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Abstract
Technological advances have led to a strong increase in the number of data collection
efforts aimed at measuring co-presence of individuals at different spatial resolutions.
It is however unclear how much co-presence data can inform us on actual
face-to-face contacts, of particular interest to study the structure of a population in
social groups or for use in data-driven models of information or epidemic spreading
processes. Here, we address this issue by leveraging data sets containing high
resolution face-to-face contacts as well as a coarser spatial localisation of individuals,
both temporally resolved, in various contexts. The co-presence and the face-to-face
contact temporal networks share a number of structural and statistical features, but
the former is (by definition) much denser than the latter. We thus consider several
down-sampling methods that generate surrogate contact networks from the
co-presence signal and compare them with the real face-to-face data. We show that
these surrogate networks reproduce some features of the real data but are only
partially able to identify the most central nodes of the face-to-face network. We then
address the issue of using such down-sampled co-presence data in data-driven
simulations of epidemic processes, and in identifying efficient containment strategies.
We show that the performance of the various sampling methods strongly varies
depending on context. We discuss the consequences of our results with respect to
data collection strategies and methodologies.

Keywords: Face-to-face contacts; Co-presence; Digital epidemiology; Complex
networks

1 Introduction
In the recent years, several methods have been developed to gather quantitative data on
human interactions using wearable sensors and complement more traditional methods
based on surveys [1–3]. Current data collection methods range from the use of Bluetooth
or WiFi signals in mobile phones [4–9] to the specific development of dedicated socio-
metric sensors [10–19] and enable researchers to record and measure physical proximity
events between individuals in various social contexts. Depending on the specific technol-
ogy considered however, spatial resolution varies and the resulting “contacts” detected can
range from co-presence in a room or a part of a building to close face-to-face encounters.
The resulting data is often temporally resolved and has been increasingly used in vari-
ous contexts including the study of human behaviour, the validation of models of human
interactions and data-driven models of epidemic spreading [3, 20, 21].
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Despite the increasing availability of techniques to measure even high-resolution tem-
poral contact networks however, a number of limitations remain. In particular, measures
cannot be carried out for arbitrarily large population sizes. It is thus of crucial interest to
infer contacts or build contact proxies from data with lower spatial resolution data or com-
ing from other sources. In this spirit, several studies have considered the issue of inferring
social ties from email exchanges [22], mobile phone data [23], or co-location at geographic
scale [24]. Other works try to infer close proximity in specific settings from individual at-
tributes [25] or from a very precise localisation of individuals [17], or, at geographical
scale, from the similarity of the WiFi signals received from a large enough number of WiFi
routers [26].

Here instead, we do not try to infer specific contacts between pairs of individuals but
rather investigate if a coarse co-location information on individuals allows us to reach
an overall picture of the contact patterns in the population of interest. Since gathering
large-scale data about localisation is much easier than recording face-to-face contacts, a
method to infer general characteristics of the latter from the former would enable faster,
larger and more diverse data collections about human behaviour. To this aim, we leverage
several data sets collected by the SocioPatterns collaboration [13, 27] in various contexts:
these data include both detailed information about close, face-to-face encounters between
individuals and a location tracking of individuals with low spatial resolution. It is thus pos-
sible to build two temporal networks where nodes represent individuals and links corre-
spond respectively to a face-to-face contact or to a co-presence event, where co-presence
is defined with respect to the localisation of two individuals within the same spatial area.
We first compare the structural and statistical properties of these two temporal networks
and show that they share some important properties, although the co-presence network is
much denser, due to the lower spatial resolution involved in its definition. We thus investi-
gate several methods of down-sampling the co-presence signal in order to create surrogate
contact networks, in the spirit of [28, 29], and compare these surrogate data to the actual
networks of face-to-face contacts. We focus first on several statistical characteristics of
temporal and aggregated networks, and quantify the ability to identify central nodes in
the contact network from the surrogate data. We then consider the possibility to use the
surrogate data in numerical simulations of data-driven models for epidemic spread. In
particular, we compare the outcome of simulations of a standard model of epidemic prop-
agation when surrogate or actual contact data are used, and we explore the possibility to
identify the most efficient containment strategies from this limited information [30]. Our
results turn out to depend strongly on the data collection context, highlighting the limi-
tations of coarse co-presence networks with respect to detailed face-to-face data.

