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Article

Response Quality in
Nonprobability and
Probability-based
Online Panels

Carina Cornesse1,2 and Annelies G. Blom1,3

Abstract

Recent years have seen a growing number of studies investigating the
accuracy of nonprobability online panels; however, response quality in
nonprobability online panels has not yet received much attention. To fill this
gap, we investigate response quality in a comprehensive study of seven
nonprobability online panels and three probability-based online panels with
identical fieldwork periods and questionnaires in Germany. Three response
quality indicators typically associated with survey satisficing are assessed:
straight-lining in grid questions, item nonresponse, and midpoint selection in
visual design experiments. Our results show that there is significantly more
straight-lining in the nonprobability online panels than in the probability-
based online panels. However, contrary to our expectations, there is no
generalizable difference between nonprobability online panels and
probability-based online panels with respect to item nonresponse. Finally,
neither respondents in nonprobability online panels nor respondents in
probability-based online panels are significantly affected by the visual design
of the midpoint of the answer scale.
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The past decade has seen increasing debate about the quality of nonprob-

ability online panels. This debate has primarily circled around whether or

not these panels provide representative sets of respondents (for an over-

view of the debate see Cornesse et al. 2020). The apprehension of some

researchers is that a biased subgroup of the population self-selects into

nonprobability online panels (see Chang and Krosnick 2009; Legleye et

al. 2015; Loosveldt and Sonck 2008; MacInnis et al. 2018; Malhotra and

Krosnick 2007; Pasek 2016; Pennay et al. 2016; Yeager et al. 2011).

Others argue that nonprobability online panels can accurately reflect the

target population, especially after weighting (see Goel, Obeng, and

Rothschild 2015; Kennedy, Keeter, and Weisel 2016; Wang et al.

2015). However, while the number of publications on nonprobability

panel accuracy is increasing, less attention has been paid to response

quality in nonprobability panels (for notable exceptions, see Chang and

Krosnick 2009; Greszki, Meyer, and Schoen 2014; Hillygus, Jackson, and

Young 2014).

This is surprising, because one might argue that, since their respondents

participate in the panel mainly for monetary reasons (see e.g., GreenBook

2017), nonprobability online panel respondents may be less committed to the

panel in terms of response quality. The focus on monetary rewards among the

respondents is encouraged by the nonprobability online panel advertising

industry that recruits the panel members. With advertising slogans like “Earn

Cash With Quick Paid Surveys!” (www.quickpaysurvey.com), “Make

Money Online With Paid Surveys” (www.cashcrate.com), or “Take Surveys

for Cash” (www.takesurveysforcash.com) advertisers try to attract as many

Internet users as possible. Being attracted to the online panel by the promise

of easy money for little effort, nonprobability online panel respondents may

show different care in answering survey questions than respondents that were

recruited into an online panel by probability-based offline recruitment meth-

ods, independent of their sociodemographic characteristics. Consequently,

response quality might differ between nonprobability and probability-based

online panel respondents.
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In this article, we investigate whether there is a difference in response

quality between survey participants in nonprobability online panels and

probability-based online panels. For this purpose, we look into three indica-

tors that are often associated with response quality in the context of survey

satisficing: straight-lining, item nonresponse, and midpoint selection.

Respondent Motivation and Survey Satisficing

Most social research based on survey data relies on the assumption that

respondents answer the survey questions to the best of their ability. This

requires the respondents to carefully carry out all the cognitive steps involved

in answering a survey question. According to Tourangeau, Rips, and

Rasinski (2000), cognitive response processing consists of four steps: ques-

tion comprehension, information retrieval, judgment and estimation, and

reporting an answer. Data analysts typically assume that all four response

steps were carefully carried out by all respondents, that is, respondents opti-

mize survey responses. Respondents, however, sometimes take shortcuts

through the optimal cognitive response process. This behavior is called

satisficing (Krosnick and Alwin 1987).

Krosnick (1991) defines two types of satisficing: weak satisficing and

strong satisficing. Weak satisficing occurs when respondents execute all

cognitive steps that are necessary to arrive at a response, but they do so only

superficially. They might, for instance, read a question text carefully but skip

the accompanying instruction text. Alternatively, when presented with a list

of answer options, respondents might choose the first option that approxi-

mately fits their opinion without considering further answer options that

might fit their opinion even better. Because weak satisficers carry out the

response steps superficially, unmeaningful decision-making cues, like the

visual design of an answer scale, can influence their responses.

While weak satisficers carry out all four cognitive response steps, even if

they do so superficially, strong satisficers do not or only partially carry out

the response steps. Respondents might, for instance, process only just enough

information to arrive at a response that they consider generally reasonable

without reading and considering the question carefully or without searching

their memories and retrieving the relevant information. This strategy results

in no responses at all, unmeaningful answers, nonsubstantive answers, or

undifferentiated answers.

According to satisficing theory, there is a continuum of cognitive thor-

oughness of responses with perfectly optimized responses at one end of the

continuum and strongly satisficed responses at the other end (see Krosnick
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1991). Respondents can be in different positions on the continuum, with

some being generally thorough in all of their responses and others being

generally less careful in their responses (for empirical proof, see Kaminska,

McCutcheon, and Billiet 2010; Knäuper 1999; Krosnick 1992; Malhotra

2008; Narayan and Krosnick 1996). In addition to this interpersonal varia-

tion, there can be intrapersonal variation in the level of satisficing observed

during an interview, for example, when respondents fatigue during a long

interview (for empirical proof, see Roberts et al. 2010).

