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ABSTRACT
One potential disadvantage of social tagging systems is that
due to the lack of a centralized vocabulary, a crowd of users
may never manage to reach a consensus on the description
of resources (e.g., books, users or songs) on the Web. Yet,
previous research has provided interesting evidence that the
tag distributions of resources may become semantically sta-
ble over time as more and more users tag them. At the
same time, previous work has raised an array of new ques-
tions such as: (i) How can we assess the semantic stability
of social tagging systems in a robust and methodical way?
(ii) Does semantic stabilization of tags vary across differ-
ent social tagging systems and ultimately, (iii) what are the
factors that can explain semantic stabilization in such sys-
tems? In this work we tackle these questions by (i) present-
ing a novel and robust method which overcomes a number
of limitations in existing methods, (ii) empirically investi-
gating semantic stabilization processes in a wide range of
social tagging systems with distinct domains and proper-
ties and (iii) detecting potential causes for semantic stabi-
lization, specifically imitation behavior, shared background
knowledge and intrinsic properties of natural language. Our
results show that tagging streams which are generated by a
combination of imitation dynamics and shared background
knowledge exhibit faster and higher semantic stability than
tagging streams which are generated via imitation dynamics
or natural language phenomena alone.
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faces]: Theory and models
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1. INTRODUCTION
Instead of enforcing rigid taxonomies or ontologies with

controlled vocabulary, social tagging systems allow users to
freely choose so-called tags to annotate resources on the Web
such as users, books or videos. A potential disadvantage of
tagging systems is that due to the lack of a controlled vo-
cabulary which is a central element of traditional forms of
organizing information, a crowd of users may never manage
to reach a consensus or may never produce a semantically
stable description of resources. By semantically stable we
mean that users have agreed on a set of descriptors and
their relative importance for a resource which both remain
stable over time. If users do not agree on the description
of a resource, they would produce a relatively flat and un-
stable list of descriptors where many descriptors are equally
important for the resource.

Yet, when we observe real-world social tagging processes,
we can identify interesting dynamics from which a seman-
tically stable set of descriptors may emerge for a given re-
source. This semantic stability has important implications
for the collective usefulness of individual tagging behavior
since it suggests that information organization systems can
achieve meaningful resource descriptions and interoperabil-
ity across distributed systems in a decentralized manner [20].
Semantically stable tag streams of resources are not only
essential for attaining meaningful resource interoperability
across distributed systems and search, but also for learn-
ing lightweight semantic models and ontologies from tagging
data (see e.g., [26, 28, 22]) since ontologies are agreed-upon
and shared conceptualizations [12]. Therefore, semantic sta-
bility of social tagging streams1 is a prerequisite for learning
ontologies from tagging data, since it measures the extent
to which users have produced a stable and agreed-upon de-
scription of a resource.

These observations have sparked a series of research ef-
forts focused on (i) methods for assessing semantic stability
in tagging streams (see e.g., [10, 13]), (ii) empirical investi-
gations into the semantic stabilization process and the cog-
nitive processes behind tagging (see e.g., [8, 19]) and (iii)
models for simulating the tagging process (see e.g., [4, 7]).

Research questions. While previous work makes a promis-
ing case for the existence of semantic stabilization in tagging
streams, it raises more questions that require further atten-

1We define a (social) tagging stream as a a temporally or-
dered sequence of tags produced by a group of users that
annotate the same resource.



(a) Nathan Fillion (b) Sky Sports

Figure 1: Relative proportion of the top 25 tags (i.e.,
user list names) assigned to one heavily tagged Twit-
ter user and one moderately tagged Twitter user.
The relative tag proportions become stable as more
users tag the two sample users. Each line corre-
sponds to one tag.