2 The co-presence network
2.1 Data sets
We use data collected by the SocioPatterns collaboration in various contexts. T hese data
were gathered using wearable sensors able to detect face-to-face close range proximity
(1.5 m) of participants wearing the sensors on their chests. In addition, the sensors broad-
cast a signal that can be received by RFID readers located in the environment. In open
space, each reader can receive signals from sensors situated within a range of ∼30 m,
while the actual reception range in a building depends on its specific structure and on the
nature of its walls, floors and ceilings. Each reader thus defines a coarse spatial area and
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Table 1 Characteristics of the data sets

Data set Location Year Np Na T Ref

InVS13 Fr. Health Obs. 2013 92 27 2 weeks [31]
InVS15 Fr. Health Obs. 2015 232 45 2 weeks
LH10 Hospital 2010 81 8 3 days [32]
LyonSchool Primary school 2009 242 15 2 days [33]
SFHH Conference 2009 403 12 2 days [34]
Thiers13 High school 2013 326 18 1 week [35]

Np is the number of participants, Na the number of RFID readers, T the total duration of the data collection.

the sensors’ signals can be followed when the individuals carrying them change area. For
each sensor, we define its “spatial location” at each time as the set of readers receiving its
broadcasted signal at this time, and we define two individuals to be in co-presence if they
share the same spatial location, i.e., the same exact set of readers have received signals
from both individuals.

We use data sets from various social contexts: a workplace, with data collected in two
different years (InVS13, InVS15), a hospital (LH10), a primary school (LyonSchool), a sci-
entific conference (SFHH) and a high school (Thiers13), see Table 1. In each case, we
thus consider a temporal network of face-to-face contacts and a temporal network of co-
presence between individuals, both at the temporal resolution of 20 s. A contact (resp.
co-presence) event between two individuals is then defined as a set of successive time-
windows of 20 s during which the individuals are detected in contact (resp. co-presence),
while they are not in the preceding nor in the next 20 s time window. A contact or co-
presence event therefore has a certain duration that is a multiple of 20 s, and can be for-
mally represented as the quadruplet (i, j, t, τ ), for a contact occurring between nodes i and
j, starting at time t and with a duration τ . While the conference data does not include any
other information on the participants and does not exhibit any particular group structure
[36], the other populations under study can each be divided into groups: departments for
the workplace, classes for the school and the high school, and roles (patients, doctors,
nurses) in the hospital. In these cases, the overall structure of networks aggregated over a
certain time window can be summarised, in addition to usual quantities such as the den-
sity, the clustering coefficient or the degree distribution, by contact (resp. co-presence)
matrices that give the fraction of pairs of individuals of different groups who have been in
contact (resp. in co-presence). Moreover, temporal features of interest include the distri-
butions of durations of contact or co-presence events, of the time elapsed between suc-
cessive events, of the numbers and aggregated durations of such events between pairs of
individuals (the latter quantity yields a natural definition of the weight of a link between
individuals in the aggregated network).

We will show in the main text the results corresponding to the InVS15 data set, and we
refer to the Additional file 1 for the results obtained with the other data sets. We make also
available as Additional file 1 the temporally resolved contact and co-presence networks.

2.2 Co-presence and contact networks
We first compare some features of the co-presence and contact networks, both tempo-
ral and for networks aggregated either on the whole data gathering period or over daily
temporal windows. We show in Fig. 1 the distributions of event and inter-event duration,
as well as the distributions of number and cumulative duration of events for individual
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Figure 1 Temporal distributions for co-presence and contact events—InVS15. We show for both the contact
and co-presence of the same data set the distributions of event and inter-event duration, link weights (as
total contact duration) and number of contacts per link.

pairs. The co-presence events show broad distributions of these quantities, similarly to
the contact events and with similar slopes: using only co-presence data yields approximate
information on the functional shape of the contact duration distributions. The distribu-
tions of durations and numbers of events are however typically broader for co-presence,
with heavier tails, and the distribution of inter-event durations tend to be less broad (see
also Additional file 1). This is not surprising as the criterion for being in co-presence is less
strict than for being in contact. We observe the strongest differences between co-presence
and contact distribution functional shapes for the primary school data. This could be re-
lated by the fact that the spatial resolution is in that case quite low, with all the schoolyard
being covered by one single reader, and some readers covering more than one classroom.
Overall, using only co-presence data would lead to over-estimations of the contact dura-
tions and aggregate durations.

