our results. First, we elicited the reasons for attrition in
2015, which suggest that these farmers did not fall out due to lower or higher levels of efficiency.

0
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F I G U R E 2 Distribution of technical efficiency scores of smallholder oil palm farmers
Notes: The TE scores have a mean of 0.59 with standard deviation of 0.14 and range from 0.29 to 1. The 25th percentile is 0.5
and the 75th percentile is 0.68

10The standard errors of the OLS model are bootstrapped with 1000 repetitions.
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Attrition was mainly related to the sudden death of the household head or migration due to marriage
or migrant farmers returning to their homelands. Second, we do not find any significant effect of
attrition in 2018 in our first-stage model. Third, although we do find a significant and negative effect
of attrition in 2018 on oil palm area expansion between 2012 and 2015, we do not find that the effect
of efficiency on land expansion is changing across the models with (see online supplementary Appen-
dix D) or without attritors (see online supplementary Appendix C.2).

5.4 | Robustness checks

Our identification strategy builds upon the assumptions of no reverse causality from land expansion
to TE, only lagged causality from TE to land expansion, and no unobserved confounders.

We investigate the validity of the first assumption of no reverse causality using data on historical
land use change that was collected in 2012 and test whether the expansion of farm area between

T A B L E 3 Effect of TE on oil palm area (2012–2018)

Change of oil palm area (share)

(1) (2) (3)

TE 0.71 (0.29)** 0.81 (0.36)** 0.68 (0.32)**

Landholding (ha) �0.03 (0.01)*** �0.03 (0.01)** �0.03 (0.01)*

Age (years) �1e–3 (3e–3) �1e–3 (3e–3) �1e–3 (3e–3)

Gender (male = 1) 0.15 (0.27) 0.15 (0.15) 0.16 (0.17)

Education (years) 0.04 (0.04) 0.04 (0.03) 0.04 (0.03)

Rubber (= 1) 0.03 (0.10) 0.03 (0.10) 0.11 (0.12)

Transmigrant (= 1) 0.04 (0.13) 0.04 (0.10) 0.05 (0.10)

Household size (No.) �0.04 (0.03) �0.04 (0.02) �0.04 (0.03)

Employed (= 1) �0.05 (0.09) �0.04 (0.08) �0.03 (0.08)

Self-employed (= 1) 0.06 (0.10) 0.06 (0.10) 0.08 (0.10)

Wealth quintile 0.03 (0.03) 0.03 (0.03) 0.05 (0.03)*

Farmer group (= 1) �0.16 (0.15) �0.16 (0.09)* �0.24 (0.11)**

Cooperative (= 1) 0.05 (0.12) 0.05 (0.10) 0.06 (0.11)

Formal credit (= 1) 0.05 (0.09) 0.05 (0.08) 0.01 (0.10)

Informal credit (= 1) �0.12 (0.12) �0.12 (0.10) �0.14 (0.12)

Distance to palm oil mill (log) �1e–3 (0.08) �1e–5 (0.07) 0.17 (0.10)

Transmigrant share �0.06 (0.17) �0.06 (0.15)

Land title share 0.13 (0.10) 0.13 (0.08)

Migrant share �0.18 (0.17) �0.17 (0.15)

Non-random (= 1) 0.20 (0.17) 0.20 (0.14)

Suitability for oil palm 0.83 (3.00) 0.74 (1.55)

Vicinity to large estate (= 1) 0.23 (0.12)* 0.23 (0.09)**

Intercept �6.63 (23.19) �5.99 (12.12)

Regional dummies Yes Yes

Num. obs. 181 181 181

Note: Column (1) lists the OLS estimator with bootstrapped standard errors in parentheses, columns (2) and (3) list the total least squares
(TLS) estimators of the errors-in-variable model with and without village fixed effects respectively and associated standard errors in
parentheses. Significant at ***p < 0.01, **p < 0.05 and *p < 0.1.
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2006 and 2012 affects the technical efficiencies scores. We do not find any significant effect of past land
expansion on contemporaneous TE (online supplementary Appendix C.2). Next, we test if results dif-
fer if we use land expansion between 2012 and 2015, and land expansion from 2015 to 2018. Although
TE can have a lagged effect if we only consider land expansion between 2012 and 2015, the effect of
TE is even further lagged with respect to land expansion between 2015 and 2018 making contempora-
neous reverse causality unlikely. The coefficients are as expected smaller for both periods but still posi-
tive and significant for part of the specifications (online supplementary Appendix C.3). Finally, the
endogenous stochastic frontier specification by Tran and Tsionas (2015) as applied and discussed in
the online supplementary Appendix C.4 reveals no contemporaneous endogeneity in the two separate
cross sections, which is in further support of no contemporaneous reverse causality.