tion, including but not limited to the following: (i) What
exactly is semantic stabilization in the context of social tag-
ging streams, and how can we assert it in a robust way?
(ii) How suitable are the different methods which have been
proposed so far and how do they differ? (iii) Does semantic
stabilization of resources vary across different social tagging
systems and if yes, in what ways? And finally, (iv) what
are the factors that may explain the emergence of semantic
stability in social tagging streams?
Contributions. The main contributions of this work are

threefold. We start by making a methodological contribu-
tion. Based on a systematic discussion of existing methods
for asserting semantic stability in social tagging systems we
identify potentials and limitations. We illustrate these on
a previously unexplored people tagging dataset and a syn-
thetic random tagging dataset. We explore different subsam-
ples of our dataset including heavily or moderately tagged
resources (i.e., a high or moderate amount of users have
tagged a resource). Using these insights, we present a novel
and flexible method which allows to measure and compare
the semantic stabilization of different tagging systems in a
robust way. Flexibility is achieved through the provision of
two meaningful parameters, robustness is demonstrated by
applying it to random control processes.
Our second contribution is empirical. We conduct empir-

ical analysis of semantic stabilization in a series of distinct
social tagging systems using our method. We find that se-
mantic stabilization of tags varies across different systems,
which requires deeper explanations of the dynamic underly-
ing stabilization processes in social tagging systems.
Our final contribution is explanatory. We investigate fac-

tors which may explain stabilization processes in social tag-
ging systems. Our results show that tagging streams which
are generated by a combination of imitation dynamics and
shared background knowledge exhibit faster and higher se-
mantic stability than tagging streams which are generated
via imitation dynamics or natural language streams alone.
Structure. This paper is structured as follows: We start

in Section 2 by highlighting that not all state-of-the-art
methods are equally suited for measuring semantic stability
in tagging systems, and that some important limitations hin-
der progress towards a deeper understanding about social-
semantic dynamics involved. Based on this discussion, we
introduce the data used for our empirical study in Section 3

Figure 2: Relative tag proportion of a random tag-
ging process where each tag assignment on the x-axis
corresponds to picking one of the five tags uniformly
at random. All tag proportions become relatively
stable over time but are all similar. Each line corre-
sponds to one synthetic tag.

and present a novel method for assessing semantic stabil-
ity in Section 4. In Section 5 we aim to shed some light
on the factors which may influence the stabilization process.
We discuss our results in Section 6 and related work in Sec-
tion 7. and conclude our work in Section 8.

2. STATE-OF-THE-ART METHODS FOR
ASSESSING SEMANTIC STABILIZATION

In the following, we compare and discuss three existing
and well-known state-of-the-art methods for measuring sta-
bility of tag distributions: Stable Tag Proportions [10], Sta-
ble Tag Distributions [13] and Power Law Fits [4]. We define
tag distributions of resources as rank-ordered tag frequen-
cies where the frequency of a tag depends on how many
users have assigned the tag to a resource. We illustrate the
usefulness and limitations of these methods on a previously
unexplored people tagging dataset2 and a synthetic random
tagging dataset which will both be described in Section 3.
Each section (i) points out the intuition and definition of
the method, (ii) applies the method to the data, and (iii)
describes limitations and potentials of the method at hand.

2.1 Method 1: Stable Tag Proportions [10]
Intuition and Definition: In previous work, Golder and

Huberman [10] analyzed the relative proportion of tags as-
signed to a given resource (i.e., P (t|e) where t is a tag and e is
an resource) as a function of the number of tag assignments.
In their empirical study on Delicious the authors found a
stable pattern in which the proportions of tags are nearly
fixed for each website after a few hundred tag assignments.

Demonstration: In Figure 1 we see that the top tags of
a different type of resource (Twitter users rather than web-
sites) also give rise to a stable pattern in which the propor-
tions of tags are nearly fixed. This indicates that, although
users keep creating new tags and assign them to resources,
the proportions of the tags per resource become stable.

Limitations and Potentials: In [10] the authors sug-
gest that the stability of tag proportions indicates that users
have agreed on a certain vocabulary which describes the re-

2The limitations of the methods are independent of the
dataset and we get similar results using the other datasets
introduced in Section 3.



source. However, also tag distributions produced by a ran-
dom tagging process (see Figure 2) become stable as more
tag assignments take place since the impact of a constant
number of tag assignments decreases over time because the
total sum of the tag frequency vector increases.
However, the stable tagging patterns shown in Figure 1 go

beyond what can be explained by a random tagging model,
since a random tagging model produces similar proportions
for all tags (see Figure 2). Hence, small changes in the
tag frequency vector are enough to change the order of the
ranked tags (i.e., the relative importance of the tags for the
resource). For real tag distributions this is not the case since
these tag distributions are distributions with short heads
and heavy tails – i.e., few tags are used far more often than
most others. We exploit this observation for defining our
novel method for assessing semantic stability in Section 4.

