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Abstract: Unemployment has risen as the economy has shrunk. The coronavirus crisis has affected
many sectors in Romania, some companies diminishing or even ceasing their activity. Making
forecasts of the unemployment rate has a fundamental impact and importance on future social policy
strategies. The aim of the paper is to comparatively analyze the forecast performances of different
univariate time series methods with the purpose of providing future predictions of unemployment
rate. In order to do that, several forecasting models (seasonal model autoregressive integrated
moving average (SARIMA), self-exciting threshold autoregressive (SETAR), Holt–Winters, ETS (error,
trend, seasonal), and NNAR (neural network autoregression)) have been applied, and their forecast
performances have been evaluated on both the in-sample data covering the period January 2000–
December 2017 used for the model identification and estimation and the out-of-sample data covering
the last three years, 2018–2020. The forecast of unemployment rate relies on the next two years,
2021–2022. Based on the in-sample forecast assessment of different methods, the forecast measures
root mean squared error (RMSE), mean absolute error (MAE), and mean absolute percent error
(MAPE) suggested that the multiplicative Holt–Winters model outperforms the other models. For the
out-of-sample forecasting performance of models, RMSE and MAE values revealed that the NNAR
model has better forecasting performance, while according to MAPE, the SARIMA model registers
higher forecast accuracy. The empirical results of the Diebold–Mariano test at one forecast horizon for
out-of-sample methods revealed differences in the forecasting performance between SARIMA and
NNAR, of which the best model of modeling and forecasting unemployment rate was considered to
be the NNAR model.

Keywords: unemployment rate; SARIMA; SETAR; Holt–Winters; ETS; neural network autoregres-
sion; Romania

1. Introduction

Unemployment is a socio-economic problem facing all countries of the world, affecting
both the standard of living of the people and the socio-economic status of the nations. Un-
employment represents the result of a poor demand in the economy; a low demand implies
a lower need for labor, which will lead either to reduced working hours or redundancies.
Although unemployment is a consequence of a fundamental change in an economy, its
frictional, structural, and cyclical behavior contributes to its existence.

The pandemic led to a large number of unemployed in Romania; in March, the un-
employment rate rose to 4.6% compared to 3.9% in February 2020. The provisions of the
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military ordinances on stopping the spread of the new coronavirus have led many compa-
nies to partially or completely cease operations, which has led to the highest unemployment
rate in the last two years.

Given the pandemic context, the unemployment rate in March was still low, due to
the fact that in March, the effects of the pandemic were not entirely felt; companies waited
until the last moment to see what measures the state would take to support technical
unemployment. The first measures taken by companies were rest leave and other types of
leave to be granted to employees.

The projection was that the unemployment rate in 2020 will increase, the month of
March being only the beginning of the health crisis in Romania. According to the Ministry
of Labor and Social Protection, more than 276,000 people were in a position where their
employment contract was terminated on 30 April 2020. The industries with the most
terminated employment contracts were wholesale and retail trade, manufacturing, and
construction.

Although the effects of the coronavirus crisis have been seen in the economy since the
measures taken in March 2020, forecasts indicated that the highest level of unemployment
will reach 3.98% in the second quarter of 2020. Even the most pessimistic forecasts indicated
that the unemployment rate in 2020 will not exceed 7%. The explanations for these low
values compared to real figures were given by the fact that the persons returned to the
country and the persons with terminated employment contracts are not included in the
number of unemployed; at the end of March 111,340 terminated employment contracts had
been registered and 250,000 people returned to Romania from abroad. Another explanation
is the fact that the labor market was not growing at all during the crisis; therefore, people
were not searching for a job, which is an essential condition to be declared unemployed.

The crisis caused by the coronavirus affected activities in many sectors and the number
of unemployed increased, but this has not been reflected by the unemployment rate, as
the real number of those unemployed was not included in the reporting base. Therefore,
unemployment was lower, but this was not real, as the unemployed were not included in
the statistics but rather in structural unemployment: the employment rate was reduced.

In this context, it becomes even more important to be able to provide future predictions
of unemployment rate, and in order to do that, different univariate forecasting models
(seasonal model autoregressive integrated moving average (SARIMA), self-exciting thresh-
old autoregressive (SETAR), Holt–Winters, ETS (error, trend, seasonal), neural network
autoregression (NNAR)) have been applied in order to identify the most appropriate model
and to forecast the future values of unemployment rate. In order to do that, the period
January 2000 to December 2020 has been used and divided into two sub-samples: the
in-sample data or the training dataset covering the period January 2000–December 2017
used in the model identification and estimation and the test dataset or the out-of-sample
data covering the last three years, 2018–2020. The forecast of unemployment rate relies on
the next two years, 2021–2022.

Analyzing the patterns of unemployment rate, the research aims to respond to the
following questions: Does the unemployment rate exhibits a non-stationary nonlinear
pattern? Does the unemployment rate exhibit a seasonal pattern? Do the more sophisticated
methods such as SETAR, NNAR, or SARIMA performs better than simple methods (HW
or ETS)? What is the univariate forecasting method that performs best within in-sample
data? What is the univariate forecasting method that has the best performance for the
out-of-sample dataset? Which is the method that best captures the pandemic shock?

What is the combination of methods that could offer reliable future values for the
Romanian unemployment rate?

Relying on these questions, the following three main hypotheses can be formulated:

Hypotheses 1 (H1). The Romanian unemployment rate exhibits a non-stationary nonlinear and
seasonal pattern over the period January 2000 to December 2017.
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Hypotheses 2 (H2). NNAR and SARIMA models registered the best out-of-sample forecast
performance from the all four methods applied.

Hypotheses 3 (H3). The combination of NNAR and SARIMA models offers the best approach in
forecasting the unemployment rate for 2021–2022.

The paper is organized as follows. The literature review presents an overview of
the most important studies regarding this topic of forecasting unemployment rate, while
Section 3 is dedicated to the presentation of five different forecasting models (SARIMA,
NNAR, SETAR, Holt Winters, ETS). Section 4 incorporates information related to the data
used in the analysis and the main empirical results of all five forecasting methods. The
last part of this section ends with the comparison of models forecasting performance both
for in sample and out-of-sample datasets. The final section of the paper presents the main
conclusions about the relevance of this research.

2. Literature Review

The phenomenon of unemployment is the result of the dysfunctions of the economy,
in the field of employment, being present both in the period of market economy transition
and in the period of economic growth [1]. Unemployment is a very important labor market
issue, being a mismatch between the labor demand and supply. This indicator has major
social and economic implications, being one of the factors to be examined in macroeconomic
growth and very important in comparing the country’s economic performance from a work
perspective [2], affecting people’s living standard and the nation’s socio-economic status.

In this context, unemployment represents one of the biggest social problems of the
world, being present in each country, the intensity of the phenomenon differing according
to the economic development of a society. Population growth implies an increase regarding
workforce, the jobs being insufficient in the short term [3]. The adjustment of the economic
structure, the education system, and the establishment of the specialty does not satisfy the
needs of economic restructuring; the professional skills of the rural labor force cannot satisfy
the demand for jobs, aggravating the severity of unemployment. One of the solutions to
this problem is the establishment of an early unemployment warning system, the forecast
being absolutely necessary [4].

Forecasting the unemployment rate is very important for many economic decisions,
especially setting relative policies by the government. The unemployment rate is correlated
to the economic development of a society; therefore, different forecasting techniques are
used for its forecast, from the simple OLS (ordinary least squares) method to the GARCH
(generalized autoregressive conditional heteroskedasticity) models and neural networks.
The econometric models are often related to stationary time series, seasonality, and trend
analysis, and exponential smoothening to the simple OLS technique including ARIMA
(autoregressive integrated moving average) models [5].

The ARMA and GARCH models were used by Chiros [6] to predict the unemployment
rate in the UK; Parker and Rothman [7] modeled quarterly unemployment rates using the
AR model (2), Power and Gasser [8] highlighted that the ARIMA (1,1,0) model has better
forecasting performance for unemployment rates in Canada. Etuk et al. [9] indicated that
the ARIMA (1,2,1) model is suitable for forecasting the unemployment rate in Nigeria.

Rothman [10] used six nonlinear models for out-of-sample forecasting, Koop and Pot-
ter [11] used the autoregressive threshold (ART) for modeling and forecasting the monthly
unemployment rate, and Proietti [12] used seven forecasting models (linear and nonlinear).
Johnes [13] used autoregressive models, GARCH, SETAR (Self-Exciting Threshold AutoRe-
gressive) and neural networks in order to predict the monthly unemployment rate in the
United Kingdom, the SETAR model registering the best results. Peel and Speight [14] also
concluded that the SETAR model is better, in terms of root mean squared error (RMSE),
compared to AR models.
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As an alternative to ARMA models, Gil-Alana [15] used an exponential Bloomfield
spectral model to model unemployment in the UK, the results indicating that this model is
suitable for forecasting this phenomenon.

