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Original Article

Bias in the visual representation of women and men has been 
endemic throughout the history of media, journalism, and 
advertising (Becker 1974; Ferree and Hall 1990; Goffman 
1967). As Goffman (1976:11) argued, such “public pictures” 
are a key symbolic arena in which gendered “social structure 
of hierarchy or value” is manifested and reproduced. Yet 
despite their importance, social science research has largely 
neglected the analysis of images as an arena of social and 
political valuation. Until recently, the complexity of images 
rendered large-scale, systemic analysis a near impossibility.

The advent of automated image labeling and recognition 
systems has increased the importance of images as a form of 
social data, facilitating their widespread use in commercial 
enterprise (e.g., Greenfield 2018; HG Insights 2020) and, 
increasingly, for social research (e.g., Di Ronco and Allen-
Robertson 2020; Garimella and Eckles 2020; Geboers and 
Van de Wiele 2020; Gelman, Mattson, and Simpson 2018; 
Webb Williams, Casas, and Wilkerson 2020; Xi et al. 2019). 
At the same time, recent research has shown algorithmic 
classification systems to be mechanisms for the reproduc-
tion, and even amplification, of more general social biases 
(Friedman and Nissenbaum 1996; Noble 2018). Thus far, 
several recent studies have detailed gender biases affecting 

supervised image recognition systems. For example, image 
search algorithms, when asked to return images for occupa-
tions, generated results that reproduced gendered stereo-
types, exaggerating gender disparities (Kay, Matuszek, and 
Munson 2015) and featuring women less prominently than 
men (Lam et al. 2018).

Although these studies have shown how image recogni-
tion systems produce bias in the representation of women 
and men (i.e., how many appear in photos), less research has 
systematically explored bias in the content of these algo-
rithms’ results (i.e., how images of women and men are dif-
ferently labeled, tagged, and categorized). In this article, we 
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Abstract
Image recognition systems offer the promise to learn from images at scale without requiring expert knowledge. 
However, past research suggests that machine learning systems often produce biased output. In this article, we evaluate 
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limit the validity of the insights that can be gathered from such data.
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present an analysis of bias in both the identification of people 
and the content labeling of images of women and men across 
a set of popular commercial image recognition systems. To 
the best of our knowledge, this article is the first to system-
atically evaluate biases across both these dimensions of per-
son identification and content labeling. We draw upon data 
from a particularly salient social arena: the visual communi-
cations of American politicians. Using two data sets of 
images from members of the 115th Congress, we analyze 
how Google Cloud Vision (GCV)—a widely used service in 
industry and scientific research—categorizes these politi-
cians’ images. We replicate our analysis across other popular 
off-the-shelf alternatives, including Microsoft Azure 
Computer Vision and Amazon Rekognition. Across both 
data sets and all three platforms, we find consistent evidence 
of two distinct types of algorithmic gender bias. Image 
search algorithms not only exhibit bias in identification—
algorithms “see” men and women and different rates—but 
bias in content, assigning high-powered female politicians 
labels related to lower social status.

Following studies of gender, classification, and status 
inequalities (Ridgeway 2011, 2014; Ridgeway and Correll 
2004) we suggest that image recognition systems reproduce 
the status inequalities and gender stereotypes at play in wider 
social structure. These algorithms not only lead to differ-
ences in the representation of men and women but systemati-
cally categorize women and men with labels differentiated 
by status. Empirically, we conclude that the systematic nature 
of such biases in image recognition classifiers renders these 
classifiers unsuitable for gender-related analyses. The perva-
sive and not always obvious nature of these biases means 
they may also confound analyses that are not gender focused. 
Theoretically, our findings identify these algorithms as an 
important case of what Ridgeway (2011:40) termed an 
“amplification process,” that is, a mechanism through which 
gender differentials are reinscribed into novel social arenas 
and social forms.

Gender Inequality, Categorization, and 
Algorithmic Bias

Gender inequality is characterized by, and reproduced 
through, the persistence of gendered stereotypes that associ-
ate women with lower social status than men (Eagly, Wood, 
and Diekman 2000; Ridgeway 2011, 2014; Ridgeway and 
Correll 2004). As Ridgeway (2011:11) argued, gender is “at 
root a status inequality,” one based on cultural beliefs about 
the differential hierarchical status between men and women. 
Widely held and enduring gender beliefs characterize women 
as less agentic, less worthy, and less competent than men 
(Conway, Pizzamiglio, and Mount 1996; Fiske et al. 2002; 
Lueptow, Garovich-Szabo, and Lueptow 2001; Spence and 
Buckner 2000). Whereas women are typically associated 
with “communal tasks,” men are typically seen as “more 
competent at the things that ‘count most’” and that earn the 

highest esteem (Ridgeway and Correll 2004). These same 
stereotypes have been shown to be at play in the visual rep-
resentation of men and women (Ferree and Hall 1990; 
Goffman 1976). For instance, in Gender Advertisements, 
Goffman (1976) demonstrated how advertisements system-
atically portrayed women in an “unserious,” childlike fash-
ion. Ferree and Hall (1990) found that even in sociology 
textbooks, a corpus supposedly attentive to gender inequali-
ties, images reflected women’s marginality in the domains of 
politics and the economy.

