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Abstract: Background: Although there is a growing number of early childhood obesity prevention
programs, only a few of them are effective in the long run. Even fewer reports exist on lifetime
cost-effectiveness of early prevention strategies. This paper aimed to assess the lifetime cost-effectiveness
of infant feeding modification aiming at reducing risk of later obesity. Methods: The simulation
model consists of two parts: (a) Model I used data from the European Childhood Obesity Project
(CHOP) trial (up to 6 years) and the German Interview and Examination Survey for Children (KiGGS)
(6–17 years) to evaluate BMI trajectories of infants receiving either lower protein (LP) or higher
protein (HP) content formula; and (b) Model II estimated lifetime cost-effectiveness based on Model I
BMI trajectories. Compared to HP formula, LP formula feeding would incur lower costs that are
attributable to childhood obesity across all decades of life. Results: Our analysis showed that LP
formula would be cost-effective in terms of a positive net monetary benefit (discounted 3%) as an
obesity prevention strategy. For the 19% of infants fed with formula in Germany, the LP strategy
would result in cost savings of € 2.5 billion. Conclusions: Our study is one of the first efforts to
provide much-needed cost-effectiveness evidence of infant feeding modification, thereby potentially
motivating interventionists to reassess their resource allocation.

Keywords: obesity prevention; cost-effectiveness; markov model; early nutrition; childhood; formula

1. Introduction

Childhood obesity has become a major pediatric health concern as prevalence rates have increased
substantially in the last few decades. Rates of childhood obesity in Europe, while lower than those
in the US and Australia, have increased considerable in the last few decades [1]. This increasing
prevalence of overweight and obesity in children is alarming for a number of reasons: immediate
health effects, psychological and social consequences of weight stigma, increased costs to already
strained primary health care sectors, the persistence of overweight and obesity into adulthood [2], and
substantial long-term economic consequences [3,4]. Indeed, the only European pediatric study to date
that estimated the long-term economic consequences of childhood obesity found that they totaled
€8471 (€9473) for males (females) with obesity in Germany in 2010 [4,5].

With the health and economic consequences of childhood overweight and obesity challenging
the sustainability of primary health care systems, there is a growing interest in infant nutrition as
an early obesity prevention strategy [6]. While there is increasing evidence of the health benefits of
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breastfeeding, only a few studies have analyzed the long-term health consequences of improving infant
formula nutrition [7,8]. In fact, the European Childhood Obesity Project (CHOP) is one of the first
randomized controlled trials that examines the effect of protein intake in formula-fed infants during
the first year of life on long-term fat body mass (measured by body mass index (BMI)) [9]. Infants born
between October 2002 and July 2004 from uncomplicated singleton pregnancies were enrolled and
double-blind randomly assigned to either lower protein (LP) or higher protein (HP) intake groups
during the first eight weeks of life in five European countries, including Germany. The formulas
differed in the content of cow milk protein (2.05 compared with 1.25 g/dl in infant formula) but had
identical energy contents achieved by the adjustment of total fat content. The trial demonstrated
that children receiving HP content formula instead of LP formula had a significantly higher BMI and
a greater risk of becoming obese at six years of age [9]. Since the CHOP trial reported long-term
effectiveness until children enter school, it raises important questions about the potential to save costs
over a lifetime. However, no studies in the field of infant feeding include an assessment of costs and
effects over lifetime. Yet precisely such an assessment could provide the information needed to reassess
and optimize scarce resources in early obesity prevention strategies [10,11].

The present study bridges this gap in the literature by extending an established infant feeding
modification program (LP versus HP) in two new directions. Firstly, by using a simulation
approach, we explored lifetime obesity prevention outcomes based on the data from the original
randomized–controlled trial that followed a large cohort of European children from birth to 6 years of
age. Secondly, we conducted the first European cost-effectiveness analysis to determine the long-term
economic outcomes of the LP strategy (when compared to HP) as an early obesity prevention strategy
in Germany.