Forecasting the unemployment rate in Italy, Naccarato et al. [16] used both official
data and the Google Trends query rate, estimating two different models: ARIMA and VAR
(vector-autoregressive models), the VAR model registering a lower forecast error.

The autoregressive integrated moving average (ARIMA) models were introduced
by Box and Jenkins [17], also developing the practical process to select the most suitable
ARIMA model. ARIMA models are more secure in case of short-term forecasts compared to
long-term forecasts [18]. For seasonal and non-seasonal data, the SARIMA (seasonal model
autoregressive integrated moving average) is used. The SARIMA model is an extension
of the simple ARIMA models, being used for inflation forecasting [19–21], for exchange
rate forecasting [22,23], for tourist arrivals and income forecasting [24,25], as well as for
unemployment forecasting. The literature includes a lot of studies on forecasting using
ARIMA models, respectively the Box–Jenkins methodology, which is widely used by many
researchers to highlight future unemployment rates [26].

Among them, Wong et al. [27] developed autoregressive integrated moving average
(ARIMA) models in order to analyze and forecast important indicators in the Hong Kong
construction labor market: employment level, productivity, unemployment rate, underem-
ployment rate, and real wage. Ashenfelter and Card [28] analyzed unemployment, nominal
wages, consumer prices, and the nominal interest rate, using the autoregressive moving
average model. Kurita [29] forecasted the unemployment rate using autoregressively
integrated fractional moving average, the model being much better than naive predictions.

Predictions of unemployment rate in the world using the ARIMA model were made
by Chih-Chou and Chao-Ton [30], Etuk et al. [22] and Nkwatoh [31] in Nigeria using the
ARIMA and ARCH model, Kanlapat et al. [32] in Thailand, Nlandu et al. [33] in Barbados,
using the seasonal integrated autoregressive moving average model (SARIMA), Dritsakis
and Klazoglou [34] in the USA using SARIMA and GARCH models, and Didiharyono and
Syukri [35] in South Sulawesi using the ARIMA model.

In the European Union, the unemployment rate is forecasted using Box–Jenkins and
TRAMO/SEATS methods [36,37]. In European countries, the unemployment rate was
predicted using the Box–Jenkins methodology in Germany using the ARIMA and VAR
models [38], in the Czech Republic using the SARIMA model [39,40], in the German
regions using a model spatial GVAR [41], in Greece, both as a dynamic process and as a
static process using SARIMA models [42,43], and in Slovakia using ARIMA and GARCH
models [44].

Unemployment predictions using VAR were realized also by Kishor and Koenig [45],
taking into account that data are subject to revisions. The accuracy of forecasts based on
VAR models can be measured using the trace of the mean-squared forecasts error matrix,
generalized forecasts error second moment [46], transfer functions [47], and combined
forecasts based on VAR models are a good strategy for improving predictions’ accuracy [48].

Wang et al. [49] used back propagation neural networks (BPNN) and the Elman neural
network to predict unemployment rate. Neural networks are also used by Peláez [50] to
forecast the unemployment rate, together with econometric models.

As the asymmetric behavior of unemployment rate can be modeled using a nonlin-
ear time series model, Skalin and Terasvirta [51] proposed STAR. Peel and Speight [14]
forecasted the unemployment rate in the UK using self-exciting threshold autoregressive
(SETAR) models and an autoregressive model, in terms of RMSE, SETAR models registering
better forecasting performance. Koop and Potter [11] used threshold autoregressive (TAR)
in order to forecast the US unemployment rate, Johns [13] forecasted the unemployment
rate using AR(4), AR(4)-GARCH(1,1), SETAR(3,4,4), and neural network, highlighting that
SETAR is the best model.

According to the international definition [52], the unemployed are people aged be-
tween 15 and 74 who at the same time satisfy three conditions: they do not have a job,
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are available to start work in the next two weeks, and have been actively looking for a
job anytime in the last four weeks. The unemployment rate represents the share of the
unemployed in the active population, the active population in a country including all
persons who provide labor available for the production of goods and services during the
reference period, including employees and the unemployed.

Unemployment was first introduced in Romania in 1991, and the first study to assess
unemployment according to ILO standards was conducted in 1994 [1]. Specific to a country
in transition, unemployment in Romania was the result of the enterprise restructuring and
the contraction of production [53].

In the first period after 1990, although many occupations appeared in Romania,
the number of unemployed increased; 1994 had the highest registered unemployment
rate [54]. In the period 1995–1996, the number of unemployed decreased by 46.28% and
then increased significantly until 1999 due to socio-economic imbalances that arose from the
closure of other productive structures. After 1999, the economic activities were restructured
and privatized, especially in the case of large companies, leading to large layoffs, but also
to the emergence of new jobs, the result being the unemployment reduction. Since 2000,
employment in Romania has registered a continuous increase, with small fluctuations,
leading to a reduction in unemployment [55].

In order to substantiate the macroeconomic policies in Romania, it is important and
topical to forecast the labor supply, employment, and unemployment. In Romania, as in
other European countries, unemployment is monitored and assessed very seriously. The
most common method used in order to predict the unemployment in Romania involves
ARIMA models.

Son et al. [56] analyzed the unemployment rate in EU-27 countries, focusing on
Romania, concluding that the unemployment rate can be modeled by using a linear autore-
gressive model. Others studies using ARIMA models in order to predict the unemployment
rate in Romania were realized by Madaras [57], Bratu [58], and Simionescu [59], while
Dobre and Alexandru used the VARMA and VAR models [60], and at the level of two
Romanian counties (Brasov and Harghita), studies used the Box–Jenkins methodology and
NAR model based on the artificial neural network. Comparing the forecasted values with
the officially recorded unemployment rate from the same period, we noticed that by the
end of the period, the differences between the real and the predicted values became larger
in the NAR model than in the ARMA model forecast, medium-term forecasts, forecasts
based on the ARMA model being more accurate.

Other forecasts of the unemployment rate in Romania were realized by Bratu and
Marin [61] using several techniques: econometric, exponential modeling, smoothing tech-
nique, and moving average method; of these, predictions based on the exponential smooth-
ing technique recording the highest degree of accuracy. Voinegu et al. [62] predicted the
unemployment rate using Holt’s improved model, the monthly series being constructed
and disseminated in three forms: adjusted, seasonally adjusted, and trend adjusted. Other
predictions used the Kalman approach, the Kalman filter being appropriate for calcu-
lating the natural unemployment rate [63]. In the short term, Zamfir [64] modeled the
unemployment rate using stochastic models.

Simionescu [65] predicted the unemployment rate in Romanian counties using Internet
data and official data as well as a methodology consisting of different types of models with
panel data. In the case of the quarterly unemployment rate, updated vector-autoregressive
models (VAR models) and a Bayesian VAR model were used, but the VAR model exceeded
the Bayesian approach in terms of predicted accuracy [66].

In order to analyze the dynamics of the unemployment rate in Eastern Europe, in-
cluding Romania, Lukianenko et al. [67] constructed econometric regression models with
nonlinearities due to discrete changes in modes. Using the Markov switching model,
regularities were captured by modeling the asymmetry in the unemployment rate during
contractionary states, revealing the specifics of the labor market for each country and the
differences in the flexibility of reactions to changes in the economic environment.
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3. Data and Methodology

In order to determine the best model to forecast the Romanian unemployment rate, we
have investigated the monthly unemployment rate covering the period 2000M01 to 2020M12.
The data were provided by Eurostat (European Union labour force survey, EU-LFS).

When choosing models, it is common practice to split the available data into two
portions, training and test data, where the training data are used to estimate any parameters
of a forecasting method and the test data are used to evaluate its accuracy. Therefore, the
training set or “in-sample data” was set to the period 2000M01–M2017M12, and the test
set or the “out-of-sample data” was set to the period 2018M01-2020M12. The forecast of
unemployment rate will rely on the next two years of the period 2021–2022.

The main objective of the paper is to compare the forecasting potential of five models:
exponential smoothing models (additive and multiplicative Holt–Winters (HW) models,
and ETS model), the SARIMA model, the neural network autoregression (NNAR) model,
and the SETAR model, and to predict future values of unemployment rate beyond the
period under consideration.

Therefore, with the study, the forecasting performance was derived from the five
models in view of identifying the best suited forecasting procedure for the monthly unem-
ployment rate, taking into account the following steps:

1. Fit the Holt–Winters models (additive and multiplicative) on the training dataset
(January 2000 to December 2017)

2. Fit the ETS model on the training dataset
3. Fit the NNAR model on the training dataset
4. Fit the SARIMA model on the training dataset
5. Fit the SETAR model on the training dataset
6. Compare the in-sample forecast accuracy measures for the all models
7. Compare the out-of-sample forecast accuracy measures for the models over the period

January 2018 to December 2020
8. Compare the forecast projections of unemployment rate for all models over the period

January 2021 to December 2022.