A great deal of social science research has investigated 
the puzzling endurance of these gender stereotypes over time 
(Cotter, Hermsen and Vanneman 2011; England 2010; 
Lueptow, Garovich-Szabo, and Lueptow 2001): beliefs that 
are continually reinscribed “in new social forms of social and 
economic organization as these forms emerge in society” 
(Ridgeway 2011:4). A key mechanism for this persistence is 
the ability of gendered status beliefs to “transfer” to novel 
social arenas, what Ridgeway termed an “amplification pro-
cess.” This amplification process allows categorical differ-
ences associated with gender to expand in their range of 
application, so that preexisting gender beliefs are carried into 
new industries, occupations, or social forms. Status beliefs 
can even be transferred to “non-status elements” (Tak, 
Correll, and Soule 2019). For example, gendered stereotypes 
about men and women can transfer to evaluations of the 
products they produce, with women being disadvantaged 
when they produce stereotypically male-typed goods (Tak 
et al. 2019).

This research has typically focused on how status inequal-
ities are perpetuated through gender beliefs: individuals 
bring either conscious or subconscious gendered classifica-
tions to novel social arenas (Correll and Ridgeway 2003; 
Webster and Foschi 1988). The promise of machine-learning 
algorithms has been that they would bypass this aspect of 
human bias, leading to more accurate or equitable results 
(Cowgill 2018; Gates, Perry, and Zorn 2002; Kleinberg, 
Ludwig et al. 2018). Nevertheless, a growing body of 
research has shown that algorithms propagate, and even 
amplify, existing social structures and biases (Angwin et al. 
2016; Benjamin 2019; Noble 2018; Sandvig et al. 2016). 
That is, algorithms are “not cameras onto social realities but 
engines” (Fourcade and Healy 2017), reproducing preexist-
ing categorizations found in the social institutions from 
which the algorithm emerges. For example, natural language 
processing trained on biased text has been shown to 
strengthen the gendered associations in language, rather than 
avoiding them (Benjamin 2019; Bolukbasi et al. 2016; Noble 
2018).

Although more research has been conducted on text than 
images, prior studies of images have shown similar patterns 
(Buolamwini and Gebru 2018). Some scholars, many of 
them computer scientists, have begun to analyze what Ferree 
and Hall (1990:505) referred to as the “first level of repre-
sentation” in image bias: estimating the systemic absence of 
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images of women in particular social arenas. For example, in 
a study of hundreds of thousands of news articles, Jia, 
Lansdall-Welfare, and Cristianini (2015) found that the rep-
resentation of women varied by topic, with political images 
featuring primarily men. This bias in representation can then 
be encoded into biases in algorithms. For example, in a study 
of occupations, Kay et al. (2015) found that search engine 
algorithms returned images that overrepresented men com-
pared with their actual numbers in the population.

To date, less research has investigated how image-label-
ing algorithms categorize, that is, how they classify, label, 
and annotate images of women and men. As Ferree and Hall 
(1990) suggested and Noble (2018) found, the lower social 
status of women could result in visual portrayals of women 
associated with “demeaning or marginalized social posi-
tions” (Ferree and Hall 1990:506). The capacity for algo-
rithms to amplify these preexisting biases is the subject to 
which we now turn.

From Bias in the World to Bias in the Algorithm

Images are a powerful medium of communication. They are 
more likely to be remembered than words (Grady et al. 1998; 
Whitehouse, Maybery, and Durkin 2006) and evoke stronger 
emotions (Brader 2005) and higher levels of social engage-
ment than text (Rogers 2014). Despite the enormous social 
scientific potential of images as data, their analysis remains 
computationally demanding. Algorithms to analyze images 
often require a high level of technical training and knowl-
edge to design and use, as well as large amounts of training 
data and data labels. Gathering tens of thousands or more 
images, all with labels describing their content, remains both 
costly and time consuming (Chen et al. 2015).

Commercial image labeling services, available to the pub-
lic from Google, Amazon, Microsoft, and other companies 
since 2016, provide an alternative to this onerous process: 
reducing the cost of labeling images and identifying their 
content at scale and offering the potential to make image 
analysis readily available to users not trained in designing 
neural networks. These platforms allow users to quickly and 
easily retrieve labels for any image, as shown in Figure 1. A 
recent study shows just how drastic is the difference in effort 
between human coders and algorithms such as GCV: “the 
API codified 1,818 images in less than 5 min, whereas the 
human coder spent nearly 35 hours to complete the same 
task” (Bosch, Revilla, and Paura 2019).

One widely known dimension of systems such as GCV 
that rely on machine learning is that they seek out and then 
reproduce patterns in the data on which they are trained. Input 
data are typically “found data” from the “real world,” con-
taining the biases and cultural associations of human societ-
ies, which then get reproduced as “objective” and “scientific” 
decisions from algorithms (Benjamin 2019). For example, 
ImageNet is a database widely used to train image-labeling 
algorithms that maps the categories from Princeton’s WordNet 

to more than 14 million images scraped from the Internet 
(Crawford and Paglen 2019). WordNet is a taxonomy of 
English terms dating to the 1980s, based on pre-1972 Library 
of Congress taxonomies, that contains numerous racist, able-
ist, and misogynistic terms (Crawford and Paglen 2019). 
When ImageNet’s designers and human coders linked these 
terms to pictures of people from the Internet, they encoded 
those biases into the database. As Crawford and Paglen (2019) 
showed, this profoundly shaped algorithms that were trained 
using the database. After their work, ImageNet removed 
many of the most offensive labels (Ruiz 2019).