According to Krosnick (1991), there are three factors that largely influ-

ence the occurrence and degree of satisficing: task difficulty, respondent

ability, and respondent motivation. Task difficulty refers to the cognitive

effort needed to answer a question optimally. The task difficulty depends

on the complexity of a question and of the information asked for. When a

question contains many words, long words, and/or uncommon or ambiguous

terms, satisficing is more likely to occur than when questions are short,

precise, and easy to comprehend (for empirical proof, see, e.g., Alwin and

Krosnick 1991). Similarly, when a question asks respondents to evaluate

multiple items or answer on a long, unlabeled scale, satisficing is more likely

than when a question asks for the evaluation of only one item and provides

few fully labeled answer options (see also Krosnick 1999; Krosnick and

Berent 1993).

Respondent ability refers to the competences and skills involved in

answering survey questions. It includes cognitive abilities such as cognitive

sophistication, the amount of practice in thinking about a topic, and attitude

strength, as well as practical abilities such as the ability to process and

communicate answers. In self-administered questionnaires, respondent

ability also includes reading and writing skills. Furthermore, in web sur-

veys, computer literacy and technological skills necessary to start and

navigate through the survey are important aspects of respondent ability (for

empirical proof on satisficing in web surveys, see, e.g., Toepoel et al.

2009). Satisficing is more likely to occur when a respondent has low cog-

nitive abilities and may therefore have problems comprehending the ques-

tion (see also Kaminska et al. 2010; Krosnick 1992; Krosnick and Alwin

1987; Narayan and Krosnick 1996).

The respondents’ motivation determines how much effort they are willing

to invest in answering a question. To some extent, respondent motivation is a

personality characteristic that is related to a person’s need for cognition (for

information on the concept of need for cognition, see Cacioppo and Petty

1982). Satisficing is more likely to occur if respondents have low need for

cognition (see Kaminska et al. 2010). Respondents with high need for
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cognition have an intrinsic motivation to fill out the questionnaire carefully

because they generally enjoy thinking about questions and have fun expres-

sing their opinions. High interest in a survey topic and the perceived impor-

tance of a survey can have a substantial impact on respondent motivation at

the start of the survey (see also Groves, Presser, and Dipko 2004; Stoop

2005). However, respondent motivation may decrease over the course of the

interview. Therefore, satisficing is more likely toward the end of a survey,

especially in long surveys, than toward the start and in short surveys (see also

Krosnick et al. 2002).

Measuring Satisficing

Thus, according to Krosnick (1991), the combination of task difficulty,

respondent ability, and respondent motivation explains the occurrence and

amount of satisficing. In our analyses, we keep task difficulty constant across

panels by including exactly the same questions with exactly the same ques-

tion format and response categories across all of the panels. In addition, we

aim to keep respondent ability constant across panels by applying the same

raking weighting procedure to all samples and thus controlling for sample

composition differences in sociodemographic characteristics (i.e., marital

status, household size, age, and education).

Regarding respondent motivation, we assume that the nonprobability

panel participants are mainly motivated by the monetary incentives that they

receive. Thus, we expect them to minimize effort in order to maximize their

incentive-by-effort ratio. This expectation is supported by studies that

demonstrate the importance of monetary incentives for nonprobability online

panel members. For instance, in a study on the motives for joining nonprob-

ability online panels, Keusch, Batinic, and Mayerhofer (2014:179) find that

when asked to select all of their motives for participation, 40 percent of

panelists indicated they “wanted to earn some extra money.” In addition,

“monetary motives had the strongest correlation with survey participation”

for nonprobability online panel participants (Keusch et al. 2014:185). Simi-

larly, Sparrow (2006:5) finds that 52 percent of the new members of a

nonprobability online panel participate because it is “an enjoyable way to

earn money” as opposed to 20 percent who join because they “thought they

would be interested in the topics covered,” and 19 percent who “enjoy

answering questions.”

The probability-based online panelists are less driven by monetary incen-

tives. For instance, analyzing survey data on the respondents’ most important

reason to participate in the Dutch LISS Panel (www.lissdata.nl), a
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probability-based online panel of the general population in the Netherlands,

we find that 16.4 percent of the respondents participate in the panel because

they “find it important to contribute to science.” The financial reward is only

stated as the most important reason for participating by 15.2 percent of

respondents. Furthermore, for the German Internet Panel (GIP; https://

www.uni-mannheim.de/gip), a probability-based online panel of the German

general population, we observe that about 13 percent of panelists even waive

their incentive and choose to donate it to charity instead.

We, therefore, expect the share of people who care about giving optimized

answers to be lower, and thus the amount of satisficing behavior to be higher,

in the nonprobability online panels than in the probability-based online

panels. To investigate differences in response quality across nonprobability

and probability-based online panels, we examine three indicators of satisfi-

cing: straight-lining in grid questions, item nonresponse, and midpoint

selection in a visual design experiment. In the following, we discuss the

theoretical and empirical background in the literature of each of these

indicators.