3.1. Holt–Winters Method and ETS Models

We will start our technical demarche by introducing the class of exponential smoothing
methods as widely used forecasting procedures referring particularly to the Holt–Winters
(HW) method, which is a commonly used forecasting method in time series analysis incor-
porating both trend and seasonal components, irrespective of whether they are additive or
multiplicative in nature. The additive method is preferred when the seasonal variations
are roughly constant through the series, while the multiplicative method is preferred when
the seasonal variations are changing proportional to the level of the series.

The Holt–Winters’ additive method can be written as follows:

Lt = α(yt − St−s) + (1 − α)(Lt−1 + bt−1) (1)

bt = γ(Lt − Lt−1) + (1 − γ)bt−1 (2)

St = δ(yt − Lt) + (1 − δ)St−1. (3)

The Holt–Winters’ multiplicative method can be written as follows:

Lt = α
yt

St−s
+ (1 − α)(Lt−1 + bt−1) (4)

b1 = γ(Lt − Lt−1) + (1 − β)bt−1 (5)

St = δ
yt

Lt
+ (1 − δ)St−1 (6)
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where t = 1, . . . , n, s represents the length of seasonality (months), Lt represents the level of
the series, and bt denotes the trend and St seasonal component [22]. The constants used for
this model are α (level smoothing constant), γ (trend smoothing constant), and δ (seasonal
smoothing constant). In order to choose the most adequate smoothing constants, we tested
different values of the smoothing constants. The model is selected according to the certain
forecast accuracy such as MAPE (the mean absolute percentage error), the best model being
the model who register the minimum value for MAPE.

The ETS (error, trend, seasonal) model represents time series models that support
the exponential smoothing methods, consisting of a trend component (T), a seasonal
component (S), and an error term (E). These are based on error–trend–season probabilities
of Hyndman, being defined an extended class of ES methods using probability calculations
based on the state space, with support for model selection and the calculation of standard
forecast errors [68].

The long-term movement is characterized by the trend term, the pattern with known
periodicity is reflected by the seasonal term, and the error term represents the irregular,
unpredictable component of the series.

ETS models generate both point forecasts and prediction intervals (or forecast). If the
same values of the smoothing parameters are used, the point forecasts are identical but
will generate different prediction intervals.

The individual components of an ETS specification may be specified as being of the
following form: N = none, A = additive, M = multiplicative:

E: A, M
T: N, A, M
S: N, A, M.
An ETS (A,A,A) decomposition is a Holt–Winters method with an additive seasonal

component, and an ETS (M,A,M) represents a Holt–Winters method with a multiplicative
seasonal component.

The automatic selection of the model is based on the ETS smoothing. For each
ETS model, the probability and the forecast error can be calculated by comparing the
information criterion based on probability or an out-of-sample AMSE (The average mean
square error estimator finds the parameter values and initial state values that minimize
the average mean square error of the step forecasts of the specified ETS model) in order to
determine the model that best fits the most accurate data or forecasts. Automatic selection
for unemployment rate forecasting using the ETS framework will be done using Akaike
Information Criterion corrected (AICc) minimization.

3.2. The Neural Network Autoregression Model

Artificial neural networks are used to model complex nonlinear relationships between
input variables and output variables. An autoregression model of the neural network
(NNAR) has delayed values of a time series as input in the model, and it predicted values
of the time series as output. The major difference of the NNAR method compared to the
HW method is the non-existence of the restriction of stationary parameters. Considering
the seasonality of the monthly unemployment rate, the specification of the neural network
will be NNAR(p,P,k)m, and the graphical representation from Figure 1. By adding an
intermediate layer with hidden neurons, the neural network becomes nonlinear, and
without the hidden layer, NNA(p,P,0)m becomes SARIMA(p,0,0) (P,0,0)m.
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The NNAR model represents a feedforward neural network, involving a linear com-
bination function and an activation function. The linear combination function has the
following form [70,71]:

netj = ∑
i

wijyij. (7)

The hidden layer has a nonlinear sigmoid function in order to issue the input for the
next layer:

s(z) =
1

1 + e−z . (8)

In the case of NNAR(p,k) with p delayed entries and k nodes in the hidden layer, the
model involves delayed time series values as entries in a neural network, considering a
feed-forward network with a single hidden layer. The seasonal component is present in
the data (m = 12), so the last observed values from the same season will be added as inputs,
NNAR becoming NNAR(p,P,k)12.

The forecasting procedure is iterative; the one-step ahead forecast uses historical
inputs; and the two-steps ahead forecast uses the one-step ahead forecast and the histori-
cal data.

3.3. Seasonal Autoregressive Integrated Moving Average Model (SARIMA) Model

Taking into account the seasonal pattern exhibited by the monthly unemployment
rate, a seasonal process may be considered; therefore, the ARIMA model will become a
SARIMA model. The seasonal autoregressive integrated moving average (SARIMA) model
is a generalized form of an ARIMA model that accounts for both seasonal and non-seasonal
data. The SARIMA model is denoted as ARIMA(p,d,q) (P,D,Q)S and has the following
specification based on the backshift operator [72,73]:

φ(B)φ(Bs)(1 − B)d(1 − Bs)DYt = (B)(Bs)εt (9)

φ(B) = 1 − φ1B − φ2B2 − . . . − φpBp (10)

φ(Bs) = 1 − φ1Bs − φ2B2s − . . . − φpB2Ps (11)

(B) = 1 +1 B +2 B2 + . . . +q Bq (12)

(Bs) = 1 +1 Bs +2 B2s + . . . +Q BQs (13)
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where Yt represents the time series data at period t, B denotes the backshift operator, εt is a
sequence of i.i.d. variables (mean zero and variance σ2), s is the seasonal order, φi and φj
are the non-seasonal and seasonal AR parameters, θi and θj are respectively non-seasonal
and seasonal MA parameters, p, d, and q denote the non-seasonal AR, I, and MA orders,
respectively, and P, D, and Q respectively represent the seasonal AR, I, and MA orders.

Similar to the Box–Jenkins methodology, also, the SARIMA model follows a five-step
iterative procedure: identification, estimation, selection, diagnostics, and forecasting [34,60,69].

Before fitting a particular model to time series data, the stationarity of a series must be
checked [74]. In order to identify if the time series in stationary, the graphical representation
of the series together with the correlogram of the series in level, Bartlett test, and Ljung–
Box test can be applied. In order to test if the series has a unit root, the Augmented
Dickey–Fuller and Philips–Perron tests can be used. To obtain a stationary time series, the
corresponding value of d is estimated, in the case of a non-stationary series in mean, the
series is differentiated, and in the case of a non-stationary series in variance, the series
is logarithmized.

In addition, the series needs to be tested against the presence of a structural break
using the Zivot–Andrews test. The Zivot and Andrews endogenous structural break test is
a sequential test that uses the full sample and a different dummy variable for each possible
break date. The break date is selected where the t-statistics of a unit root ADF (Augmented
Dickey Fuller) test is at a minimum (most negative). Consequently, a break date will be
chosen when the null hypothesis of a unit root will be rejected. The Zivot–Andrews test
uses three scenarios: a structural break in the level of the series, a one-time change in
the slope of the trend, and a structural break in the level and slope of the trend function
of the series. Therefore, under the test, the null hypothesis assumes that the series yt
contains a unit root without any structural break, against the alternative that the series is a
trend-stationary process with a one-time break occurring at an unknown time point.

Another important feature that needs to be investigated for a series exhibiting a
seasonal pattern under the stationarity condition is to test for the presence of a seasonal
unit root using the HEGY test [75]. The HEGY test is used in case of a seasonal and non-
seasonal unit root in a time series. A time series yt is considered as an integrated seasonal
process if it has a seasonal unit root as well as a peak at any seasonal frequency in its
spectrum other than the zero frequency.

The test distinguishes between deterministic seasonality—which can be removed by
seasonal adjustment—and stochastic seasonality—which refers to unit roots at the seasonal
frequencies [76].

Once the stationarity has been achieved, the identification stage involves determining
the proper values of p, P, and q, Q based on the correlogram of the stationary series (ACF
and PACF plot). Checking the ACF and PACF plots, we should both look at the seasonal
and nonseasonal lags. Usually, the ACF and the PACF have spikes at lag k and cut off after
lag k at the non-seasonal level. The ACF and the PACF also have spikes at lag ks and cut
off after lag ks at the seasonal level. The number of significant spikes suggests the order of
the model [74].

