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Abstract Latent class analysis can be viewed as a special case of model–based clus-
tering for multivariate discrete data. It is assumed that each observation comes from
one of a number of classes, groups or subpopulations, with its own probability distri-
bution. The overall population thus follows a finite mixture model. When observed,
data take the form of categorical responses—as, for example, in public opinion or
consumer behavior surveys it is often of interest to identify and characterize clusters
of similar objects. In the context of marketing research, one will typically interpret the
latent number of mixture components as clusters or segments. In fact, LC analysis pro-
vides a powerful new tool to identify important market segments in target marketing.
We used the model based clustering approach for grouping and detecting inhomo-
geneities of Polish opinions on the euro adoption. We analyzed data collected as part
of the Polish General Social Survey using the R software.

Keywords Latent class analysis · Mixture model · Categorical data · Euro adoption

Mathematics Subject Classifiaction 62P20 · 6207 · 91B82

1 Introduction

“Ten years ago, on 1 January 2002, euro banknotes and coins were introduced in
12 Member States of the European Union. The introduction of the euro cash was an
unprecedented challenge, but it went smoothly, and billions of banknotes and coins
started to circulate in a matter of days. Five more Member States have adopted the
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428 E. Genge

euro in recent years, so a total of 17 Member States—and 332 million people—now
use the currency. It has become a symbol of Europe, and the banknotes and coins have
become a part of our daily lives” (Mario Draghi, President of the ECB).

On the basis of the Eurobarometer surveys on individuals’ and firms’ perception of
the currency changeover in 2002, 60 % of people considered that the changeover to
the euro would bring more advantages than disadvantages. Moreover, a large majority
said they felt more European thanks to the euro. Four out of five individuals felt that
the changeover to the euro had gone well or very well. Lastly, over two thirds of the
general public were happy that the euro was their currency and it was only in Germany,
Greece and Austria that there was a higher proportion of dissatisfied individuals.

The crisis has had a major impact on EU politics, leading to power shifts in several
European countries, most notably in Greece, Ireland, Italy, Portugal and Spain. There
are continuous speculations on a possible breakup of the Eurozone.

Although the Eurozone is being rocked by the serious crisis, Poland declares it
still wants to adopt the European Union’s common currency. Before the accession, in
January 2002, Poles were very enthusiastic about the single currency. Exactly at that
time, the euro was introduced in the form of banknotes and coins in the first twelve
European countries. However, negative publicity surrounding the perceptions of prices
in euro had not appeared then on a full scale in the media yet. According to the Flash
Eurobarometer data, however, in the first years after the introduction of the physical
euro the number of euro sceptics outweighed the number of euro enthusiasts in Poland.

We present Fig. 1 to see the evolution of public support for the euro introduction
in years 2008–2012. The figure was prepared based on to the Polish General Social
Survey (GSS) and the well-known Polish research agency TNS OBOP data.

The year 2008 was a very special time in the Polish euro history. At this time,
the so-called Greek crisis began. It dramatically changed the situation on the Euro-
pean financial markets and triggered the process of reforming the economic gover-
nance of the EU. Before the announcement of Greece’s financial problems, the euro
was rather considered as a “safe harbour” or “save haven” amid the global financial
turmoil in the aftermath of the Lehman Brothers’ spectacular fall (see Osinska and
Toroj 2012). We argue, however, that the outlook apparently reversed later on, when
the sovereign debt problems worsened across Europe. In 2011, we faced sovereign
debt crises of several euro area countries (Greece and, to a lesser extent, Ireland and
Portugal).

Fig. 1 The public attitude
towards the euro and its benefits
for the Polish economy in years
2008–2012
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A higher share of euro supporters in 2008 could probably be linked to an association
of the euro with a “safe harbour” idea at the beginning of the financial turmoil. In
2009, enthusiasm was further fostered by the successful euro changeover in Poland’s
neighbour—Slovakia.

The year 2008 was also very important for Poland because on 10 September Polish
Prime Minister Donald Tusk gave a speech and announced the ruling government’s
objective to join the Eurozone in 2012 of the launch of an economic forum in the
Polish resort of Krynica-Zdroj. He was also aware that the Polish constitution would
need to be changed first and Poland would have to join the ERM 2 before the second
quarter of 2009, a target date that was still very aggressive. Yet, on 28 October 2008
the Polish government confirmed their plan to join the Eurozone in January 2012.
There were also many political speculations about the date of the euro adoption.