The assumption of lagged effects of TE is more difficult to test. As TE is time invariant in the
modeling framework, we cannot empirically distinguish lagged effects from contemporaneous ones.
However, the assumption still finds support in the experimental literature on oil palm cultivation and
management. For instance, Darras et al. (2019) show in an experiment that changes in management
practices and quantity of agronomic inputs have potentially lagged effects on oil palm yields, which

T A B L E 4 Effect of TE on oil palm area (2012–2018): agricultural land

Agricultural area change (share)

(1) (2) (3)

TE 0.54 (0.26)** 0.62 (0.25)** 0.49 (0.23)**

Landholding (ha) �0.02 (0.01) �0.02 (0.01)** �0.02 (0.01)*

Age (years) �4e–4 (3e–3) �3e–3 (2e–3) 1e–3 (3e–3)

Gender (male = 1) 0.06 (0.20) 0.06 (0.14) 0.04 (0.16)

Education (years) 0.05 (0.03)* 0.05 (0.02)** 0.04 (0.03)

Rubber (= 1) 0.15 (0.07)** 0.15 (0.06)** 0.25 (0.07)***

Transmigrant (= 1) �0.02 (0.10) �0.02 (0.09) �0.03 (0.09)

Household size (No.) �0.04 (0.02)** �0.04 (0.02)** �0.05 (0.02)**

Employed (= 1) �0.08 (0.07) �0.08 (0.06) �0.05 (0.06)

Self-employed (= 1) 0.07 (0.09) 0.07 (0.08) 0.09 (0.08)

Wealth quintile �0.01 (0.03) �0.01 (0.03) �0.00 (0.03)

Farmer group (= 1) �0.10 (0.08) �0.09 (0.06) �0.12 (0.08)

Cooperative (= 1) �0.01 (0.09) �0.01 (0.07) 0.02 (0.09)

Formal credit (= 1) 0.05 (0.08) 0.05 (0.06) 0.01 (0.08)

Informal credit (= 1) �0.07 (0.12) �0.07 (0.10) �0.15 (0.11)

Distance to palm oil mill (log) �0.01 (0.07) �0.01 (0.07) 0.19 (0.09)**

Transmigrant share 0.06 (0.14) 0.06 (0.12)

Land title share 0.11 (0.07) 0.11 (0.06)*

Migrant share �0.06 (0.17) �0.06 (0.15)

Non-random (= 1) 0.19 (0.13) 0.19 (0.12)

Suitability for oil palm 1.54 (2.13) 1.47 (1.31)

Vicinity to large estate (= 1) 0.13 (0.09) 0.13 (0.07)*

Intercept �11.96 (16.58) �11.47 (10.35)

Regional dummies Yes Yes

Num. obs. 180 180 180

Note: Columns (1) lists the OLS estimator with bootstrapped standard errors in parentheses, columns (2)–(3) list the total least squares (TLS)
estimators of the errors-in-variable model with and without village fixed effects respectively and associated standard errors in parentheses.
***p < 0.01; **p < 0.05; *p < 0.1.
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can span even over several years. With our sampling structure at hand, we conclude that the effect of
changes in management practices can only be measured in terms of TE during the subsequent wave.

The final overarching concern of our identification strategy is that our set of observable variables
is too limited leading to an omitted variables bias. Although we control for a large set of variables
and employ village fixed effects, unobserved heterogeneity within villages could still be present. In
particular, some households could settle in areas with little additional land available, whereas others
settle closer to forests or shrub land, which could change the available land accessible for farmland
expansion. We report two pieces of evidence that challenge this assumption. First, we find little evi-
dence that expansion in non-agricultural land is driving the effect of efficiency on farmland expan-
sion (Tables 4 and 5). Second, we additionally conduct a robustness check with land availability in
2013 based on LandSat satellite imagery for a more limited subsample. The effect of TE remains
robust (online supplementary Appendix C.2). The different modes of land acquisition allow us to
further test the validity of our results. For instance, land purchases are driven by farmers own deci-
sion and characteristics, including potentially TE, whereas other modes of land acquisitions such as
inheritance depend mostly on independent events that should not be related to the farms’ TE but to