We compare moreover in Figs. 2–3 and Tables 2–3 the overall structures of the contact
and co-presence networks, aggregated over daily time windows. The co-presence aggre-
gated networks are much denser than the contact network, with a larger average degree,
a larger average clustering coefficient and larger cliques, as expected once again given the
lower spatial resolution required for co-presence events. In some cases (school, confer-
ence), the aggregated networks are even close to being fully connected (see for illustration
Fig. 3). Despite this strong difference in the overall density of links, the contact and co-
presence matrices giving the density of links between and within each group, averaged
across days, are very similar (Table 2). The similarity is particularly high for the hospital
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Figure 2 Contact and co-presence matrices—InVS15. Comparison between the average matrices of link
density for the contacts and the co-presence daily aggregated networks. Values are averaged over all days of
the data collection. Both plots have the same colour scale.

Figure 3 Day 2 contact and co-presence networks—InVS15. This figure highlights the difference in terms of
link density when comparing contact and co-presence daily networks. Different node colours correspond to
the different administrative departments.

data and, even for the lower value obtained for the high school data, the matrices displayed
in the Additional file 1 show that the overall structure in classes and groups of classes can
be inferred from the co-presence data alone.

Given the simultaneous discrepancies in density values and similarities in the networks
group structures, we investigate if the data exhibits a scaling law between the number of
individuals present in an area and their contact activity, as found at geographical scale in
phone communication [37] and Twitter data [38]. Figure 4 and the similar figures shown
in Additional file 1 show the results obtained in the various contexts. Apart from the of-
fice cases (InVS13 and InVS15), we observe indeed a correlation between the median of
the number of contacts and the number of individuals present. This correlation exhibits
a power law shape, with an exponent around 1.5 (see figures in Additional file 1). How-
ever, huge, context-dependent fluctuations are observed. For instance, in the InVS15 case,
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Table 2 Similarity between contact matrices

InVS13 InVS15 LH10 LyonSchool Thiers13

Co-presence 0.790 0.710 0.968 0.706 0.681
Sampling 1 0.946 0.829 0.960 0.845 0.857
Sampling 2 0.958 0.901 0.894 0.945 0.937
Sampling 3 0.888 0.816 0.958 0.738 0.691

For each data set we compute the cosine similarity between the average daily contact matrix and the co-presence matrix, as
well as for the contact matrices obtained for each sampling method of the co-presence data, averaged over 100 realisations
for each sampling method. To compute the cosine similarities, each matrix is first transformed into a vector by concatenating
its rows.

Table 3 Characteristics of the contact, co-presence, and sampled co-presence networks

InVS13 InVS15 LH10 LyonSchool SFHH Thiers13

k̄c 2.9 6.4 14.0 47.3 28.8 13.5
k̄� 20.9 35.0 18.2 194.5 234.3 126.8

k̄1 5.8 14.2 14.4 101.3 116.7 52.2
k̄2 0.9 3.6 7.7 36.9 45.2 5.2
k̄3 5.3 5.0 14.0 21.2 40.4 4.1

ρc 0.030 0.028 0.175 0.196 0.072 0.041
ρ� 0.211 0.152 0.227 0.807 0.807 0.383

ρ1 0.058 0.061 0.179 0.420 0.290 0.158
ρ2 0.009 0.016 0.097 0.153 0.112 0.016
ρ3 0.054 0.022 0.175 0.088 0.101 0.013

ωc 4.4 7.6 14.3 22.5 11.0 9.4
ω� 18.8 38.7 22.7 141.0 * 74.6

ω1 6.6 10.3 17.2 41.5 34.7 33.8
ω2 3.0 5.3 8.6 12.8 12.2 3.9
ω3 5.5 4.8 17.1 6.3 9.0 3.8

c̄c 0.178 0.239 0.428 0.520 0.260 0.379
c̄� 0.417 0.409 0.491 0.868 0.880 0.581

c̄1 0.255 0.266 0.432 0.596 0.442 0.586
c̄2 0.045 0.139 0.309 0.370 0.212 0.092
c̄3 0.205 0.101 0.426 0.193 0.161 0.047