An SAR signature usually occurs when the autocorrelation at the seasonal period
is positive, whereas an SMA signature usually occurs when the seasonal autocorrelation
is negative.

In the model selection stage, we need to decide on the optimal model from several
alternative estimated models in the situation in which two or more models compete in the
selection of the best model for the study.

In order to be able to make a decision, we can rely on the penalty information criteria
(Akaike Information Criterion (AIC), the Akaike Information Criterion corrected (The AICc
includes a penalty that discourages overfitting, and increasing the number of parameters
improves the goodness of fit [72]) (AICc), and the Bayesian Information Criterion (BIC),
choosing as an optimal model the model with the smallest values of AIC, AICc, and BIC.
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In the model estimation stage, the parameters of the chosen model are estimated using
the method of maximum likelihood estimation (MLE).

The diagnostic checking stage is the next stage investigating if the estimated model or
models are firstly validated in accordance with the classical tests: t-test for the statistical
significance of the parameters and F-test for the statistical validity of the model.

Secondly, the main hypotheses on the model residuals need to be tested, showing that
they are white noise, homoscedastic, and do not exhibit autocorrelation. The normality of
the residuals has been checked using Jarque–Bera test, while for non-autocorrelation, the
Ljung–Box test has been applied. When the variance of the residuals is not constant, the
issue of conditional heteroscedasticity is one of the key problems that is likely to encounter
when fitting models. For checking autoregressive conditional heteroskedasticity (ARCH)
in the residuals, the squared residuals correlograms and the ARCH-LM test can be used. In
case there is no ARCH in the residuals, the autocorrelations and partial autocorrelations
should be zero; regardless, the lags and the Q-statistics should be insignificant.

If at the level of this stage, one of the hypotheses is invalidated, we need to return to
the first stage of the model and rebuild a better model. Otherwise, if the model passes this
stage, the forecasting process can be implemented to predict future time series based on
the most reliable model validated in the previous stages.

The final stage is forecasting in order to design future time series values, using the
most convenient model according to previous stages [43].

3.4. SETAR Model

The SETAR model is part of the more general class of threshold autoregressive models
(TAR) and represents an extension of autoregressive models, bringing as its main advantage
in modeling a time series and a higher flexibility in parameters due to a regime-switching
behavior. Thus, this particular type of model allows for the prediction of future values of
unemployment rate, assuming that the behavior of the time series changes when the series
switch the regime, and this switching is dependent on the past values of the series. The
model relies on an autoregressive model of lags p, on each regime, and it is denoted to be
SETAR(k,p), where k is the number of thresholds (k + 1 regime assumed in the model) and
p is the order of an AR(p).

Even if the process is assumed to be linear in each regime, the switching from one
regime to another transforms the process into a nonlinear one.

The general specification of a two-regime SETAR(2,p,d) of the following regime to
the others proves the entire regime as nonlinear [66,67,73]. The two-regime version of the
SETAR model of order p is given by:

yt = φ
(1)
0 +

p(1)

∑
i=1

φ
(1)
i yt−i + ε

(1)
t , if yt−d ≤ τ (14)

yt = φ
(2)
0 +

p(2)

∑
i=1

φ
(2)
i yt−i + ε

(2)
t , if yt−d > τ (15)

where φ
(1)
i and φ

(2)
i are the coefficient in the lower and higher regime, respectively, which

needs to be estimated; τ is the threshold value; p(1) and p(2) are the order of the linear AR
model in the low and high regime, respectively. yt-d is the threshold variable governing
the transition between the two regimes, d being the delay parameter, which is a positive
integer (d < p); ε

(1)
t and ε

(2)
t are a sequence of independently and identically distributed

random variables with zero mran and constant variance [77].
The main phases for setting a SETAR model are the order selection of the model

based on AR(p) order identification together with the test for threshold nonlinearity, model
identification requiring the selection of the delay parameter d together with the location of
the threshold value, model estimation and evaluation, and the last stage forecasting the
future values of unemployment rate.
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Thus, the first stage in applying the SETAR model is to analyze the existence of a
nonlinearity behavior, and for that, it is important to first determine the appropriate lag
length of the autoregressive model AR(p) for the analyzed time series, and the choice could
rely on the minimum value of AIC. Secondly, we will test the existence of nonlinearity
using the Tsay F test, the null hypothesis of linearity being rejected if the p-value of the test
is smaller than the significance level assumed.

Proving that there is nonlinearity in the time series, we can pass to the second stage—
model identification—and we will consider a two-regime SETAR model with the order p
of autoregressive parts equal in both regimes, SETAR(2,p,d).

In the third stage, the selection of delay parameter together with the location of the
threshold value is realized, taking into account that the possible value d is less than order.
Therefore, several SETAR models with different delay parameters and threshold values
can be identified, and based on a grid search method, the best model is selected to be the
model with the smallest value for the residual sum of squares.

The model is estimated using the MLE, and then, the adequacy of the selected model is
evaluated based on diagnostics tests on residuals. The ARCH-LM test is used for testing the
hypothesis of constant variance and Breusch–Godfrey is used for testing for higher-order
serial correlation in the residuals.

3.5. Forecasting Performance Comparison

In order to provide predictions of the future values of unemployment rate based on
past and present data and analysis of trends, it is important to use both in-sample and
out-of-sample forecasting performance methods, even if the out-of-sample is known to
offer more reliable results. Therefore, a model with good performance in the out-of-sample
forecasting performance is picked as the best model. The forecasting performance of models
was evaluated on two sub-samples: in-sample data, 2000M01–2017M12, which is used to
estimate and identify the model and also to provide in-sample forecasting performance,
and out-of-sample data, 2018M01–2020M12, which is used for analyzing the forecasting
performance.

Forecasting accuracy offers valuable information about the goodness fit of the forecast-
ing model and shows the capacity of the model to predict future values of unemployment
rate. Three criteria have been used to evaluate the performance of models both on in-sample
data and out-of-sample data: the root mean squared error (RMSE), the mean absolute error
(MAE), and the mean absolute percent error (MAPE). The better forecast performance of
the model is that with the smaller error statistics.

Another test used to check the existence of differences between the forecast accuracy
of two models was the Diebold–Mariano test [78], which assumes in the null hypothesis the
absence of such a difference against the alternative of the existence of a statistical difference
between the forecast accuracy of the models.

4. Data and Empirical Results

We have used in the empirical analysis the ILO unemployment rate for Romania
covering the period 2000M01–2020M12, summing up a total of 252 monthly observations.
The data source is the Employment and Unemployment database of Eurostat. We used for
the model estimation and identification the estimation period 2000M1–2017M12 as training
data and the period 2018M01–2020M12 as test data, while the forecast projections have
been made for the next two years, 2021–2023.

The evolution of unemployment rate revealed an oscillating trend, from peaks (8.1%
in January 2001 and January–March 2002) to minimum levels (5% in September 2008). The
winter months of the years 2000, 2001, and 2002 registered increases in the unemployment
due to lack of jobs, the year 2002 recording the highest rate of the monthly unemployment
rate (144%). A potential explanation could be the dismissals that took place as a result
of the implementation of restructuring and privatization programs of different sectors of
activity. The impasse in the general economic and social development of Romania, the low
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living standard, and the lack of future perspectives from the period 1998–2000 reactivated
the migration phenomenon, causing many Romanians to look for a job in more developed
countries. However, after 1998, illegal migration predominated, which was mainly directed
to Italy and Spain.

Compared to previous years, in 2004, the unemployment rate decreased; the number
of persons entering unemployment was lower than the previous year by 92,442 persons.
The 278,080 unemployed related to 2004 came from the redundancies that took place as a
result of restructuring and privatization programs of different sectors of activity, and of
these, only 67,042 people came from collective redundancies; the remaining 211,038 people
came from current redundancies personal.

Young people represent the best professionally trained age group in Romania, but
also the most exposed to unemployment, highlighting the brain-drain phenomenon. The
decrease in the unemployment rate in the period 2002–2006 is due both to legal and illegal
departures of persons to work abroad. Thus, in 2006, according to the figures offered
by Eurostat, it was estimated that over two million Romanians work in the countries of
Western Europe or other developed countries. The economic crisis from 2008 created
another peak in the evolution of unemployment rate, registering in the first three months
of 2010 the values of 7.7%, 7.7%, and 7.9% and oscillating around this value until the first
three months of 2015 (7.5%, 7.4%, and 7.2%).

The unemployment rate in 2008 decreased compared to the previous year (6.4%),
but during the economic crisis of 2008–2009, there was a substantial increase in the un-
employment rate. Although the number of jobs in the economy is constantly decreasing,
the unemployment rate is decreasing, the explanation of this paradox being given by
the following:

1. Working abroad: according to official estimates, in the first nine months of 2010, the
number of those who went to work abroad exceeded 380,000, of which 140,000 went
on their own, 140,000 went through recruitment agencies, and 102,000 went through
the NAE (National Agency for Employment)

2. Retirement of some of the employees. Quarterly, 70,000–80,000 people retire; therefore
200–300,000 employees must be replaced annually. It is very likely that companies
will no longer replace some of the people who have retired, so that the number of
employees can decrease without increasing the number of unemployed.