T A B L E 5 Effect of TE on oil palm area (2012–2018): Non-agricultural land

Non-agricultural area change (share)

(1) (2) (3)

TE 0.14 (0.17) 0.16 (0.17) 0.11 (0.16)

Landholding (ha) �0.01 (0.01) �0.01 (0.00)* �0.01 (0.01)*

Age (years) �3e–3 (�2e–3) �3e–3 (�2e–3) 2e–3 (2e–3)

Gender (male = 1) �0.03 (0.08) �0.03 (0.05) 0.02 (0.04)

Education (years) 0.02 (0.02) 0.02 (0.02) 0.02 (0.02)

Rubber (= 1) �0.18 (0.07)** �0.18 (0.07)*** �0.18 (0.08)**

Transmigrant (= 1) �0.03 (0.07) �0.03 (0.06) �2e–2 (0.07)

Household size (No.) 0.01 (0.02) 0.01 (0.02) 0.01 (0.02)

Employed (= 1) �3e–3 (0.05) �4e–3 (0.04) 8e–4 (0.04)

Self-employed (= 1) 0.00 (0.06) 0.00 (0.06) �0.01 (0.06)

Wealth quintile 0.02 (0.02) 0.02 (0.01) 0.02 (0.02)

Farmer group (= 1) �0.03 (0.09) �0.03 (0.08) �0.09 (0.10)

Cooperative (= 1) 0.06 (0.08) 0.06 (0.07) 0.08 (0.08)

Formal credit (= 1) �1e–3 (0.07) �1e–3 (0.06) �0.03 (0.07)

Informal credit (= 1) �0.09 (0.04)** �0.09 (0.03)*** �0.12 (0.05)**

Distance to palm oil mill (log) �0.03 (0.04) �0.03 (0.04) 0.04 (0.05)

Transmigrant share �0.05 (0.11) �0.05 (0.10)

Land title share 0.04 (0.06) 0.04 (0.05)

Migrant share 0.08 (0.12) 0.08 (0.11)

Non-random (= 1) 0.11 (0.09) 0.11 (0.08)

Suitability for oil palm �2.36 (2.24) �2.38 (1.18)**

Vicinity to large estate (= 1) 0.09 (0.05)* 0.09 (0.04)**

Intercept 18.32 (17.27) 18.45 (9.26)**

Regional dummies Yes Yes

Num. obs. 180 180 180

Note: Columns (1) lists the OLS estimator with bootstrapped standard errors in parentheses, columns (2)–(3) list the total least squares (TLS)
estimators of the errors-in-variable model with and without village fixed effects respectively and associated standard errors in parentheses.
***p < 0.01; **p < 0.05; *p < 0.1.
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family structures of the farming households. We find that TE is only influencing land expansion
driven by land purchases but not land expansion based on inheritance, which is line with our expec-
tations (online supplementary Appendix C.1). In contrast to the assumptions of no reverse causality
and lagged causality, which we are confident to be reasonable given the empirical evidence in con-
junction with literature insights, the assumption of no unobserved confounding could be challenged
by unobservables that have not been accounted for in the model and the robustness checks.

Altogether, the main findings of the two-stage approach are that (i) TE is a good predictor of
future land expansion, and thus its improvements are likely to result in increasing demand for land
expansion; and (ii) the sector on average exhibits relatively low mean, as well as heterogeneous levels
of TE. This implies ample room to increase output without additional use of inputs. Moreover, we
also find that (iii) the output of smallholder oil palm farmers is overwhelmingly area driven, and (iv)
increasing returns to scale in turn suggest the presence of strong expansion incentives.

6 | LAND SPARING VERSUS LAND EXPANSION

In this section, to better understand the effects of development policies that focus on management
practices, we simulate the potential aggregate outcome of increasing smallholder TE and compare it
with the sector’s potential land savings.

First, we determine the overall potential of land saving resulting from improvements in efficiency
only. In other words, we ask how much less land farmers would require to produce the given level of
output. One way of disentangling the technologically feasible minimum land input from our produc-
tion frontier is to follow Reinhard et al. (1999) and derive a single-input efficiency measure by equat-
ing a hypothetical minimum input use frontier with the output oriented production frontier.
Reinhard et al. (1999) define input (environmental) efficiency as the ratio of the minimum level of
input use and observed input, which is a convenient measure of land efficiency for our case at hand.
Hence, we apply their formula to our production function.11
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The resulting measure can be interpreted as the minimum amount of land required to provide the
given level of output, holding all other parts of the technology constant. Applied to our data at hand, a
hypothetical elimination of land inefficiency results in the sparing of 297 ha. In terms of Figure 1, this
corresponds to L3 � L1, which is the maximum land saving potential. Put in perspective, this is 54% of
the oil palm area under cultivation of the whole sample. The large land inefficiency of smallholder oil
palm farmers is unsurprising in light of the inherent yield gap compared with larger estates. If farms
return to constant intensities and thereby only save land by the elimination of the radial technical effi-
ciency measure, the land saving still amounts to 280 ha, which corresponds to 51% of oil palm planta-
tion area of the sample and is represented by L3 � L2 in Figure 1.