Those developments attracted extensive media coverage and at least in Poland were
one of the reasons for the revision of the euro adoption timetable. As a consequence,
the inevitable need for financial assistance for the peripheral euro area countries may
have impacted on the public support for the euro not only in euro area countries, but
also in non-EU states that were prepared to join the club in the future (nowadays
we are talking about the convergence criteria to fulfill, not about the official target
date). Therefore, our interest in investigating the determinants of the euro support
particularly focuses on the year 2008.

The aim of this paper is to group and detect inhomogeneities of Polish opinions on
the euro adoption using the model-based clustering approach. The article is organized
as follows. First, we described the standard mixture model, its parameter and standard
errors estimation. Subsequently, we presented the extension of the basic model which
permits the inclusion of covariates to predict latent class membership. We discussed
three-step and one-step approaches for LC modeling with covariates. Then we reported
the problem of model selection and goodness of fit criteria. Subsequently, we presented
an empirical application. The paper ends with a summary of the main results of the
research and a discussion of possible directions for future research.

2 Mixture models

2.1 Mixture models

Latent class analysis was proposed by Lazarsfeld (1950a, b) and Lazarsfeld and Henry
(1968) and can be viewed as a special case of model-based clustering for multivariate
discrete data. In model-based clustering it is assumed that each observation comes
from one of a number of classes (groups) and models each with its own probability
distribution (Wolfe 1963; McLachlan and Peel 2000; Banfield and Raftery 1993).
Because the unobserved latent variable is nominal, the latent class model is actually a
type of finite mixture model.

Finite mixture models are a popular technique for modeling unobserved heterogene-
ity or approximating general distribution functions. They are used in a lot of different
areas such as astronomy, biology, economic, marketing or medicine. An overview of
mixture models is given in Titterington et al. (1985) or McLachlan and Peel (2000).
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430 E. Genge

The mixture is assumed to consist of u components where each component follows
a parametric distribution. Each component has a weight assigned which indicates the
a-priori probability for an observation to come from this component and the mixture
distribution is given by the weighted sum over the u components. The mixture model
is given by

f (xi |θ) =
u∑

s=1

πs fs(xi , θ s), (1)

where

fs , density function of component s;
xi , vector of manifest variables xi = [xi1, . . . , xim];
πs , the prior probability of component s (πs ∈ (0, 1); ∑u

s πs = 1);
θ s , the component specific parameter vector for the latent class s;
θ , the vector of all parameters for the latent class model (mixture).

The latent class models approximate the observed joint distribution of the manifest
variables as the weighted sum of finite number, u, of the cross-classification tables. The
probability in each cell of the component table is simply the product of the respective
class-conditional marginal probabilities. A weighted sum of these component tables
forms an approximation (density estimate) of the distribution of cases across the cells
of the observed table. Observations with similar sets of responses on the manifest
variables (xi ) will tend to cluster within the same latent classes.

The sth component of the mixture given in formula (1) can be written as

fs(xi |θ s) =
m∏

j=1

l j∏

h=1

(θs jh)xi jh , (2)

where xi = (xi jh; j = 1, . . . , m; h = 1, . . . , l j ; i = 1, . . . , n)1, θ s = (θi jh; j =
1, . . . , m; h = 1, . . . , l j ; i = 1, . . . , n) and 2 formula is a product of conditionally
independent multinomial distributions of parameters θ s j .

The probability density function across all classes can be also written as the
weighted sum:

P(xi |θ) =
u∑

s=1

πs

m∏

j=1

l j∏

h=1

(θs jh)xi jh . (3)

The parameters estimated by the latent class model are πs and θ s jh .
Given estimates π̂s and θ̂s jh of πs and θs jh , the posterior probability (that each

individual belongs to each class, conditional on the observed values of the manifest
variables), can be calculated using Bayes’ formula:

1 xi jh = 1 if the object i belongs to the category h of the variable j. The total number of categories is given
by l = ∑m

j=1 l j , then the data is defined by the n by m matrix.
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A latent class analysis of the public attitude towards the euro adoption in Poland 431

P̂(s|xi ) = πs f (xi ; θ̂ s)∑u
q=1 πq f (xi ; θ̂q)

. (4)

The number of independent parameters estimated by the latent class model increases
rapidly with u, j, l j . The number of parameters is equal u

∑
j (l j − 1) + (u − 1). If

this number exceed either the total number of observation, or one fewer than the total
number of cells in the cross-classification table of the manifest variables, then the
latent class model will be unidentified.

