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Introduction
The extent to which we are affected by our individual and group characteristics lies at 

the very heart of social science inquiry. The classical theorists were concerned with this 
question, and the interplay of individual and group concerns all the social sciences.

But we have lost track of the group in much of empirical research. In particular, sur­
vey research examines the isolated individual and does not take the context into account. The 
implication of the very word 'social' is that group membership is important, but this is more 
in theory and less in practice.

The reasons for the lack of prominence of the group in social research are both con­
ceptual and practical. The concept of group itself is difficult. For example, I am a man. Do 
I do certain things because I am affected by that characteristic of me as an individual, or is it 
because I belong to the group of all men? After solving the question of what is meant by a 
group, we need to identify the relevant groups. As individuals we are members of an ever- 
changing set of overlapping groups through family, friends, work, residence, etc. These 
groups do not have well defined borders, and within a group we are more affected by those 
close to us than those farther away.

After identifying the group we need to measure the characteristic of the group. We 
may be interested in the level of a variable, like the mean test score or the percentage of peo­
ple in a group that belong to a certain type. Alternatively, we may be interested in the homo­
geneity of a group as measured by the variance. More homogeneous groups have less ten­
sion, and this may be a relevant concept It may also be that we are only interested in differ­
entiating between different groups without measuring their characteristics, and that can be 
done through the use of dummy variables.

After deciding on the proper measurements, we have to collect data on the groups as 
well as on the individuals within the groups. Individual data are often collected through sur­
veys, and these data must be merged with data on the groups, often census data.

Finally, after these hurdles have been cleared, the individual and group data must be 
analyzed by taking both levels of data into account. Such contextual analysis is discussed 
here. Only the most simple cases are discussed, and there is room for generalizations in 
many different directions. In the end we axe only limited by our imagination and scope of 
the study.

The statistical equations we use for any analysis generally and contextual analysis in 
particular should reflect the real world process that generated the data in the first place. This 
means that we must understand this substantive process before we can write down any equa­
tions that are to be used as model for the process. In contextual analysis we work with con­
cepts of effects of variables on the level of the individual as well as on the level of the group. 
It is important that we understand what is meant by effects of this kind, and there are here 
discussions of two different types of individual and group effects. They lead to different 
equations for the analysis of the data, and the choice between the two must be made on the 
substantive level, not on the statistical level.

This text gives an introduction to the main issues that come up in contextual analysis. 
One such issue is in what ways one variable can affect another variable, a second issue is 
how we can measure these effects, and a third issue deals with the possibility of recovering 
data on the level of the individual when we observe data on the level of the group. The text 
builds on the earlier work by Boyd and Iversen (1979). For other discussions of contextual 
analysis see, among others, Blalock (1984) and van den Eeden and Hiittner (1982).
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Contingency tables
Contextual analysis began with the study of contingency tables. This is the situation 

we are in when we study the relationship between two categorical variables X and Y, and we 
have data on X and Y for observations belong to several different groups. Early treatments of 
contextual analysis with contingency tables are found in Kendall and Lazarsfeld (1950) and 
in Blau (1960).

Data on two categorical variables X and Y can be arranged in a contingency table, 
and when both variables have two categories 0 or 1, we get a table with frequencies n^:

X
0 1 Sum

1 n U *12 n v
Y

0 n 21 1122 n 2-

Sum n -l n -2 n ..

From these frequencies it is possible to compute various proportions. Dividing the cell fre­
quencies by the column totals gives the column proportions p;j and the marginal row propor­
tions Pi- as shown in the table:

X 
0 1

P li P12

1*21 ?22

Pi-

Pz-

1.00 1.00 1.00

In addition, let p.j = n.j/n and p,2 = n.^/n be the two marginal column proportions.
If pu  is different from p12, then there is a relationship between X and Y in this table. 

That means that an individual’s category of the independent variable X determines, in part, in 
what category the individual will fall on the dependent variable Y. We express this by saying 
that there is an effect of X on Y on the level of the individual. This can also be expressed by 
saying that there is an individual level effect of X on Y.

Next, suppose we have two tables, representing data from two different groups. 
Furthermore, suppose the two column p's are equal to each other in each of the tables, but 
that the values differ in the two tables. In that case, it makes no difference for Y which cate­
gory of X an individual belongs to, but it does make a difference what group an individual 
belongs to. We express this by saying that there is a group effect on Y.

When we have tables for several groups, it is possible to plot the two column 
proportions p n  and p i2 as functions of the marginal column proportion p.2, as done by 
Davis et al. (1961). The marginal proportion is a group characteristic, telling us the pro­
portion of individuals in the group with X equal to 1. The two column proportions tell us the
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propensity of the individuals in the two columns to have the characteristic that Y is equal to 1. 
The purpose o f this plot is to see if the propensity of having Y equal to 1 in any way is relat­
ed to the composition of the group on the X variable.

Suppose both column proportions are related linearly to the marginal column propor­
tion. These linear relationships can be expressed mathematically, as done by Iversen (1973), 
and shown in a figure like the one below:

Now there are several possibilities. If the two lines are both horizontal, then it does 
not matter for Y which group an individual belongs to. In that case group composition does 
not affect Y. If the lines are horizontal and the intercepts are different, then it matters for Y 
whether an individual is in the first or the second column, but not what group the individual 
is in. This is because p n  is the same in every group, and pi2 is the same in every group. 
Thus, two horizontal lines are a sign that there is only an individual level effect of X on Y, 
and there is no group effect. On the other hand, if the two lines are the same and have a 
nonzero slope, then it only matters for Y what group an individual is in, not what column the 
individual is in. Since the lines overlap, the two p's are equal in any given table, and there is 
no individual effect present. But with a nonzero slope the common values of the p's differ 
from one table to the next, and it matters for Y what group a person belongs to. Thus, there 
is a group effect present. Finally, if the the two slopes are different, then there is an indi- 
vidual-group interaction effect in addition to the possible individual and group effects.

When the two column proportions are linearly related to the marginal proportion, it is 
possible to express these relationships as lines in a graph or equivalently as two linear equa­
tions. Let us consider the following equations:

P n  = «  + PP-2 Pi2 = Y +5p.2

The Greek letters are the intercepts and slopes of the tines and are known as the parameters 
for the lines. With actual data we would not get proportions that lie exactly on two straight 
lines, and the analysis would require residual terms. The meaning of the parameters are dis­
cussed below, but first we want to rewrite the equations.

It is possible to analyze the relationship between X and Y in a contingency table with
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two rows and two columns using dummy variables. The tables above show that the obser­
vations in the first column are assigned an X-value of 0 and the observations in the second 
column are assigned a 1. Similarly, the observations in the first row are assigned a Y-value 
of 1 and the observations in the second row are assigned a 0. Regressing Y on X within a 
group with these values of Y and X gives the equation

Y = Pii + (Pl2 - P n ) X  + e

Thus, the intercept equals p n  and the slope equals pi2 - pn-
Using the equations above we can express the slope and intercept in terms of the four 

parameters and p .2 in the equations

P11 = a  + Pp-2 p12- p 11 = (Y -a) + (S -p )p .2

When X is represented by a dummy variable with values 0 and 1 as we have done here, the 
mean of X equals the marginal proportion p.2. Thus, the equations above show that when 
the column proportions are linearly related to the marginal column proportion, then the inter­
cept and slope can be written as linear functions of the group mean.

The values of the four parameters a , P, y  and 8 determine the existence of the vari­
ous effects. Only the individual effect of X on Y is present when (3 = 8 = 0 and a  *  y. 
In that case the intercept (pn ) is equal to the constant a  and the slope (p12 - Pn) is equal to 
the constant 7 - a . The column proportions are the same in all the tables, but they are differ­
ent from each other. By definition, this is the case of the individual effect of X.

There is only a group effect present when a  = y  and p = 8 (* 0). In that case the 
intercept is a linear function of the marginal proportion p.2 and the slope within each group 
equals zero. Because this effect is produced by the marginal proportion p.2> which is the 
mean o f X, we say that this group effect is an effect of the variable X. Group effects can be 
due to other variables, not necessarily X, but here we discuss the case when the group effect 
is due to X.

Both individual and group effects are present when a  * y  and P = 8 (* 0). In that 
case the intercept vary from one group to the next, but the slopes are the same, meaning that 
the regression lines within the groups are parallel. Finally, there is also an individual-group 
interaction effect present when p *  o. In that case the regression lines are no longer parallel.

It is possible to illustrate these equations, as shown in the graph below. The 
graphshows the scatterplot of the frequencies in one of the tables using X and Y as dummy 
variables. The scatterplot of X and Y has n n  observations at the point (0,1), nj2 observa­
tions at the point (1,1), n2i observations at the point (0 ,0) and n22 observations at the point 
(1,0). Regressing Y on X gives the regression line which goes through the point p n  on the 
west side o f the square and through the point p n  on the east side of the square. Thus, the 
regression line has intercept p n  and slope P12 - P11.

Finally, the model specifies that both intercept and slope are linear functions of the 
marginal proportion p .̂ When the data have been generated by this model it is possible to 
study the relationship between X and Y in a set of 2x2 contingency tables in terms of 
individual, group and interaction effects. The analysis is performed by first computing the 
column proportions p n  and P12 as well as the marginal proportion p.2 in each table. The 
next step consists of plotting both p n  and p i2 - p n  against p.2. If the graphs reveal linear 
relationships, simple regressions can be used to estimate the parameters for the two lines and 
thereby establish the presence of the various effects.
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P l2

= ( * - « ) + ( «  - p ) P -2

♦ X

The same results are obtained by regressing p n  and pi2 against p.2. But using the 
slope p i2 - p n  instead of p i2 makes the analysis in this section more consistent with the 
analysis for two interval (metric) variables, as seen below.

The parameters can also be estimated in a different way. If the model is true and the 
column proportions are related linearly to the marginal proportion p.2, then we can substitute 
the model equations for p n and p i2 - p n  into the regression equation for the relationship 
between X and Y. This results in the equation

Y = a  + (Y -  a)X  + |ip.2 + (5 -  p)Xp.2 + e

This equation suggests estimating the effect parameters using a multiple regression 
analysis on the data for all the individuals in all the groups. The dependent variable Y equals 
0 or 1, depending upon whether an individual is in the fust or the second row, and X is an­
other dummy variable equalling 0 or 1 depending upon whether an individual is in the first or 
second column. The second explanatory variable is p.2, the proportion of observations in the 
second column in a group, and every individual in a group has the same value of this vari­
able. The last explanatory variable is the product Xp.2, and it equals 0 or p .2 depending 
upon whether an individual has X = 0 or X = 1.

The model discussed here specifies that the intercepts and slopes within the groups 
are functions of the marginal proportion of X. But it is also possible to imagine other models 
for the intercept and slope where they are functions of other variables.
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Meaning of effects
Let us examine what happens when a variable X causally determines another variable

Y and that X is the only variable affecting Y. The variable X can then affect the other vari­
able Y in different ways. One way is on the level of the individual and another is on the level 
of the group.

There is an individual level effect present when two individuals in the same group, 
but with different values of X, end up with different values of Y. Similarly, there is a group 
effect present when two individuals have the same value of X but belong to different groups, 
and they have different values of Y. In addition, there may be an individual-group interaction 
effect o fX o n  Y.