Input data are not the only social influence on algorithmic 
systems. Computer engineers’ design decisions and tweak-
ing of automated systems also encode biases (Seaver 2018). 
For example, engineers working on music playlist algorithms 
not only employed users’ behavior to code their algorithms 
but also personally listened to the playlists they generated, 
tweaking the way the algorithms used their input data until 
the engineers thought the output sounded good (Seaver 
2018). As Seaver stated, arbitrary preferences and biases out-
side the code therefore became a part of the algorithm:

The essence of a contemporary algorithmic system [is] a steady 
accumulation of feedback loops, little circuits of interpretation 
and decision knit together into a vast textile. Every stitch is held 
together by a moment of human response, a potential rejection 
shaped by something outside the code, whether it is the 
arbitrariness of personal preference, the torque of structural bias, 
or the social force of a formal evaluation framework. (p. 377)

Notably, the algorithmic systems trained on these input 
data are increasingly “black boxes.” A system is a black box 
either if its technical design is sufficiently complex that 
human users cannot interpret the meaning of the inner work-
ings or if the details of the system’s design and construction 
are hidden from users, for example, as corporate trade secrets 
(Rudin 2019). This second kind of black box describes GCV 
and nearly every commercially available “algorithm” or 
scoring system. Only some Google employees know which 
data sets and design decisions went into building and tuning 
GCV. Therefore, although researchers can audit the results of 
algorithms, they generally cannot recover the true process or 
logic of the black box’s decisions, and attempts to reverse-
engineer the decision process “are misleading and often 
wrong” (Rudin 2019:211).

Thus far, scholars working on images have taken some 
initial steps to avoid the bias potentially introduced by these 
algorithms. For instance, in a study on social media images 
of legislators, Xi et al. (2019) removed all women and mem-
bers of racial and ethnic minority groups from their data in 
order to sidestep gender and racial biases. Although such an 
approach may be reasonable for specific research questions, 
it should be a last resort: systematically excluding large 
swaths of the population not only can lead to nongeneraliz-
able inferences, it can also bias social scientific research 
away from pivotal research questions on inequities in social, 
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political, and economic visual communication (Rossiter 
1993). We suggest that prior to resorting to such data limita-
tions, we should develop a better understanding of the sys-
tematic nature of such biases. In what follows, we draw upon 
existing literature to examine gender algorithmic bias across 
two dimensions: bias in identification and bias in content.

Two Dimensions of Image Bias

Bias in identification is an analog to what Ferree and Hall 
termed the “first level of representation”: at a very basic 
level, does the algorithm see people with equal accuracy 
regardless of their gender? For the most part, this has been 
the primary focus of the “algorithmic bias” literature, which 
has defined algorithmic injustice and discrimination as situa-
tions where errors disproportionately affect particular social 
groups (Noble 2018).

Bias in content, by contrast, is possible when algorithms 
output only a subset of possible labels, even if the output is 
correct. In this case, an algorithm might systematically return 
different subsets of correct labels for different groups of peo-
ple. We formalize this as “conditional demographic parity” 
(Corbett-Davies et al. 2017). Conditional on image content, 

an algorithm is considered biased if it returns labels at differ-
ent rates for different demographic groups. For instance, if 
men and women in a sample wear suits at equal rates, then an 
unbiased algorithm would return the label “suit” equally 
often for each gender. Why might the presence or absence of 
women in a photo affect the identification of such seemingly 
nongendered classifications such as clothing items? 
Algorithms learn by observing associations in the data they 
are trained on (i.e., data the models are fitted to). If we fit an 
algorithm to a data set in which all men had suits, and no 
women did, it might well learn that the probability of “suit” 
being the right answer, given that it sees a woman or features 
associated with women like long hair, is extremely low. 
When later presented with images of women in suits, then, it 
would be unlikely to label them “suit,” even though that is a 
correct label.

Input biases do not need to be that extreme to have these 
effects, however. Research on word embeddings has found 
that algorithms can pick up far more subtle associations 
(Kozlowski, Taddy, and Evans 2019). For example, one team 
found that word2vec trained on Google News articles pro-
duced gendered analogies such as “man is to computer pro-
grammer as woman is to homemaker.” This is because 

Figure 1. Example of the information that Google’s Cloud Vision platform can return when asked to label a portrait of former U.S. 
president Barack H. Obama.
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gender-specific words (such as sister or mother) may be sta-
tistically associated with gender-neutral words (such as 
homemaker) in text, and thus algorithms that attempt to iden-
tify meaning through observed associations amplify these 
biases (Bolukbasi et al. 2016). Similarly, algorithms trained 
on real-world images may convert associations between gen-
der-specific labels and gender-neutral labels into biased 
results for image content.

Data

To identify bias in identification and content in image recog-
nition systems, we use two data sets containing images asso-
ciated with members of the 115th U.S. Congress: a data set 
of official headshots and a set of images tweeted by these 
members. We have several reasons for focusing our analysis 
on political images. First, politicians’ image use is substan-
tively important. The political realm has consistently 
revealed gender bias in the representation of women in 
images (Jia et al. 2015). It is important to know whether and 
how human bias in the production and use of images plays 
out in algorithmic labeling of images. To date, politics has 
been an important domain of social science research on 
images (e.g. Anastasopoulos et al. 2016; Casas and Webb 
Williams 2019; Webb Williams et al. 2020; Xi et al. 2019).

Second, our data sets offered a unique opportunity to 
study the bias in black-boxed image classification algo-
rithms. We compiled two matched data sets: (1) a control 
data set consisting of uniform portraits of the members of 
Congress (MCs) themselves and (2) a found data set of 
images these politicians tweeted. The control data set limits 
the variation in image content and style, making it easier to 
detect biases in algorithmic performance, while remaining a 
real-world image data set. It includes social markers of gen-
der, age, race, and politics such as clothing, hair, jewelry, and 
flags that are essential to sociological understandings of 
identity and appearance but that are typically cropped or 
abstracted away in the controlled photographs of laboratory 
studies. The found data set is composed of images shared by 
the politicians’ official Twitter accounts, which are highly 
variable in content, style, and purpose but which still share a 
general context. These characteristics mirror those of many 
digital sociology and archival research projects, allowing us 
to evaluate algorithmic bias in a setting relevant to other 
researchers. Both data sets are linked to the same set of poli-
ticians, and thus the same demographics, enabling us to com-
pare findings.