2. Materials and Methods

2.1. Subjects and Methods

In conducting a cost-effectiveness analysis, we extended a modeling approach developed by
Heidelberg University in 2017 that estimated the lifetime costs by taking the history of childhood
overweight and obesity into account. While this approach [3,4] was limited to lifetime costs of
overweight and obesity, our extended simulation model considers lifetime costs and intervention
effects on BMI in children using the Markov modeling approach. Markov modeling is a cohort
simulation approach commonly used to evaluate long-term risks of morbidity/mortality and associated
costs/effects in a cohort [12]. The simulation model and all graphs were developed in Microsoft Excel
2010. While Monte Carlos simulations were programmed in Visual Basic for Application, further
statistical analysis was conducted using Stata version 14.1 (StataCorp L.P., College Station, Texas, USA).

2.2. Model Structure

Our simulation model consists of two parts: the childhood-to-adolescence model (M1) and
the adulthood model (M2). As shown in Figure 1, we created two base cohorts: children fed with
LP formula and children fed with HP formula. For both infant feeding schemes, we assumed that
children enter M1 at age 0 and move between BMI states annually until the age of 18. Similar to
Sonntag et al. [3,4], M1 has the health states (1) normal weight (includes underweight), (2) overweight,
(3) obese, and (4) the absorbing state dead. These states are defined according to the age- and
sex-specific BMI percentiles of Kromeyer-Hauschild, which are commonly used in Germany: normal
weight (≤P90), overweight (>P90 to P97) and obese (>P97) [13]. The initial distribution of the starting
cohorts in M1 (independent of whether children are being fed LP or HP) was based on CHOP data
(Figure S1) [9]. Moving between BMI states was estimated by annual age- and sex-specific state
transition probabilities, which depend on the child being fed LP formula or HP formula (Figure 1).
We assumed, consistent with the original CHOP trial, that the intervention effect (represented by a
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reduced relative risk of becoming overweight/obese if children are fed with LP formula compared to
HP formula) was maintained six years.
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Figure 1. Conceptual model assessing the cost-effectiveness of LP content formula compared to HP
one. The simulation model consists of two parts: the childhood-to-adolescence model (M1) and the
adulthood model (M2). Two base cohorts were created: children fed with LP formula and children fed
with HP formula.

For both infant feeding schemes, surviving adolescents moved from the childhood-to-adolescence
model (M1) to the adulthood model (M2), entering at the BMI stage corresponding to their BMI
history. Individuals who were always normal weight in M1 entered M2 in the cohort “always normal
weight”, while individuals who were overweight or obese at least once during M1 entered the cohort
“overweight/obese at least once during childhood”. Sonntag et al. [3,4] described this model in detail.
The BMI states in M2 are defined according to WHO cut-off points (1) normal weight (BMI < 25 kg/m2),
(2) overweight (25 kg/m2

≤ BMI < 30 kg/m2), and (3) obese (BMI ≥ 30 kg/m2) [14]. The M2 model also
incorporates increases in the risk of morbidity and mortality during adulthood if individuals were
overweight/obese during M1.

Cohorts entering M2 were simulated over lifetime based on transition probabilities for each
infant feeding strategy (LP and HP). That is, cohort sizes in each BMI state per cycle were multiplied
by age- and sex-specific BMI state costs. Total costs, i.e., costs attributable to obesity/overweight
that occurred either in childhood or during adulthood, were calculated by summing up costs over
lifetime for each cohort. The sum of the lifetime costs of the cohort “always normal weight” and
the cohort “overweight/obese at least once during childhood” provides the estimate of lifetime
costs attributable to overweight/obesity. Similarly, lifetime quality-adjusted life years (QALYs) were
estimated by multiplying the cohort size in each BMI state per cycle by age- and sex-specific utilities in
M2. The incremental costs and QALYs attributable to the different infant feeding groups were then
calculated by comparing cost and QALYs in the LP scenario with those in the HP scenario (Figure 1).
Additionally, we ran 4000 simulations to estimate the magnitude of costs and QALYs in both scenarios.
Commonly used statistical distributions were implemented for relative risks (log normal distribution)
and costs (gamma distribution). A uniform distribution was used only when the parameter range
was available without standard errors. The 95% confidence intervals based on these simulations are
reported in the Results section.
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Finally, in overcoming the concerns associated with the incremental cost-effectiveness ratio
(ICERs) (e.g., interpretation of negative ICERs [12]), we calculated the net monetary benefit (NMB) by
multiplying the gain in health (incremental QALYs) by the willingness to pay (WTP) for the benefit of
LP formula and subtract incremental costs.