2.2 Method 2: Stable Tag Distributions [13]
Intuition and Definition: Halpin et al. [13] present a

method for measuring the semantic stabilization by using
the Kullback Leibler (KL) divergence between the tag dis-
tributions of a resource at different points in time. The KL
divergence between two probability distributions Q and P
(where x denotes an element of the distributions) is defined
as follows:

DKL(P ||Q) =
∑
x

P (x)ln(
P (x)

Q(x)
) (1)

The authors use the rank-ordered tag frequencies of the 25
highest ranked unique tags per resource at different points in
time to compute the KL divergence. They use each month
where the tag distribution had changed as a time point in-
stead of using a fixed number of tag assignments as Golder
and Huberman [10] did or we do. This is important since
their measure, per definition, converge towards zero if the
number of tag assignments is constant as shown later.
Demonstration: We use the rank-ordered tag frequen-

cies of the 25 highest ranked tags of each resource and a
constant number (M) of consecutive tag assignments. We
compare the KL divergence of tag distributions after N and
N+M consecutive tag assignments. Using a fixed number of
consecutive tag assignments allows exploring the properties
of a random tag distribution which is generated by drawing
M random samples from a uniform multinomial distribution.
In Figure 3, each point on the x-axis consists of M = 10

consecutive tag assignments and N ranges from 0 to 1000.
The black dotted line indicates the KL divergence of a ran-
dom tag distribution. One can see from this figure that not
only the tag distributions of resources (colored lines) seem
to converge towards zero over time (with few outliers), but
also random tag distributions (black line) do.
Limitations and Potentials: A single tag assignment in

month j has more impact on the shape of the tag distribution
of a resource than a single tag added in month j + 1, if we
assume the number of tags which are added per month is
relatively stable over time. However, if the number of tag
assignments per resource varies a lot across different months,
convergence can be interpreted as semantic stabilization.
This suggests that without knowing the frequencies of tag

assignments per month, the measure proposed by Halpin
et al. [13] is limited with regard to its usefulness since one
never knows whether stabilization can be observed due to
the fact that users agreed on a certain set of descriptors and

(a) Heavily tagged users (b) Moderately tagged users

Figure 3: KL divergence between the tag distribu-
tions at consecutive time points. Each colored line
corresponds to one Twitter user, while the black
dotted line depicts a randomly simulated tag dis-
tribution. One can see that the KL divergence de-
creases as a function of the number of tag assign-
ments. The KL divergence of a random tagging
process decreases slightly slower than the KL diver-
gence of the real tagging data.

their relative importance for the resource or due to the fact
that the tagging frequency in later months was lower than in
earlier months. In our work (see Figure 3), we compare the
KL divergence of a randomly generated tag distribution with
the KL divergence of real tag distributions. This reveals
how much faster users reach consensus compared to what
one would expect.

Even though we believe this method already improves the
original approach suggested by Halpin et al. [13], it is still
limited because it requires to limit the analysis to the top k
tags. The KL divergence is only defined between two distri-
butions over the same set of tags. We address this limitation
with the new method which we propose in Section 4.

2.3 Method 3: Power Law Fits [21]
Intuition and Definition: Tag distributions which fol-

low a power law are sometimes regarded as semantically sta-
ble, (i) because of the scale invariance property of power
law distributions – i.e., that regardless how large the system
grows, the slope of the distribution would stay the same,
and (ii) because power law distributions are heavy tail dis-
tributions – i.e., few tags are applied very frequently while
the majority of tags is hardly used. Adam Mathes [21] orig-
inally hypothesized that tag distributions in social tagging
systems follow a power law function. Several studies empir-
ically show that the tag distributions of resources in social
tagging systems indeed follow a power law [27, 17, 3, 4]. A
power law distribution is defined by the function:

y = cx−α + ϵ (2)

Both c and α are constants characterizing the power law dis-
tribution and ϵ represents the uncertainty in the observed
values. The most important parameter is the scaling param-
eter α as it represents the slope of the distribution [2, 5]. It
is also important to remark that real world data nearly never
follows a power law for the whole range of values. Hence,
it is necessary to find some minimum value xmin for which
one can say that the tail of the distribution3 with x ≥ xmin
follows a power law [5].