Let us first consider the individual effect of X on Y. When this effect is not present, 
then all individuals will have the same value of Y irrespective of what values they have on X. 
This can be illustrated in the graph below. The graph shows the X and Y values as 
pointsfor four individuals and the mean of X. When there is no individual level effect of 
X on Y, then the values of Y are the same for all individuals, no matter what their X-values 
are. This means that the data points he on a horizontal line. Let this line have intercept de­
noted by 80.

* ------------------ ► X
x

W hen we introduce the individual level effect of X on Y, the data points no longer lie 
on a horizontal line. Let us assume that the relationship between X and Y is linear. The data 
points then lie on a line with nonzero slope. A major question becomes how the points 
moved when the individual effect was introduced. One possibility is that the points moved in 
such a way that the intercept for the new line is the same as the intercept for the old line. An­
other possibility is that the points moved in such a way that the new line pivoted around the 
mean point. These two possibilities are shown in the two graphs below.

In the graph on the left the new line has the same intercept as the horizontal no-effect 
line. In this case we say that the line is anchored at the intercept. Thus, the effect of X is 
such that all the points have moved up from where they were when X had no effect. In the 
graph on the right, the new line goes through the same mean point as the horizontal no-effect 
line. In that case we say that the line is pivoted around the balance point of the line. Here, 
the effect of X is such that the points to the left of the mean of X have moved down and the
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points to the right of the mean have moved up.

Thus, the individual level effect of X can be of the anchored type or the balanced 
type. It is possible to imagine other types as well, but we limit the dicussion to these two. 
The essential difference between the two have to do with how we look at the value of X for 
an individual. When we study in greater detail what are called the anchored and the balanced 
models, we find that the essential difference between them is how we regard the X values in 
the various groups. In the anchored model the magnitude of the effect of X is measured ac­
cording to the actual, observed value. In the balanced model the effect of X depends upon 
the X-value relative to the group mean.

In the two hypothetical examples below there is an X variable with values from 1 to 
9. The anchored model of individual level effects takes these values o f X as they are. For 
example, a person with a score of 5 has a value which is 3 more than a person with a score of 
2, and so on for any two people. What matters for the effect of X on Y is the actual value of 
X. If there is no group effect present, two people with the same score on X would be ex­
pected to have the same score on Y even if they are in different groups.

On the other hand, in the balanced model it is not the actual value of X that matters 
but the value of X relative to the group mean. In the balanced model an individual is mea­
sured against the group mean, and a value of 5 for a person in a group with mean 3 is the 
same as having a value of 9 in a group with mean 7. In both cases the individuals are 2 units 
above the mean, and that is what is important. The individual level effect of X will be the 
same for those two individuals since they are the same distance above their group mean, in 
spite of the fact that their original observed values of X are different

The presence of a group effect can be illustrated with data from two groups. When 
there is only a group effect present the lines within each group are horizontal, but the lines 
are at different levels of Y. The lines are horizontal because there is no individual level effect 
of X. The group effect can be seen in the graph above. The graph shows three observations 
in each group, and within each group the values of Y are the same because of the lack of an 
individual level effect. The group effect is present because two individuals in different 
groups will have different values of Y, even if they have the same value of X.
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Y

♦ X

It is now possible to combine both individual and group effects and look at them at 
the same time. Consider the graph below. The graph contains data from two groups, with 
three data points in each group. The data show that there is an individual level effect present, 
because the lines for the two groups have nonzero slopes. Within each group we find that 
the higher the value of X, the higher is the value of Y.

Y

But is there a group effect present? One way to look at this graph is to say that we 
started with the graph containing the group effect only, and within each group the individual 
level effect was introduced by pivoting the line around the balance point. This is the way the 
individual effect is introduced in the balanced model. Thus, according to the balanced 
model the graph displays a group effect in addition to the individual effect Another way to 
see that is in terms of prediction. If we need on the individual value of X in order to predict 
Y, then we only have an individual effect of X. But if we need the individual value of X and 
also what group an observation belongs to, then there is a group effect present in addtion to 
the individual effect. In the balanced model we use deviations from the group mean as values 
for the X-variable, and if we are told a value of say 2, we know that this individual has a 
value 2 larger than the mean of the group. In the graph above that may the observation to the 
right o f the mean of the first group or the observation to the right of the mean of the second
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group. In order to predict Y, we also need to know which group the observation belongs to.
Another way to look at this graph is to conclude that there is no group effect, only an 

individual effect. This is because the only thing we need to know in order to predict the Y- 
value is a person's X-value. There is no new knowledge contained in knowing whether the 
person is in the first or the second group, and this means there is no group effect According 
to the anchored model, where we use the actual values of X, there is no group effect present. 
Thus, depending upon whether we measure X as deviation from the group mean or as the 
observed value, the data in the graph may or may not contain a group effect in addition to 
the individual effect

The reverse situation occurs in the graph below. Because the lines through the data 
points have nonzero slopes, there is an individual level effect present in this graph. The more 
interesting question is whether the graph shows the presence of a group effect One answer 
is yes, because if we control for the individual value of X by choosing two observations 
from different groups but with the same X-value, then they will have different Y-values. 
Thus, it does make a difference what group an observation belongs to. This is according to 
the anchored model where we use the actual X-values.

Y

It is also possible to answer the question by a no. This is because it may have been 
that these lines first were horizontal and with the same intercept, in other words containing 
neither individual nor group effects. Then the individual effect was introduced by pivoting 
the lines around their mean points, and that left the lines where they are shown in the graph. 
Two individuals equally far above the means in their respective groups will have the same 
value of Y. Thus, for the balanced model there is no group effect present since it is only the 
position of X relative to the group mean that matters.
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Anchored model

W e have two variables X and Y, and we want to study the effect of X on Y. In this 
section we work with the individual level effect being of the anchored type. This is the 
model which forms the basis for the work by Boyd and Iversen (1979).

In addition to data on the two variables for a set of individuals, we also know that 
each individual belongs to one of several groups. Thus, the data matrix looks like

Y X Group 
y n  x n  i 
y n  x2i 1

The second subscript on X and Y refers to the group number, and the first subscript refers to 
the individual within the group.

It is possible to make a scatterplot of X and Y for all the data, and if the relationship 
looks linear it can be analyzed using simple regression analysis. But it may be that the rela­
tionship between X and Y is different from group to group, and the overall relationship be­
tween the variables may not give a very good representation of how X and Y are related. To 
examine this possibility we control for group membership and make a separate scatterplot of 
X and Y for each group. The only way to find out if the groups are relevant is to actually 
break the data up into groups and find out if the relationships between X and Y are different 
in the various groups.

Suppose we get different scatterplots and relationships within the groups, as shown 
in the these plots:

The graphs tell us that the variables are not related in same way in each group. In this 
case the overall scatterplot does not give a good representation of the way in which X and Y 
are related. There seems to be something about these groups that influences the way in 
which the two variables are related. Thus, we should take the groups into account in the 
analysis.
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When the relationships between X and Y are linear in the different groups, we can do 
a separate simple regression analysis for each group. The equations for these analyses can be 
expressed as

Yik =  Sok +  ^lkXik +  £ik

Thus, we have a set of intercepts 5qi, 5q2> . .  . , 5ob . .  . and a set of slopes 5n , 612, •
• - > 5ikj . . one intercept and one slope for each group.

The next task is to study these different intercepts and slopes. There must be some 
reason why the intercepts differ and why the slopes differ, and we want to know what de­
termines these intercepts and slopes. This question can be expressed in the model equations

intercept 8q = function of something 
slope = function of something

This raises two issues; 1) what kinds of functions do we have and 2) functions of what vari­
ables. The choices of functions and variables depend on the substantive problem.

We want to express these functions mathematically, and they could be of any kind. 
We usually start with the most simple mathematical functions, and this means linear func­
tions. But it is important to realize that it may well be that more complicated functions will 
work better and that linear functions are only one of many possibilities.

The next question is what variables go into these equations. There is nothing in the 
data which tells what these variables should be, the choice depends entirely on the substan­
tive nature of the study. The variables represent characteristics of one kind or another of the 
groups, and we can use either one or several variables. The variables may be categorical 
(nominal) variables represented by dummy variables, and in that case we get into analysis of 
covariance. For such an approach see Schuessler (1969). Perhaps more often the variables 
are means or proportions o f some kind. As a special, but important case, we consider here 
the case where it is the group mean of X which determines the group intercepts and slopes. 
But, while this is an important case, it should be stressed that it represents only one of many 
possibilities.

With the choice o f linear functions and the group mean as the variable, the model 
equations can be written

$0k =  « 0  +  a 2xk 

&lk =  « 1  +  a 3xk

In the text and equations the mean of X in the k-th group is denoted x^ without a bar above 
the x while the bar is included in most of the graphs. This model states that the mean of X in 
group number k linearly determines the way in which X is related to Y in that group. The 
model is expressed using the four alphas as parameters. It is worth noting that this is a de­
terministic model in the sense that the group mean is the only variable which determines the 
intercept and slope. There are no residual terms in this model. It would be possible to intro­
duce residual variables in the two model equations, but that would make the model more 
complicated and this should not be done unless there are substantive reasons for the inclusion 
of such residuals. As the model stands, the deltas are completely determined by the alpha 
parameters and the group means. If we replace the deltas in the model equations by their
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estimates, then we have to introduce residuals in the model equations. This point is dis­
cussed further in the section on parameter estimation. This model is a direct generalization of 
the contextual model for contingency tables.

In this model the intercept of the within group lines are specified by the model, and 
we express this by saying that the lines are anchored on the Y axis by the model. The an­
chored model can be illustrated in the figure below. The figure shows how it is the intercept 
and slope in each group that are determined by the model equations.

Y

x

The four parameters (Xq, o^, 0C2 and (X3 in the model equations determine the pres­
ence of various types of effects. In order to get a better understanding of the model let us 
examine certain combinations of parameter values.

CL.

ccq *  0, a i  = CX2 = 0C3 = 0. In that case all the group intercepts are equal to the com­
mon value ao and all the slopes are equal to zero. This means that the lines for all the 
groups are horizontal and have the same intercept, as shown in the figure above. There is no
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relationship between X and Y in any of the groups, since the regression line is horizontal for 
each group. The parameter oco sets the level of Y in the groups and serves no other purpose. 
In this case there is no individual level effect because of the horizontal lines, and there is no 
group effect because the lines have the same intercept.

ao *  0, a i*  0, ot2 = 0&3 = 0. In this case all lines have the same intercept 8ok = oco 
and the same slope 8^  = a i .  The graph of the regression lines are shown in the figure be­
low. The lines in the various groups may or may not overlap, depending upon the range of 
the X-values in each group. In this graph the lines do not overlap since it is easier to draw 
the graph using lines which do not overlap. Compared to the figure above with no effects, 
the three lines have swung upward from their anchoring point at ao. The difference now is 
that the parameter a i  is no longer equal to zero, and this means that the lines have nonzero 
slopes. Because the lines have slopes that are different from zero, there is an individual level 
effect present of X on Y. Thus, the parameter a i  is a measure of the individual effect.