2.3. Model Parameters

The simulation model was based on data from the CHOP trial (collected in 2010) and the previously
established German obesity model [3,4], as described below (Table S1 for all parameters and data
sources).

2.3.1. State Transition Probabilities between BMI States

Annual age- and sex-specific transition probabilities for the first age groups (ages birth to 6 years)
were based on longitudinal data from the CHOP trial participants [9] and derived by following Miller
and Homan [15]. Annual age- and sex-specific transitions for the remaining age groups (ages 7 to
100 years) were taken from Sonntag et al. [3,4], who used data from two sources (Interview and
Examination Survey for Children (KiGGs) survey and the German Microcensus 2009). We used the
KiGGs survey, a nationally representative prevalence study of 14,747 German children between 0 and
17 years [16], to obtain transition probabilities during childhood and adolescence. The Microcensus
data for the year 2009 from the German Federal Statistical Office [17] included detailed age-specific
anthropometric measurements for German adults aged 18–100; we used these data to acquire transition
probabilities during adulthood.

2.3.2. Risk of Mortality

Mortality risks during childhood and adolescence were based on age- and sex-specific mortality
rates reported in the most recent life tables [18]. Increased relative risk of mortality due to overweight
and obesity during adulthood was calculated using the European Prospective Investigation into Cancer
and Nutrition [19], as in Sonntag et al. [3,4]. Similarly, to allow for a higher mortality risk during
adulthood due to childhood overweight and obesity, we used data from Sonntag et al. [3,4] (Table S1).

2.3.3. Intervention Costs and Costs Associated with Overweight and Obesity

Since the cost of producing infant formula with lowered protein content is to our knowledge
not higher than that of producing conventional HP formula, our study does not include any costs
related to infant feeding [9]. However, we considered direct and indirect costs related to overweight
and/or obesity (Table S1). While direct costs are due to neoplasms, endocrine diseases, cardiovascular,
and digestive diseases, indirect costs include lost productivity from paid and unpaid work resulting
from sickness absences, early retirement, and early death due to causes attributable to overweight
and/or obesity. Both direct and indirect costs were based on a systematic literature review, as in
Sonntag et al. [4] (Table S1). All costs were indexed to the year 2015 in euros (€).

2.3.4. Quality of Life

We used European Quality of Life-5 Dimensions (EQ-5D) utility indices from Sonntag et al. [20] to
calculate QALYs which account for long-standing illnesses, such as diabetes type 2. These were age-
and sex-specific and calculated based on a representative sample of the German population [21] using
an algorithm by Dolan et al. [22]. To account for a potentially lower quality of life due to overweight
and obesity, we took EQ-5D utility indices for overweight and obesity from Sonntag et al. 2016.
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2.3.5. Sensitivity and Scenario Analyses

Sensitivity analyses were applied to test the robustness of our results (Table S1), while in scenario
analyses, we estimated the range of potential cost savings by taking into account that rates of formula
feeding are higher in other epidemiological settings, such as the US (30%) [23].

3. Results

We found that the proportion of individuals with obesity during childhood would be higher if
infants were fed HP-content formula, which is in line with previous findings of CHOP at school age
(Figure S2a,b) [9]. However, the proportion of individuals with overweight would be substantially
higher in the HP group than in the LP one only until school age. Beyond 11 years of age, only marginal
differences (1%–2%) would be observed, which would even decrease with age.