3. Undeclared work. In second quarter of 2010, the number of undeclared workers
increased by almost 100,000.

For the last years, the trend for unemployment rate was continuously downward,
with a minimum point in the first month of 2020 (3.8%), and since February 2020, the
unemployment rate registered an ascendant trend. The reversed trend was due to the
high unemployment rate (18.5%) among young people (15–24 years) and seasonality in the
construction and tourism sectors.

In 2019, the unemployment rate decreased to 3.9%, compared to 4.2% in 2018, affecting
to a greater extent the graduates of lower and secondary education, for which the rate was
6.3% and 4%, respectively, according to data from the National Institute of Statistics (NIS).
On the other hand, the unemployment rate for people with higher education was much
lower, 1.6% in 2019.

In 2020, in the context of the coronavirus crisis, the unemployment rate started to
increase since February, with the taking of safety measures, reaching 5.2% in May, which
was the highest level since 2017. According to the NIS, the number of unemployed people
exceeded 460,000, with over 110,000 more people than the same period last year.

In August, the unemployment rate decreased by 0.1 points compared to the previous
month, but it increased by 1.5 points compared to the same month last year. Thus, August
was the first month since the beginning of the COVID-19 pandemic on the Romanian
territory when the unemployment rate registered a decrease. In March, the unemployment
rate was 4.6%.
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In autumn, in October 2020, the unemployment rate increased by 0.2 points compared
to the previous month (5.1%), unemployment among men being higher than among women
by 0.5 percentage points, according to the NIS. Unfortunately, youth unemployment
(18–24 years) is approaching 20%. As for the number of unemployed, Romanians looking
for a job were 477,000, with over 100,000 more than in October of the previous year.

In January–October 2020, the medium unemployment rate stood at 4.9%, which was
up 1.1 points year/year, an evolution determined by the incidence of the health crisis (and
the consequences of this unprecedented shock), partially offset by the implementation of
an unprecedented relaxed mix of economic policies.

Figure 2 revealed that the Romanian unemployment rate exhibited seasonal fluctu-
ations over the period 2000–2020, with peaks in the last and the first months of the year.
Figure 2 depicts the evolution of the monthly unemployment rate, revealing a clear seasonal
component in the data, which was confirmed also by the autocorrelation plot (Figure 3).
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4.1. Holt–Winters Results

The empirical results of Holt–Winters additive and multiplicative models revealed that
because both models have exactly the same number of parameters to estimate, the training
RMSE from both models can be compared, revealing that the method with multiplicative
seasonality fits the data best. In addition, based on the informational criteria (AIC, AICc, or
BIC), the optimal model is also the multiplicative version of HW. Table 1 gives the results of
the both in-sample and out-of-sample forecasting accuracy measures of the Holt–Winters
methods for the unemployment rate.

According to the RMSE measure, the multiplicative model performs better than the
additive one, while based on the other forecast accuracy measures (MAPE, MASE, or
MAE), the optimal model is the additive one, for which they registered the minimum
values (Table 2).

Analyzing the evolution of monthly unemployment rate for the period 2021–2022, it
can be highlighted the fact that the forecast projections tend to under evaluate the actual
series, not capturing the impact of the pandemics, and revealing a downward trend in both
cases, which is more accentuated in the case of the multiplicative model (Figure 4).
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Table 1. The empirical results of HW for the forecast of unemployment rate.

Model 1: Holt–Winters’ Multiplicative
Method Model 2: Holt–Winters’ Additive Method

Smoothing parameters: Smoothing parameters:
Alpha (level) = 0.6928 Alpha (level) = 0.7503
Beta (trend) = 0.0001 Beta (trend) = 0.0001

Gamma (seasonal) = 0.0001 Gamma (seasonal) = 0.0001

AIC = 630.187 AIC = 645.789
AICc = 633.278 AICc = 648.8807
BIC = 687.566 BIC = 703.169

Table 2. Forecasting performance of Holt–Winters.

Holt–Winters’ Multiplicative Method Holt–Winters’ Additive Method
Training Dataset Testing Dataset Training Dataset Testing Dataset

ME −0.0124 −0.2670 0.0006 −0.0371
RMSE 0.2771 0.6906 0.2804 0.7480
MAE 0.2086 0.6524 0.2109 0.6273
MPE −0.3191 −7.8322 −0.1259 −2.6101

MAPE 3.0368 15.1393 3.0699 13.8268
MASE 0.3317 1.0374 0.3353 0.9974

Entropy 2021, 23, 325 15 of 32 
 

 

 

Figure 4. The forecast of unemployment rate based on Holt–Winters (HW) models for the period 2021–2022. 

4.2. ETS Models Results 

In the process of obtaining a reliable forecast of the monthly unemployment rate, the 

ETS automatic selection framework, based on minimizing the AICc, revealed the optimal 

model to be an ETS(M,N,M) with multiplicative error, no trend, and multiplicative season. 

The empirical results highlighted that on the training dataset, the ETS model produces 

better results in comparison with HW additive or multiplicative methods (Table 3). The 

ETS(M,N,M) model will provide different point forecasts to the multiplicative Holt–Win-

ters’ method, because the parameters have been estimated differently, the default estima-

tion method being maximum likelihood rather than minimum sum of squares (Table 4). 

Table 3. The empirical results of ETS (error, trend, seasonal) models for the forecast of unemploy-

ment rate. 

ETS(M,N,M) Model: Multiplicative Error, No Trend, Multiplicative Season 

Smoothing parameters: 

Alpha(level) = 0.7914  

Gamma(seasonal) = 0.0001 

AIC = 627.799 

AICc = 630.199 

BIC = 678.428 

Table 4. Forecasting performance of ETS model. 

 ETS Model 

 Training dataset 

ME −0.0166 

RMSE 0.2788 

MAE 0.2097 

MPE −0.3682 

MAPE 3.0569 

MASE 0.3335 

The plot of ETS(M,N,M) components displays the states over time, while Figure 3 

shows point forecasts and prediction intervals generated from the model. The empirical 

results of the model pointed out an under evaluation of the real values during the period 

of the test dataset from 2018 to 2020, highlighting an oscillating evolution characterized 

by a strong seasonal pattern also for the forecast projections period, 2021–2022 (Figure 5). 

Figure 4. The forecast of unemployment rate based on Holt–Winters (HW) models for the period 2021–2022.

4.2. ETS Models Results

In the process of obtaining a reliable forecast of the monthly unemployment rate, the
ETS automatic selection framework, based on minimizing the AICc, revealed the optimal
model to be an ETS(M,N,M) with multiplicative error, no trend, and multiplicative season.
The empirical results highlighted that on the training dataset, the ETS model produces
better results in comparison with HW additive or multiplicative methods (Table 3). The
ETS(M,N,M) model will provide different point forecasts to the multiplicative Holt–Winters’
method, because the parameters have been estimated differently, the default estimation
method being maximum likelihood rather than minimum sum of squares (Table 4).
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Table 3. The empirical results of ETS (error, trend, seasonal) models for the forecast of unemployment rate.

ETS(M,N,M) Model: Multiplicative Error, No Trend, Multiplicative Season

Smoothing parameters:
Alpha(level) = 0.7914

Gamma(seasonal) = 0.0001

AIC = 627.799
AICc = 630.199
BIC = 678.428

Table 4. Forecasting performance of ETS model.

ETS Model

Training dataset
ME −0.0166

RMSE 0.2788
MAE 0.2097
MPE −0.3682

MAPE 3.0569
MASE 0.3335

The plot of ETS(M,N,M) components displays the states over time, while Figure 3
shows point forecasts and prediction intervals generated from the model. The empirical
results of the model pointed out an under evaluation of the real values during the period
of the test dataset from 2018 to 2020, highlighting an oscillating evolution characterized by
a strong seasonal pattern also for the forecast projections period, 2021–2022 (Figure 5).
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4.3. NNAR Model

In order to fit the NNAR model, the series of unemployment rate has been explored
on the training dataset in the process of identifying the order of an AR term present in
the data, using the correlogram of the series. Based on the ACF and PACF plots, a pure
AR(1) process can be highlighted for the non-seasonal part. Analyzing the ACF plot, the
decaying spikes at every 12-month interval indicate a seasonal component present in the
data (Figure 6). As the autocorrelation at the seasonal period (ACF at lag 12) is positive, an
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autoregressive model for the seasonal part should be considered; therefore, the order P was
set to 1. Therefore, a NNAR(1,1,k)12 model is fitted, and the in-sample and out-sample root
mean square error (RMSE), mean absolute error (MAE), mean absolute scale error (MASE),
and mean absolute percentage error (MAPE) are provided in Table 5 where k = 1, . . . , 14.
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Table 5. Forecasting performance of NNAR(1,1,k)12.