Y

ao *  0, a i  = 0, <*2 *  0, (X3 = 0. With these values of the parameters, the intercepts 
become linearly related to the group means while the slopes are all equal to zero. In this case 
the three regression lines for the different groups can be drawn as shown in the graph below. 
Within a group all the values of Y are the same, and the line is horizontal for each group. 
This means that there is no individual effect of X present here. But the intercepts are differ­
ent, and that makes the level of Y different in the various groups. Thus, group membership 
affects Y, and this means there is a group effect present. According to our model, the in­
tercepts are determined by the group mean of X, and the group effect here is therefore a 
group effect of the X variable. The intercepts are different because the parameter 02  is 
different from zero, and this parameter becomes the measure of the group effect

cto * 0, a i  *  0, 0C2 * 0, (X3 = 0. In this case the intercept is again a linear function 
of the group mean, but the slopes are nonzero and equal to the same value a i .  From this 
configuration of the coefficient we find that there is both an individual and a group effect pre­
sent The lines are parallel but with different intercepts, and they are shown in the graph be­
low. The individual level effect is present because the lines are nonhorizontal, while the 
group effect is present because of the differing intercepts.
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All a 's  different from zero. In this case both the intercepts and the slopes vary with 
the group means. Thus, the lines have different intercepts and they are no longer parallel 
since the slopes are different. Since the lines have nonzero slopes, there is an individual level 
effect of X present. Also, there is a group effect of X present, since the intercepts are differ­
ent. What is new here is that the lines are no longer parallel. Such nonparallel lines indicates 
the presence of an individual-group interaction effect of X in addition to the other two effects. 
This effect is produced by the interaction parameter CX3. With the presence of the interaction 
variable a graph of three lines would look like the graph below. In this particular example the 
different intercepts are a positive function of the group mean since they increase with in­
creasing group means. The slopes are such that in this case the larger the group mean the 
smaller the slope.
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Y

The complete anchored model is illustrated in the graph below. This graph re­
flects the process that generated the data under this model. An individual started with a Y- 
value of ao> the group effect added an amount a 2Xjc, the individual effect added an amount 
(XiXft;, and the interaction effect added an amount o^x^x^. Finally, the residual variable 
added an amount e^. These effects are added together to produce the observed value yjk. 
The anchored nature of this model can be seen from the way the three top lines in the graph 
are anchored on the Y axis.

Y

For usages of the anchored model see, for example, Hero and Durand (1985) and 
Knoke (1981).
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Estimation of anchored parameters

There are two sets of parameters in the models discussed here. First, there are the 
deltas used to characterize the relationship between X and Y within each of the groups. Sec­
ond, there are the alphas used to model how the deltas are determined, in the model discussed 
here as linear functions of the group means. In order to study the presence of individual, 
group and interaction effects in a set of data, we need to estimate both sets of parameters.

The deltas can be estimated by regressing Y on X within each group. Within the k-th 
group we have the estimated relationship between X and Y expressed in the equation

yik = d<)k + dlkxik + fik

where the f  s are the residuals. By regressing Y on X within each group the analyses result in 
the estimated intercepts doi, (¿ 2, • . .  , dok,. . . and slopes d n ,  d i2, . . . ,  d ik ,. . . , one 
intercept and one slope for each group. These estimated deltas do not tell us anything directly 
about the existence of the various effects, but to the extent that intercepts and slopes differ 
from group to group we know that there are possible individual, group and interaction effects 
present in the data. It is therefore always important, as a first step, to examine the relation­
ships between X and Y within the groups and see if they differ from group to group.

There are two main ways in which the effect parameters (alphas) can be estimated. 
The first method is known as the separate equations method and uses the group as the unit in 
the analysis. The second method uses the individual as the unit and is known as the single 
equation method.

Separate equations. The model equations specify that the group intercepts and 
slopes are linearly related to the group means, as expressed in the equations

Ôk = °0  + a 2xk 
&lk = a l + a 3xk

We do not have the actual deltas for the group intercepts and slopes on the left sides of these 
equations. We only have the estimated deltas from the regressions within the group, but we 
can use these estimated deltas instead of the true deltas. The observed estimated intercept dok 
differs from the true parameter value 5ok by some amount ^  that is, dok = Sok + Ck- "The 
same holds true for the slope, and we can write d ^  = $ik + ^k- If we now substitute for the 
two deltas in the model equations, we get two equations where the observed intercepts and 
slopes depend on the alphas, the group means and the residuals. These equations can be 
used to estimate the alphas.

By regressing the observed intercepts and slopes on the group means we get esti­
mates of the alphas. These two simple regression analyses can be expressed in the equations

^Ok = *0 + a2xk + uk 

<*lk = a l + a3xk + vk

where u and v are the estimated residuals. The regression coefficients in these two analyses
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are estimates of the alphas.
The unit in this analysis is the group. This means that the separate equation method 

may not be a very good way to estimate the alphas if we only have a few group, since each of 
these simple regression analyses will be based only on a small number of observed data 
points. When the number of individuals vary a great deal across the groups, it may be better 
to use a weighted regression analysis in order for the larger groups to count more.

Single equation. By substituting for 5ok and 8ik from the model equations into 
the equation for the relationship between X and Y we get the equation

yik = («0 + «3xk) + («1 + a 3xk)xik + Eik 

Rearranging the equation it can be written

Yik = °0  + a lxik + a 2xk + a 3xikxk + ^ik

This equation shows that when we have a linear relationship between X and Y within the 
groups and the group intercepts and slopes are modelled to be linear functions of the group 
means, then the value of Y for the i-th individual in the k-th group is a function of the indi­
vidual value of X, the group mean of X and the product of the individual value of X and the 
group mean.

This equation can be used for estimation of the parameters through a multiple regres­
sion analysis with three explanatory variables. In order to perform this regression analysis 
two new columns must be constructed from the original data matrix. We already have indi­
vidual values for Y and X, and we now need one column for the group variable and another 
column for the interaction variable. The column for the group variable is constructed by as­
signing the group mean xk to every individual in the group. The column for the interaction 
variable is constructed by multiplying the individual and group columns. That way the data 
matrix looks like

Y Ind. Group Int.
y ii X11 X1 x l lx l
y 2 \ X21 X1 x21x l

yik xik xk xikxk

Regression Y on these three variables results in the estimated regression equation

Yik = A<) + A lxik + A2xk + A3xikxk + eik

where the A‘s are the estimated coefficients and the e’s are the estimated residuals. The 
coefficients from this single equation analysis are denoted by capital A's in order to distin­
guish these estimates from the a's obtained from the separate equations estimation.

Ordinarily the two sets of estimated coefficients are different. Limited experiences 
from Monte Carlo studies indicate that the coefficients from the single equation are usually
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closer to the true parameter values. Also, most often the A's have smaller standard deviations 
than the a's. The main reason for the smaller standard deviations is that the individual is the 
unit of this analysis, and the number of individuals is usually much larger than the number of 
groups. But at the same time, the explanatory variables in the multiple regression are con­
structed in such a way that they are correlated among themselves, and that tends to increase 
the standard deviations of the coefficients.

The various residuals are related in the following way. If we substitute for dok and 
dik into the relationship between X and Y in the k-th group, we get

Yik = Ok)+ a2xk + uk) + (a l + *3xk + vjjxfc + f^

or rearranged,

yik; = ao + ajXfc + a2xk + a3xikxk + (f* + uk + vkxlk)

We know that the A's are the coefficients which give the best fit with the smallest residual 
sum of squares, and if we use any other set of coefficients we get a larger residual sum of 
squares. This means that we have the inequality

e* 2 < XZ (ffc + uk + vkxik)2.

Equality only occurs if the a’s are equal to the A's.
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Group means
The single equation with the relationship between Y and the individual, group and 

interaction variable represents one equation for each individual. It is possible to add the 
equations for all the individuals in a particular group and divide by the group size. On the left 
side we get the mean of Y in that group, and we get the following relationship between the 
means for X and Y,

Yk = «0  + a lxk + a 2xk + <*3xk2 + e*

yk = Oq + (a j  + 02)xk + a 3xk2 + ^

This shows that when all three effects are present, the group means are related in a 
nonlinear way since the equation above contains the square of the group mean for X. If there 
is no interaction effect present, there is a linear relationship between the group means.

The last equation also shows that if we have only group data (group means), we can­
not hope to obtain separate estimates for cq and 0.2- TÎie coefficient for the group mean can 
only estimate the sum of the two coefficients a i  and a.2, and without additional data there is 
no way of untangling this estimate and get separate estimates for these two coefficients. The 
equation also shows that when we are using group data and perform a so-called ecological 
regression analysis, the coefficient for the group mean of x contains both the coefficient for 
the individual effect (a i)  and the coefficient for the group effect (CX2).

Within group relationships

It may be that we are particularly interested in the relationship between X and Y within 
each of the groups. One way to study this relationship within a particular group is to use the 
data in that group and regress Y on X. This will give the intercept dok and slope dik for the 
k-th group. With the contextual model it is possible to get better estimates of this intercept 
and slope. We can use the estimated alphas in the model equations and thereby estimate the 
intercepts and slopes in the groups.

If we use the A's from the single equation, the estimated slopes and intercepts can be 
found from the equations

¿Ok = Ao + A2xk £lk = A 1 + A3xk

In these estimates we use information from all the groups to estimate the line in a particular 
group instead of just the information in that group. Computations like these are illustrated in 
the example below of the anchored model.
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Measuring effects
Usually there is considerable interest in the question of how large the effects are on 

the dependent variable from the individual, group and interaction variables. The form of the 
effects can be seen in the regression coefficients, but these coefficients do not tell us how 
large the effects are of the corresponding variables. The main reason for this is that the three 
variables are measured in different units. In multiple regression, a common way around that 
difficulty is to change the coefficients to standardized coefficients in order to compare how 
large the effects are of the different variables. It is also common in multiple regression to 
look at the sums of squares for the different explanatory variables in the analysis as the ef­
fects of the variables. The main difficulty with this approach is that when the variables them­
selves are correlated, there is no way of getting a unique sum of squares for each variable. 
But it is not clear why squared deviations, as they are computed in multiple regression neces­
sarily measure the effects of the variables the way we may want to measure effects.

Another way to look at the problem of measuring effects is to take a closer look at the 
process we believe generated the observed data in the first place. This process is mirrored 
in the model we are working with. This model is such that when there are no effects present, 
then the observations are equal to the common term ao plus a residual term. When there is 
only an individual level effect present, the observed values of Y are thought to be equal to

yik = Oq + cqxfc +

For the i-th individual in the k-th group we see that the individual level effect adds a term 
otiXik to otherwise would have been the value of the dependent variable.

a ix ik

The workings of the individual level variable can be seen in the picture above. When 
there were no effects present, aside from the residual, the observations were located on the 
horizontal line with intercept Oo. When the observations were exposed to the individual level 
variable, the effect was to move the observations as marked by the arrows in the picture. The 
points in the scatterplot moved from the horizontal line up to a line with the same intercept
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Cto but with slope a i. This means that an individual with X-value of moved a distance 
of aiXik. That distance can be taken as the effect of the individual level variable on that indi­
vidual. The effects are shown as vertical arrows on the graph.

One way to think of the overall effect of the individual level variable is to add up the 
total distance the points were moved by the individual level variable. The sum of the arrows 
in the graphs becomes lailEZIXfcl. The absolute values signs are needed since we are only 
interested in how far the points moved, not whether they moved up or down. When the X- 
values are all positive, the sum of the absolute values becomes equal to the number of obser­
vations times the mean.