Figure 2 evaluates for both feeding groups the lifetime cost per decade, taking the history of
childhood obesity into account. It shows that excess weight in childhood seems to be the key contributor
to the overall burden of overweight and obesity over a lifetime. Although we did not find a statistically
significant difference between the LP formula, compared to the HP formula, the figure indicates that
the LP formula could be associated with lower lifetime costs attributable to childhood overweight
and obesity. Indeed, compared to children receiving HP formula, children fed with LP formula would
have €750 per person (discounted at 3%) fewer lifetime costs attributable to childhood overweight and
obesity (Figure 3).
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Figure 3 also shows that children fed with LP formula would spend on average 10 fewer years in
overweight and/or obesity states than children receiving HP formula. For instance, feeding a child with
LP formula would avert 22 years with overweight or obesity (see red triangle in Figure 3) compared to
12 years if a child was fed with HP formula (see yellow rectangle in Figure 3). This indicates that the LP
formula would offer good value for money, as it is associated with higher additional benefits (= fewer
years in overweight and/or obesity states) and fewer extra costs, which mainly results from a lower
risk of obesity earlier in life. Indeed, this is supported by the results of the cost-effectiveness analysis,
which compares lifetime costs attributable to overweight/obesity and outcomes (measured in QALYs)
of the LP formula group with those of the HP formula group (= comparator) (Figure 4). Over a lifetime,
we predicted for the LP formula 47.72 (95% CI: 47.29;48.02) QALYs and €12535 (95% CI: 6598;13752)
costs per person attributable to overweight and/or obesity (discounted at 3%). For the HP formula,
we estimated 47.42 (95% CI: 46.94;47.82) QALYs and €13285 (95% CI: 7063;14694) costs per person over
a lifetime attributable to overweight and obesity. Therefore, under current modeling assumptions,
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the LP formula would be cost-effective as an early obesity prevention strategy (expressed as positive
NMBs, discounted at 3%). This finding also holds if we run the simulation for males and females,
respectively. Given a maximum willingness to pay of €5000 on the part of society for the benefit of
the LP formula, there is a 76% chance that the LP formula would be cost-effective; this probability
increases up to 85% for a WTP of at least €20000 (Figure S3a; for more detailed sensitivity analyses,
see Figure S3b).Nutrients 2019, 11, x FOR PEER REVIEW  6 of 11 
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Figure 3. Lifetime excess cost and benefits through childhood overweight and obesity, stratified by infant
feeding strategy (lower protein (LP) or higher protein (HP)) based on Monte Carlo simulation, 4000 runs.
Lifetime excess costs represents the additional costs of being overweight/obese in childhood compared
to normal weight. Lifetime excess benefits are expressed as averted life years with overweight/ obesity.

Given that the LP formula would result in slightly higher QALYs and lower lifetime costs
attributable to overweight and obesity, it is important to calculate the scale of potential cost savings
on the population level if conventional infant formula were replaced by LP formula. We found that
infant feeding programs could spend up to €750 per child (€13,285–€12,535; Figure 4) and still yield in
positive economic returns. Given that 19% of German infants are formula-fed [24], the LP formula
would result, under current modeling assumptions, in lifetime cost savings of €2.5 billion. Moreover,
potential cost savings would increase to €4.1 billion if 30% [23] of infants were formula-fed, which is
currently the case in the US.
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4. Discussion