Control Data Set

We acquired the control data set by extracting official por-
traits of MCs from Wikipedia. These photos are produced by 
the U.S. Government Printing Office for the official 
Congressional Pictorial Directory, which contains photos 
and biographical details for all MCs during a given session. 

The vast majority of these images are taken in front of a neu-
tral monochrome background. In many photos, an American 
flag is positioned to the MC’s right, and in a subset of those 
photos, the flag of the MC’s home state is also displayed to 
that person’s left. Many photos are taken either somewhere 
in the U.S. Capitol or an MC’s office. In every photo, the vast 
majority of the frame is occupied by the MC. Similarly, in all 
photos, MC’s are clothed in civilian business attire and look-
ing at the camera. MCs all have the same occupation, nation-
ality, and motivation for taking their portraits. These 
photographs are as homogeneous as any real-world set of 
images might be, without artificially removing socially 
meaningful aspects of age, gender, race, and ethnicity, such 
as hair and clothing, which are often removed in laboratory 
facial recognition data sets. All images fall under the public 
domain and are included in our replication material. We 
merged these photos with information about the MCs from 
government Web sites as well as a public GitHub repository 
(United States Project 2020).

Found Data Set

Our found data set is composed of images posted on Twitter 
by MCs between January 2017 (the start of the 115th 
Congress) and June 2018 (n = 198,170). We obtained the set 
of images by using the Twitter application programming 
interface to download each MC’s timeline, limited to his or 
her most recent 3,200 tweets because of data restrictions 
from the application programming interface. We then down-
loaded all of the images these tweets contained.

From these sets of images, we selected a weighted sample 
in order to validate GCV’s labels with humans’ labeling (n = 
9,250). An image’s weight for sampling is calculated using 
both the labels from GCV and the characteristics of the MC 
posting the image. Image weights are inversely proportional 
to how rare their features are, such that images with uncom-
mon labels and coming from MCs from underrepresented 
groups are more likely to be sampled. More details on our 
sampling strategy are available in the Online Appendix. On 
average, GCV returned 5.3 labels per image, and we selected 
only labels to which GCV assigned ≥0.75 confidence (con-
fidence scores from GCV vary between 0.5 and 1.0). In that 
sense, our validation sample can be regarded as conserva-
tive; we evaluate only labels GCV considers highly likely to 
be applicable to the specific image.

Methods

Our main analysis is conducted on Google Cloud Vision 
(GCV). As discussed above, GCV is widely used in industry, 
and unlike its primary competitors, Amazon Rekognition and 
Microsoft Azure Computer Vision, GCV shares its underly-
ing technology with the world’s largest Internet image search 
platform (Google Image Search) and other ubiquitous ser-
vices such as Google Photos (integrated with every Android 
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phone). We also provide brief analysis of both other platforms 
showing that our findings generalize outside of GCV.

Validation

To validate the image labels produced by the algorithm, we 
hired workers through Amazon’s Mechanical Turk (MTurk). 
This service has become popular with researchers in several 
disciplines over the past decade and allows hiring a readily 
accessible and diverse population of research assistants. 
Although “MTurkers” have often been a population sampled 
for survey research (Huff and Tingley 2015), these workers 
have also been employed to assist in the research process 
itself (Shank 2016), as was the case for our project. The use 
of temporary and anonymous workers who lack the labor 
protections of traditional research assistants employed 
through a higher education institution has been discussed 
extensively by other scholars (see Pittman and Sheehan 
2016; Williamson 2016). Aspiring to maintain ethical 
research practices, we paid MTurkers working on our project 
a “living wage” of $15/hour, more than twice the U.S. federal 
minimum wage at the time of writing.

We presented each worker with 30 images and a set of 
five potential labels for each. Some labels were assigned by 
GCV for corresponding images (positive labels); others were 
chosen at random from the set of GCV labels assigned to 
other images but not to the one at hand (negative labels). 
Each image was coded by at least three people.

Workers were presented with an image and two questions. 
The first question presented all labels in random order and 
asked workers to select all labels that applied to the image they 
were seeing. The second question asked workers to indicate if 
they saw any men, women, children, or none in the image. 
Each person validated the labels of 30 images, and multiple 
people saw each combination of labels and images. Overall, 
respondents had an agreement rate of 0.77 with one another.

To identify bias in identification, we evaluate whether 
GCV recognizes men and women in images. With our con-
trol data, we have ground truth about the presence and gen-
der of MCs depicted. With our found data, we do not know 
the true gender of people in images. Instead, we compare 
whether GCV recognizes men, women, both, or neither in an 
image to whether human coders do. Human coders and GCV 
both rely on the same visual gender cues, so our research 
design measures whether those cues influence the algo-
rithm’s person identification.

Bias in content requires a slightly different approach. 
There are many things that could be labeled in any image 
(“an image is worth a thousand words”), but image labeling 
systems typically return only a handful of labels (an average 
of 5.3 per image in our data). Even if labels a system returns 
are correct, it is possible to have bias in which subset of pos-
sible correct labels gets returned for a given image. Thus, we 
measure bias in content as conditional demographic dispar-
ity: conditional on actual image contents, we examine 

whether some labels are disproportionately applied to images 
containing one demographic group or another.

To measure bias, we rely on two procedures. First, we use 
χ2 test statistics with Yates’s correction on labels to identify 
which labels are identified relatively most often in portraits 
of and images tweeted by women compared with men (see 
the Online Appendix). Second, we use negative binomial 
regressions to obtain the expected counts of GCV labels in 
each of five coded categories for the MCs. A negative bino-
mial distribution allows us to model counts while correcting 
for overdispersion.