Training Dataset Test Dataset

k RMSE MAE MAPE MASE RMSE MAE MAPE MASE
1 0.3570 0.2734 3.9654 0.4348 0.6792 0.6399 16.2143 1.0174
2 0.3477 0.2662 3.8562 0.4233 0.9019 0.8542 21.6274 1.3582
3 0.3402 0.2604 3.7626 0.4141 0.8510 0.8044 20.3754 1.2790
4 0.3329 0.2553 3.6772 0.4059 2.0452 1.8630 47.2547 2.9622
5 0.3297 0.2524 3.6264 0.4013 1.6242 1.4196 36.1478 2.2572
6 0.3228 0.2464 3.5341 0.3918 0.7710 0.7208 18.2993 1.1461
7 0.3195 0.2443 3.5057 0.3884 0.7739 0.7221 18.3387 1.1482
8 0.3173 0.2421 3.4737 0.3850 0.8042 0.7518 19.0849 1.1954
9 0.3167 0.2421 3.4681 0.3850 0.7873 0.7356 18.6744 1.1696
10 0.3150 0.2411 3.4513 0.3834 0.5979 0.5508 14.0168 0.8758
11 0.3087 0.2362 3.3860 0.3757 0.6936 0.6450 16.3913 1.0256
12 0.3033 0.2329 3.3456 0.3704 0.6220 0.5747 14.6184 0.9139
13 0.3058 0.2339 3.3533 0.3719 0.7008 0.6510 16.5462 1.0351
14 0.3064 0.2357 3.3779 0.3749 0.6944 0.6452 16.4001 1.0260

The selection of the best model relied on the lowest values of all the forecast accuracy
measures (RMSE, MAE, MAPE, and MASE), but especially on the values of MAPE and
MASE, which are scale independent and used to compare forecast accuracy across series on
different scales and seen as an appropriate measure when the out-of-sample data are not of
the same length as the in-sample data. Based on the results of Table 5, MASE and MAPE are
lower for the training dataset with 12 nodes in the hidden layer, whereas the out-of-sample
MASE and MAPE are lower for 10 nodes in the hidden layer. Therefore, we can consider
as the best choice the model NNAR(1,1,10)12. The forecast of the unemployment rate based
on the NNAR(1,1,10)12 model results revealed a downward trend with a peak in September
2018 (4.43%) and with a forecasting value for 2021–2022 oscillating around the value of
4.35% (Figure 7).

4.4. SARIMA Model

For fitting a SARIMA model, we used data covering the period January 2000 to
December 2017. The descriptive statistics values of the unemployment rate for the training
dataset are displayed in Figure 8. The series exhibited a strong seasonal pattern over the
horizon 2000–2017.
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4.4.1. Testing for Non-Stationarity

In order to fit a suitable time series model, the stationarity need to be investigated
based on Augmented Dickey–Fuller and Philips–Perron tests. The graphical inspection of
the autocorrelation and partial correlation plot of Romania’s quarterly unemployment rate
(Figure 9) revealed that the values of autocorrelation coefficients decrease slowly, pointing
out a nonstationary and relatively stable seasonal pattern of our time series.

The time-series plot of the first difference of the series highlighted that the unemploy-
ment rate is a non-stationary mean time series. The information is also confirmed by the
empirical results of Bartlett and Ljung–Box tests.

The time-series plot of the first difference of the series highlighted that the first
difference of the unemployment rate seems to be a stationary mean time series. Therefore,
the original quarterly series is a non-stationary time series.

Diagram (b) from Figure 9 indicates that a possible stationarity exists in first differences.
Alternately, we investigated the presence of unit roots by applying the Augmented Dickey–
Fuller and Phillips–Peron tests initially to the series in level and then to the series in
first differences. The empirical results on unemployment rate are displayed in Table 6,
indicating that the series of unemployment rate is stationary in first differences, being
integrated of order 1.
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Table 6. Unit root analysis of the Romanian unemployment rate.

Variable Unit Root
[Transf.] Level First Difference

ADF PP ADF PP

Unemployment
rate

I(1)
[∆UR]

T&C −3.56 ** −3.52 ** −15.87 *** −16.20 ***
C −2.58 * −2.72 * −15.90 *** −16.01 ***

None −0.90 −0.98 −15.91 *** −16.01 ***
Note: ***, **, and * means stationary at 1%, 5%, and 10%; T&C represents the most general model with a constant
and trend; C is the model with a constant and without trend; None is the most restricted model without a drift
and trend. For the ADF test, the number of lags was determined using SCH criterion for a maximum of 14 lags to
remove serial correlation in the residuals. For both PP tests, the value of the test was computed using Newey–West
Bandwith (as determined by Bartlett kernel). Tests for unit roots have been carried out in E-VIEWS 11.

The next step was to test the presence of a structural break around 2009 (from
Figure 10), taking into account that the presence of a structural break will invalidate the
results of unit root tests. Therefore, the Zivot–Andrews test has been used, the empirical
result revealing that there is not enough evidence to reject both the null hypothesis that
unemployment has a unit root with structural break in trend, and in both intercept and
trend (Table 7).

Thus, the empirical results proved that the unemployment rate is non-stationary and
integrated of order 1, I(1).

However, because the series of unemployment exhibits a seasonal pattern over the
training period, the study will use a seasonal ARIMA model instead of non-seasonal models;
therefore, it is necessary to check whether the seasonality is needed to be differenced or not,
testing if the stochastic seasonality is present within the data, the empirical results of Hegy
test revealing the rejection of seasonal unit root and the acceptance of only a non-seasonal
unit root. Therefore, seasonal difference is not needed.

Therefore, we can conclude that the unemployment rate is a non-stationary series,
without stochastic seasonality and integrated of order 1. Thus, the rate of unemployment
will be modeled at the first difference of the series within the SARIMA model and self-
exciting threshold autoregressive (SETAR) model.



Entropy 2021, 23, 325 19 of 31

Entropy 2021, 23, 325 19 of 32 
 

 

Variable 
Unit Root 

[Transf.] 
 Level First Difference 

   ADF PP ADF PP 

Unemployment 

rate 

I(1) 

[∆UR] 

T&C −3.56 ** −3.52 ** −15.87 *** −16.20 *** 

C −2.58 * −2.72 * −15.90 *** −16.01 *** 

None −0.90 −0.98 −15.91 *** −16.01 *** 

Note: ***, **, and * means stationary at 1%, 5%, and 10%; T&C represents the most general model 

with a constant and trend; C is the model with a constant and without trend; None is the most 

restricted model without a drift and trend. For the ADF test, the number of lags was determined 

using SCH criterion for a maximum of 14 lags to remove serial correlation in the residuals. For 

both PP tests, the value of the test was computed using Newey–West Bandwith (as determined by 

Bartlett kernel). Tests for unit roots have been carried out in E-VIEWS 11. 

The next step was to test the presence of a structural break around 2009 (from Figure 

10), taking into account that the presence of a structural break will invalidate the results 

of unit root tests. Therefore, the Zivot–Andrews test has been used, the empirical result 

revealing that there is not enough evidence to reject both the null hypothesis that unem-

ployment has a unit root with structural break in trend, and in both intercept and trend 

(Table 7). 

 
 

Figure 10. The Romanian ILO unemployment rate for the period 2000M1–2020M12. 

Table 7. Zivot–Andrews unit root test having a structural break for unemployment rate. 

Series  

(Trend Specification: 

Trend and Intercept) 

 

Allowing for 

Break in 

Trend 

Allowing for 

Break in Both In-

tercept and Trend 

Unemployment Rate 

Minimum t-stat  

(Lag length has been 

established using SBC criterion 

for maximum 14 lags) 

p-value 

−4.139 

(0.13) 

−4.484 

(0.243) 

Critical values   

1% −5.067 −5.719 

5% −4.524 −5.175 

10% −4.261 −4.893 

  

Potential 

break point at 

2015M09 

Potential break 

point at 2009M06 

Thus, the empirical results proved that the unemployment rate is non-stationary and 

integrated of order 1, I(1). 

Figure 10. The Romanian ILO unemployment rate for the period 2000M1–2020M12.

Table 7. Zivot–Andrews unit root test having a structural break for unemployment rate.