We compare the average degree (k̄) network density (ρ), clique number (ω) and average clustering (c̄) of daily aggregated
networks, for the contact network (c subscript), the co-presence network (� subscript), and the sampled co-presence
networks (subscripts 1 to 3 according to the sampling method). Values are averaged over all the days of the study. In the case
of SFHH, since on the second day there was activity only during the morning, only the values of the first day are reported.
*The network is too large and too dense for the clique number to be determined in reasonable time via the usual algorithm.

the trend is strongly influenced by the numerous instances of an absence of contacts de-
spite potentially large values of the number of individuals present in the area. This is a
consequence of the fact that a given reader can receive signals from the sensors of indi-
viduals located in different offices. In other areas such as a cafeteria, many more contacts
occur with potentially a similar or even smaller number of individuals. Overall, very large
fluctuations of the number of contacts, at given number of individuals present, are thus
observed, because on the one hand of the low spatial resolution of the co-presence data,
and on the other hand of the variety of contexts corresponding to the areas covered by dif-
ferent RFID readers. The stronger correlation is observed for the SFHH conference data,
probably because the various areas covered by the readers corresponded to similar con-
texts, namely different areas of the exhibition and poster rooms.
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Figure 4 Number of contacts as a function of the number of individuals present—InVS15. We plot the
number of contacts ca(t) occurring at time t in a certain area a as a function of the number of individuals na(t)
present at the same time in a. The red line shows the median of the scatter plot, with error bars defined by
the 25% and 75% percentiles.

3 Sampling co-presence data
3.1 Sampling methods
As the temporal network of co-presence bears some similarities with the actual contact
data, but contains much more events and leads to much denser aggregated networks, we
consider the possibility to down-sample the co-presence data: for each pair of individuals,
each contact event is indeed included in a co-presence event of the same individuals. Each
co-presence event might thus correspond to one or more contact events. As we cannot
determine exactly the correct down-sampling to be performed if we have access only to
co-presence data, we study here three simple sampling methods. We remind here that we
do not try to infer the real contacts but rather to obtain a down-sampled version of the
co-presence network that is statistically similar to the real contact data. Moreover, as the
total number and duration of actual contacts cannot either be easily guessed from the co-
presence data alone, we consider the actual total contact time Tc as the (only) parameter
of the sampling, and we fix it to its empirical value. The sampling methods we consider
are the following:

• Sampling 1: Sampling of co-presence times. We define a co-presence list as a list of
individuals present at the same time t in the same area. Each co-presence list is thus
stamped with its time of occurrence t. We create n� copies of each co-presence list �,
where n� is the number of distinct individuals in �, and create in this way of a global
pool of co-presence lists. We then sample Tc lists uniformly at random from the pool
without replacement. Each list has thus a probability proportional to the number of
individuals it contains to be chosen. From each chosen list, we choose at random a
pair i, j of individuals, obtaining a triplet (t, i, j) where t is the time-stamp of the list
(we take care to avoid repetitions: if (t, i, j) has already be obtained in a previous
random draw, we repeat the random selection). The sampled temporal co-presence
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network (i.e., the surrogate contact network) is formed by the union of these triplets.
Note that this method does not conserve the durations of the co-presence events.

• Sampling 2: Sampling of co-presence times with completion. We constitute a pool of
lists exactly like in the previous method. We then sample a triplet (t, i, j) as in the
previous method, and add all the other triplets (t′, i, j) that belong to the same
co-presence event to create the surrogate contact event. We iterate this until we reach
a cumulative contact time Tc, while discarding repetitions. Contrary to the previous
sampling, this method conserves the durations of the co-presence events.

• Sampling 3: Sampling of co-presence events. We consider directly the list of
co-presence events between individuals, (t, i, j, τ ) (co-presence event between
individuals i and j, starting at time t and with duration τ ), and sample events from this
list, without replacement, adding them to the list of surrogate contact events until we
reach a cumulative contact time Tc.

For each data set, we create 100 instances of surrogate contact networks for each sam-
pling method. We compare in the following the properties of these surrogate contact net-
works with the real face-to-face contact data.