The presence of the group effect adds another ot2Xk to the value of Y. This amount 
can be thought of as the effect of the group variable, and the effect is shown in the next 
graph. Within a group the line has been lifted a distance of o^x^. For each individual in the 
group that distance can be taken as the effect of the group variable. By adding up these dis­
tances we get the overall effect of the group variable, and this sum can be written 
la2lZnklxkl. Again, we need the absolute values since we are only interested in how far the 
points were moved by the group variable, not the direction in which they were moved. 
When the X-values are all positive, the sums involving the X's are the same for both the in­
dividual and the group effect. This means that the coefficients themselves for these two 
variables can be compared directly.

♦ X

The interaction variable adds the value a 3XikXk to Y for the i-th individual in the k-th 
group. This is the distance an individual is moved on the scatterplot by the interaction vari­
able, and the effect can be seen in the graph below. The observations are now located on 
nonparallel lines, and it was the interaction variable that made the lines have different slopes. 
The effect of the interaction variable can be taken as the sum of the distances travelled by the 
points due to the interaction variable. This sum can be written Ic l̂XZIxfcXkl. As before, the 
absolute values are needed, since we are only concerned with how far the points move, not 
the direction in which they move. Often, the X-variable has positive values only, and in that 
case we can disregard the absolute value signs for the X's.
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Y

♦ X

Finally, the residual variable moves the points off the lines to where we actually find 
the observations when we plot the observed data. In the spirit of thinking of effects as dis­
tances moved, the effect of the residual variable is taken as the sum of distances from the 
lines to the points. That means the effect of the residual variable can be written EE leaJ.

In the analysis of actual data these effects are found by replacing the regression coef­
ficients and the residuals by the corresponding estimates obtained from the data.
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The anchored model is based on the regression of Y on the individual, group and in­
teraction variables as seen in the equation

Yik = Ao + A lxik + A2xk + A3xikxk + e ik

The three estimated coefficients tell us about the presence of the individual, group and inter­
action effects, but they do not tell us much about the magnitudes of the effects.

One approach to the question of measuring effects in multiple regression is to parti­
tion the total sum of squares of the dependent variable into a regression sum of squares and a 
residual sum of squares. The regression sum of squares tells us how large the combined ef­
fect on Y is of the explanatory variables, and we would like to have this combined effect par­
titioned into separate effects for each of the individual, group and interaction variables. But 
in this anchored model the three explanatory variables are correlated among themselves, and 
with such correlated variables it is not possible to partition the regression sum of squares into 
unique components for each of the variables.

What we can do is analyze the effects of the variables sequentially. Let the regression 
sum of squares be denoted RegrSS(ind,gr,int) when we regress Y on all three variables. 
Next, let us regress Y on only the individual and group variables. This results in a new, and 
smaller, regression sum of squares which we can denote RegrSS(ind,gr). This sum is 
smaller because we are now using only the two explanatory variables (individual and group) 
instead of all three. Since the interaction variable is not included in this analysis, the reduc­
tion in the regression sum of squares must be due to the absence of the interaction variable. 
Thus, we can take this reduction, that is, the difference between the two sums of squares, as 
a measure of the effect of the interaction variable. That way the effect of the interaction vari­
able is found as the difference RegrSS(ind,gr,int) - RegrSS(ind,gr).

Similarly, if we regress Y on the individual level variable only, we get a regression 
sum of squares which can be denoted RegrSS(ind). The difference between the regression 
sum of squares obtained when we regress Y on both the individual and group variables and 
the one we get for the individual variable only must be due to the group variable. That is, the 
effect of the group variable can be found as the difference RegrSS(ind,gr) - RegrSS(ind). 
Finally, the effect of the individual level variable can taken simply as RegrSS(ind).

The major problem with this approach is the sequential nature of the analysis. The 
interaction effect is measured as the effect of the interaction variable, after the individual and 
group variables have been allowed to account for their effects. Similarly, the group effect is 
measured as the effect of the group variable after the individual variable has been allowed to 
account for its effect. But it would not be necessary to take the variables in this particular or­
der with the individual variable first, then the group variable and finally the interaction vari­
able. It may make sense to do the interaction variable last, since it is formed by the other two 
variables. But perhaps we should have taken the group variable first, and then measured the 
individual variable after the group variable. That would have given different effects for the 
individual and group variables from what we have above.

The lack of unique sums of squares for the three variables comes from the fact that 
they are correlated among themselves. In particular, since the interaction variable is con­
structed as a product of the individual and group variables, it is usually strongly correlated 
with the other two variables.
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This raises the question whether it is possible to transform the data in some way and 
get unique measures of the effects of the three variables. The essential information about in­
dividual, group and interaction effects is contained in the intercepts and slopes of the lines for 
the various groups, and the transformation should be such that those intercepts and slopes are 
not changed. But it is possible to slide the data within a group along the direction of the 
group line and center the data around the Y-axis. This will change both X and Y coordinates, 
but the transformed X and Y values will give the same intercept and slope as the original 
data, thus preserving the information about the various effects. The advantage of the trans­
formed data points is that the effect variables are no longer as correlated.

The transformation is illustrated in the graph showing original and transformed data 
points. The original data are shown as points on the right side, resulting in three regres­
sion lines, one for each group. These groups have different intercepts and different 
slopes, indicating that all three effects are present in these data. The transformation moves 
the original points within a group in such a way that the relative positions of the points in the 
group are maintained, and the intercept and slope of the new line is the same as for the old 
line. In addition, the transformation centers all the groups on the Y-axis in such a way that 
the transformed mean of X equals zero in each group.

Y

The coordinates of the transformed data points become 

new x = old x - x^ 

new y = old y - d ^x ^

This transformation is illustrated in the graph below. The graph shows the regression line 
for the k-th group together with one observation with coordinates (x,y). This point is trans­
formed to the new point with coordinates (x',y'). To see how the transformation works, we 
can consider the mean point in the middle of the original line. This point gets transformed to 
a point on the Y-axis in the middle of the new line. The transformation consisted of moving
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a distance Xk to the left, meaning that we subtract an amount xk from the X-value. The slope 
of the lines is dik, which implies that the mean point is moved down a distance dikXfc, 
meaning that we subtract this amount from the Y-value. All the points in the scatterplot are 
then moved the same way, a distance Xk to the left and a distance dikXk down. Thus, we 
subtract Xk from all the original X-values and d^Xk from the original Y-

values. Let an original point be denoted (xik,yik) and the transformed point (x’i^y'ik)« 
These coordinates are then related according to the equations

x’ik = xi k '  xk 

y’ik = yac - dik^k

After all the data points have been transformed this way, the new regression lines for all the 
groups are located in such a way that their mean points lie on the Y-axis, and the new lines 
have the same intercepts and slopes as the old lines.

It is now possible to examine how X and Y are related after the transformations. The 
original relationship was expressed in the equation

Yik = ^Ok ^lkxik + ^ik 

When we substitute for the old coordinates of Y the equation can be written

y ik = ^Ok + ^lk(xik " xk) *  ^ik

This equation shows that the intercepts and slopes have not changed, and the estimated inter­
cept is equal to the mean of the Y'-values.

W e still model that the intercepts and slopes are functions of the group means. But it 
works better to express the model equations as deviations from the overall mean, denoted by
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x, and the model is written

5ok = a 0 + a 2(xk - x)
$lk = a 'l  + a ’3(xk: " x)

Compared to the earlier model we see that the parameters are related according to the equa­
tions

a 0 = a 'o  - a ’2x a 'o  = «0 + a 2x

«1 = a ' 0 - a '3x a 1! = + (X3X

a 2 = a 2 a '2 = a 2
a 3 = « 3 a '3 = a 3

Finally, when we substitute for the model equation into the relationship between the 
transformed variables we get the single equation

y’ik = a 0 + a ’l(xik - xk) + a 2(xk - x> + a 3(xik - xk)(xk - x> + Eik

The advantage of this single equation is that these explanatory have much less collinearity. 
The individual and group variables are always uncorrelated, as are the group and interaction 
variables. The group and interaction variables are uncorrelated when the variance of X is the 
same in all the groups.

When the three variables are uncorrelated, the regression sum of squares can be bro­
ken into three unique components and the effects of the three variables become

Individual effect = (a 'i)2£Z(xik - xk)2

Group effect = (a '2)2£nk(xk - x)2

Interaction effect = (a '3)2EE[(x^ - - x)]2

For a single individual the effects are shown in the graph below. First, if there are no 
effects, then all the observations lie on the horizontal line with intercept a'o. The group ef­
fect moves the k-th line a distance a ’2(xk - x), and this distance is the group effect for each 
observation in that group. This determines the intercept of the line, and the individual effect 
pivots the line around this intercept from the horizontal position to a line with slope a 'i . For 
the i-th individual the individual effect moves the observation a distance of a 'l ix ^  - xk). Fi­
nally, the interaction effect changes the line such that the slope becomes a 'i  + a '3(xk - x), 
and that moves the observation as shown on the graph. After these effects the effect of the 
residual variable is added in, and we get the observed value y'uc-

Even though we are accustomed to summing the squares of the distances in order to 
get the effect of a variable, it is also possible to think of the effect of a variable as the sum of 
the actual distances instead of their squares. In that case we get the following effects:

Individual effect = la'ilLEIx^ - xkl
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Group effect = la l̂EnfclXfc - xl 
Individual effect = la^lE S^x^ - xk)(xk - x)l

The absolute values are needed since we are only interested in how far a certain effect moved

The essential feature of the centering method is that it measures the effects by pivoting 
on the Y-axis, while the original lines are located with anchoring on the Y-axis. This is il­
lustrated in the graph below, which shows the effect of the interaction variable. Without in­
teraction being present, all groups have lines with the same slope 04. The introduction of 
the interaction variable changes the slope in the k-th group from oti to (Xi-fo^x^. The in­
tercept for the group does not change, it is determined by the group effect and remains at 5ok- 
The graph shows two lines, one without the interaction effect present and one with the inter­
action effect present. The effect of the interaction variable are shown in the vertical lines.

Centering moves the lines onto the Y-axis. In the centered space the effect of the in­
teraction variable is also shown as vertical lines. But since the intercept is maintained, the 
effect of the interaction variable now amounts to a pivoting of the line around the mean point 
located on the Y-axis. Comparing the two sets of vertical lines, we see that the effect of the 
interaction variable takes different forms depending upon whether we look at the centered 
data or the original data.

The method of centering was first proposed by Boyd and Iversen (1979). For a cri­
tique of the this method see Tate (1985).

an observation, not the direction in which the observation was moved. In order to compute 
the estimated effects we replace the parameters above by their estimates.

Y
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Example anchored model

The table shows an example with data from five different groups. Each group con­
tains five individuals, and observations with the same group mean are in the same group. 
The data are constructed according to the anchored model with the true parameter values ao -  
0.00, a i  = 2.00, (X2 = 0.50 and ot3 = -0.25.

yuc xik '  xk xk - x (x^ - xk)(xk

2.42 1 3 3
3.44 2 3 6
5.28 3 3 9
6.52 4 3 12
8.02 5 3 15
3.80 2 4 8
4.99 3 4 12
5.88 4 4 16
7.32 5 4 20
8.31 6 4 24
5.13 3 5 15
5.90 4 5 20
6.45 5 5 25
6.72 6 5 30
7.92 7 5 35
5.72 4 6 24
5.41 5 6 30
5.68 6 6 36
6.44 7 6 42
6.54 8 6 48
4.89 5 7 35
4.78 6 7 42
5.29 7 7 49
5.39 8 7 56
5.51 9 7 63

If we were only given the first two columns in the data matrix; that is, if we were 
given the observations on the two variables X and Y without any regards for the groups, we 
might consider studying the overall relationship between those two variables by regressing Y 
on X. This analysis results in the regression line with the equation y = 3.93 + 0.36x. While 
the slope is significantly different from zero, the correlation coefficient for the relationship 
between X and Y is only r = 0.54.