Series
(Trend Specification:
Trend and Intercept)

Allowing for Break
in Trend

Allowing for Break
in Both Intercept

and Trend

Unemployment Rate

Minimum t-stat
(Lag length has been
established using SBC

criterion for
maximum 14 lags)

p-value

−4.139
(0.13)

−4.484
(0.243)

Critical values

1% −5.067 −5.719

5% −4.524 −5.175

10% −4.261 −4.893

Potential break point
at 2015M09

Potential break point
at 2009M06

4.4.2. Identification of the Model

For the first difference of the UR, the model identification implies the identification of
proper values of p, P, q, and Q using the ACF and PACF plot. The seasonal part of an AR
or MA model will be seen in the seasonal lags. The ACF plot has a spike at lags 4 and 6 and
an exponential decay starting from seasonal lag 12, suggesting a potential non-seasonal
MA component-MA(4) or MA(6) (Table 8).

Table 8. HEGY test of seasonality for level of unemployment series.

Null Simulated p-Value *
The Presence of
Non-Seasonal
Unit Root **

The Presence
of Seasonal
Unit Root **

Unemployment rate
Non-seasonal unit root (zero frequency)
Seasonal unit root (2 months per cycle)
Seasonal unit root (4 months per cycle)

0.736310
0.005643
0.000000

Yes No
Seasonal unit root (2.4 months per cycle) 0.000177
Seasonal unit root (12 months per cycle) 0.000177
Seasonal unit root (3 months per cycle) 0.000000
Seasonal unit root (6 months per cycle) 0.000000

Note: The HEGY test was applied taking into account intercept and trend and seasonal dummies; the maximal
number of lags was eight following Schwarz criterion and a number of 1000 simulations. * If the probability is
higher than 0.10, then the presence of the non-seasonal unit root cannot be rejected. ** If the probability is higher
than 0.10, then the presence of a seasonal unit root cannot be rejected.

The PACF plot shows that lags 4, 6, and 12 are significant, capturing also potential non-
seasonal AR components together with a seasonal AR(1) (Figure 11). In our case, because
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the autocorrelation at the seasonal lags (12, 24) is positive, a combination of seasonal and
non-seasonal autoregressive models can be identified. Thus, several models have been
specified, and based on AIC and BIC together with the goodness of fit measures, the best
model has been identified.
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Thus, several models have been specified, and based on AIC and BIC together with the
goodness of fit measures, the best model has been identified, taking into account the lowest
values of AIC and SBC. The best model has been an ARIMA(0,1,6)(1,0,1)12 considered
based on the minimum value of AIC and SBC (Table 9).

Table 9. AIC and SBC for the suggested ARIMA models.

Model AIC AICc BIC

ARIMA(4,1,4)(1,0,0)12 133.2 134.28 166.9

ARIMA(4,1,4)(2,0,0)12 129.99 131.29 167.07

ARIMA(4,1,4)(3,0,0)12 124.03 125.58 164.48

ARIMA(4,1,4)(3,0,1)12 116.73 118.54 160.55

ARIMA(0,1,4)(3,0,0)12 148.39 149.09 175.36

ARIMA(4,1,4)(0,0,3)12 130.87 132.41 171.31

ARIMA(4,1,4)(0,0,1)12 136.36 137.43 170.06

ARIMA(6,1,0)(1,0,0)12 148.51 149.21 175.48

ARIMA(6,1,0)(2,0,0)12 132.34 133.22 162.68

ARIMA(6,1,0)(3,0,0)12 124.33 125.41 158.04

ARIMA(6,1,6)(3,0,0)12 128.28 131.03 182.21

ARIMA(0,1,6)(1,0,0)12 146.22 146.92 173.19

ARIMA(0,1,6)(2,0,0)12 131.15 132.03 161.49

ARIMA(0,1,6)(3,0,0)12 124.17 125.25 157.87

ARIMA(0,1,6)(1,0,1)12 108.42 109.3 138.76

ARIMA(0,1,6)(2,0,1)12 109.83 110.91 143.54

4.4.3. Model Estimation

Based on the model identified in the previous stage, we can proceed to the phase of
model estimation using maximum likelihood method (ML), the empirical results being pre-
sented in Table 10. All coefficients statistically are significant at the 10% significance level.
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Table 10. Estimates of parameters for SARIMA(0,1,6)(1,0,1)12.

Estimate S td. Error z Value Pr(>|z|)

ma6 −0.12316 0.069532 −1.7712 0.07653 *
sar1 0.983605 0.015399 63.8766 2.2 × 10–16 ***
sma1 −0.8462 0.066935 −12.6421 2.2 × 10–16 ***

Note: *** and * means stationary at 1% and 10%.

4.4.4. Diagnostic Checking of the Model

Apart from classical tests, the t-test for the statistical significance of the parameters,
and the F-test for the validity of the model, the selection of the best model depends also
on the performance of residuals. For that, the series of residuals has been investigated to
follow a white noise. The empirical results of the Ljung–Box test show that the p-values of
the test statistic exceed the 5% level of significance for all lag orders, which implies that
there is no significant autocorrelation in residuals (Figure 12).
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For checking autoregressive conditional heteroskedasticity (ARCH) in the residuals,
the ARCH-LM test has been used, and the empirical results confirmed that there is no
autoregressive conditional heteroscedasticity (ARCH) in the residuals (Table 11). Therefore,
we can conclude that residuals are not autocorrelated and do not form ARCH models, the
SARIMA(0,1,6)(1,0,1)12 model being reliable for forecasting (Table 12).

Table 11. Empirical results of JB test and autoregressive conditional heteroskedasticity (ARCH)-LM
test for model residuals.

Ljung–Box Test p-Value ARCH-LM Test p-Value

12 2.9459 0.5669 9.1184 0.6928
24 15.123 0.5157 44.267 0.2345
36 25.531 0.5988 51.336 0.1878
48 40.434 0.4511 58.159 0.1495

Table 12. Forecasting performance of SARIMA(0,1,6)(1,0,1)12.

Training Dataset Testing Dataset

RMSE 0.28861 0.764092
MAE 0.22163 0.615342

MAPE 3.20478 13.37031
MASE 0.35240 0.97840

The forecast of the unemployment rate based on the ARIMA(0,1,6)(1,0,1)12 model
results revealed a downward trend with a forecasting value for 2021–2022 oscillating
around the value of 3–4% (Figure 13).
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4.5. Self-Exciting Threshold Autoregressive (SETAR Model)

In fitting a SETAR model for the Romanian unemployment rate, the first stages re-
quire the identification of the autoregressive order and testing the existence of nonlinear
thresholds. The autoregressive order has been identified based on the PACF plot. Fol-
lowing Desaling [74], we explored the unemployment rate in level for identifying the lag
autoregressive order, since the non-stationarity in UR does not cause the non-stationarity
of nonlinear thresholds in the SETAR model, even if the existence of a unit root in one
regime can occur. Significant spikes can be observed at lags 1, 7, and 13 (Figure 14).
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At these lags, we have tested the presence of nonlinear thresholds applying the Tsay
test of threshold nonlinearity, the empirical results being presented in Table 13, revealing
that there is enough evidence to reject the null hypothesis of no nonlinear threshold in
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autoregressive order 1, 7, 8, 9, 10, 11, 12, and 13, the p-value being mostly less than 1%.
Therefore, at these lags, the SETAR model is better than the simple AR model.

Table 13. The empirical results of the Tsay test.

Order F-Statistics p-Value AIC

AR(1) 4.798 0.029 ** 0.734
AR(2) 1.935 0.125 -
AR(3) 1.363 0.231 -
AR(4) 1.097 0.366 -
AR(5) 1.119 0.341 -
AR(6) 1.267 0.202 -
AR(7) 1.744 0.016 ** 0.689
AR(8) 1.994 0.001 *** 0.693
AR(9) 2.116 0.001 *** 0.697

AR(10) 1.989 0.001 *** 0.696
AR(11) 2.151 0.001 *** 0.698
AR(12) 2.257 0.001 *** 0.702
AR(13) 2.034 0.003 *** 0.628

Note: ***, ** means statistical significance at 1%, 5%.

For the lags exhibiting a nonlinear threshold, we have used the lowest values of AIC
to select the optimal model for which we will design the SETAR model. Thus, an AR(13)
with possible values of delay parameter d = 1 . . . 12 < p has been used in setting the SETAR
model. Since the number of potential regimes in the autoregressive model depends on
the number of threshold values, a grid search method has been performed to determine
the regimes and estimate the thresholds value under the condition of one threshold in AR
based on the smallest value of sum of squared residuals. Thus, the delay parameter d = 10
registered the smallest value for residuals sum of squares; therefore, a SETAR model with
two regimes of order 13 and threshold decay 1, a SETAR(2,13,1) model with a threshold
variable could be appropriate to explain the nonlinearity in the data (Figure 15).
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Table 14 displays the estimated parameters of the SETAR(2,13,1) with the threshold of
7.79, the model having the following specification:

yt =

{
0.13 + 0.82yt−1 + . . . − 0.307yt−13, i f yt−1 < 7.799

2.344 + 0.539yt−1 + . . . − 0.019yt−13, i f yt−1 > 7.799

}
.
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Table 14. Estimates of parameters for SETAR(2,13,1).