Our study is one of the first efforts to demonstrate that infant formula feeding modification as
early obesity prevention would be cost-effective under current modeling assumptions, and this mainly
results from a lower prevalence of obesity in early life and a higher life expectancy in the LP group.
Moreover, differences in the prevalence of overweight between the LP and the HP group are only
observable until school age, which is mainly due to the decay of the small intervention effect of the
CHOP trial [9]. These findings are potentially essential information for implementation specialists,
which would enable them to better allocate their often-scarce resources to other obesity prevention
policies already implemented to modify food environment [25,26]. However, it has to be kept in
mind that only a minority of children (19% based on a most recent review) [24] are fed with formula.
Breastfeeding is the standard for infant feeding practice and leads to similar effects on BMI and reduced
risk of later obesity [9] as does the LP formula. Moreover, despite its lack of flexibility, breastfeeding
may incur significantly lower costs, which could make it the most cost-effective strategy to reduce
the obesity burden. Countries with low breastfeeding rates, such as the US, France, and Canada [27],
could possibly benefit from legislation that prohibits the sale of HP formula and fosters breastfeeding.
Indeed, more rigorous EU guidelines, passed in 2006, already restricted the maximum content of cow
milk protein in infant formula [28].

While most economic evaluations assess the cost-effectiveness of school programs [10,29], there are
evidence gaps as to what may be cost-effective as only a few international studies [30–32] have analyzed
whether early obesity prevention programs offer good value for money. For instance, Wright et al. [32]
demonstrated that a US multicomponent child care-based obesity policy intervention, including
beverage, physical activity, and screen time regulations, would be cost-saving over a period of ten
years. Because of dissimilar health care systems and methodological differences, their results are not
directly comparable to ours. Wright et al. [32], for example, estimated long-term costs and effects based
on the childhood obesity cost-effectiveness study (CHOICES) framework that models disease-specific
pathways. The CHOICE framework differs from our approach of modeling BMI-specific pathways.
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Our paper has a number of strengths. To our knowledge, it is the first simulation-based study
for Germany that quantifies the long-term cost-effectiveness of an infant feeding modification; thus,
it could give methodological guidance for health economic evaluations of early obesity prevention
strategies. Another strength of the study is that it is based on data from a large randomized controlled
trial with a long original data follow-up period. Indeed, original anthropometric measurements
until school entrance allowed a comprehensive and accurate assessment of the intervention effect,
which is more valid than assumptions about the maintenance of the intervention effect (as often
is done in simulation studies). Moreover, since our main outcome (BMI) was directly measured,
a simulated translation of the effects of infant feeding modification into changes in BMI was not
necessary, thereby increasing the accuracy of results. Furthermore, our study uses a dynamic simulation
approach to estimate the impact of infant feeding modification. This allows an estimation of both
short-term consequences (infant feeding modification during the trial) and long-term consequences
(BMI and cost trajectories). The substantial long-term consequences of childhood feeding practices
that we estimated may underscore the need to prioritize resources for early obesity prevention.

As the limitations of the modeling approach and the CHOP trial (e.g., measuring BMI rather than
adiposity) are extensively discussed in earlier works [3,4,9,33], our focus here is on the limitations
of the cost-effectiveness analysis. First, we acknowledge that our study does not capture both the
implications of more rigorous EU guidelines [28] passed during the trial period and all potential costs
of the intervention and future costs related to obesity, such as losses in human capital and productivity
due to reduced fertility rates. Our findings are thus likely to be conservative. In detail, our model
does not capture the costs of formula feeding (e.g., cost of formula, cost of equipment, potential
additional cost of producing LP). However, since these costs are incurred in both infant feeding
strategies, excluding them does not influence the robustness of our results. Moreover, we assessed
this concern in the sensitivity analyses, where we evaluated the impact of cost of formula feeding in a
low- and high-cost scenario [27]. Second, in the absence of validated preference-based quality-of-life
instruments for young children, quality of life was only estimated for adolescents and adults. However,
if valid data about quality of life among young children are available, our model can be extended to
capture both QALYs and costs during childhood.

We conclude that under current modeling assumptions, reducing protein content in infant formula
would be cost-effective as a potent and sustainable obesity prevention strategy. Indeed, our study
is one of the first efforts to demonstrate that such a reduction is not merely an effective obesity
prevention strategy from a pediatric and epidemiological perspective but also offers good value for
money. With this economic benefit in mind, intervention specialists could be motivated to reassess and
optimize the allocation of their resources for early obesity prevention strategies.
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