In order to examine the relationship between the two variables more carefully we can 
make a scatterplot of Y on X. Such a scatterplot is shown below, and we find a somewhat 
unusual pattern of points. The relationship does not look linear, and Y has a larger vari­
ance for middle values of X than for extreme values of X. These patterns are both due to the 
fact that the data come from five different groups. When we identify what groups the obser­
vations belong to, it becomes clear that the relationship between X and Y is very different in
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the different groups and this is the reason for the pattern found in the scatterploL

Y

8.75

7.50  ■ ■  

6.25

5.00 ’  -

3.75  '  ‘

2.50  '  •

■♦X

Pursuing this point further, the next step consists of regressing Y on X within each of 
the five groups. These analyses give the following regression lines:

Group dQ di
1 y = 0.85 + 1.43x
2 y = 1.52 + 1.14x
3 y = 3.22 + 0.64x
4 y = 4.36 + 0.27x
5 y = 3.88 + 0.18x

These equations show that the intercepts range in values from 0.85 to 4.36 and the slopes 
from 1.43 to 0.18. Because the lines have such different intercepts and slopes, group mem­
bership should be taken into account in order to understand more fully the nature of the rela­
tionship between X and Y.

In the following we use the model which specifies that group intercepts and slopes 
are linear functions of the group mean. When we regress the observed intercepts and slopes 
on the group means, we get these estimates of the effect parameters:

d îc = -1.68 + 0.89X1J djfc = 2.41 - 0.34x^
(1.08) (0.21) (0.20) (0.04)

The numbers in parentheses below the coefficients are the standard deviations of the coeffi­
cients, as estimated from the two separate equations. The coefficient = 2.41 shows that 
there is an individual level effect of X on Y, the coefficient a2 = 0.89 shows that there is a 
group effect, and a3 = -0.34 shows that there is an interaction effect present as well. All 
three effects are significantly different from zero.
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Regressing Y on the individual, group and interaction variables gives us these single 
equation estimates of the effect parameters:

yik = -1.65 + 2 3 4 x ^  + 0.8 8xk - O ^ x ^ ^  R2 = 0.97
(0.47) (0.10) (0.11) (0.02)

From these estimates, Ai = 2.34, A2 = 0.88 and A3 = -0.32 we see that all three effects are 
present These effect parameters are also significantly different from zero, as seen from the 
standard deviations of the coefficients given in parentheses below.

We get the following sums of squares by regressing of the various variables:

RegrSS(ind,gr,int) = 44.38 
RegrSS(ind,gr) = 26.72 
RegrSS(ind) = 13.25

From these sums of squares we can compute the following measures of the effects of the 
three variables using sequential sums of squares:

Souree____________ Sequential SS effect Proportion
Individual 13.25 0.29

Group 26.72- 13.25 = 13.47 0.30
Interaction 44.38 - 26.72 = 17.66 0.39
Residual_________________________ 1.28________ 0.03
Total 45.65 1.01

According to these computations, the interaction variable is the most important while the in­
dividual and group variables have about the same effects.

Alternatively, since the sum of the X's equals 125, the effect of the individual level 
variable can be taken to be the product of the individual effect coefficient and the sum of the 
individual level variable. This product becomes (2.34)(125) = 293, and similarly for the 
other variables. This gives us the table of effects measuring sums o f absolute distances 
shown below. From the table we see that the individual level effect is the largest, followed 
by the interaction and then the group effect.

Source______ Abs.dist. effect_______Proportion
Individual 293 0.47
Group 110 0.18
Interaction 217 0.35
Residual__________ 5________________ 0.01
Total 625 1.01

The effect of the residual variable is very small.The individual variable has the most effect, 
followed by the interaction variable and then the group variable.

Using the centering procedure we get the sums of squares and sums of absolute val­
ues as measures of the effects as seen in the table below. Looking at the effects as measured 
with centering we find the group variable to have the largest effect both when we use sums of 
squares and sums of absolute values, with the individual effect next and the interaction effect 
the smallest. Sums of squares and sums of absolute values do not give radically different re­
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suits.

Source______Sum of sq. Proportion Sum abs. val. Proportion
Individual 26.72 035  22 0.34
Group 36.72 0.48 26 0.40
Interaction 11.25 0.15 12 0.19
Residual________ L26_________QM______________ 5___________0,08
Total 75.94 1.01 65 1.01

The four ways of measuring individual, group and interaction effects give different 
results. If we look at the proportions measured the various ways we find:

Effect QA/iiiAnhol ÇS Abs. value Centering SS Cen.abs. v
Individual 0.29 0.47 0.35 0.34
Group 0.30 0.18 0.48 0.40
Interaction 0.39 0.35 0.15 0.19
Residual 0.03 0.01 0.02 0.08
Total 1.01 1.01 1.00 1.01

The four distributions are different, which is to to be expected since they measure different 
aspects of the data. The sequential sums of squares is the least satisfying way of measuring 
effects since it is so dependent upon the order in which the effects are measured, unless we 
have strong substantive reasons for a particular ordering of the variables. The methods using 
centering sums of squares and sums of absolute values are not much more than minor varia­
tions of each other. They are based on the same terms, and in one case they are squared 
while in the other case we take their absolute values. In order to use either of them we have 
to decide that centering makes substantive sense for our data. It may be that the sum of ab­
solute values for the original data comes the closest to measuring what we mean by the vari­
ous effects.

In this example the true values of the parameters are known, and that makes it possi­
ble to examine how well the estimation works. For the effect parameters we have the fol­
lowing results:

Intercept Individual Group Interaction
True values ao = 0.00 a i  = 2.00 = 0.50 a .3 = -0.25
Sep. est. ao = -1.68 ai = 2.41 sl2 — 0.89 ^  = -0.34 
Single est. Ao= -1.65 Ai = 2.34 A2 = 0.88 A3 = -0.32

Across all four parameters the estimates from the single equation are closer to the true values 
than the estimates from the separate equations.

When we take into account the standard deviations of the estimates and construct 
confidence interval, we find intervals as shown in the picture below. The intervals are illus­
trated by lines where the endpoints are two standard deviations away from the point estimate. 
For example, ai = 2.41 with a standard deviation s(ai) = 0.20. Two standard deviations 
equals 0.40, and the line for ai is drawn from 2.01 to 2.81. The graph does not take into 
account that the a's are based on only 3 degrees of freedom while the A's are based on 21 
degrees of freedom.
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The single equation produces estimates with smaller standard deviations and thereby 
shorter confidence intervals, even without the adjustment for degrees of freedom. But 
even if the intervals are shorter, we see that in the case of the single equation none of the in­
tervals contain the true values of the parameters.

It is also possible to compare the various estimates of the effects of the three variables 
when using sums of absolute values. The sum of the individual variable equals 125, the sum 
of the group variable also equals 125 and the sum of the interaction variable equals 675. 
Multiplying these sums by the absolute values of the parameters give us the effects of the 
different variables. These effects are seen in the table, with proportions in parentheses:

Variable True effects Single eqn. est. Sep. eqn. est.
Individual 250 (0.51) 293 (0.47) 301 (0.46)
Group 62 (0.13) 110 (0.18) 111 (0.17)
Interaction 169 (0.35) 217 (0.35) 229 (0.35)
Residual 6 (0.01) 5 (0.01) _ 6  (0.01)
Total 487 (1.00) 625 (1.01) 647 (0.99)

Since the single equation estimates are closer to the true parameters than the separate equation 
estimates, it follows that the single equation effects are also closer to the true effects. Both 
methods overestimate the actual effects in this example, but at the same time both methods 
come close to finding the true proportional effects.

It is also possible to use the various estimated coefficients to study the relationship 
between X and Y within each group. When we substitute the estimated effect parameters into 
the model equations, we can use those equations to estimate the intercepts and slopes within 
the groups. We also have estimates of these intercepts and slopes from the regression analy­
sis of Y on X within each group. We get the results for the five groups as shown in the 
table below.
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Group True rel.ship Single eqn. est. Sep. eqn, est Wi| hin_gre_up.
1 y = 1.50 + 1.25x y = 0.99 + 1.38x y = 0 .9 9 +  1.40x y = 0.85 + 1.43x
2 y = 2.00 + l.OOx y = 1.87 + 1.06x y = 1.88 + 1.07x y = 1 .52+ 1 .14x
3 y = 2.50 + 0.75x y = 2.75 + 0.74x y = 2.77 + 0.73x y = 3.22 + 0.64x
4 y = 3.00 + 0.50x y = 3.63 + 0.42x y = 3.66 + 0.40x y = 4.36 + 0.27x
5 y = 3.50 + 0.25x y = 4.51 + 0. lOx y = 4.55 + 0.06x y = 3.88+ 0.18x

For each group there are three estimates of the line relating X and Y. Since we know 
the true values of the intercepts and slopes from the true values of the alphas, we can identify 
which estimation method gives the best estimates. The estimates that are closest to the true 
values are written out in bold numbers above. The comparison shows that the estimates 
found from using the A's from the single equation method are better in most of the cases. 
Only in the fifth group is it better to estimate the intercept and slope directly from the actual 
observations in that group. For the other groups we do better using the estimated alphas in 
the model equations for establishing the relationship between X and Y within the groups.

When we only have aggregate data available for the groups, meaning the group 
means of X and Y, we cannot estimate all the effect parameters. We can regress the group 
mean of Y on the group mean and square o f the group mean of X. This gives the equation

yk = -1.22 + 3.03xk - 0.30xk2

where -1.22 is an estimate of Oo, 3.03 is an estimate of cxi + <X2, and -0.30 is an estimate of 
(X3. These estimates compare well with the earlier estimates of the same parameters, but the 
major difference is that there is now no way of obtaining separate estimates of the alphas for 
the individual and group effects. We know that the sum of the two alphas is estimated to be 
equal to 3.03, but there are infinitely many ways two numbers can add up to a fixed sum. 
This is another example of how aggregate (ecological) data cannot be used alone to make 
conclusions about individual level relationships.
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Balanced model

When the relationship between X and Y is linear within a group, this relationship can 
be expressed in the equation

yik = &0k + Sikxik + ^k

By adding and subtracting the term S^x^ this equation can be rewritten in the form

yik = (&0k + &lkxk) + Slk (xik '  xk) +  £ik

The sum in the first parentheses is constant within the k-th group, and to simplify the nota­
tion let 5ok + SikXk = Hok and 5ik = Hik* That way the relationship between the two vari­
ables can be expressed in the equation

yik = Mok + M-lk(xik * xk) + ^ik

The only difference is that we now have subtracted the group mean of X from each of the X- 
values. This does not change the slope of the regression line, but the intercept becomes the 
Y-value when X is equal to the mean rather than when X is equal to zero.