Variable Coefficient Std. Error Prob.

UR(−1) < 7.7999999–171 obs
C 0.130 0.264 0.623

UR(−1) 0.820 0.079 0.000 ***
UR(−2) 0.254 0.099 0.011 ***
UR(−3) −0.055 0.099 0.579
UR(−4) −0.136 0.098 0.168
UR(−5) 0.063 0.092 0.499
UR(−6) −0.126 0.092 0.172
UR(−7) 0.078 0.092 0.401
UR(−8) 0.069 0.097 0.475
UR(−9) 0.010 0.093 0.917

UR(−10) −0.030 0.099 0.762
UR(−11) 0.103 0.101 0.310
UR(−12) 0.237 0.099 0.018 **
UR(−13) −0.307 0.076 0.000 ***

7.7999999 <= UR(−1)–32 obs
C 2.344 2.092 0.264

UR(−1) 0.539 0.202 0.008 ***
UR(−2) 0.214 0.184 0.247
UR(−3) 0.022 0.194 0.909
UR(−4) −0.643 0.207 0.002 ***
UR(−5) 0.682 0.335 0.043
UR(−6) 0.062 0.264 0.814
UR(−7) 0.141 0.299 0.637
UR(−8) −0.639 0.267 0.018 **
UR(−9) −0.526 0.301 0.083

UR(−10) 0.479 0.218 0.030 **
UR(−11) 0.833 0.181 0.000 ***
UR(−12) −0.440 0.257 0.089
UR(−13) −0.019 0.198 0.923

Note: ***, ** means statistical significance at 1%, 5%.

After the estimation stage, the residuals of the model have been checked for best fit,
verifying them for the information of serial autocorrelation, constant variance, and zero
mean based on ARCH-LM and Breusch–Godgrey tests. Having the p-values greater than a
1% significance level, we can conclude that the residuals are not autocorrelated and with
constant variance (Table 15).

Table 15. Residuals diagnostic test for SETAR(2,13,1).

BG Test
(F-Stat) p-Value ARCH-LM Test p-Value

12 1.180 0.301 0.722 0.728
24 0.99 0.473 0.738 0.805
36 1.179 0.247 0.991 0.493
48 1.197 0.213 1.068 0.381

The forecast of unemployment rate based on the results of the SETAR(2,13,1) model
(Table 16) revealed an upward trend, over evaluating the phenomenon (Figure 16).
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Table 16. Forecasting performance of SETAR(2,13,1).

Training Data Set Testing Data Set

RMSE 0.931 0.834
MAE 0.803 0.715

MAPE 11.598 17.742
MASE 12.022 15.770
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4.6. Comparison of Models Forecasting Performance

Analyzing the forecasting performance of all models for the in-sample dataset based
on RMSE, MAE, and MAPE as well as on the results of the Diebold and Marino test, it
can observed that all three criteria suggested that multiplicative HW registered better
forecast performance for the training dataset. The p-value of the Diebold and Marino test
highlighted the existence of differences in forecast accuracy between almost all models,
with the exception of multiplicative HW and ETS, for which the probability being higher
than 10% does not provide enough evidence to reject the null hypothesis (Table 17).

The out-of-sample forecasting performance of models has performed with a one-
step ahead recursive method. Based on RMSE and MAE values, the NNAR model has
better forecasting performance, while MAPE stipulates the SARIMA model to register
higher performance. For the out-of-sample data, the empirical results of the DM test
pointed out differences in the predictive power for almost all models, with the exception of
multiplicative HW and NNAR, for which the p-value is greater than the 10%, so the null
hypothesis can not be rejected (Table 18).

Analyzing comparatively the forecast performance of all methods during the period
2018–2022 and taking into account the presence of the pandemic shock, it is worth mention-
ing that ETS and Multiplicative HW are the methods that best capture the pandemic shock
from 2020, offering forecast values relatively close to the real values of unemployment rate
from the pandemics (Figure 17).
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Table 17. In-sample forecasting performance of models.

Measures
Model

Holt–Winters
Additive

Holt–Winters
Multiplicative ETS NNAR SARIMA SETAR

RMSE 0.2804 0.2771 0.2788 0.315 0.28861 0.931
MAE 0.2109 0.2086 0.2097 0.2411 0.22163 0.803

MAPE 3.0699 3.0368 3.0569 3.4513 3.20478 11.598

DM Test for in Sample at h = 1

Models DM Test Statistics p-Value

HW Additive vs. HW
Multiplicative 7.7819 0

HW Additive vs. ETS −7.7841 0
HW Additive vs. NNAR 4.2089 0

HW Additive vs. SARIMA 1.6588 0.0986
HW Additive vs. SETAR 55.592 0

HW Multiplicative vs. ETS 0.3324 0.7399
HW Multiplicative vs. NNAR 8.1815 0

HW Multiplicative vs. SARIMA 8.0321 0
HW Multiplicative vs. SETAR 55.568 0

ETS vs. NNAR 8.1791 0
ETS vs. SARIMA 8.0342 0
ETS vs. SETAR 55.568 0

NNAR vs. SARIMA −3.3088 0.001
NNAR vs. SETAR 54.421 0

SARIMA vs. SETAR −55.615 0

Table 18. Out-of-sample forecasting performance of models.

Measures
Model

Holt–Winters
Additive

Holt–Winters
Multiplicative ETS NNAR SARIMA SETAR

RMSE 0.748 0.6906 0.5979 0.764092 0.834
MAE 0.6273 0.6524 0.5508 0.615342 0.715

MAPE 13.8268 15.1393 14.0168 13.37031 17.742

DM Test for Out of Sample at h = 1

Models DM Test Statistics p-Value
HW Additive vs. HW

Multiplicative −13.541 0

HW Additive vs. ETS 14.388 0
HW Additive vs. NNAR 7.4791 0

HW Additive vs. SARIMA 16.703 0
HW Additive vs. SETAR −11.61 0

HW Multiplicative vs. ETS 13.616 0
HW Multiplicative vs. NNAR 1.4745 0.1457

HW Multiplicative vs. SARIMA 17.175 0
HW Multiplicative vs. SETAR −16.362 0

ETS vs. NNAR −3.2896 0.0016
ETS vs. SARIMA −15.773 0
ETS vs. SETAR 17.254 0

NNAR vs. SARIMA −12.841 0
NNAR vs. SETAR 18.072 0

SARIMA vs. SETAR −17.303 0
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Based on the methods offering the best results for out-of-sample forecasting, NNAR
and SARIMA, the forecasted values of unemployment rate for the period 2021–2022 have
been examined, revealing the existence of a slight difference (Figure 18).
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Figure 18. The forecasts of unemployment rate for the period 2021–2022.

According to NNAR, the predicted value of unemployment rate for January 2021 is
estimated to be 4.35% compared with 5% in December 2020, and over the whole period,
the forecast values oscillate around 4.35%. On the other hand, the forecast values based
on the SARIMA model revealed a predicted value of 4.22% for the unemployment rate
of January 2021 and highlighted a descending trend over the horizon 2021–2022, with a
predicted value of 3.54% in December 2022.

An alternative to improving the forecast accuracy is to average the resulting forecasts
based on these two methods, which are considered to be suitable for the modeling and
forecasting of unemployment rate.
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5. Conclusions

Making predictions about unemployment rate, one of the core indicators of the Ro-
manian labor market with fundamental impact on the government future social policy
strategies, is of great importance, mostly in this period of a major shock in the economy
caused by the pandemic.

In this context, the aim of the research has been to evaluate the forecasting performance
of several models and to build future values of unemployment rate for the period 2021–
2022 using the most suitable results. In order to do that, we have employed exponential
smoothing models, both additive and multiplicative Holt–Winters (HW) models together
with an ETS model, the SARIMA model, the neural network autoregression (NNAR)
model, and the SETAR model, which allow taking into account a nonlinear behavior and a
switching regime on the time series and predicting future values of unemployment rate
beyond the period under consideration.

The empirical results revealed for unemployment rate a non-stationary nonlinear and
seasonal pattern in data. The out-of-sample forecasting accuracy of the models based on
the performance measures RMSE and MAE pointed out the NNAR model as performing
better, while MAPE indicated SARIMA to have the best performance. The empirical results
of the Diebold–Mariano test at one forecast horizon for out-of-sample methods revealed
differences in the forecasting performance between SARIMA and NNAR; of these, the
best model of modeling and forecasting unemployment rate was considered to be the
NNAR model.
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