3.2 Network comparison
Figures 5–6 and Tables 2–3 provide elements of comparison between the surrogate con-
tact networks and the empirical data (see also Additional file 1). The first observation is
that the contact activity timelines are in general broadly recovered, except for the primary
school (see Additional file 1), while the detailed intra-day activity variations are not always
properly reconstructed in the surrogate data (except for the hospital data, see Additional
file 1). The strongest deviations are observed for the second sampling method for the con-
ference and high school data.

The first sampling method, given it samples separately times of co-presence, yields an
exponential distribution of surrogate contact durations, in contrast with actual data and
other sampling methods in which broad distributions are observed. Methods 2 and 3 gen-
erate broad distributions of the contact durations, either with an accurate slope or with a
smaller exponent. For instance, the second sampling method systematically leads to a dis-
tribution of contact durations that is broader than for the real contacts. The third method
yields a distribution of contact durations similar to the real one for the InVS13, LH10, and
SFHH cases, but gives results similar to the second method in the other cases. Broad dis-
tributions of inter-contact durations and of the numbers of contacts between individuals
can also be obtained for all methods, depending on the context, with slopes either accu-
rate or smaller. Finally, distributions of link weights are usually rather well recovered by
all methods.

We now turn to the properties of networks aggregated over daily periods or over the
whole data collection. At the daily level, we show in Table 2 that the similarity of the con-
tact matrices obtained from the surrogate data with the empirical one is very high, and
most often larger than the similarity of the original co-presence matrix. For networks ag-
gregated over the whole data collection, Fig. 5 shows the distributions of degrees and of
weights (see also Additional file 1). The first sampling method leads to an overestima-
tion of degree values (resulting in a shift of the distribution), the second method tends to
shift the distribution to lower degree values (except for the conference case), and the third
method yields context-dependent over- or under-estimations of degree values. Note that
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Figure 5 Properties of the sampled co-presence networks—InVS15. We compare several properties of the
contact network from the original data set with the surrogate contacts obtained by sampling of the
co-presence data: overall timeline of contact activity, distributions of degree, weight w and number of
contacts per link n in the network aggregated over the whole data collection period, and distributions of the
contact duration τc and inter-contact duration τi .

Figure 6 Evolution of the mean aggregated degree and strength. InVS15 data set. We compare how the
average degree 〈k(t)〉 and the average strength 〈s(t)〉 grow as we aggregate the network on increasing
time-windows, for the real contact data and each sampling method.
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Table 4 Average similarity between daily networks

InVS13 InVS15 LH10 LyonSchool Thiers13

Contact 0.333 0.305 0.351 0.643 0.431
Co-presence 0.415 0.348 0.449 0.806 0.683
Sampling 1 0.361 0.344 0.436 0.749 0.515
Sampling 2 0.388 0.271 0.403 0.175 0.084
Sampling 3 0.286 0.205 0.437 0.042 0.071
Null model 0.022 0.010 0.061 0.046 0.010

For each data set we compute the cosine similarity between the neighbourhoods of each nodes from each daily network,
averaged for all nodes and all pairs of daily networks. The neighbourhood of a node n is defined as the vector of the link
weights between n and every other nodes (if the link does not exist the weight is set to zero). We compare the values
obtained for the contact data, the co-presence data, and for the networks generated by each sampling method of the
co-presence data, averaged over 100 realisations for each sampling method. For reference, we also compute as null model
the average similarity when links in the contact data are shuffled randomly within each daily network.

the distributions of degrees of the co-presence networks are not shown in the figure as the
degree values are very strongly overestimated. Distributions of weights (aggregated con-
tact durations) recover well the ones of the data for all sampling methods, and are closer
than the ones of the co-presence networks.

To investigate intermediate timescales of aggregation, Table 4 quantifies the similarity
between networks aggregated in different days. The measure is defined as the average
cosine similarity between all pairs of instances of a node’s neighbourhood, averaged over
all nodes. We see that the similarity is higher for the co-presence networks, as expected
since the networks are denser. The sampling method 1 generates networks that are more
similar than the data, and the other two methods generate networks that are less similar
(with the exception of the LH10 case, and the method 2 in the InVS13 case). In the cases of
the method 2 for the LyonSchool data, and the methods 2 and 3 for the Thiers13 data, the
sampled networks are even almost as different as they would be after a random shuffling
of the links.