2.2 Parameter and standard error estimation

The parameters of the latent class model are usually estimated by maximum likelihood
using the Expectation–Maximization (EM) algorithm (Dempster et al. 1977). The log-
likelihood of the latent class model is given by

ln L =
n∑

i=1

ln
u∑

s=1

πs

m∏

j=1

l j∏

h=1

(θs jh)xi jh . (5)

Each EM iteration consists of two steps—an E step and an M step:
– E step—calculation of the “missing” class membership probabilities using Eq. 4,
– M step—maximization step, the parameter of estimates are updated by maximiz-

ing the log-likelihood function given these posterior P̂(s|xi ) with

π̂new
s = 1

n

n∑

i=1

P̂(s|xi ). (6)

as the new prior probabilities and

θ̂
new
s j =

∑n
i=1 xi j P̂(s|xi )∑n

i=1 P̂(s|xi )
, (7)

as the new class-conditional outcome probabilities.2 The algorithm repeats these steps,
assigning the new to old values, until the log-likelihood function reaches a maximum
and ceases to increment beyond some arbitrarily small value.

Depending on the initial values chosen for π̂s and θ̂ jsh , and the complexity of the
latent class model being estimated, the EM algorithm may only find a local maximum
of the log-likelihood function. For this reason, in attempt to find the global maximizer,
usually a latent class model is re-estimated.

Standard errors of the estimated class-conditional response probabilities and the
mixing parameters are estimated most often using the empirical observed information
matrix (Meilijson 1989; McLachlan and Peel 2000), which equals:

2 θ̂
new
s j is the vector of length l j of class-s conditional outcome probabilities for the jth manifest variable;

and xi j is the n × l j matrix of observed outcomes xi jh on that variable.
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432 E. Genge

Ie(Ψ̂ ; x) =
n∑

i=1

s(xi ; Ψ̂ )sT (xi ; Ψ̂ ), (8)

where s(xi ; Ψ̂ ) is the score function with respect to the vector of parameters Ψ for ith
observation, evaluated at the maximum likelihood estimate Ψ̂

s(xi ;Ψ ) =
u∑

s=1

pis∂

⎧
⎨

⎩ln πs +
m∑

j=1

l j∑

h=1

xi jh ln θs jh

⎫
⎬

⎭

/
∂Ψ, (9)

where pis = P̂(s|xi ) is the posterior probability that observation i belongs to class s
(Eq. 4). The covariance matrix of the parameter estimates is then approximated by the
inverse of Ie(�̂; x).

Because of the constraint across each manifest variables (the sum-to-one con-
straint), it is useful to reparameterize the score function in terms of log-ratios
φ jsh = ln(θ jsh/θ js1) for given outcome variable j and class s. Then, for the tth
response on the bth item in the qth class,

s(xi ;φbqt ) = piq(xibt − θbqt ). (10)

Denoting ωs = ln(πs/π1), then for log-ratio corresponding to the qth mixing para-
meter:

s(xi ;ωq) = piq − πq . (11)

To transform the covariance matrix of these log-ratios back to the original units ofπ and
θ the delta method is applied. It is assumed that g(φ jsh) = θ jsh = eφ jsh /

∑
t eφ jst .

Denoting V ar(φ̂) as submatrix of the inverse of Ie(Ψ̂ ; x) corresponding to the φ

parameters, then

V ar(g(φ̂)) = g′(φ)V ar(φ̂)g′(φ)T (12)

where g′(φ) is the Jacobian consisting of elements

∂g(φ jsh)

∂φbqt
=

⎧
⎪⎪⎨

⎪⎪⎩

0 if q �= s,
0 if q = s but b �= j,
−θ jshθ jst if q = s and b = j but t �= h,

θ jsh(1 − θ jsh) if q = s and b = j and t = h.