Finally, we include several controls. Because recent 
research suggests that GCV results may depend upon race 
and skin tone (Noble 2018), we control for race (coded as 
white or nonwhite). Women are unequally distributed across 
parties, and to ensure that results are not party dependent, our 
models also control for party membership (Democrat or 
Republican). Finally, as studies have shown that the perfor-
mance of image recognition algorithms may depend upon 
the age of individuals in the images (Ngan and Grother 2014; 
Michalski 2017), we control for age (see the Online 
Appendix). Results are robust to the inclusion or exclusion 
of these controls.

Detecting Gender Bias in GCV

Bias differs across image classification systems and changes 
over time. Because of this, researchers using these algo-
rithms will need to do their own evaluations, specific to the 
tool they are using, the time they are using it, and even the 
location they are accessing it from. We propose that such 
evaluations should measure several components. First, as a 
baseline, researchers should verify the correctness of the 
labels provided; many applied papers already evaluate this 
dimension (e.g., Bosch et al. 2019) but because accuracy will 
be context dependent, such verification is an important first 
step every time one uses an algorithm. Second, we suggest 
that researchers identify two forms of algorithmic bias: 
biases in identification, which is the focus of much “algorith-
mic bias” literature (e.g., Kleinberg, Ludwig et al. 2018), and 
biases in content. In what follows, we discuss each of these 
components drawing on MCs’ use of images on Twitter as a 
case study, but the procedure we propose is generalizable to 
other substantive domains.

Evaluating GCV

The first, most general dimension for evaluating any algo-
rithm is determining the correctness of its results. There are 
many different measures for evaluating labeling or classifi-
cation algorithms (Nelson et al. 2018). In general, commer-
cial labeling systems present users with only predicted 
positive labels (e.g., “there are cats in this photograph”) and 
not predicted negative labels (e.g., “there are no children”). 
This can make calculating many measures of correctness 
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difficult. Additionally, calculating measures of correctness 
requires “ground truth” data about what is “correct.” But 
users typically turn to labeling algorithms precisely because 
they do not already have ground truth information about their 
images.

We address both challenges using our sample of 9,250 
human-coded images. Overall, we find that human crowd 
workers have high agreement with the labels the GCV algo-
rithm generated, as shown in Figure 2. When presented with 
an image and a set of potential labels, humans typically select 
the positive GCV labels, but not the negative labels. 
Moreover, the proportion of humans who select a label is 
strongly correlated with the confidence score returned by 
GCV. That is, GCV’s confidence score is a good measure of 
whether a human would agree that the label applied to a 
given image. In this sense, GCV is a high-precision image 
labeling system: when GCV says that a label applies to an 
image, it is generally correct.

Bias in Identification

The overall accuracy of an algorithm such as GCV is not the 
only important measure, however. As Nelson et al. (2018) 
showed, sometimes the measures of correctness for individ-
ual categories and labels are more important for sociological 
analysis and can lead to further insights about the data. We 
test this with gender. Although observer-ascribed gender is a 
poor measure of gender identity (Hamidi, Scheuerman, and 
Branham 2018; Lagos 2019), it can be a good measure of the 
gendered stereotypes about appearance that may influence 
GCV.

We use the object recognition module of GCV which, at 
the time of data collection, detected people and differentiated 
between men or women. This feature has since been removed. 

We conduct this validation using all images from the control 
data set (results shown in Figure 3) and all 9,250 images from 
Twitter that human workers coded (results shown in Figure 
4). As the right panels of Figures 3 and 4 demonstrate, GCV 
has low false-positive rates for detecting people whom our 
human coders did not identify in the images, regardless of 
gender. The false-positive rate is low for both women (near 0 
percent in the Wikipedia image data and about 1 percent in 
the Twitter image data) and men (1.8 percent in Wikipedia 
images and 2.3 percent in the Twitter data). In short, GCV 
rarely detects people in images where humans do not.

However, the algorithm’s false-negative rates vary sub-
stantially by ascribed gender. In our control data set of pro-
fessional portraits of MCs, women in Congress are recognized 
in only 75.5 percent of images of women in Congress in 
comparison with 85.8 percent for men in Congress, a differ-
ence of 10 percentage points (see the left panels of Figure 3). 
Thus, in high-quality photos in which only one individual is 
presented, women are still “seen” by the algorithm signifi-
cantly less than men.

This difference was even more striking in our primary 
data set of Twitter photos. Here, GCV identified 45.3 percent 
of the men that our human coders saw in the pictures but only 
25.8 percent of the women, a striking 20 percentage point 
gap (see the left panels of Figure 4). As with the label annota-
tion results, GCV object labels for people are high precision: 
if GCV detects a person, it is very likely that humans will 
agree that there is a person. However, these results indicate 
that GCV has poor recall: if GCV does not tag something, it 
may still nevertheless be in the image (ergo the high false-
negative rates in recognizing individuals). High precision 
with low recall is likely an unavoidable feature of labeling 
images: for any given image, the set of possible correct labels 
that the algorithm could return is theoretically enormous. 
Our findings show, however, that there is substantial gender 
bias in errors of omission: false-negative rates are substan-
tially higher for women than men.

Biases in Content

The second component of evaluating GCV labels concerns 
bias in content. Our finding that positive labels are recog-
nized as correct by humans does not rule out bias in their 
distribution. Positive labels could be both correct and biased, 
in the sense that they might not always meet conditional 
demographic parity.