In addition, Fig. 6 gives the evolution of the average degree and strength for networks
aggregated in increasingly long time windows. First, the evolution of the real average ag-
gregated strength is usually better recovered than for the degree by the various sampling
better. Second, which sampling method recovers better the evolution of the degree is again
context dependent. However, in all cases the sampled data are much closer to the contact
data than the co-presence network, which overestimates very strongly these quantities.

3.3 Node centralities
In a network, more “central” nodes are usually considered as important, as they might play
an important role for instance in spreading processes (or other dynamical phenomena)
occurring in the network. It is thus of interest to understand whether the most central
nodes in the contact network can be identified either in the raw co-presence data or in
the surrogate contact data built from the co-presence information. As there are several
ways of determining central nodes in a network, we consider here three of the most well-
known centrality measures and apply them to the networks aggregated over the whole data
collection: degree k, strength s and betweenness b of nodes in the aggregated networks. For
each instance of each sampling method, we thus build the resulting surrogate aggregated
contact network and rank nodes according to each centrality measure. We then compute
the Jaccard similarity index between the top N% nodes in the real contact network and in
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Figure 7 Node ranking similarity. InVS15 data set. We plot for each co-presence sampling method the
Jaccard similarity between the top N% nodes in the real and surrogate contact data, when ranked according
to their degree k, their strength s or their betweenness centrality b vs. N. The plot shows the median similarity
and the shaded areas give the 90% confidence interval.

the surrogate one. We plot in Fig. 7 the median similarity with the 90% confidence interval,
as a function of N , for the InVS15 case (see Additional file 1 for the other cases).

In general, no sampling method recovers correctly the most central nodes for low values
of N . The best results are obtained for the conference data with similarities around 0.2–0.4.
The similarity values increase as N increases but reach most often only values of ∼ 0.5
when considering the top 50% nodes, meaning that only 25% of the most central nodes
are identified when using the surrogate data. The best results are obtained for the first
sampling method for the LyonSchool case and for the LH10 case, with similarities reaching
0.6–0.7. Results are typically better than the random baseline but do not outperform the
detection of most central nodes based on the whole co-presence network. In terms of the
most central nodes as defined by the k-core decomposition (we recall that the k-core of a
network is the maximal subgraph such that all nodes in the subgraph have at least degree
k, and k is called the coreness), the overestimation of degrees in the co-presence network
leads to an overestimation of the maximum coreness, while sampling leads to values closer
to the ones of the contact data, but once again in a context-dependent way. The maximum
core itself is only partially recovered in the whole and in the sampled co-presence networks
(see Table 5).
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Table 5 Comparison of the maximum k-core properties

InVS13 InVS15 LH10 LyonSchool SFHH Thiers13

Contact 11 25 23 47 33 24
Co-presence 78 (0.607) 112 (0.681) 32 (0.682) 181 (0.615) 320 (0.522) 210 (0.684)
Sampling 1 22.5 (0.660) 57.8 (0.719) 26.0 (0.683) 99.8 (0.638) 111 (0.575) 76.7 (0.640)
Sampling 2 5.23 (0.479) 17.4 (0.692) 16.4 (0.655) 39.7 (0.501) 41.4 (0.555) 17.7 (0.375)
Sampling 3 28.1 (0.591) 27.4 (0.639) 25.5 (0.693) 28.4 (0.360) 42.6 (0.559) 15.8 (0.117)

For each dataset we compute the maximum coreness, and report between parenthesis the Jaccard index between the k-core
of the contact network and the k-core in the original and sampled co-presence data (results are averaged over 100
realisations for each sampling method).

4 Using surrogate contact data in epidemic simulations
We have seen in the previous section that none of the three sampling methods yields a
perfectly accurate description of all the relevant features of the true contact network: each
sampling method yields surrogate data with both interesting similarities and potentially
important discrepancies with respect to the original contact data. We now consider the
issue of using such surrogate data in simulations of spreading processes: as precise data on
face-to-face contacts is not always available, it is important to understand if co-presence
information can allow us to obtain on the one hand an accurate prediction of the out-
come of an epidemic process, and on the other hand a reliable estimation of the impact of
containment measures. In particular, it is important to be able to classify potential con-
tainment strategies to determine which one(s) are most adequate.