(13)

Similarly, for the mixing parameters h(ωs) = πs = eπs /
∑

q eπq . Taking as V ar(ω̂)

the submatrix of the inverse of Ie(Ψ̂ ; x) corresponding to the ω parameters, then

V ar(h(ω̂)) = h′(ω)V ar(ω̂)h′(ω)T (14)
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A latent class analysis of the public attitude towards the euro adoption in Poland 433

where h′(ω) is the Jacobian consisting of elements

∂h(ωs)

∂ωq
=

{−πsπq if q �= s,
−πs(1 − πs) if q = s.

(15)

Standard errors of each parameter estimate are equal to the square root of the values
along the main diagonal of covariance matrices V ar(θ) and V ar(π).

3 Covariates in the latent class model

3.1 Mixture models with covariates

The basic latent class model (Eq. 1) do not include the covariates (zi ). We presented
the extended version of the latent class model in which the covariates permit to predict
latent class membership [whereas in the basic model, every response has the same
probability of belonging to each latent class (see i.e. Clogg 1981; Vermunt 1997;
Bandeen-Roche et al. 1997; Linzer and Lewis 2011)].

f (xi , zi |θ) =
u∑

s=1

πs(zi ,α) fs(xi , θ s), (16)

where:

fs , density function of component s;
xi , vector of manifest variables xi = [xi1, . . . , xim];
zi , vector of concomitant variables (covariates) zi = [zi1, . . . , zi f ];
πs , the prior probability of component s (πs(zi ,α) ∈ (0, 1); ∑u

s πs(zi ,α) = 1);
θ s , the component specific parameter vector for the latent class s;
θ , the vector of all parameters for the latent class model (mixture).

We would like to stress that there is some confusion over the name of the latent
class models with covariates. Sometimes this kind of the mixture model is called the
latent class regression model, to refer to latent class models in which the probability
of latent class membership is predicted by the covariates (Linzer and Lewis 2011;
Vermunt and Magidson 2002). There is also another approach, i.e. to use the name
of latent class regression model to refer to regression models in which the dependent
variable is partitioned into latent classes as part of estimating the regression model.
More than one regression are simultaneously fitted to the data when the latent data
partition is unknown (Grün and Leisch 2008). In this article we would rather prefer the
name latent class model with covariates or concomitant-variable latent class model.

There are many techniques of including the covariates in the latent class model (i.e.
see Vermunt 2010). In the empirical part of this article we applied a so-called “one-
step” technique for estimating the effects of covariates, because the coefficients on the
covariates are estimated simultaneously as a part of the latent class model (Dayton
and Macready 1988; Hagenaars and McCutcheon 2002).
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434 E. Genge

It is assumed that the mixing proportions (πsi ) are free to vary, but the constraint∑
πsi = 1 must be fulfield.3 In poLCA package of R a generalized (multinomial)

model logit link function for the effects of covariates on the priors is employed (Agresti
2002).

Frequently, the first latent class is a “reference” class and assumes that the log-odds
of the latent class membership priors with respect to that class are linear functions of
the covariates. Let αs denote the vector of coefficients corresponding to the sth latent
class. With f covariates, the αs have length f + 1; this is one coefficient on each of
the covariates plus a constant. Because the first class is used as the reference, αs = 0
is fixed by definition. Then,

ln(π2i/π1i ) = ziα
T
2

ln(π3i/π1i ) = ziα
T
3

...

ln(πui/π1i ) = ziα
T
u

we can get

πsi = πs(zi ;α) = ezi α
T
s

∑u
q=1 ezi αT

q
. (17)

The parameters estimated by the latent class model with covariates are the u−1 vectors
of coefficients αs and, as in the basic latent class model, the class-conditional outcome
probabilities θs jh . Given estimates α̂s and θ̂s jh of these parameters, the posterior class
membership probabilities in the latent class model with covariates are obtained by:

P̂(s|zi xi ) = πs(zi ; α̂) f (xi ; θ̂ s)∑u
q=1 πq(zi ; α̂) f (xi ; θ̂q)

. (18)

The number of parameters estimated by this latent class model increases rapidly with
u, j, l j , f . The number of parameters is equal u

∑
j (l j − 1) + ( f + 1)(u − 1). If

this number exceed either the total number of observation, or one fewer than the total
number of cells in the cross-classification table of the manifest variables, then the
latent class model will be unidentified.