Straight-lining

The term straight-lining refers to the tendency of respondents to choose the

same or a very similar answer option for each item in a grid (see Schonlau

and Toepoel 2015). This phenomenon is sometimes also referred to as “non-

differentiation” (see Malhotra, Miller, and Wedeking 2014). Straight-lining

is a strong form of satisficing. It occurs in self-administered questionnaires

because the grid format provides a visual cue that triggers a specific type of

cognitive shortcut: While for the first item of the grid, respondents might still

carry out all the cognitive steps necessary to arrive at an optimized response,

the grid format suggests that the same answer will also be acceptable for the

following items. Therefore, some respondents might abandon the full cog-

nitive response processing in favor of a shortcut and give the same (or a very

similar) answer to all other grid items. Research suggests that avoiding grid

questions and asking each question separately instead, preferably with only

one question per screen, can prevent straight-lining (see Couper 2008; Cou-

per, Traugott, and Lamias 2001).

Item Nonresponse

Like straight-lining, item nonresponse is a form of strong satisficing.

Respondents who choose this satisficing strategy skip one or all of the
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cognitive response steps. In a web survey, respondents might not read the

question text carefully and click on the “next” button instead in order to get to

the end of the questionnaire more quickly. If they read the question carefully,

they might still not be willing or able to go through the necessary information

retrieval or the judgment and estimation processes. There are two types of

item nonresponse: question skipping (QS) and giving a nonsubstantive

answer, that is, answering “don’t know” (DK) or “don’t want to say” (DWS).

Nonsubstantive responses require some cognitive effort because respon-

dents have to at least browse through the answer options or look for visual

design cues that lead them to the DK or DWS answer category. Relative to

nonsubstantive responses, QS is a much stronger type of satisficing because

when choosing to skip a question altogether, respondents do not have to

engage in any kind of cognitive response process.

A potential drawback to using nonsubstantive answers as a satisficing

indicator is that respondents may carry out all the necessary response steps

and in the end still decide to choose a nonsubstantive response, for example,

because they honestly do not know the answer to a question (Converse 1974;

Schuman and Presser 1981; Sturgis, Roberts, and Smith 2014). With respect

to “no opinion” answers, however, Krosnick et al. (2002) show that respon-

dents with low levels of education are more likely to choose this answer

option, suggesting that people are more likely to choose “no opinion”

responses when they perceive the processes of producing an optimal

response as cumbersome. Furthermore, the authors find that the amount of

“no opinion” answers increases with interview duration, suggesting that

respondent motivation decreases toward the end of the interview resulting

in less willingness to engage in the cognitive effort necessary to produce an

optimal response. These findings are supported by further research (see, e.g.,

Bradburn and Sudman 1988; Feick 1989; Fowler and Cannell 1996; Gilljam

and Granberg 1993; Holbrook, Green, and Krosnick 2003).

Midpoint Selection

The midpoint of an answer scale provides a superficial visual cue in self-

administered questionnaires. Following Krosnick’s (1991) reasoning, some

respondents might satisfice by selecting the middle category while optimiz-

ing respondents are not influenced by this visual cue and instead choose the

answer option that best represents their “true” answer after carrying out all

the necessary cognitive steps. Specifically, Krosnick and Fabrigar

(1997:147) argue that “many people [ . . . ] might select an offered midpoint

because it provides an easy choice that requires little effort and is easy to
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justify.” On the continuum of cognitive thoroughness, midpoint selection can

be interpreted as a weaker form of satisficing than straight-lining and item

nonresponse when we assume that respondents go through the necessary

response steps but are influenced in their decision by the visual design cue

that the scale midpoint provides. Tourangeau, Couper, and Conrad (2004)

show that, generally, the visual midpoint rather than the conceptual mid-

point shapes the response distribution. Their explanation is that “the visual

midpoint is seen as providing a benchmark, representing either the con-

ceptual midpoint of the scale or the most typical response” (p. 390). Fol-

lowing satisficing theory, it is likely that satisficing respondents choose the

visual midpoint to reduce the cognitive effort needed to evaluate the other

response options against this midpoint. This behavior would constitute a

shortcut to the information retrieval and/or the judgment and estimation

processes. Therefore, the selection of the visual midpoint may be used as an

indicator of satisficing behavior (see also Kaminska et al. 2010; Malhotra

et al. 2014).

Online Panel Data

In this article, we assess response quality among respondents in 10 online

panels (see Table 1). Three of them are probability-based online panels: the

GIP, the GESIS Panel (GP), and one commercial probability-based online

panel. The remaining seven are commercial nonprobability online panels. In

each of the online panels, we fielded the same short multi-topic online survey

in German language.

Our study has been conducted as part of a larger project on data quality in

nonprobability and probability-based online surveys. Some of the survey

questions in our questionnaire have specifically been designed to investigate

survey satisficing while other questions have originally been designed to

allow analyses on sample accuracy that are out of the scope of this article.

In the following, we describe the various online panels and the study that we

implemented in more detail.

The GIP

The GIP is based on a three-stage stratified probability area sample with

subsequent face-to-face recruitment interviews. At the first sampling stage, a

random sample of areas is drawn from a database that covers all areas in

Germany. Within each primary sampling unit (PSU), listers record every

household along a predefined random route until they have listed 200
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households. Subsequently, a random sample of households is drawn to be

interviewed in face-to-face recruitment interviews. All age-eligible members

of sampled households are invited to become online panelists (see Blom,

Gathmann, and Krieger 2015). Furthermore, the GIP covers individuals

without computer and/or Internet access by equipping them with the neces-

sary devices (see Blom et al. 2017). All panel members are invited bi-

monthly to participate in an online interview of about 20–25 minutes on a

diversity of social, economic, and political topics. For the analyses in this

article, we used wave 16 of the GIP. It had a completion rate1 of 69.8 percent

and a cumulative response rate2 of 14.3 percent. Although the GIP covers the

German population aged 16–75, we only use data from individuals that were

aged 18–70 to make the data comparable across all panels in this study.