With many groups we have a set of intercepts |Xoi, . . .  , • ■ ■ and a set of 
slopes [in, M-12i • • • i M'iki • • -j one intercept and one slope for each group. Again, if the 
intercepts and slopes vary across the groups, then there must be something about the groups 
that affect the way X and Y are related in the different groups. We want to determine why 
they differ across the groups, and that can be expressed in the model equations

intercept = function of something 
slope M-ik = function of something

One possibility is that the intercepts and slopes are both linear functions of the group 
means. This is only one of many possibilities, just like the linear function used for the an­
chored model as an important but only one of many models. The linear model with the group 
mean can be expressed in the equations

R)k = Po + P2(xk “ x) 
tMk = Pi + P3(xk - x)

The model is expressed using four betas as parameters. The model looks very much like the 
model we use for the anchored model, but for reasons discussed below we subtract the over­
all mean of X from the various group means. This is also a deterministic model, in the sense 
that there is no residual term in either of the equations. But the mus and betas are all un­
known parameters, and a deterministic model may well be appropriate. Residuals enter the 
analysis when we replace the unknown mus on the left sides by the estimated intercepts and 
slopes from the groups.
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Y

In this model the center balance point of each line is specified by the model, and we 
express this by saying that we have a balanced model. The balanced model is illustrated in 
the figure above. The graph shows that it is the balance point and slope in each group that is 
determined by the model, and this is what gives the model its name.

The four parameters po, Pi. P2 and P3 in the model equations determine the pres­
ence of the various types of effects. In order to get a better understanding of this model, let 
us examine certain combinations of parameter values.

po *  0, pi = P2 = P3 = 0* In that case |iok = Po and all the slopes are equal to zero. 
Each group line has the same height above the X axis, and all the lines are horizontal. When 
we here substitute for the model back into the equation for the relationship between X and Y 
in each group, we get the equation

y ik=P o + °(xik - xk) + 6^  = Po + 6^

This says that aside from the epsilon residuals, all the observations in all the groups 
are the same and equal to Po in this case. The group lines are shown in the graph above. The 
graph shows the horizontal lines, all with intercept po. There is no relationship between X 
and Y in each of the groups, and the level of Y is the same for all the groups. In this case 
there are no effects of X on Y.

Po *  0. Pi * 0 , P2 = P3 -  0 . In this case Mot = Po and Mit = Pi. When we substitute 
this model back into the relationship between X and Y in the k-th group, we get the relation­
ship expressed in the equation

Yik = Po + P l(xik - xk) + £ik

This equation says that all the lines have the same slope Pi, and when X is equal to the group 
mean then Y is equal to the same value po aside from residuals. This model is illustrated in 
the second graph below.



The lines all have the same slope pi and the level of Y is the same in all the groups. 
In particular, when X is equal to the group mean then the value of Y equals (3q. In this case 
there is a relationship between X and Y, since the slopes are different from zero, and X has 
an effect on Y. This is the effect of X on the level o f the individual. Thus, the coefficient Pi 
represents the individual level effect of X.

When we know that the model containing only the individual level effect is the correct 
one to use, we can regress Y on X as specified above. It can then be shown that the estimate 
of the parameter Pi becomes the average of the slopes within the groups. Since the model 
specifies that the groups have the same slope, it is not surprising that the best estimate of this 
common slope is the mean of the group slopes.

It is also possible to illustrate this case in a slightly different way. The values of the 
independent variable are found by subtracting the group mean from every observation. 
Within each group the mean is therefore replaced by the value 0, all the observations smaller
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than the group means will have negative differences and all the observations larger than the 
group means will have positive differences. This way the groups will be superimposed upon 
each other, and the three lines in the graph above will be superimposed as well since they 
have the same intercept and the same slope. The three lines are shown as one line in the 
graph below.

Y

0

From this graph we see that what matters for an individual is where the value of X is 
located relative to the group mean. Two individuals in different groups but with the same 
distance to the group mean are thought of as having the same X-value. Thus, it is not the 
observed value of X that matters, but where the individual is located in the group relative to 
the group mean. The effect on Y of being a certain distance below the group mean on X is the 
same no matter what the actual value is of X, when we use the balanced model. This relative 
feature of the balanced model is what distinguishes this model from the anchored model 
where it is the actual value of X that influences Y.

This graph also shows that it does not matter for Y what group an individual is in, 
since the lines overlap. The Y value is determined only by the rescaled X value of the per­
son, which means that in this case we have only an individual and not a group effect of X on 
Y.

Po *  o, Pi = 0, p2 *  o, p3 = 0 . In this case p.<)k = Po + P2(xk - x) and j i ik = 0 . 
When we substitute this model back into the relationship between X and Y in the k-th group 
we get the relationship expressed in the equation

yik = Po + P2(xk " x) + Ox^ + Ejk

= Po + P2(xk " x) + £ik

Thus, aside from the residual, all values of Y in a group are equal, and this common value is 
determined by the group mean. This case is illustrated in the graph below.

In the graph all the lines are horizontal, meaning that within each group X is not 
related to Y. Thus, in this case there is no individual level effect of X on Y. But it make a 
difference for Y what group an individual belongs to, and we express that by saying that
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there is a group effect of X on Y. There is a group effect of X since it is the value of the the 
group mean of X which determines Y. This effect is present because the parameter $2 is 
different from zero, and P2 is therefore the group effect parameter.

Y

When we regress Y on the group mean, as expressed in the model above, it can be 
shown that the estimate of the group coefficient p2 is the slope of the line that best fits the 
group mean points with coordinates (x^yjJ.

Y

Po *  0, pi *  0, P2 *  0, P3 = 0. In this case we have both an individual and a group 
level effect of X on Y. If we look at the graph for the group effect, the addition of the indi­
vidual level effect amounts to pivoting the lines around their balance points.

Within the k-th group we have the following model:
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M-Ok = Po + M xk ■x) 
^ lk  = Pl

When we substitute for this model in the equation for the relationship between X and Y in the 
k-th group, we get

y ik = P o  + Pl(x ik ‘ xk) +  P2(xk ' x ) + ¿ik

The graph of the relationship between X and Y looks like the graph above. The 
group lines are parallel and have the common slope Pi. The fact that the lines are not hori­
zontal shows the presence of the individual level effect of X. In addition, the mean points on 
the lines are at different levels, and that shows the presence of the group level effect of X.

This case can also be illustrated with a different graph. It is possible to plot Y against 
the difference between X and the group mean instead of plotting Y against X. In this case the 
graph above changes and becomes:

Y

O

We see the presence of the individual level effect since the lines are non horizontal, 
and we see the presence of the group effect since the level of Y is different in the various 
groups.

All betas different from zero. In this case the slope p.i is also a function of the group 
mean and the lines for the different groups will no longer have the same slope. Such a situa­
tion is shown in the graph below.

The different slopes show that in addition to the individual and group effects there is 
now also an individual-group interaction effect present. The unequal slopes are produced by 
the interaction effect which comes from having p3 different from zero.

When the model equations are substituted into the equation for the relationship be­
tween X and Y, we get the resulting equation

yik = Po + P l(xik - xk) + P2(xk - x) + P3(xik - xkXxk - x) + ejk
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Y

The equation shows how the observed value of Y is related to the position of the individual 
relative to the mean of the group the individual belongs to, to the position of the group rela­
tive to the overall mean, and to the product of these two factors.

Y

The different effects can be shown in the graph above. This graph shows how the 
observed value y* is decomposed into the various components due to the individual, group 
and interaction effects. We can think of this graph as a representation of the process that 
took place in order to determine the observed value of Y for an individual. The individual 
started with an original Y-value equal to [So- First, this individual was exposed to the effect 
of the group effect variable by being in a group with mean xj;, and this added an amount
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P2(xk - x) to the original Y-value. Next, this individual was exposed to the individual effect 
variable by having an X-value of x^, and this added an amount Pi(xfc - xjc) to the value of 
Y. Finally, the individual was exposed to the interaction effect variable, which added the 
term with P3. After this individual was exposed to the residual variable, which added another 
£ik) we finally observe the value yik for this individual. The only reason the group effect is 
introduced here before the individual effect is that the graph is slightly easier to draw this 
way.
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Example balanced model

The table shows data for 25 individuals arranged in 5 different groups. The first col­
umn shows the observed values of the dependent variable Y. The second column shows the 
individual level variable computed as the difference between the original X-values and the 
group mean. The third column is the group variable, computed by subtracting the overall 
mean from the group mean. Finally, the interaction variable is the product of the individual 
and the group variable. These data are constructed from these parameter values: Po = 2.00, 
Pi = 1.00, Pa = 0.50 and P3 -  0.25.

yik xik’xk xk-x (xik-xkXxk

-0.50 -2 -2 4
0.67 -1 -2 2
2.19 0 -2 0
3.06 1 -2 -2
3.98 2 -2 -4

-0.21 -2 -1 2
0.81 -1 -1 1
1.86 0 -1 0
3.12 1 -1 -1
4.21 2 -1 -2
0.32 -2 0 0
0.60 -1 0 0
1.20 0 0 0
3.03 1 0 0
3.59 2 0 0
0.71 -2 1 -2
1.52 -1 1 -1
1.99 0 1 0
3.00 1 1 1
4.16 2 1 2
0.15 -2 2 -4
0.96 -1 2 -2
1.90 0 2 0
3.38 1 2 2
4.00 2 2 4

These data have been rescaled in such a way that they show the variables as they enter 
the different analyses. It is worth noting how the individual level variable is measured as de­
viations from the group mean, not as the originally observed values of X. What matters in 
this model is therefore not the absolute observed value, but where the value is relative to the 
group mean. As an example, an observed value of 9 in a group where the mean is 7 is the 
same as an observed value of 5 in a group where the mean is 3. In both cases the difference 
xik - xk is equal to 2. In the example above there are five observations with a value of 2 on 
the individual variable, but even though they are equal, originally they were different ob­
served values of X. It is this conceptualization of what it means to belong to a certain group
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that distinguishes the balanced from the anchored model. In the anchored model it is the ac­
tual observed value of X that enters the analysis while in the balanced model it is the value of 
X relative to the group mean which enters the analysis.

The same difference between the two models shows up in the group variable. In the 
anchored model the absolute value of the group mean enters the analysis, while in the bal­
anced model it is the relative value of the group mean to the overall mean that matters. What 
matters for the group effect is where the group mean is located relative to the overall mean.

An examination of the last three columns in the table above shows that those three 
variables are uncorrelated. That means that we do not have the problem of collinearity when 
it comes to the estimation of the parameters in the single equation regression analysis. That 
also means there will be unique sums of squares for each of the three variables, and those 
sums can be used as measures of the effects of the variables. It can be shown that the in­
dividual and group variables are always uncorrelated, as are the group and interaction vari­
ables. The individual and interaction variables are uncorrelated as long as the variance of X 
is the same in every group.

Y

6.0  '

4.5  ' ■

3.0 - -

1.5 -  

0.0 — ■+X

The original values of X are the same as those for the example of the anchored model. 
When we examine the relationship between Y and the original X-values, we get the scatter- 
plot shown above. The points display a linear relationship, but we want to examine these 
data from the point of view of the balanced contextual model instead of just regressing Y on 
X.