3.2 Parameter and standard error estimation

The parameters of the latent class model with covariates are also usually estimated by
maximum likelihood using the Expectation–Maximization (EM) algorithm (Dempster
et al. 1977). Similarly, each EM iteration consists of two steps: an E step and an M
step:

3 The mixing proportions in the latent class models with covariates are denoted as πsi , to reflect the fact
that these priors are now free to vary by individual, see also Eq. 17.
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– E step—estimation of the posterior class probabilities for each observation and,
– M step—maximization of the log-likelihood for each component separately using

the posterior probabilities as weights.

The log-likelihood of the latent class model with covariates is given by

ln L =
n∑

i=1

ln
u∑

s=1

πs(zi ;α)

m∏

j=1

l j∏

h=1

(θs jh)xi jh . (19)

In poLCA package of R, in order to find the values of α̂s and θ̂s jh that maximize the
function given by Eq. 19 a modified EM algorithm with a Newton-Raphson step is
applied (see Bandeen-Roche et al. 1997). The estimation begins with initial values of
α̂′

s and θ̂ ′
s jh to calculate posterior probabilities P̂(s|zi xi ). The covariates coefficients

are computed according to the formula:

ˆαnew
s = α̂′

s + (−D2
α log L)−1Dα log L (20)

where Dα is the gradient and D2
α the Hessian matrix with respect to α. The new

parameters of θ̂s jh are updated as

θ̂
new
s j =

∑n
i=1 xi j P̂(s|zi xi)∑n

i=1 P̂(s|zi xi)
. (21)

These steps are repeated until convergence, assigning the new parameter estimates to
the old ones in each iteration of the algorithm (see details in Bandeen-Roche et al.
1997).

When employing this estimation algorithm, different initial parameter values may
lead to different local maxima of the log-likelihood function. For this reason, the
algorithm should be repeated handful of times. The E and M steps are repeated until
the likelihood improvement falls under a pre-specified threshold or a maximum number
of iterations is reached.4

Standard errors (for latent class models with covariates) are obtained just as for
models without covariates: the empirical observed information matrix is calculated.
First, the score function (Eq. 9) is generalized so that

4 Depending on the initial values and the complexity of the latent class model being estimated, the EM
algorithm may only find a local maximum of the log-likelihood function, rather than the desired global
maximum. For this reason it is always advisable to re-estimate a particular model a couple of times, in
an attempt to find the global maximizer to be taken as the maximum likelihood solution. The maximum
number of iterations through which the estimation algorithm will cycle in poLCA package of R equals 1000.
A tolerance value for judging when convergence has been is 1e − 10. When the one-iteration change in the
estimated log-likelihood is less than that threshold, the estimation algorithm stops updating and considers
the maximum log-likelihood to have been found.
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436 E. Genge

s(zi ; xi ;Ψ ) =
u∑

s=1

pis∂

⎧
⎨

⎩ln πs(zi ;α) +
m∑

j=1

l j∑

h=1

xi jh ln θs jh

⎫
⎬

⎭

/
∂Ψ, (22)

where pis denote posterior probabilities. Since this function is no different than Eq. 9
in terms of θ parameters, the score function s(zi ; xi ;φbqt ) = s(xi ;φbqt ) (see Eq. 10),
and the covariance matrix V ar(θ) may be calculated in the similar way as for models
without covariates.

However, the priors (πis) are free to vary by individual as a function of some set
of coefficient α (Eq. 17) letting q index classes and p index covariates:

s(zi ; xi ;αqp) = zi p(piq − πiq). (23)

The standard errors of the coefficients α are equal to square root of the values along the
main diagonal of the submatrix of the inverse of the empirical observed information
matrix corresponding to the α parameters.