Table 1. Online Panel Characteristics.

Panela Type Sampling Recruitment
Offline
Households

Fieldwork
Period N

GIP Academic Probability Face-to-face Yes March 1 to
31, 2015

3,075

GP Academic Probability Face-to-face Yes February 18
to April
14, 2015

2,533

1 Commercial Probability Telephone No March 1 to
31, 2015

1,012

2 Commercial Nonprobability Online No March 5 to
18, 2015

1,038

3 Commercial Nonprobability Online No March 2 to
11, 2015

999

4 Commercial Nonprobability Online No March 1 to
18, 2015

1,002

5 Commercial Nonprobability Online No March 2 to
16, 2015

1,000

6 Commercial Nonprobability Online No March 25 to
April 1,
2015

1,000

7 Commercial Nonprobability Online No March 3 to
9, 2015

994

8 Commercial Nonprobability Online No March 5 to
11, 2015

1,000

Note: GIP ¼ German Internet Panel; GP ¼ GESIS Panel.
aRefer Note 5.
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The GP

The GP is based on a two-stage stratified probability sample from population

registers and subsequent face-to-face recruitment interviews. At the first

sampling stage, the GP draws a random sample of areas from a database

of municipalities in Germany. Then, the GP samples individuals from the

local population registers within each of the sampled PSUs. Because 10

sampled municipalities refused to cooperate with the GP sampling request,

these PSUs had to be substituted (see Bosnjak et al. 2017). Subsequently, the

sampled individuals were contacted for face-to-face recruitment interviews.

All interviewed individuals were invited to become panelists. Furthermore,

the GP includes the offline population via paper-and-pencil mail surveys.

Internet users that prefer to participate offline instead of online are also

provided with paper-and-pencil mail surveys. All panel members of the

GP are invited to participate in bi-monthly interviews of about 20 minutes

on a wide variety of topics. For the analyses in this article, we used the so-

called wave ca of the GP (for reference, see the report of wave ca, https://

www.gesis.org/en/gesis-panel/documentation/). It had a completion rate3 of

77.72 percent and a cumulative response rate4 of 19.5 percent. The age range

covered in the GP is 18–70 years. In our study, we exclude the GP mail

respondents because the potential mode effect might bias our results (see,

e.g., Green, Krosnick, and Holbrook 2001; Holbrook et al. 2003, for evidence

on differences in satisficing by mode).

Panel 1

Panel 1 is a commercial probability-based online panel. To recruit panel

members, the panel draws its sample from random digit dialing (RDD) tele-

phone surveys conducted in-house by the same company. Individuals inter-

viewed in an RDD telephone interview were subsequently invited to join the

panel for regular online interviews if they had access to the Internet. Recruit-

ment interview respondents that did not have access to the Internet were not

invited for the subsequent online panel waves. For our study, panel 1 drew a

quota subsample from its probability-based respondent pool. Panel participa-

tion rates could not be calculated due to the unavailability of the necessary

information on how many panel participants were invited to our survey wave.

The Nonprobability Online Panels: Panels 2–8

For the recruitment of the nonprobability online panels, we published a call

for applications in November 2014. The call explained that we sought to
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implement a 10-minute questionnaire about traffic, politics, and health

among 1,000 respondents that should be representative of the German pop-

ulation aged 18–70 years of age. The call further announced that the data

were to be collected in March 2015. Regarding further design decisions

(application of quotas, provision of weights, etc.), the panel providers were

free to choose whichever approach they thought would provide the most

representative data.5

In response to our call, we received 17 applications for conducting the

specified survey. Of these, 16 survey providers explicitly offered a sample

representative of the general population in Germany aged 18–70. Seven

providers were considered fit for our purpose and within reasonable budget-

ary limits. We therefore commissioned them with collecting our data. The

costs quoted for conducting the wave analyzed in this article plus two addi-

tional waves conducted in half-year intervals varied widely across the panels

(see Online Appendix A, which can be found at http://smr.sagepub.com/

supplemental/, for details). In the following, the nonprobability online panels

are numbered from two to eight in sequence of ascending costs. Panel par-

ticipation rates could not be calculated due to the unavailability of the nec-

essary information on how many panel participants were invited to our

survey wave.

Method

To assess differences in the amount and type of satisficing between the

nonprobability online panels and the probability-based online panels, we

consider three satisficing indicators: straight-lining in grids, item nonre-

sponse, and midpoint selection in a visual design experiment. Their opera-

tionalization is described in the following. Information on the question texts

and answer scales of the questions we used in our analyses can be found in

Online Appendix B (which can be found at http://smr.sagepub.com/supple

mental/). Furthermore, external validations of selected survey variables and

sociodemographic characteristics can be found in Online Appendix C (which

can be found at http://smr.sagepub.com/supplemental/).

Straight-lining

To assess straight-lining in our questionnaire, we implemented two psycho-

logical short scales with four items each in grid format. We do not use any

grid questions in our questionnaire module except for these two psychologi-

cal scales that we specifically use for the purpose of assessing straight-lining
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in grids across the nonprobability and probability-based online panels. We

define respondents as straight-liners if they choose the same answer category

for every item on at least one of the two grid questions. Based on the

literature described above, we test the following hypothesis:

Hypothesis 1: In nonprobability online panels, a higher proportion of

respondents chooses to straight-line on grid questions than in

probability-based online panels.