To examine this possibility, we used GCV labels from our 
uniform data set of MCs’ professional portraits. If GCV 
returns gender-biased labels on this set of images, those 
biases could affect any inferences we draw from the algo-
rithm with other data sets, including our analysis of whether 
MCs engage in gendered patterns of communication on 
Twitter. Example images and labels from this set can be seen 
in Figure 5. Here, GCV labeled Congresswoman Lucille 
Roybal-Allard as a “smiling” “television presenter” with 

Figure 2. Relationship between Google Cloud Vision (GCV) 
confidence and human agreement. Numbers in parentheses denote 
observations for corresponding confidence score thresholds.
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Figure 3. Accuracy of person detection of Google Cloud Vision (GCV). Percentages shown were determined by comparing gender of 
members of Congress depicted in uniform data (professional photographs) with annotations from the object recognition software.

Figure 4. Accuracy of person detection of Google Cloud Vision (GCV). Percentages shown were determined by comparing human 
agreement about the presence of men or women in Twitter images with annotations from the object recognition software.
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Figure 5. Two images of U.S. members of Congress with their corresponding labels as assigned by Google Cloud Vision. On the left is 
Steve Daines, a Republican senator from Montana. On the right is Lucille Roybal-Allard, a Democratic representative from California’s 
40th congressional district. Percentages next to labels denote confidence scores of Google Cloud Vision.

Figure 6. Google Cloud Vision labels applied to control dataset (professional photos). The 25 most gendered labels for men and 
women were identified with χ2 tests (p ≤ .01). Labels are sorted by absolute frequencies. Bars denote the percentage of images for a 
certain label by gender.
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“black hair,” whereas Senator Steve Daines was labeled as 
an “official,” “businessperson,” and “spokesperson.”

We then use χ² tests to identify the key labels by gender 
for our control dataset (see the Online Appendix for addi-
tional information). Figure 6 shows the top 25 key labels for 
both men and women, sorted by absolute frequencies. Some 
labels, for instance “long hair” for women, are a clear result 
of the underlying data we chose: there are no congressmen 
with long hair in the data set, and no congresswomen who 
wore neckties, so it is unsurprising that some of these labels 
have strong gendered associations. Note, however, that 
“bald” and “short hair” do not appear among the labels GCV 
returned, indicating a bias in which hairstyles the algorithm 
mentioned. The seemingly neutral label “hairstyle” is given 
to more than half of women but only a minute percentage of 
men. Similar patterns exist for labels such as “black hair” 
and “brown hair.” By our manual count, 2 percent of wom-
en’s portraits have no visible hair (because of hats), 3 percent 
of men’s portraits have no visible hair (completely bald 
heads), and a further 7 percent of men’s portraits have partial 
hair (hair visible on the sides but not the top of the head). 
Conservatively, then, women are 1.1 times as likely as men 
in these data to have visible hair, nowhere near the disparity 
in labels returned by GCV. Thus, we conclude that, condi-
tional on hair being in the image, GCV was much more likely 
to comment on it if the hair belonged to a woman.

Labels such as “girl” and “gentleman” encode gender 
directly, so their correspondence with MCs’ gender is unsur-
prising. However, labeling adult women “girls” while men 
are labeled with more prestigious and age-appropriate titles 
such as “gentlemen” is an old, sexist trope (Durepos, 
McKinlay, and Taylor 2017) that resurfaces in image recog-
nition algorithms.

Furthermore, we see evidence that confirms gender and 
occupational bias. That is, although all individuals in the data 
set have the same occupation (MC), GCV labels them with a 
variety of occupations. Notably, the only occupation with 
which GCV labels women more often than men is “television 
presenter,” while men are labeled with more authoritative vari-
ants such as “white collar worker,” “spokesperson,” and “mili-
tary officer.” That is, although these labels are ostensibly 
gender neutral, their highly gendered cultural histories emerge 
clearly in GCV’s differential application of the labels. For 
instance, Perryman and Theiss (2013) showed that the age-
diminutive “weather girl” stereotype has developed since the 
1950s, when television stations began to hire nonexpert women 
as presenters to attract viewers through theatrics and sex appeal. 
Today, GCV labels women as “television presenter” instead of 
“weather girl,” but the historical gender bias remains evident.

Overall, appearance labels such as “beauty” and “hair-
style” are disproportionately applied to women. Labels 
most biased toward men revolve around professional and 
class status such as “gentleman” and “white collar worker.” 
None of these individual labels is necessarily wrong. Many 
men in Congress are businesspeople, and many women 
have brown hair. But the reverse is true as well: women are 

in business and men have brown hair. From the set of all 
possible correct labels, GCV systematically selects appear-
ance labels more often for women and high-status occupa-
tion labels more for men. Naive analysis using these labels 
may erroneously conclude that images with men or women 
in them are more focused on, respectively, business or fash-
ion, even if they are all professional portraits of people with 
the same occupation.

We conducted further analysis to quantify the different types 
of labels assigned by GCV dependent on gender, race, and 
party of MCs by manually coding all GCV labels for the pho-
tographs of MCs into the following categories: “occupation,” 
“physical traits & body,” “clothing & apparel,” “color & adjec-
tives,” and “other.” Three authors of this article coded the labels 
independently, with an intercoder reliability score of 0.88 (see 
the Online Appendix). For each of these labels, we computed 
regressions to estimate the effects of gender on label counts for 
the MC photographs. We opted for negative binomial regres-
sions because dispersion tests for our count-based variables 
suggested partial overdispersion. We control for race, age, and 
political party of MCs. Figure 7 shows predictions by gender 
while holding party, race, and age at observed values.

Images of women receive about 3 times more labels cate-
gorized as “physical traits & body” (5.3 for women, 1.8 for 
men). Images of men receive about 1.5 times more labels cat-
egorized as “occupation” (3 for women, 4.7 for men). Images 
of men also receive more labels related to clothing and apparel 
than women. We found no substantial differences in labels 
related to color or adjective or other types of traits.