The first step consists of examining the relationship between Y and X within each of
the five groups. We get the following regression lines:

Group mo m x
1 y = 0.88 + 0.64(x - x t)
2 y = 1.46 + 0.86(x - X2)
3 y = 1.77 + 0.92(x - x3)
4 y = 2.78 + 1.09(x - x4)
5 y = 3.08 + 1.51(x - x5)
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The lines have different slopes as well as different Y-values when X is equal to the group 
mean.

The scatterplots for the five groups can be shown if we plot Y against X - Xk instead 
of Y against X. This give the second scatterplot shown below. The five lower points belong 
to group 1, and so on up to the top five points which belong to group 5. This scatterplot re­
veals how the five groups differ in a way that was not apparent in the original scatterplot. 
Since all five groups have nonhorizontal lines, we know that there is an individual level effect 
of X present in these data. Also, since the level of Y is different in the five groups, we know 
that there is a group effect present, and since the lines have different slopes we know there is 
an interaction effect present as well.

In the following we use the model which specifies that group intercepts and slopes 
are linear functions of the group mean. When we regress the observed intercepts and slopes 
on the group means, we get these estimates of the effect parameters:

mok = 1.99 + 0.57(xk - 5) m lk = 1.00 + 0.20(xk - 5)
(0.08) (0.06) (0.05) (0.04)

The numbers in paretheses below the coefficients are their standard deviations, and each co­
efficient is based on 3 degrees of freedom since there are five units in each analysis. The co­
efficient bi = 1.00 shows the presence of the individual level effect, t>2 = 0.57 shows the 
presence of the group effect, and t>3 = 0.20 shows the presence o f the interaction effect. 
From the magnitudes of the standard deviations we see that the coefficients are all signifi­
cantly different from zero.

Regressing Y on the three effect variables in a multiple regression analysis gives us 
these single equation estimates of the effect parameters:

Yik = 1-99 + l.OOfrft-Xfc) + 0.57(xk-5) + 0.20(xik-xk)(xk-5) R2 = 0.97 
(0.06) (0.04) (0.04) (0.03)
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From this analysis we find the estimates Bi = 1.00, B2 = 0.57 and B3 = 0.20, These esti­
mates are based on 21 degrees of freedom, since there are 25 units in this analysis. From the 
standard deviations in parentheses below the estimates we see that all the estimates are sig­
nificantly different from zero.

The two sets of estimates are identical in this case. The two sets of estimates are the 
same because the three explanatory variables in the single equation are uncorrelated. The 
only difference is that the estimates from the single equation have smaller standard deviations 
than the estimates from the separate equations.

Since those variables are uncorrelated we get unique sums of squares for the three ef­
fects. The expressions for the sum of square for the individual variable becomes 
BiZES^Xiic-Xk)2, and this is the sum of the squared distances the observations are moved by 
the individual level effect. For the group and interaction effects there are similar sums of 
squared distances. If we do not square these distances, but simply add them up the same 
way effects are measured with the anchored model, we get the effect of the individual level 
variable as IBilEEIxft - xkl. The absolute values are needed since we are only interested in 
how far a point is moved, not whether it is moved up or down. For the group and interaction 
variables there are similar sums of absolute values. The estimated squared and absolute-val­
ue effects together with their proportions are shown in the following table:

Source Est. sauared effects Est. abs. value effects
Individual 50 (0.69) 30 (0.50)
Group 16 (0.22) 17 (0.29)
Interaction 4 (0.05) 7 (0.02)
Residual 2 (0.03Ï 5 (0.09}
Total 72 (0.99) 59 (1.00)

The proportions work out a little differently in the two cases, mainly with the individual ef­
fect being somewhat larger using squared effects.

In this example the true values of the parameters are known, and it is therefore possi­
ble to examine how well we are able to estimate the various effects and parameters. We find 
that all the estimates are within two standard deviations of the true parameter values in this 
case. The true effects are seen in the table below. Comparing the two tables of effects, we 
see that for both the squared and absolute value effects the estimates are quite close to the true 
values. The main difference seems to be that the true interaction effect is larger that the 
estimated interaction effects.

Source_______ True squared effects True abs. value effects
Individual 50.00 (0.71) 30 (0.51)
Group 12.50 (0.18) 15 (0.25)
Interaction 6.25 (0.09) 9 (0.15)
Residual_________ 2.53 (0.04)__________ 5 (0.08^
Total 70.78 (1.02) 59 (0.99)

It is also possible to use the various estimated coefficients to study the relationship 
between X and Y within each group. When we substitute the estimated effect parameters into 
the model equations, we can use those equations to estimate the intercepts and slopes within 
the groups. We also have estimates of these intercepts and slopes from the regression analy­
sis of Y on X within each group. We get the following results for the five groups:
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)Mp True rel.shio Model est. Within group
1 y = 1.00+0.50(x-xi) y = 0.85+0.60(x-xi) y = 0.88+0.64(x-xi)
2 y = 1.50+0.75(x-x2) y = 1.42+0.80(x-x2) y = 1.46+0.86(x-x2)
3 y = 2.00+1.00(x-X3) y = 1.99+1.00(x-x3) y = 1.77+0.92(x-x3)
4 y = 2.50+1.25(x-x4> y = 2.56+1.20(x-X4) y = 2.78+1.09(x-x4)
5 y = 3.00+1.50(x-X5) y = 3.13+1.40(x-x5) y = 3.08+1.51(x-X5)

The estimates closest to the true values are written in bold numbers for each group. From 
these results we see that particularly for the middle groups it is better to estimate the relation­
ships between Y and X using the model equations than regressing Y on X within each group. 
For the more extreme groups the term Xk - x in the model equations is larger and when it is 
multiplied by the estimated parameters we get a magnification of the error in the estimate 
through the multiplication.. But when Xk - x is small, it seems as if we do better with the 
model equations than with the within group regressions.

With aggregate data only we can estimate only two of the parameters. When we ag­
gregate the individual level equation across individuals in a group we get the equation

Yk -  Po + P2(xk " x) + ek

where yk is the mean of Y in the k-th group. This equation shows the relationship between 
the group means. But since yk = mok, this equation is the same as the first model equation 
used for the separate equation method for estimation of the parameter. Thus, when we are 
restricted to group data, we can only estimate the two parameters po and p2, and we get no 
information about the other two parameters.
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Residuals balanced model

Because of the orthogonal nature of the balanced model, the residuals lend themselves 
to a more extended analysis. Residuals occur in the analysis of Y on X within the groups, in 
the separate equation estimation of the effect parameters, and in the single equation estimation 
of the same parameters. Here we examine how these residuals relate and give an additional 
interpretation of the different residuals.

Within the groups. When we regress Y on X in the k-th group, we get the resid­
uals ffc as shown in the equation

yik = mot + m lk(xllt - xk) + fji,.

Within a group, the lack of fit measured by the residual can be seen as the lack of fit of indi­
vidual level variables. Within the group the magnitudes of these residuals can be measured 
by the sum of their squares, lejk2. Adding these sums across all the groups we get the sum 
L ie *2 as an overall measure of the lack of fit of individual level variables.

Separate equations. When we regress the intercepts and slopes on the group 
means in the model equations, we get the residuals uk and v*, as seen in the equations

Ĥ Ok = b0 + ^2(xk - x) + uk 

m lk = b l + b3(xk - x) + vk

The u's measure the extent to which t>2 can be used as a slope, and we therefore take the u's 
as measures of the lack of fit for the group effect since t>2 is the coefficient for the group ef­
fect of X. Similarly, t>3 is the interaction measure, and we take the v's as the lack of fit for 
the interaction effect. Let us measure the magnitudes of the u's by computing the sum 
LnfcUk2 and the magnitudes of the v's by the sum LlXx^ - xk)2Vk2.

Single equation. When we regress Y on the three effect variables we get the 
residuals eik as seen in the equation

yik =  B 0  +  ® l(xik - xk) +  B2(xk - x )  +  B3(xik '  xkXxk ‘  x) + «ik

The magnitudes of these residuals can be measured by the residual sum of squares EEeik2. 
This sum measures the unexplained effects of variables on all three levels.

If we now substitute for the m's from the model equations into the equation for the 
relationship between Y and X in the k-th group, we get the equation

yik = b0 + b ,(x ik - xk) + b2(xk - x) + b3(xik - xk)(xk - x) + [fjj. + uk + (xjk-xk)vk]

When the b’s are equal to the B's, as they often are in the balanced model, the residuals in 
this equation and the single equation above must be equal. Thus, we get the following 
relationship between the residuals,
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eik = fik + uk + (*ik '  xk)vk

When we square the two sides of this equation and add up across all the observations, we get 
the equality

El^ik2 = XEffc2 + Xnkuk2 + LX[(xlk - xk)vk]2

The square of the right hand side involves all three possible cross products in addition to all 
the squares, but it can be shown that the sums of the various cross products are all equal to 
zero. This means that we have partitioned the residual sum of squares from the single equa­
tions into components which can be thought of as the unexplained parts of the individual, 
group and interaction effects respectively.

The various sums of squares can be summarized in the following table:

Effect Explained
Individual b ^ Z I^ x ^  - xk)2

Group l>22£nk(xk - x)2 
Interaction b32XX[(xjk-xk)(xk-x)]2
Total Regression sum of sq.

Unexplained
ZZffc2
£nkuk2

ZEe* 2

Total
Sum
Sum
Sum
Total sum of sq.

For the numerical example of the balanced model we get the following figures:

Effect Explained Unexplained Total
Individual 50.34 1.13 51.47
Group 16.32 0.50 16.82
Interaction 3.91 0.37 4.28
Total 70.57 2.00 72.57

The table shows, if we look at the columns, that most of the unexplained variation is due to 
the individual level effect. But while the explained individual effect accounts for more than 
two thirds of the overall explained effect, it only accounts for about half of the overall unex­
plained effect If we look at the rows, we see that more of the interaction effect is unex­
plained by X than is the case for the other two effects.
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Recovering individual data

There are times when only the group level data are available. A common example is 
when we have census data published for geographical subdivisions on various levels, like 
city blocks or counties. These data typically consist of means or totals for interval level vari­
ables and frequencies with percentages for nominal level variables. Ecological data of this 
kind permit the study of aggregate relationship, but they do not contain enough information 
to permit the study of individual, group and interaction effect. This raises the question of 
whether it is possible to recover the data on the level of the individual, after the individual 
data have been aggregated and presented on the group level, and thereby make a complete 
contextual analysis possible. Earlier attempts at such recovery are found in Boyd and Iversen 
(1979), Goodman (1959), Iversen (1973, 1981), Lee et al. (1967) and Telser (1963), among 
others.

Such recovery of individual level data is possible if there is additional information 
available. This information can take two different forms. One possibility is that we know 
the individual level data to contain certain regularities, the other possibility is that we have a 
limited amount of individual level data available in addition to the group level data. Without 
either of these forms of additional information recovery of the individual level data is impos­
sible.

Contingency tables. Data on two nominal level variables can be arranged in con­
tingency tables, one table for each group, as shown below in the case of two rows and two 
columns:

n l l l n 121 n M n 112 11122 n l 2 n llk n 12k n lk

n 211 n 221 n 21 n 212 n 222 n 2-2 '  »21, n22k n 2 k

*11 n -21 n - l n 12 n -22 n -2 n lk n -2k n -k

When we only have group data and not the individual data, it means that the margins ni.k and 
n.jk are known, but the cell entries nyk are unknown. In each table we know the marginal 
distributions for the two variables, but we do not know their joint distribution.