To test this hypothesis, we compare the proportions of straight-liners and

the respective confidence intervals around these estimates across the respon-

dents of each of the nonprobability and the probability-based online panels.

Furthermore, we apply w2 -tests to examine averages across all nonprobabil-

ity online panel respondents versus all probability-based online panel

respondents.

Item Nonresponse

Our questionnaire contained several possibilities for generating item nonre-

sponse, all of which were implemented in the same way across all panels. In

our analyses, we can differentiate between different types of item nonre-

sponse. At several questions, respondents were able to give nonsubstantive

answers. At five questions, we provided the nonsubstantive answer option

“DK,” at two questions we provided a “DWS” option, and at one question,

we provided both DK and DWS answer options. In addition, at each question,

respondents were able to skip the question by clicking on the “next” button,

generating QS. Based on the literature described above, we test the following

hypotheses:

Hypothesis 2: In nonprobability online panels, a higher proportion of

respondents chooses to not provide any (substantive) response to a

question than in probability-based online panels.

Hypothesis 2a: In nonprobability online panels, a higher proportion of

respondents chooses to answer DK than in probability-based online

panels.

Hypothesis 2b: In nonprobability online panels, a higher proportion of

respondents chooses to answer DWS than in probability-based online

panels.

Hypothesis 2c: In nonprobability online panels, a higher proportion of

respondents chooses to skip a question than in probability-based online

panels.
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For each type of item nonresponse, we generated a continuous variable

that operationalizes the proportion of each type of item nonresponse (DK,

DWS, and QS) per respondent among all questions where these types of

nonresponses were possible. In addition, we generated a variable that oper-

ationalizes the proportion of overall item nonresponse (INR) per respondent

among all questions.

To test our hypotheses, we compare the average proportion of each type of

item nonresponse and the respective confidence intervals around these esti-

mates across the respondents of each of the nonprobability and probability-

based online panels. Furthermore, we apply w2-tests to examine average

proportions of each type of item nonresponse among all nonprobability

online panel respondents versus all probability-based online panel

respondents.

Midpoint Selection

We implemented a visual design experiment in our questionnaire to inves-

tigate whether respondents answer consistently across different answer

scales. Four experimental conditions were randomly assigned to respondents.

Condition 1: The conceptual midpoint was located at the visual

midpoint.

Condition 2: The answer scale contained a conceptual midpoint but no

visual midpoint.

Condition 3: The answer scale contained a visual midpoint but no

conceptual midpoint.

Condition 4: The answer scale contained neither a conceptual nor a

visual midpoint.

We conducted this experiment on two questions of our questionnaire and

randomly assigned respondents independently at each question. The first

question covered respondents’ perceived health. The second question con-

cerns respondents’ opinion on environmental zones in cities.6

We varied the presence of a conceptual midpoint by including a “neither

nor” or “average” answer option in the scale versus excluding this conceptual

midpoint. We vary the presence of a visual midpoint by leaving a gap

between the substantive answer options and the “I don’t know” option versus

not leaving a gap. The respective answer scales are depicted in Table 2 and

Table 3.
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Table 2. Experimental Conditions in the Midpoint Experiment on the Five-point
Scale.

Conceptual & 

visual midpoint

Conceptual 

midpoint only

Visual midpoint 

only No midpoint

Very good Very good Very good Very good

Good Good Good Good

Average Average Bad Bad

Bad Bad Very bad Very bad

Very bad Very bad DK

DK DK

DK

Note: Conceptual midpoint; visual midpoint. DK ¼ don’t know.

Table 3. Experimental Conditions in the Midpoint Experiment on the Seven-point
Scale.

Conceptual & visual 

midpoint

Conceptual 

midpoint only

Visual 

midpoint only No midpoint

Very good Very good Very good Very good

Good Good Good Good

Rather good Rather good Rather good Rather good

Neither nor Neither nor

bad

Rather bad Rather bad

Rather bad Rather bad Bad Bad

Bad Bad Very bad Very bad

Very bad Very bad DK

DK DK

DK

Note: Conceptual midpoint; visual midpoint. DK ¼ don’t know.
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Following the literature described above, there are two reasons why

respondents may choose an answer option from a response scale. The first

reason for choosing an answer option is that, after carefully going through all

necessary cognitive response processing steps, respondents decide that this

answer option fits them best. If respondents choose an answer option for the

first reason, the response distribution should not be affected by whether or

not this answer option is located at the visual midpoint of the answer scale.

The second reason for choosing an answer option is that respondents go

through the cognitive response processing steps only superficially and there-

fore look for unmeaningful cues to decide which answer option to choose

(i.e., weak satisficing as described in the literature above). If respondents

satisfice and choose an answer option for the second reason, the proportion of

respondents who choose an answer option should be higher when this answer

option is located at the visual midpoint of the answer scale than when it is not

located at the visual midpoint. Following our expectation that there is more

satisficing in nonprobability online panels than in probability-based online

panels, we test the following hypothesis in our midpoint selection

experiment:

Hypothesis 3: In nonprobability online panels, a higher proportion of

respondents chooses an answer option when it is located at the visual

midpoint than in probability-based online panels.