3We use the term tail to characterize the end of a distribu-
tion in the sense of probability theory.



(a) Heavily tagged users (b) Moderately tagged users (c) Heavily tagged users (d) Moderately tagged users

Figure 4: Rank-ordered tag frequency and CCDF plots for heavily tagged and moderately tagged users on
log-log scale. The illustrations show that for both heavily and moderately tagged resources, few tags are
applied very frequently while the vast majority of tags is applied very rarely. In Figure 4(c) and Figure 4(d)
we can see that a large number of tags are only used once. The figures visualizes that the tails of the tag
distributions are close to a straight line which suggests that the distributions might follow a power law.

Demonstration: We first visualize the rank frequency
tag distributions (see Figure 4(a) and Figure 4(b)) and the
complementary cumulated distribution function (CCDF) of
the probability tag distributions (see Figure 4(c) and Fig-
ure 4(d)) on a log-log scale. We see that for heavily and
moderately tagged resources, few tags are applied very fre-
quently while the vast majority of tags are used very rarely.
Figure 4(c) and Figure 4(d) show that the tag distributions
of heavily and moderately tagged resources are dominated
by a large number of tags which are only used once.
Figure 4 reveals that the tails of the tag distributions

(starting from a tag frequency 2) are close to a straight line.
The straight line, which is a main characteristic for power
law distributions plotted on a log-log scale, is more visi-
ble for heavily tagged resources than for moderately tagged
once. We can now hypothesize that a power law distribution
could be a good fit for our data if we look at the tail of the
distribution with a potential xmin ≥ 2.
For finding the scaling parameter α we use a maximum

likelihood estimation and for finding the appropriate xmin
value we use the Kolmogorov-Smirnov statistic as suggested
by Clauset et al. [5]. As proposed in previous work [2, 5],
we also look at the Kolmogorov-Smirnov distance D of the
corresponding fits – the smaller D the better the fit. Table 1
shows the parameters of the best power law fits, averaged
over all heavily tagged or moderately tagged resources. One
can see from this table that the α values are very similar
for both datasets and also fall in the typical range of power
law distributions. Further, one can see that the power law
fits are slightly better for heavily tagged resources than for
moderately tagged once, as also suggested by Figure 4.
Although our results suggest that it is likely that our dis-

tributions have been produced by a power law function, fur-
ther investigations are warranted to explore whether other
heavy-tailed candidate distributions are better fits than the
power law [5, 1]. We compare our power law fit to the
fit of the exponential function, the lognormal function and
the stretched exponential (Weibull) function. We use log-
likelihood ratios to indicate which fit is better.
The exponential function represents the absolute mini-

mal candidate function to describe a heavy-tailed distribu-

tion. That means, if the power law function is not a bet-
ter fit than the exponential function, it is difficult to assess
whether the distribution is heavy-tailed at all. The lognor-
mal and stretched exponential function represent more sen-
sible heavy-tailed functions. Clauset et al. [5] point out that
there are only a few domains where the power law function is
a better fit than the lognormal or the stretched exponential.

Our results confirm this as we do not find significant dif-
ferences between the power law fit and the lognormal fit (for
both heavily and moderately tagged users). However, most
of the time the power law function is significantly better than
the stretched exponential function and the power law func-
tion is a significantly better fit than the exponential function
for all heavily tagged users and for most moderately tagged
users. This indicates that the tag distributions of heavily
tagged resources and most moderately tagged resources are
clearly heavy tail distributions and the power law function
is a reasonable well explanation. Nonetheless, it remains un-
clear from which heavy tail distribution the data has been
drawn since several of them produce good fits.

Limitations and Potentials: As we have shown, one
limitation of this method is that it is often difficult to deter-
mine which distribution has generated the data since sev-
eral distributions with similar characteristics may produce
an equally good fit. Furthermore, the automatic calculation
of the best xmin value for the power law fit has certain con-
sequences since xmin might become very large and therefore
the tail to which the power law function is fitted may be-
come very short. Finally, there is still an ongoing discussion
about the informativeness of scaling laws (see [16] for a good
overview), since some previous work suggests that there ex-
ist many ways to produce scaling laws and some of those
ways are idiosyncratic and artifactual [25, 18].