The group may be a geographical subdivision with one table for each area. It is also 
possible to arrange data over time in a series of contingency tables. For example, in the first 
table the columns may represents election results for two parties at time 1, and the rows may 
represent the election results at time 2. In the second table the columns represent the election 
results at time 2 and the rows the results at time 3, etc. In that case the known margins are 
the reported election statistics while the unknown cell entries are the turnover votes for each 
pair of elections. This example assumes that the same people all voted in all elections. While 
this is unrealistic, changing to proportions partly gets around this restriction.

If the two column proportions p n k  = n n k /n*ik and p i2k = n i2k/n-2k do not vaiy 
much from table to table, then it is possible to recover the missing cell entries from the ob­
served frequencies on the margins of the tables. This is the case discussed above on the sec­
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tion on contingency tables of an individual level effect only. To see how the cell entries can 
be recovered from the margins in a set of contingency tables with (almost) constant column 
proportions, we start by noting that in the k-th table the cell entries in the first row add up to 
the total in the first row. This can be expressed in the equation

nlk  = n l lk + n 12k

From the definition of the column proportions above we have that each cell frequency can be 
written as a product of the column proportion and the column total. When we substitute for 
the two cell frequencies we get the equation

nl k ~ Pi lkn*lk + P l2kn-2k

As a next step let us divide both sides of the equation by the table total n..ic. That changes the 
marginal frequencies to marginal proportions, and we get

Pl-k = PllkP-lk + Pl2kP-2k

Since the marginal proportion in the second column equals 1.00 minus the proportion in the 
first column, we can rewrite the equation and get

Pl-k “ PllkP-lk + P l2k( 1 - P lk)
Pl*k = P l2k + (Pi Ik " P l2k)Plk

So far this is simply an identity for the k-th table, where the column proportions p n k and 
Pi2k are unknown and the marginal proportions pi-k and p .n  are known.

The next step consists of adding up all the tables. The resulting sumtable has the col­
umn proportions pi i and P12, where

P u  = Lnllk/Ln.lk = £n.lkp llk/i;n .lk 

P l2 = £ n 12k/^n-2k = i n -2kPl2k /^ - 2k

From the form of these expressions we see that p n  and P12 are the weighted means of the 
column proportions in the tables.

The column proportions in a particular table are different from the column proportions 
in the sum table. In the k-th table the first column proportion p n k differs from the mean col­
umn proportion p n  by some amount u^, and the second differs from the mean by some 
amount v^. This can be expressed in the equations

Pllk = P ll + uk P l2k = P l2 + vk

By substituting for these expressions in the basic identity above we get 

Pl-k = P l2 + (P ll -P l2)P lk + [UkP-lk + vk(! ’ P lk)l

or rewritten,
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Pi le = Pl2 + (Pll - P l2)P-1lc + Cfc where ek = U|j).,k + vfc(l - p .,k)

It is now beginning to look like we can use the set of observed marginal proportions 
to estimate the two unknown column proportions p n  and p n  in the sumtable. This is be­
cause the equation above says that the known marginal proportion pj.k equals a constant in­
tercept a = p i2 plus a constant slope b = p n  - pi2 times the known marginal proportion p.ik 
plus a residual term e^. Both intercept and slope are unknown, but the marginal proportions 
are known, and the situation we are in very much resembles the usual simple regression of a
Y variable on an X variable. The equation above suggests that we should regress the 
marginal proportion in the first row (pi-k) on the marginal proportion in the first column 
(P -ik ).

In order to apply the usual least squares methods to estimate p i2 and p n  - p i2, the 
residuals must satisfy certain conditions. The first condition is that the mean of the residuals 
must equal zero. One way this condition is satisfied is for the mean of both the u's and the 
v’s to be zero and for the u's and v's to be uncorrelated with the p.ik's. Scatterplots of the 
column proportions versus the marginal proportions would look like the plot below when 
this condition is satisfied. This is the case we have identified earlier as the case when there 
is only an individual level effect of X on Y. The difficulty is, however, that the column 
proportions pnk  and p i2k are unknown, and we cannot make this plot and see if the condi­
tions are satisfied. Instead, we have to have the knowledge from some other source that 
there is only an individual effect present in our data.

When we know there is an individual effect only, we can regress the marginal pro­
portions according to the model expressed in the equation

Pl-k = a + bp.ik + ek

This gives the expressions below for a and b, and they can be solved for pi i and pu-
This is not estimation in the usual statistical sense where we have data from a sample 

as a subset o f a larger population and use that data to estimate parameters in the population. 
We want to compute the statistic p n  according to the expression Znnk/^n-ik» but the fre­
quencies in this numerator are unknown since they are the unobserved cell entries and the sta-
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pn = a + i

tistic cannot be computed. Instead, we have developed another statistic p n  which can be 
computed since it depends upon the observed margins. Thus, here it is more a question of 
not having the right data than having a subset of the data. To emphasize this point we call 
the pi i we can compute a proxy statistic for pu  rather than an estimator.

The additional issue of estimation comes up if the contingency tables we have are a 
sample of tables from a larger population of tables and/or if the observations in a table are a 
sample from a larger population of observations. For example, if  we had a multistage sample 
design where we first drew a sample of counties from the population of all counties and 
within each chosen county drew a sample of individuals, we would have both a sample of 
tables and a sample of individuals in each table. In that case we could construct estimators 
and be concerned with standard errors and other issues that come up in statistical estimation.

More formally, the case o f individual effect only with constant column proportions 
can be expressed in the model equations

p Uk = a  + uk and P i2k = Y+ v k

By substituting these model equations into the basic table identity we get

P l k =  Y+(a-Y)p-ik + ek

This is the same equation we used above to get the proxy statistics for pu  and p i2-
It could be that the data contain a group effect only o f X instead of an individual level 

effect. In that case the column proportions pnk and pi2k vary from table to table, and within 
a particular table they are equal. With a linear relationship this case can be expressed in the 
model equations

Plik  = a  + P p i k  + Uk 

P l2k = a  + PP-lk + vk

When these expressions are substituted into the basic table identity we get the equation

pi-k = a  + pp.ik + ek

This equation tells us that when there is only a group effect of X on Y, there will be a 
linear relationship between the marginal proportions across a set of contingency tables. The 
only problem is that with only an individual level effect, the relationship between the 
marginal proportions is also linear. Thus, when we only have a set of marginal proportions

-  ^ P  lk'P-i^P_i-k - p l ) 
i ( P i k - P i .)2

Pl2 = >
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and find that they are linearly related, there is no way of finding out whether we have the case 
of individual level or group level effect

It turns out that the marginal proportions are linearly related as well when there are 
both an individual and a group level effect present. With both these effect present, the col­
umn proportions are related to the marginal proportions according to the model equations

P llk  = a  + PP’lk + ulc 

Pl2k = y +  PP*lk + vk

Substituted into the basic table identity we find that the marginal proportions are related ac­
cording to the equation

Pl-k = Y + (a  + P - Y)Pik + ek

This is again a linear equation. The major difference between this equation and the previous 
other two equations is that here there are three parameters while the others had only two. The 
data can be used to find the intercept and slope, but these two quantities do not contain 
enough information to give us estimates of all three parameters.

From the marginal proportions alone there is no way of distinguishing between the 
case of individual effect only, group effect only, and both individual and group effect. But 
we are able to see the presence of the individual-group interaction effect. This is because 
with the interaction effect the column proportions are related to the marginal proportions ac­
cording to the model equations

Pllk = a  + Pp*lk + Uk 

Pl2k = Y + 5P-lk + vk

The difference now is that there are different slopes P and 8 for the two column proportions. 
When this model is substituted into the basic table identity we get the following equation for 
the relationship between the marginal proportions:

Pl-k = Y + (a  “ Y + $)P-lk + (P - S)p2-ik + Cfc

This is no longer a linear equation. With the presence of the interaction effect comes 
a term with the square o f the marginal proportion. Thus, when we find a nonlinear relation­
ship between the marginal proportions, we take that as a sign that there is an interaction effect 
present in the data. But least squares methods give us three estimates only, for the intercept 
and the coefficients for the linear and quadratic terms, and the model contains four parame­
ters. This means we are not able to estimate the parameters from group data alone.

Up to this point we have seen that the available group data alone do not contain 
enough information to recover the individual data. If we know that the data contain only an 
individual level effect or only a group level effect, the individual data can be recovered. If 
there are two or more effects present, there are too many parameters in the model and the in­
dividual data cannot be recovered. In most cases we do not know what effects are present in 
the data; instead, this is something we want to use the data to find out

But we are always free to assume any model we want, and if we assume an indi­
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vidual effect only, individual level data can be recovered. These results are dependent upon 
two sources: the group level data and the assumptions in the model. This then is a situation 
where the model plays an unusually strong role, and it may defeat the purpose of the study to 
use such a powerful model.

A more realistic solution to obtaining the missing cell entries in a set of contingency 
tables lies with the presence of partial individual level data. Perhaps we have survey data for 
a few of the groups and can thereby fill in the tables for those groups. Such additional in­
formation can then be combined with the marginal distributions and used to estimate all the 
parameters in our model and thereby recover the missing individual data in the remaining 
tables. Since contextual analysis have such extensive data requirements, it is also possible to 
design the data collection in such a way that we gather individual and group data for only 
some of the groups and only group data from the remaining groups.

There are many approaches that can be followed when we have partial individual level 
data. We are working with the two separate model equations

P llk  = “  + Pp-lk + uk
Pl2k = Y + 8p.lk + vk 

and the single equation

Pl k = Y + («  - Y + 5)P lk  + (P - 5)P2 lk +  ek

One thing we can do is the following. The group data can be used in the single equa­
tion to estimate the three parameter combinations y, a  - y + 8 and (3-5. The second single 
equation suggests that one way to estimate 8 would be to observe the column proportion pi2k 
for a few groups where the marginal proportion p .^  is large, and then use the second single 
equation with the existing estimate of y to estimate the slope 8. This estimate of 5 can then be 
used together with the estimate of P - 8 to get a separate estimate of p. Finally, we get the 
separate estimate of a by using the estimate of a  - y + 8 and the separate estimates of y and 
8.

When we have group data for a set of tables and individual cell entries for some of the 
tables, it is possible to use both the single equation and the separate equations together and 
minimize an overall sum of squares for the estimation of the parameters. The combined sum 
of squares becomes

Q = E tP lk  - Y - ( « -  Y + 5)p-ik - (P - 5)p2-ikl2 + £ [P llk  - a  - Pp-lkl2 +  S[pi2k - Y - 5p. ik]2

By taking the derivatives with respect to the four unknown parameters and setting the result­
ing expressions equal to zero, we get four normal equations that can be solved for estimated 
parameters.

Metric variables. The situation is much the same with data for interval level vari­
ables. Without individual data there is not enough information in the group data alone to do a 
contextual analysis. From the group data alone it is not possible to distinguish between the 
presence o f the various effects, and when there are two or more effects there are more 
parameters in the model than we can estimate.

With additional, partial individual data it is usually possible to estimate the parameters
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in the models we have discussed. These estimates can then be used to estimate the within 
group relationships between the variables. But because of the effects of the residual variable 
it is not possible to recover actual values of the variables.
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