To this aim, we consider the paradigmatic Susceptible-Infectious-Recovered (SIR)
model for epidemic spreading. In this model, susceptible (S) individuals can become in-
fectious (I) at rate β when in contact with an infectious node. Infectious nodes recover
spontaneously at rate μ and enter an immune recovered (R) state. Simulations start with a
single infectious individual chosen at random and carried out until there are no infectious
individuals left in the population, i.e., individuals are either still susceptible or have been
infectious and have then recovered. The impact of the epidemics is then quantified by the
final fraction ni of individuals in the R state.

We set β = 0.0004 (corresponding to an average infection time of 2,500 s) and vary μ

by tuning the reproductive number R = β/μ. For each value of R, we measure the fraction
P(ni > 20%) of “large” outbreaks in which the fraction ni of the population that was reached
by the outbreak is at least 20% and the distribution of the sizes ni of these large outbreaks.
We average the results over 10,000 simulations performed on the empirical contact net-
work. For each sampling method, we build 100 different instances of the surrogate contact
network, and perform 100 simulations on each surrogate network.

We also consider several simple methods to mitigate the spread, namely the vaccination
of a number of individuals in the population, under the assumption of a perfect vaccine
efficiency: vaccinated individuals cannot become infectious nor transmit the disease and
thus slow down and hinder the propagation. We consider the vaccination of (i) 5, 10 or 20
individuals chosen at random (ii) the most central 5, 10 or 20 individuals, where centrality
is measured according to either degree, strength or betweenness in either the real or sur-
rogate contact networks (iii) when the population is structured in groups, the vaccination
of all individuals in one group.

Figures 8 and 9 summarize our results for the InVS15 dataset (see Additional file 1 for
the figures obtained with the other datasets). In terms of the evaluation of the impact of
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Figure 8 Epidemic prevalence. InVS15 data set. We plot the fraction of the total number of outbreaks that
reach at least 20% of the population (crosses) and the distribution of the sizes of these outbreaks (boxplots)
for several values of the reproductive number R, for the original and the surrogate contact networks.

a spreading process, results are context dependent. The simulations performed on the
surrogate data obtained with the first method generally lead to an overestimation of the
epidemic risk, except for the hospital data. When using the second sampling method, we
obtain a good estimation of the risk for the conference, school and highschool data but an
underestimation for offices and hospital data. The third method on the other hand leads
to a correct estimation for the offices and hospital data but an underestimation for the
school and highschool and an overestimation for the conference.

We show in Fig. 9 the impact of the various vaccination strategies, quantified through
the ratio of the probabilities of large outbreaks with and without vaccination, as well as the
ratio between the median sizes of these large outbreaks. We rank the strategies according
to their efficiency in the real contact network, in order to visualize easily whether the
surrogate networks lead to the same classification of the strategies: indeed, even when the
impact of each specific strategy is not accurately quantified, it would be interesting at least
to understand which methods are most efficient.

Results are once again uneven and context dependent (see also Table 6). In several cases
such as SFHH the ranking of strategies obtained from the sampled co-presence is overall
respected (Kendall’s tau of 0.818 for the sampling method 1 on the size of outbreaks), while
it can be strongly reshuffled in other cases (for instance in the Thiers13 case).

5 Discussion and conclusion
In this paper, we have investigated whether low resolution co-presence information can
be used as a substitute for detailed face-to-face proximity data, both from the point of
view of extracting large-scale structural and statistical features of the temporal contact
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Figure 9 Vaccination strategies. InVS15 data set. We plot the ratio between the vaccination and no
vaccination cases of the fraction of the total number of outbreaks that reach at least 20% of the population
(top), and of the median size of these outbreaks (bottom) for different vaccination strategies, for the original
data and the reconstructed networks. The vaccination strategies are ordered by decreasing efficiency, based
on the effect on the real contact data. The group_* strategies consist in vaccinating one or several groups
entirely; the group_rand strategy vaccinates ng random nodes, where ng is the average group size; the rand_n
strategies randomly vaccinates a specified fraction n of nodes; the b_n, k_n, s_n strategies vaccinate the top
n% nodes according to, respectively, betweenness centrality, degree and strength ranking.
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Table 6 Comparison of the vaccination strategy rankings