To obtain the covariance matrix of the prior parameters πs which is the average
value across all observations of the priors πis , the delta method is applied (see details
in Bandeen-Roche et al. 1997; Linzer and Lewis 2011, pp 5, 6, 9). If

h(αs) = πs = 1

n

∑

i

(
ezi α

T
s

∑u
q=1 ezi αT

q

)
(24)

then

V ar(h(α̂)) = h′(α)V ar(α̂)h′(α)T (25)

where h′(α) is a Jacobian with elements

∂h(αs)

∂αqp
=

{
1/n

∑
i zi p(−πisπiq) if q �= s,

1/n
∑

i zi p(πis(1 − πis)) if q = s.
(26)

4 Model selection

In order to select the optimal clustering model several measures have been proposed
(see i.e. McLachlan and Peel 2000). The performance of some of these criteria were
compared by Biernacki et al. (1999). In general, BIC was found to be consistent under
correct specification of the component densities (Kass and Raftery 1995; Keribin 1998)
and gave good results in a range of applications (i.e. Fraley and Raftery 2002; Stanford
and Raftery 2000; Witek 2010, 2011b).

The most popular in the latent class analysis information criteria are available
in poLCA package of R: BIC (Bayesian Information Criterion) and AIC (Akaike
Information Criterion). For this reason BIC and AIC criteria will be used in further
analysis. The BIC and AIC criteria are defined as
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B I Cs = −2 log f (xi |θ̂ s, Ms) + vs log (n), (27)

AI Cs = −2 log f (xi |θ̂ s, Ms) + 2vs, (28)

where log f (x|θ̂ s, Ms) is the maximized loglikelihood for the model Ms , vs is the
number of parameters to be estimated in that model and n is the number of observations
in the data. The first term of the criteria measures the goodness-of-fit, whereas the
second term penalizes model complexity. One selects the model that minimizes the
information criteria value.

5 Example

The analyses presented below are based on n = 648 adolescents who participated
in the Polish General Social Survey (GSS).5 The data collected on these adolescents
included responses to questionnaire items about the euro currency adoption.

All computations and graphics in this paper have been done in poLCA (Linzer and
Lewis 2011) package of R.

The following variables (questions) in the year 2008 were used in the analysis:

x1: Do you expect any benefits for the Polish economy (if zloty is replaced with the
euro)?
x2: Do you expect any benefits for the Polish entrepreneurs?
x3: Do you expect any personal benefits?
x4: Are you satisfied with the direction of the economy in our country?
x5: Do you expect that prices are going to increase/decrease or stay the same?
x6: Are you interested in politics?

We also analyzed the covariates:

z1: age,
z2: sex,
z3: education.6

In questions 1, 2, 3, 4, 6 respondents could choose one of the following response
options: definitely yes, rather yes, rather no, definitely no, I don’t know.7 The possible
responses to the question 5 were: the prices are going to: increase (1), decrease (2),
don’t change (3). Because the data are rather skewed in the sense that many respondents
used scores low or high the analysis is presented of dichotomized items (for negative
vs. positive attitude) (see Vermunt 2010; Collins and Lanza 2011, p. 10).

A reasonable theoretical approach might indicate that there are three latent classes
of survey respondents. Euro enthusiastic, euro sceptics, and those who are more or
less neutral. Supporters of euro will tend to respond favorably towards the euro, with

5 The public data set, available at http://pgss.iss.uw.edu.pl/index.php?show=wprowadzenieE/index.html&
v=E, see also (Cichomski and Jerzynski 2009).
6 We considered three categories of this covariate: primary education, secondary education and tertiary
education.
7 The original data set contains 1,050 subjects. We analyzed the completed answers. The subjects who
provided a response “I don’t know” were not included.
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Fig. 2 The information criteria
values
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Fig. 3 The conditional probabilities

the reverse being the case for euro sceptics. Those in neutral group will not have
strong opinion about either attitude? We might further expect that falling into one of
these three groups is a function of each individuals education, sex and age. We can
investigate this hypothesis using a latent class model.

The optimal number of clusters was chosen using information criteria for the basic
model (Collins and Lanza 2011), so we decided to choose three latent classes (see
Fig. 2).
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Fig. 4 The probabilities of
positive responses for three-class
latent model
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We estimated parameters of three components using the EM algorithm. In further
analysis we ran the test for significance of the coefficients. For the three components
all of the coefficients were significantly different from 0. By examining the estimated
class-conditional response probabilities, we confirmed that the model indentified the
three groups, with 24.7 % in the pro-euro group, 43.5 % in the anti-euro group and
31.8 % in the neutral group.

We labeled the smallest latent class, which included one-fourth of the subjects,
euro enthusiastic. The next largest latent class, including 31.8 % of the subjects, was
labeled euro neutral. The third class, euro sceptics, contained about 43.5 % of the
sample (see Fig. 3).