Second, we turn to quantifying the land expansion potential as the aggregated effect from increased
TE. Just like in the land sparing case, we conversely simulate a hypothetical elimination of technical inef-
ficiency and calculate the resulting additional area demand of the smallholders. Relying on the estimated
coefficients from the second-stage expansion models, we calculate the corresponding demand for area

expansion as
PN

i¼1τ∗ 1�TEið Þ. Table 6 details the expansion and rebound effects of all reported

11A detailed derivation of this measure is provided in the online supplementary Appendix B.
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models. For instance, the EIV model in column (2) of Table 6 implies a demand for area expansion
of 186 ha, which represents 34% of the currently cultivated oil palm area of the sampled farmers.

Comparing land sparing and expansion demand, we calculate rebound effects between 0.51 and
0.62 from the total land models (columns [1]–[3]). The implication is that about half the potentially
spared land could be offset by increased land demand. In other words, each hectare of land that is
saved through efficiency gains could actually translate into only 0.51–0.62 ha based on our estimates.
Regarding exclusively agricultural land, we find slightly lower rebound effects, and for non-
agricultural land, rebound effects are substantially lower. Nonetheless, altogether we find a substan-
tial drag of efficiency induced land sparing.

Moreover, Figure 1 allows to classify the rebound effect into two components that are driven by
returning to given input intensities and by responses to market incentives, respectively. The first
rebound (Rebound I in Figure 1) is designated by the difference between land-efficiency savings and
TE savings, and in our case amounts to 11%. The remaining rebound effect (Rebound II in Figure 1)
can be attributed to a supply shift in response to elastic demand, which makes up for 89% of the total
simulated rebound effect in our sample.

However, the hitherto-found effects should be interpreted with some caution. First, the land saving
potential derives from a scenario in which other production factors are disregarded, and hence it consti-
tutes a maximum solution that is likely to be different under consideration of inevitable by-effects from
other inputs. Second, thus far we have not accounted for non-linear expansion effects. The reason here is
that we cannot adequately correct—for instance—a squared effect of a error-prone variable having at dis-
posal only errors of the linear variable. By contrast, Marchand (2012) find concave effects of TE on land
expansion of farms in the Brazilian amazon, albeit without correcting for measurement errors.

In terms of policy, our results have two main implications. (i) The yield gap between smallholder
farmers and large estates is characterized by substantial inefficiency, including regarding land use.
Therefore, outreach and extension programs that target managerial skill—in particular
cooperatives—could be promising avenues to increase smallholder productivity, which in turn is
likely to show positive impacts on livelihoods. (ii) We join Kubitza, Krishna, Urban, et al. (2018) and
Gawith and Hodge (2019) in advocating that such policies must be accompanied by changes in land
and forest governance to obtain the maximum of land savings from increasing TE.

7 | CONCLUSION

Although deforestation due to agricultural expansion remains a major local and global environmen-
tal concern, commodity booms also provide opportunities to promote rural development. Palm oil
production on Sumatra in Indonesia is a point in case where ecologically invaluable forest land has
made way to more than 7 million ha of oil palm plantations. In order to halt further deforestation, it

T A B L E 6 Aggregated land expansion and rebound effects

Total land Agricultural land Non-agricultural land

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Expansion (ha) 163 186 155 133 155 122 37 42 30

Expansion (%) 28 34 30 24 28 22 7 8 5

Rebound effect 0.55** 0.62** 0.51* 0.45** 0.51** 0.41* 0.12 0.14 0.10

(0.27) (0.32) (0.32) (0.19) (0.23) (0.25) (0.12) (0.14) (0.15)

Note: The land-sparing effects are derived from the first-stage model are 297 ha or 54% of existing cultivated land. For columns (1) to (3), the
coefficients for the rebound effect are derived from Table 3. For columns (4) to (9), coefficients for the rebound effect are derived from Tables 4
and 5. Accordingly, results in columns (1), (4) and (7) are derived from OLS estimators, (2), (5) and (8) from TLS and (3), (6) and (9) from
TLS that controls for village fixed effects. The standard errors of the rebound effects are bootstrapped at 1000 repetitions and given in
parentheses. Significance at **p < 0.05 and *p < 0.1.
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is essential to shift the increase in palm oil production from area expansion to the intensification of
existing cultivation using both technological innovation and improvements of production manage-
ment. However, in light of the elastic demand for palm oil, such measures could in turn accelerate
local land demand and fuel further deforestation, at least in the short term.