3. EXPERIMENTAL SETUP AND DATASETS
We empirically analyze the semantic stabilization process

in a series of different social tagging systems using the state-
of-the-art methods described in Section 2 and using a new
method introduced in Section 4. Table 2 gives an overview
of the datasets obtained from distinct tagging systems using
the nature of the resource being tagged, the sequential order

Table 1: Parameters of the best power law fits.
α std xmin std D std

Heavily tagged users 1.9793 0.0841 4.5500 1.9818 0.0299 0.0118
Moderately tagged users 2.0558 0.1529 3.1200 0.0570 0.0570 0.0218



of the tagging process (i.e., is the resource selected first or
the tag), the existence or absence of tag suggestions and the
visibility of the tags which have been previously assigned to
a resource. We say that tags have a low visibility if users do
not see them during the tagging process and if they are not
shown on the page of the resource being tagged. Otherwise,
tags have a high visibility. Also, the number of resources,
users and tags per dataset are shown.
Delicious dataset: Delicious is a social tagging system

where users can tag any type of website. We use the De-
licious dataset crawled by Görlitz et al. [11]. From this
dataset we randomly selected 100 websites which were tagged
by many users (more than 4k users) and 100 websites which
were moderately tagged (i.e., by less than 4k but more than
1k users) and explore the consecutive tag assignments for
each website. The original dataset is available online4.
LibraryThing dataset: LibraryThing is a social tagging

system which allows to tag books. We use the LibraryThing
dataset which was crawled by Zubiaga et al. [33]. Again,
we randomly sampled 100 books that were heavily tagged
(more than 2k users) and 100 books which were moderately
tagged (less than 2k and more than 1k users) and explore
the consecutive tag assignments for each book.
Twitter dataset: Twitter is a microblogging service that

allows users to tag their contacts by grouping them into user
lists with a descriptive title. The creation of such list titles
can be understood as a form of tagging since list titles are
free form words which are associated with one or several re-
sources (in this case users). What is unique about this form
of tagging is that the tag (aka the list title) is usually pro-
duced first, and then users are added to this list, whereas in
more traditional tagging systems such as Delicious, the pro-
cess is the other way around. From a Twitter dataset which
we described in previous work [29], we selected a sample of
100 heavily tagged users (which are mentioned in more than
10k lists) and 100 moderately tagged users (which are men-
tioned in less than 10k lists and more than 1k lists). For each
of these sample users we crawled the full history of lists to
which a user was assigned. We do not know the exact time
when a user was assigned to a list but we know the relative
order in which a user was assigned to different lists. There-
fore, we can study the tagging process over time by using
consecutive list assignments as a sequential ordering5.
It needs to be noted that the thresholds we have used

above during the data collection are distinct for each tagging
system since those systems differ amongst others in their
number of active users and size. We chose the thresholds
empirically and found that the choice of threshold does not

4http://www.uni-koblenz-landau.de/koblenz/fb4/
AGStaab/Research/DataSets/PINTSExperimentsDataSets
5We share the Twitter user handles to allow other re-
searchers to recreate our dataset and reproduce our results
for our heavily tagged http://claudiawagner.info/data/
gr_10k_username.csv and moderately tagged http://
claudiawagner.info/data/less_10k_username.csv Twit-
ter users.

impact our results since heavily tagged as well as moderately
tagged resources show similar characteristics.

Finally, we also contrast our tagging datasets with a natu-
ral language corpus (see Section 5.2) and a random tagging
dataset. This allows us on one hand, to explore to what
extent semantic stabilization which can be observed in tag-
ging systems goes beyond what one would expect to observe
if the tagging process would be a random process; and on
the other hand, to compare the semantic stabilization of the
tag distributions of resources with the semantic stabilization
of co-occurring word distributions of resources.

Natural Language corpus: As a natural language cor-
pus we use a sample of tweets which refer to the same re-
source. Therefore, we selected a random sample of users
from our Twitter dataset which have received tweets from
many distinct users (more than 1k). For those users, we se-
lect a sample of up to 10k tweets they received. The words
of those tweets are extracted and interpreted as social an-
notations of the receiver. This allows us to compare tags
with words, both annotating a resource (in this case a user).
We removed URLs, usernames, punctuations, numbers and
Twitter syntax such as RT using the part of speech tagger
presented in [9].