As with choosing an answer option in general, there are two reasons for

choosing the conceptual midpoint of an answer scale: The first reason for

choosing the conceptual midpoint is that, after going through all cognitive

response processing steps, respondents conclude that the conceptual mid-

point fits them best. The second reason for choosing the conceptual midpoint

is that the conceptual midpoint is located at the visual midpoint of the answer

scale and therefore picking the conceptual midpoint serves as a satisficing

strategy. Because the conceptual midpoint is usually located at the visual

midpoint of the answer scale, we specify two additional hypotheses to

Hypothesis 3. These additional hypotheses disentangle the effect of the

visual design of the answer scale on the conceptual midpoint (Hypothesis

3a) and the effect of the visual design of the answer scale on a regular answer

option (Hypothesis 3b) in nonprobability online panels compared to

probability-based online panels.

Hypothesis 3a: The difference between the proportion of respondents

choosing the conceptual midpoint when it matches the visual midpoint
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(condition 1) and the proportion of respondents choosing the concep-

tual midpoint when there is no visual midpoint (condition 2) will be

higher in nonprobability online panels than in probability-based online

panels.

Hypothesis 3b: The difference between the proportion of respondents

choosing an answer option when it is located at the visual midpoint

(condition 3) and the proportion of respondents choosing the same

answer option when it is not located at the visual midpoint (condition

4) will be higher in nonprobability online panels than in probability-

based online panels.

We apply w2-tests to examine averages across the nonprobability and

probability-based online panel respondents. For each of the estimates in our

analyses described above, we obtained bootstrapped standard errors by pool-

ing results across 100 variance–covariance matrices.

Results

We examine whether there are significant differences in response quality

between nonprobability online panels and probability-based online panels

based on our hypotheses on the satisficing indicators described above

(straight-lining, item nonresponse, and midpoint selection in a visual design

experiment).

Straight-Lining

With regard to our hypothesis that a higher proportion of respondents

chooses to straight-line on grid questions in nonprobability online panels

than in probability-based online panels (Hypothesis 1), we indeed find sig-

nificantly more straight-lining in the nonprobability online panels than in the

probability-based online panels (on average 13.4 percent and 6.5 percent,

respectively; w2(1) ¼ 152.7, p ¼ 0.00).

When investigating the online panels in detail (see Figure 1), we find that

in each of the nonprobability online panels, straight-lining is considerably

more prevalent (between 10.2 percent in panel 2 and 16.2 percent in panel 5)

than in the probability-based online panels (between 3.1 percent in GP and

9.2 percent in GIP). In fact, two of the probability-based online panels (GP

and panel 1) show significantly less straight-lining than the best nonprob-

ability online panel (panel 2).
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Item Nonresponse

Regarding our hypothesis that a higher proportion of respondents

chooses to not provide any (substantive) response to a question in non-

probability online panels than in probability-based online panels

(Hypothesis 2), we find no generalizable evidence in support of our item

nonresponse hypotheses across the three types of item nonresponse (DK,

DWS, and QS).

When examining INR as an overall measure of item nonresponse that

operationalizes the broader Hypothesis 2 (see INR bars in Figure 2), we find

that, contrary to our expectations, the average proportion of nonresponses is

significantly lower among the nonprobability online panel respondents com-

pared to the probability-based online panel respondents (1.2 percent versus

1.6 percent, respectively; w2(1) ¼ 50.3, p ¼ 0.00). In the following, we

explore the different types of item nonresponse (DK, DWS, and QS) in more

detail based on our Hypotheses 2a–2c.

With regard to our hypothesis that the average proportion of DK answers

is higher among the nonprobability online panel respondents than among the

probability-based online panel respondents (Hypothesis 2a), we find that,

contrary to our expectations, the nonprobability online panel respondents

had a significantly lower average percentage of DK answers than the

probability-based online panel respondents (2.9 percent versus 3.4 percent,

w2(1) ¼ 64.9, p ¼ 0.00, see DK bars in Figure 2).

9.2%

3.3%

6.4%

10.2%

12.7% 11.4%

16.2%
15.4%

13.5%
14.6%

0%

5%

10%

15%

20%

GIP GP 1 2 3 4 5 6 7 8

Probability Nonprobability

Figure 1. Proportion of straight-liners across panels (bars), bootstrapped 95 percent
confidence intervals (spikes).
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However, looking at the proportions of DK across the online panels in

detail (see left pane of Figure 3), we find some variability in the proportion of

people who chose DK in the nonprobability online panels (between 1.8

percent in panel 4 and 3.7 percent in panel 8) and the probability-based

online panels (between 2.8 percent in panel 1 and 4.0 percent in GP). While

the average proportion of DK answers is significantly higher in the GP and

significantly lower in panel 4 than in most other panels, the overall varia-

bility across the online panels is such that any differences between nonprob-

ability and probability-based online panels seem coincidental.

Regarding our hypothesis that a higher proportion of respondents chooses

to answer DWS in nonprobability online panels than in probability-based

online panels (Hypothesis 2b), we find that there is a significant difference in

the average proportion DWS answers between the nonprobability online

panels and the probability-based online panels (9.3 percent versus 10.5 per-

cent, w2(1) ¼ 4.1, p < 0.1).

Examining the proportions of DWS across the online panels in detail (see

middle pane of Figure 3), we again do not find any generalizable evidence

that may distinguish nonprobability online panels (between 7.3 percent in

panel 4 and 11.7 percent in panel 8) from probability-based online panels

(between 9.0 percent in GP and 12.0 percent in GIP).