InVS13 InVS15 LH10 LyonSchool SFHH Thiers13

P n P n P n P n P n P n

Sampling 1 0.515 0.235 0.377 0.766 0.397 0.412 –0.012 –0.051 0.485 0.818 0.048 0.299
Sampling 2 0.324 0.382 0.377 0.481 0.456 0.412 0.091 0.083 0.758 0.485 –0.074 –0.108
Sampling 3 0.279 0.235 0.394 0.706 0.324 0.426 0.020 0.162 0.636 0.545 0.299 –0.108

For each sampling method we compute Kendall’s tau between the list of vaccination strategies ranked by increasing
efficiency for the contact data and for the sampled co-presence networks, both in terms of the fraction of large outbreaks (P)
and of median sizes of the large outbreaks (n).

network in a population and in data-driven models of epidemic processes in a popula-
tion. We have considered several data sets collected in various contexts that contain both
high-resolution data on face-to-face contacts between individuals and a coarser location
data, both with temporal resolution. The location data can thus be transformed into a
co-presence temporal network between individuals. Given its lower spatial resolution,
this co-presence data contains much more events than the contact data, leading to much
denser aggregated networks: indeed, all individuals in a given area are considered as co-
present, while only some of them are typically engaged in a face-to-face contact. Despite
this expected issue, a number of properties related to group structure and statistical dis-
tributions of temporal properties are similar in contact and co-presence data, with similar
matrices of densities of links between groups and broad distributions of (aggregate) con-
tact durations.

We have thus examined several methods to downsample the co-presence networks to
create surrogate contact networks with overall the same amount of contact time than the
real contact data. The surrogate data statistics are in general closer to the real contact data
than the raw co-presence, in particular regarding the distribution of node degrees and
link weights (and their evolution in networks aggregated over increasing time windows).
These results mean in particular that the distribution of aggregate contact durations, a
very important property that has a strong impact on the unfolding of processes on net-
works such as epidemic processes, could be approximately retrieved from simple sampling
processes of the co-presence data and thus fed into data-driven models of populations.
Several other properties, such as precise value of the average degree, average clustering
or size of largest cliques and cores, turn out however to be strongly context-dependent.
Moreover, the most central nodes of the contact network are not better identified than
using the bare co-presence information.

We have moreover investigated the use of such surrogate contact data in numerical sim-
ulations of spreading processes in a population. Overall, simulations performed on surro-
gate data obtained with one of the sampling method yield results close to the ones ob-
tained with the real data, while the other methods over- or under-estimate these results,
but the best method turns out to depend on context (Note however that all these methods
give obviously results much closer to the one of the real contact network than if raw co-
presence is used, given co-presence overestimates strongly the contacts and thus yields a
strongly overestimated epidemic risk). We moreover investigated the possibility to rank
containment strategies according to their efficiency, and found that this ranking is once
again context dependent: in some cases, simulations on sampled co-presence networks
allow us to uncover the most efficient vaccination strategies for containing a spread on
the real contact data, while in other cases the rankings differ quite strongly.
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In conclusion, we showed that co-presence data, while yielding interesting insights into
some of the large scale properties of the contact network, is not easily usable to build in
a reliable and systematic fashion surrogate contact data that reproduces detailed features
of the real contacts and could be used in numerical simulations to predict the outcome
of spreading processes and the impact of containment strategies, at least for processes in-
volving contagion at short distances [39] (note that, while more sophisticated sampling
procedures might be devised, they would most probably involve more parameters and/or
more additional information not present in the raw co-presence data, and would also most
probably still give context-dependent results). The SocioPatterns data that was used is
representative of the current state of the art in data collection of human behaviour, both
for face-to-face contact and localisation. The results and methods presented in the arti-
cle could thus be easily applied to data generated by any other type of system, including
Bluetooth proximity sensing or WiFi tracking. We finally note that even coarse location
information has been shown to be a useful additional information whenever the precise
contact data is incomplete [29]. Optimally, data collection with wearable sensors should
thus contain both high resolution data about relative positions of individuals, in order to
detect face-to-face proximity, and coarser co-presence information to inform for instance
on mobility patterns within buildings or complement potential data losses.

Additional material

Additional file 1: This file contains additional tables and figures, in particular for the other data sets considered in
this paper. (PDF 3.5 MB)
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