We examined the pattern of the probabilities of a “Yes” response to show how it
was consistent with what one would expect, based on the labels chosen for the latent
classes. The pattern is shown in a graphical depiction in Figs. 3 and 4.

Latent class 1, euro supporters, was characterized by a high probability of positive
responding to all of the variables. There was also the lowest percentage of respondents
concerned about the price increases associated with the adoption of the euro.

In contrast, those in latent class 3, euro sceptics, were characterized by a low
probability of positive answers to all of the variables (with an exception of the question
referring to the price increases). There was 94 % of people afraid of price increases.

In the second class, people were not able to form an opinion. They were in favor
of adopting the euro to some extent. The reasons to support euroization were that
adopting the euro would bring benefits for the Polish economy and entrepreneurs, but
they didn’t believe (75 % of respondents) in the improvement in their quality of the
everyday life. They were interested in politics, but there was the highest percentage
of citizens (98 %) who expressed the opinion that euro price conversion would lead
to increased prices.8

8 We estimated also parameters of the latent class model without covariates. The model identified the three
groups, with 19.3 % in the pro-euro group, 44.0 % in the anti-euro group and 36.7 % in the neutral group.
The pattern of the probabilities of a “Yes” responses (the estimated class-conditional response probabilities)
were quite similar to those for the latent class model with covariates (with the biggest difference of 12 %
for x3 variable in the euro neutral group—63 % of respondents didn’t believe in the improvement in their
quality of the everyday life).
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Fig. 5 Predicted prior
probabilities of latent class
membership at ages 18–85
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Fig. 6 Predicted prior
probabilities of latent class
membership at varying levels of
education
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We were interested in whether the effect of sex modified the effect of education
and age on the respondents’ approach to the euro. We specified the interaction model
and examined the interaction effects. The hypothesis test showed that there was no
interaction statistically significant, but separate variables age, gender and education
had an influence on the prior probabilities of class membership.

To interpret the estimated generalized logit coefficients of covariates, we calculated
and plotted the prior probabilities of class membership, at varying levels of age. In
Figs. 5 and 6 the estimated prior probabilities of class membership are given separately
for each education level and every age.9

We would support the view that older people would be more critical towards the
euro as they might find the adjustment to the new currency more difficult than younger
people. Furthermore, elderly people in Poland remember currency changeovers as

9 The figures at varying levels of one covariates were prepared for the most frequent category for the all
covariates (see Grün and Leisch 2008, p. 21; Linzer and Lewis 2011, p. 26; Witek 2011 pp. 236–239).
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poverty-inducing and they may be particularly sensitive to all potential aspects of
sovereignty issues due to the specific Polish historical conditions.

Young people (at age of 20) have over a 60 % prior of belonging to the euro
enthusiastic group, while old people have almost the same (60 %) prior of belonging
to the euro-sceptic class. The prior probability of belonging to the neutral group, is at
the similar level in every age.

As expected, well educated people are very unlikely to belong to the third class.
Respondents with higher education level have over a 80 % prior of belonging to
the supporters of euro group. However it is interesting to observe that regardless of
education level, respondents are very likely to belong to the neutral group.

Due to the space limit we, do not present the figure for the gender covariate. The
probability of belonging to the first class is significantly higher for mens than for
women (62 % for men and 29 % for women), while women have slightly higher prior
of belonging to the neutral group and 23 % higher (than men) to the third group.

6 Conclusions

We analyzed the Polish opinions on the euro adoption. We applied latent class analysis
for grouping and detecting inhomogeneities of Polish attitude toward the euro currency
for the data collected as a part of the Polish General Social Survey using software of
R. By examining the estimated class-conditional response probabilities, we confirmed
that the society can be divided into three groups—euro supporters, euro sceptics and
euro neutral. We also showed the influence of covariates on the prior probabilities
(Figs. 5, 6).

In future research it would be worthwile to compare the results with the three-
step analysis of covariates estimation (Vermunt 2010). The analysis should also be
extended to the data at different points of time (i.e. 2008, 2010, 2012). The longitudinal
data would make it possible to examine transition in Poles’ attitude over time (latent
transition analysis).

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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