With regard to our hypothesis that a higher proportion of respondents

chooses to skip a question in nonprobability online panels than in

probability-based online panels (Hypothesis 2c), we find a small but

1.2%

2.9%

9.3%

0.1%

1.6%

3.4%

10.5%

0.4%

0%

2%

4%

6%

8%

10%

12%

INR DK DWS QS

Nonprobability Probability-based

Figure 2. Proportion of item nonresponse in probability-based and nonprobability
panels (bars), bootstrapped 95 percent confidence intervals (spikes).
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statistically significant difference between nonprobability online panels and

probability-based online panels (0.1 percent versus 0.4 percent, w2(1) ¼
104.8, p < 0.1).

When we examine QS across panels in detail (see right pane of Figure 3),

we find no generalizable pattern of differences between the nonprobability

online panels (between 0.0 percent in panels 4–8 and 0.4 percent in panel 3)

and the probability-based online panels (between 0.0 percent in panel 1 and

0.7 percent in GP). Overall, we find that item nonresponse is generally very

low in all examined online panels, especially with regard to DK answers and

QS. In addition, item nonresponse seems unrelated to the sampling design of

the panels.

Midpoint Selection

In Table 4, we present the results of our experiment on the influence of the

answer scale design on the selection of the visual midpoint. Contrary to our

hypothesis on midpoint selection (Hypothesis 3), we find no significant

difference between nonprobability online panels and probability-based

online panels in the effect of the visual design of the scale on midpoint

selection. In the following, we investigate the differences in midpoint selec-

tion across nonprobability online panels and probability-based online panels

in more detail based on our Hypotheses 3a and 3b.

With regard to our hypothesis that the difference between the proportion

of respondents choosing the conceptual midpoint when it matches the visual

midpoint (condition 1) and the proportion of respondents choosing the con-

ceptual midpoint when there is no visual midpoint (condition 2) will be

higher in nonprobability online panels than in probability-based online

panels (Hypothesis 3a), we find that the difference in proportions is not

significantly higher in the nonprobability online panels than in the

probability-based online panels (0.8 percentage points and 0.4 percentage

points, respectively, on the five-point scale, w2(1) ¼ 0.01, p > 0.10; 0.7

percentage points and �3.2 percentage points, respectively, w2(1) ¼
�0.05, p > 0.1, on the seven-point scale). This indicates that respondents

in nonprobability online panels are not more influenced by the visual design

of the midpoint than respondents in probability-based online panels.

Regarding our hypothesis that the difference between the proportion of

respondents choosing an answer option when it is located at the visual mid-

point (condition 3) and the proportion of respondents choosing the same

answer option when it is not located at the visual midpoint (condition 4) will

be higher in nonprobability online panels than in probability-based online
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panels (Hypothesis 3b), we find that the difference in proportions is not

significantly higher in the nonprobability online panels than in the

probability-based online panels (0.7 percentage points and �2.7 percentage

points, respectively, on the five-point scale, w2 ¼ 0.24, p > 0.1; �1.2 per-

centage points and 1.1 percentage points, respectively, w2 ¼ 0.05, p > 0.1, on

the seven-point scale). In accordance with our findings from Hypothesis 3a,

the findings on Hypothesis 3b also indicate that respondents in

Table 4. Proportions and Absolute Numbers of Respondents in the Middle Category
by Experimental Group in Probability-based Online Panels and Nonprobability Online
Panels.

Experimental
Condition

Five-point Scale Seven-point Scale

Nonprobability
Probability

Based Nonprobability
Probability

Based

Percent N Percent N Percent N Percent N

Hypothesis 3a
Condition 1:

Conceptual
midpoint
matches visual
midpoint

28.5 500 26.7 444 17.1 299 15.2 254

Condition 2:
Conceptual
midpoint but
no visual
midpoint

27.6 493 26.3 432 16.3 288 18.4 298

Difference
between
conditions 1
and 2

0.8 7 0.4 12 0.7 11 �3.2 �44

Hypothesis 3b
Condition 3:

Visual
midpoint

14.7 254 9.2 154 10.4 181 11.7 196

Condition 4:
No midpoint

14.0 246 11.9 194 11.6 205 10.6 175

Difference
between
conditions
3 and 4

0.7 8 �2.7 �40 �1.2 �24 1.1 21
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nonprobability online panels are not more influenced by the visual design of

the midpoint than respondents in probability-based online panels.

Furthermore, when examining the results of the experiment in each of the

online panels (see Online Appendix D, which can be found at http://smr.

sagepub.com/supplemental/), we find that the visual design of the midpoint

has no effect. Exceptions are three of the nonprobability online panels

(panels 5–7), where we find a weakly significant effect in one comparison

of experimental conditions each, but given the number of effects tested, this

may well be just by chance.

Response Quality and Costs

Table A1 in Online Appendix A (which can be found at http://smr.sagepub.

com/supplemental/) shows the total costs for data collection in the commer-

cial online panels. Panel 1 participated without billing any costs. All other

commercial online panels costed different amounts of money ranging from

€5,392.97 in panel 2 to €10,676.44 in panel 8. There is no indication that the

more costly panels perform better than the less costly panels in terms of data

quality. For example, panel 2 as the least costly commercial online panel has

a slightly lower proportion of straight-lining, DK answers, and DWS answers

than panel 8 as the most costly commercial online panel. Panel 8, however,

has a marginally lower percentage of QS than panel 2. Regarding the mid-

point design experiment, both panels 2 and 8 do not show any significant

differences across experimental subgroups. We therefore conclude that there

is no association between costs and response quality.