These results provide further evidence that images of 
women contain more labels related to physical traits in com-
parison with images of men. At the same time, labels related 
to occupation, and to a lesser extent clothing and apparel, are 
more often included in images of men. Results of the same 

Figure 7. Predicted labels counts for images of men and women. 
Results are based on the Wikipedia photographs of U.S. members 
of Congress and negative binomial regressions, controlling for 
party and ethnicity. Circles describe point estimates, and bars 
describe 95 percent confidence intervals.
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analysis for ethnicity as well as for political party do not sug-
gest substantial effects (see the Online Appendix). In short, 
our results indicate that GCV suffers from substantial biases 
related to gender.

To examine how these biases in uniform data manifest in 
“real world” data, we turn now to our “found” data set of 
MCs Twitter images. Again, we use χ2 tests to identify the 
labels most strongly associated with images tweeted by male 
versus female MCs. Figure 8 shows the top 25 key labels for 
both men and women, sorted by absolute frequencies.

The results indicate a sharp divide in content of images 
tweeted by men and women, such that women in Congress 
appear to be much more likely to tweet pictures of women 
and girls, fashion, and other appearance-focused themes 
(about 5 percent of all images tweeted by women received 
the label “girl,” whereas only 1.5 percent of images tweeted 
by men received that label). Meanwhile, men in Congress 
appear much more likely to tweet images of officials, vehi-
cles, public speaking, technology, military personnel, and 
business. These themes conform to common gender stereo-
types, and a reasonable but naive interpretation of these 
results might have been that MCs’ gender substantially 

influences the content of the images they share on Twitter. 
The results broken out by MCs’ party affiliations show simi-
larly gendered distinctions (see the Online Appendix).

However, our evaluation procedure highlighted that many 
of those specific labels are applied with substantial gender 
bias, which confounds these observed differences. Indeed, 
when considering that women were much more likely to be 
given labels associated with physical traits or the body or 
were much more likely to be labeled as “girls,” many of the 
most “gendered” findings about images tweeted by MCs are 
revealed to be artifacts of algorithmic bias. The label “girl,” 
for instance, does not necessarily indicate the presence of a 
child, as we identified the biased application of the label 
“girl” to our control data set of images of adult women. Thus, 
rather than women tweeting more images of girls than men 
in Congress, all MCs might simply be tweeting images of 
themselves that are being labeled differently by GCV.

Our analysis reveals that GCV’s biases severely limit the 
kind of inferences that scholars interested in gendered politi-
cal communication could accurately draw from visual evi-
dence if they were to use this black-box algorithm. Indeed, 
among the top labels associated with “gendered” images 

Figure 8. Google Cloud Vision labels applied to found data set (Twitter images). The 25 most gendered labels for men and women 
were identified using χ2 tests (p ≤ .01). Labels are sorted by absolute frequencies. Bars denote the percentage of images for a certain 
label by gender.
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tweeted by MCs, it is clear that very few point toward reli-
able, unbiased differences. We therefore conclude that labels 
produced by GCV are too biased to yield meaningful insights 
into gender differences in visual political communication 
patterns.

Detecting Bias in Other Image Recognition Tools

Although our results so far have focused on examining gen-
der biases of one particular system, GCV, we also repli-
cated our analysis of our uniform data set of professional 
photos using two other popular image recognition tools: 
Amazon Rekognition and Microsoft Azure Computer 
Vision. We found that labels assigned by these tools pro-
duce gender biases similar to GCV (see Figures 9 and 10). 
For example, Amazon Rekognition assigns the prestigious 
occupation labels “attorney” and “executive” to photo-
graphs of men. Photographs of women are labeled “teen,” 
“girl,” and “kid,” although the youngest age for both men 
and women in our data set is 34 years. In addition, images 

of women are also labeled with “home decor” even when 
they are from the uniform portrait data set. Unlike GCV and 
Amazon Rekognition, labels from Microsoft Azure 
Computer Vision do not seem to be of high precision in 
general. The system produces biased labels such as “girl,” 
“cake,” and “kitchen” for portraits of adult women, where 
no kitchens or food are present. This demonstrates the need 
for users to evaluate the specific biases of the system they 
are using at the time they are doing so.

Discussion

In this article, we have identified systemic and pervasive bias 
in how images including men and women are processed, 
such that image recognition systems mimic and even amplify 
real-world bias. Specifically, we have shown how bias in 
identification and bias in content skew the results for even 
uniform political images, labeling photos of women accord-
ing to their appearance and photos of men according to their 
occupation. In other words, image-labeling algorithms “see” 

Figure 9. Amazon Rekognition labels applied to professional photographs of members of Congress. The 25 most gendered labels for 
men and women were identified with χ2 tests (p ≤ .01). Bars denote the percentage of images for a certain label by gender.
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American congresswomen through the classic gendered ste-
reotypes that have historically beset the visual representation 
of women, if they see women at all (Goffman 1976; Ferree 
and Hall 1990). For any project seeking to draw conclusions 
from labels that image recognition systems apply with a gen-
der bias, gender may further operate as a confounding 
variable.

Although prior work has sought to either use algorithms 
(Anastasopoulos et al. 2016; Casas and Webb Williams 
2018; Xi et al. 2019) or identify biases in them (Buolamwini 
and Gebru 2018; Crawford and Paglen 2019; Eubanks 
2018), we argue that it is critical for scholars to do both at 
the same time. Furthermore, we demonstrated that this is 
different from simply evaluating the correctness of an algo-
rithm’s output, as many applied studies already do. An algo-
rithm such as GCV might be both correct and biased at the 
same time if it selectively reports a subset of many possible 
true labels. There is an active field of research focused on 
constructing algorithms to avoid specific biases (e.g., 
Kleinberg, Ludwig et al. 2018). But unless algorithms are 
consciously constructed and tested for that specific purpose, 
biases are likely to taint applications that rely on their output 
in unforeseen ways.