In Indonesia, smallholder farmers cultivate nearly half of the national oil palm area and pro-
vide nearly 34% of aggregate output. Nonetheless, they are also subject to informal land regula-
tions and often encroach forest land. Addressing the smallholder sector is hence key for both
forest conservation as well as sustainable rural development. Although the adverse effects of
technological innovation within the land-sparing debate are well researched, the equivalent
mechanism for TE has been empirically opaque. This study aims at placing the TE of small-
holder oil palm farmers in the context of the land-sparing controversy. Our empirical approach
contains two stages. First, relying on a random intercept model, we estimate the production
frontier of smallholder oil palm farmers in Indonesia in a translog specification and determine
their TE. Based on the estimated technology parameters, land specific efficiency can be calcu-
lated, and we determine the overall land saving potential. Second, we regress area expansion on
past efficiency scores by means of an EIV model to reveal the extent to which farmers expand if
their efficiency increases.

Our main results are threefold. First, we find that smallholders are considerably technical and
land inefficient. Additionally, land is by far the most decisive factor of production. Therefore,
remarkable opportunities for optimizing the sector persist, including sizable savings potentials. Sec-
ond, we find that efficiency is associated with land expansion, whereby the problem is amplified by
overall increasing returns to scale. Third, consolidating the first two results, we find that potential
land savings achieved through gains in TE—for instance by means of extension and outreach—are
at risk of being offset by about half due to rebound effects.

In the context of our study region, more efficient farmers acquired additional land mostly
through land markets. The new land was also mostly already used for agricultural production. Defor-
estation still occurred, albeit to a lesser extent as Sumatra’s low land forests have already mostly dis-
appeared. This relation might very well shift in favor of deforestation in other regions, particularly in
future agricultural frontier areas such as Kalimantan and Papua, but also Africa, where well-
developed land markets are less frequent and (ecologically valuable) land to expand agricultural pro-
duction is available.

Closing the smallholder yield gap is an effective measure to promote rural development. How-
ever, our results imply that policy makers should be aware of partial rebound effects that threaten
conservation efforts. Policies that increase agricultural efficiency should hence be matched with com-
plementary strategies to reduce deforestation. Such policies could include further releases of land to
local communities through social forestry schemes and stricter forest protection that prohibits the
conversion of primary forest land. Customary land rights need also to be acknowledged to allow for
functioning land markets. On the other hand, in order to increase efficiency, policies could legalize
agricultural land ownership of local farming communities as well as improve extension services. Our
study underlines that reconciling both of these efforts is crucial.

Owing to the complexity of the topic, some aspects have to be considered while interpreting our
results. First, the internal validity of our study could still be compromised by unobserved confounders
that were not addressed by the village fixed effects models and alternative specifications and tests. Sec-
ond, regarding the external validity, we recognize that the rebound effect is highly context specific.
With differing demand elasticities for other commodities or countries, the rebound effect is also likely
to change. In addition, increasing efficiency and agricultural profitability could induce migration into
rural areas, whereby in-migration could potentially increase the pressure on forest land. Although this
is generally a valid argument, in the specific context of the research region, mostly autochthonous
farmers obtain land through direct deforestation or they buy encroached land. Finally, although not
the focus of our study, increasing efficiency could lead to a further consolidation of the farming sector
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with more efficient farmers buying up land from their less efficient counterparts. However, the implica-
tions for inequality and welfare are beyond the scope of the present study.

Overall, our study suggests that managerial skill in agriculture is a critical junction within the
land-sparing debate. However, the policy relevance is not matched by empirical evidence, particu-
larly regarding potential rebound effects. Although Sumatra has already experienced the loss of most
its lowland forests, a better understanding of the land-sparing effects of TE and potential rebound
effects could help to protect forests in the present as well as future deforestation hotspots with simi-
lar institutional and economic characteristics.
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