Discussion

In this article, we investigate the effect of respondent motivation on response

quality in nonprobability and probability-based online panels. We assume

that respondents in nonprobability online panels are more focused on the

monetary incentives provided by the panel providers than respondents in

probability-based online panels, resulting in higher satisficing among non-

probability online panel respondents than among probability-based online

panel respondents.

In our study, we implemented the same survey with the exact same ques-

tionnaire across 10 online panels (seven nonprobability online panels and

three probability-based online panels) during the same fieldwork period. In

our analysis, we used three satisficing indicators: straight-lining in grid ques-

tions, item nonresponse, and midpoint selection in a visual design
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experiment. To be able to focus on whether differences in respondent moti-

vation in nonprobability and probability-based online panels lead to differ-

ences in the occurrence of satisficing, we kept the task difficulty constant

across the online panels and controlled for respondent ability in our weight-

ing schemes.

In line with our expectations, we found significantly more straight-lining

in the nonprobability online panels than in the probability-based online

panels. This indicates that nonprobability online panel respondents are

indeed more prone to satisficing than probability-based online panel respon-

dents due to the nonprobability online panel respondents’ focus on maximiz-

ing their incentive-by-effort ratio.

Contrary to our expectation, however, we found little to no DK answers

(Hypothesis 2a) and QS (Hypothesis 2c) across the online panels examined.

In addition, while we found substantial amounts of DWS (Hypothesis 2b)

across the examined online panels, this cannot be explained by the online

panel sampling designs. This might mean that the respondents in the exam-

ined online panels do not choose item nonresponse as a satisficing strategy.

One reason for this might be that the online panel respondents perceive the

effort of having to click their way through the probes that typically pop up

when they skip a question as more cumbersome than just providing an

answer to the question. In addition, respondents might choose the DK answer

option to express their genuine failure to recall the information asked for in

the survey question (for more information on recall error, see Eisenhower,

Mathiowetz, and Morganstein 2004). Furthermore, respondents might

choose the DWS answer option to express their genuine wish to keep some

information secret, potentially due to online data protection concerns (for

empirical proof on data protection concerns in online surveys, see Joinson

et al. 2008). Future research should examine the mechanisms leading respon-

dents to choose the different types of item nonresponse in online panels more

closely.

Contrary to our expectations, we also did not find any effect of the visual

design of the answer scale on midpoint selection (Hypothesis 3) in any of the

online panels. Our findings therefore suggest, contrary to the findings from

Tourangeau et al. (2004), that the visual midpoint of an answer scale does not

serve as a superficial decision-making cue in online surveys. Furthermore,

the results from our midpoint selection experiment are contrary to Krosnick’s

(1991) reasoning that respondents choose the midpoint of an answer scale as

a satisficing strategy. However, our results are in accordance with the empiri-

cal finding by Krosnick and Fabrigar (1997) who do not find any evidence

for midpoint selection as a satisficing strategy. Future research should
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examine the exact circumstances under which the effect of the visual design

of the answer scale on midpoint selection found by Tourangeau et al. (2004)

replicates.

Finally, we find that there is no association between response quality and

survey costs across the nonprobability online panels. This means that invest-

ing in a more expensive panel does not automatically lead to better data.

Our study is one of very few that explores differences between nonprob-

ability and probability-based online panels regarding response quality. While

we only detect differences in terms of straight-lining, future studies will need

to investigate whether our findings and null-findings replicate. In addition,

our study focused on three satisficing measures as indicators of response

quality. Future research should explore other response quality indicators,

such as response order effects (see Krosnick and Alwin 1987) and acquies-

cence (see McClendon 1991).

We would also like to point out that other factors than the sampling design

might be responsible for the significantly higher amount of straight-lining in

the nonprobability online panels compared to the probability-based online

panels. One alternative explanation for the variability in response quality

across the online panels might be that academic online panels generally

invest more in strategies that lead to high response quality, while non-

academic panels do not. However, our finding that the non-academic

probability-based online panel in our study (panel 1) has similarly low

straight-lining rates as the academic probability-based online panels (GIP

and GP) speaks against this alternative explanation.

Last, with regard to the generalizability of our findings, our study is

limited to online panel response quality. Surveys in online panels are usu-

ally shorter than offline surveys typically are (for empirical proof on the

potential effect of questionnaire length on satisficing, see Roberts et al.

2010). Furthermore, unlike many offline surveys, surveys in online panels

are self-administered by the respondents (for empirical proof on the effect

of the survey mode on satisficing, see Fricker et al. 2005; Heerwegh and

Loosveldt 2008). Whether and how survey length and survey mode interact

with the sampling design of a survey remains another question for future

research.
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Notes

1. Based on American Association for Public Opinion Research (AAPOR) Standard

Definitions (AAPOR 2016), completion rate (COMR) ¼ number of wave partici-

pants divided by the number of recruited panel members.

2. Based on AAPOR Standard Definitions (AAPOR 2016), cumulative response rate

(CUMRR) ¼ number of wave participants divided by the number of eligible

persons

3. Completion rate ¼ number of wave participants divided by the number of

recruited panel members.

4. CUMRR ¼ number of wave participants divided by the number of gross sample

members.

5. All online panels we examine in our article claim to be able to produce represen-

tative data.

6. Environmental zones are areas in German cities, from which cars that emit high

levels of respirable dust are banned.
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