Although we have addressed algorithms’ classification of 
men and women here, it is important to note that a smaller 
body of work has begun to examine the systematic exclusion 
of trans and nonbinary people in algorithmic image recogni-
tion systems, which relies on conceptions of sex and gender 
as binary, immutable, and visually legible (Keyes 2018). 
That is, such algorithms assume that a person or computer 
can look at someone and know that they are either a man or 
woman from visual cues such as hairstyle. To be sure, per-
ception by others is a critical dimension of gender and a part 
of the interactional process of “doing gender” (West and 
Zimmerman 1987). But because gender is an accomplish-
ment, rather than a presocial fact, observer perception and 
other dimensions of gender such as individual identity may 
differ in consequential ways (Lagos 2019). The genders we 
measure in this article are mostly binary and observer 
ascribed, either by algorithms or by humans tasked with vali-
dating the algorithms. Here, we demonstrate gender biases 
and stereotypes even within the constrained, binary terms in 
which the algorithms operate. This complements work on 
who can be represented in these algorithms by critically eval-
uating how those who can be represented by a system’s logic 
are represented by it in practice.

Figure 10. Microsoft Azure Computer Vision labels applied to professional photographs of members of Congress. The 25 most 
gendered labels for men and women were identified with χ2 tests (p ≤ .01). Bars denote the percentage of images for a certain label by 
gender.
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Our findings are necessarily time and context dependent. 
New training data and model changes will alter these results 
and may alleviate some of the biases we identified or gener-
ate new, unmeasured ones. Nevertheless, research using 
image-labeling algorithms must be attentive to such biases 
when drawing conclusions about image content. Our par-
ticular results are also specific to the image recognition  
systems we tested. Among the three systems we evaluated—
GCV, Microsoft Azure Computer Vision, and Amazon 
Rekognition—there was substantial gender bias in every 
system, but also variation in the specific content and magni-
tude of biases. Furthermore, the algorithms deployed by 
Google and other technology companies change frequently. 
To give one example, GCV has recently removed its gender 
identification feature from all of its public-facing services 
(Ghosh 2020).

Furthermore, some kinds of labels we analyzed are not 
amenable to our bias measurement approach and, we argue, 
pose substantial measurement reliability challenges. A promi-
nent example of this in our data was the label “smile,” which 
was applied to women much more often than men in all three 
commercial image labeling systems we examined. GCV 
applied the label to congresswomen more than 90 percent of 
time while applying it to congressmen less than 25 percent of 
the time. It would be tempting to do analysis of gender bias 
here: smiling is a highly gendered behavior, particularly in 
images of women (Goffman 1976). But smiling is far more 
ambiguous to classify than labels such as “hair,” “outdoors,” 
“child,” and “military officer.” Researchers who try to create 
metrics for what counts as a smile invariably find that age, 
race, gender, nationality, dental health, and more influence 
not only how people smile but also whether observers see a 
particular facial expression as a smile (Jensen, Joss, and Lang 
1999; Liébart et al. 2004). When one of the authors attempted 
to tally the presence of smiles in the congressional portraits 
data, this ambiguity rapidly became apparent: many facial 
expressions seemed borderline. Was that really a smile? Do 
smirks count? What if teeth are showing, but they do not seem 
happy? This is why flight attendants and other emotional 
laborers are formally trained not just that they are expected to 
smile, but specifically how they should be smiling (Hochschild 
2012). By our count, 91 percent of women and 86 percent of 
men were smiling—very far from the ratio of smiles in GCV 
labels and suggestive of substantial gender bias. But our rec-
ommendation is that researchers and users should avoid labels 
with this level of measurement ambiguity altogether.

Beyond simply calling attention to specific, significant 
gender biases in GCV, this article also serves as a template for 
future researchers seeking to use commercial algorithms. By 
comparing biases identified in uniform data sets as well as 
“found data,” researchers will be better able to evaluate the 
tools they use before drawing firm conclusions from the data. 
Although our examples are primarily concerned with gender 
bias in image labeling, depending on the data set and research 
question, researchers may use the same procedures to test for 

bias along any trait and automated labeling system. As our 
crowdsourced validation suggests that humans predominantly 
agree with high-confidence labels by GCV, image recognition 
systems may still be useful for a variety of applications unaf-
fected by gender biases. In any case, we recommend thorough 
validation efforts before using a commercial image recogni-
tion system. To simplify the process of annotating, validating 
and analyzing images with GCV, one of the investigators of 
this paper has developed auxiliary open-source software in 
the form of an R package (Schwemmer 2019).

The increased accessibility of computational tools gener-
ally, and computer vision specifically, presents a novel oppor-
tunity for social science researchers to expand the study of 
social life. However, researchers—and practitioners writ 
large—cannot treat such black-box tools as infallible. With 
tasks such as image labeling, there are nearly infinite potential 
labels to describe an image. If “a picture is worth a thousand 
words,” but an algorithm provides only a handful, the words it 
chooses are of immense consequence. As some academic dis-
ciplines find themselves undergoing a “replication crisis,” reli-
ance on black-box tools that often change without notice can 
further exacerbate patterns of incorrect inference while even 
obscuring the methodology used to arrive at these results. As 
past trends in research methodology in the social sciences 
have illustrated (Shank 2016), research tools often grow in 
popularity before their biases and limitations are widely under-
stood. Therefore, our research serves as an injunction to future 
researchers seeking to break from, rather than reinforce, the 
biased gendered associations of the past.
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