Synthetic random tagging dataset: Given a fixed vo-
cabulary size we can create a random tagging dataset by
simulating the tagging process as random draws from a urn
(containing all possible tags of the vocabulary) where each
ball (i.e., tag) is returned to the urn after each draw.

4. MEASURING SEMANTIC STABILITY
Based on the analysis of state-of-the-art methods pre-

sented in Section 2, we (i) present a novel method for as-
sessing the semantic stability of individual tagging streams
and (ii) show how this method can be used to assess and
compare the stabilization process in different tagging sys-
tems. Our new method incorporates three new ideas:

Ranking of tags: A tagging stream can be considered as
semantically stable if users have agreed on a ranking of tags
which remains stable over time. Importantly, the ranking of
frequent tags remains more stable than the ranking of less
frequent tags since frequent tags are those which might be
more relevant for a resource. They have been applied by
many users to a resource and therefore stable rankings of
these tags indicate that a large group of users has agreed on
the relative importance of the tags for that resource.

Random baselines: Semantic stability of a random tag-
ging process needs to be considered as a baseline for stability
since we are interested in exploring stable patterns which go
beyond what can be explained by a random tagging process.

New tags over time: New tags can be added over time
and therefore, a method which compares the tag distribu-
tions of one resource at different points in time must be able
to handle mutually non-conjoint tag distributions – i.e., dis-
tributions which contain tags that turn up in one distribu-
tion but not in the other one. Most measures used in previ-
ous work (e.g., the KL divergence) only allow to compare the

Table 2: Description of the datasets and characteristics of the social tagging system the data stem from.
System Entity Type Tag First Tag Suggestions Tags Visible #Resources #Users #Tags
Delicious websites no yes low 17,000k 532k 2,400k

LibraryThing books no no high 3,500k 150k 2,000k
Twitter lists users yes no low 3,286 2,290k 1,111k



agreement between mutually conjoint lists of elements and
a common practice is to prune tag distributions to their top
k elements – i.e., the most frequently used tags per resource.
However, this pruning requires global knowledge about the
tag usage and only enables a post-hoc rather than a real-
time analysis of semantic stability.

4.1 Rank Biased Overlap: RBO(σ1, σ2, p)

Intuition and Definition: The Rank Biased Overlap
(RBO) [30] measures the similarity between two rankings
and is based on the cumulative set overlap. The set overlap
at each rank is weighted by a geometric sequence, providing
both top-weightedness and convergence. RBO is defined as
follows:

RBO(σ1, σ2, p) = (1− p)

∞∑
d=1

σ11:d ∩ σ21:d
d

p(d−1) (3)

Let σ1 and σ2 be two not necessarily conjoint lists of rank-
ing. Let σ11:d and σ21:d be the ranked lists at depth d. The
RBO falls in the range [0, 1], where 0 means disjoint, and 1
means identical. The parameter p (0 ≤ p < 1) determines
how steep the decline in weights is. The smaller p is, the
more top-weighted the metric is. If p = 0, only the top-
ranked item of each list is considered and the RBO score is
either zero or one. On the other hand, as p approaches arbi-
trarily close to 1, the weights become arbitrarily flat. These
weights, however, are not the same as the weights that the
elements at different ranks d themselves take, since these
elements contribute to multiple agreements.
In the following, we use a version of RBO that accounts

for tied ranks. As suggested in [30], ties are handled by
assuming that if t items are tied for ranks d to d+(t−1), they
all occur at rank d. RBO may account for ties by dividing
twice the overlap at depth d by the number of items which
occur at depth d, rather than the depth itself:

RBO(σ1, σ2, p) = (1− p)
∞∑
d=1

2 ∗ σ11:d ∩ σ21:d
|σ11:d + σ21:d|

p(d−1) (4)

We modify RBO by summing only over occurring depths
rather than all possible depths. Therefore, our RBO mea-
sure further penalizes ties and assigns a lower RBO value
to pairs of lists containing ties. For example, consider the
following two pairs of ranked lists of items: (i) (A=1, B=2,
C=3, D=4), (A=3, B=2, C=1, D=4) and (ii) (A=1, B=1,
C=1, D=4), (A=1, B=1, C=1, D=4). Both pairs of lists
have the same concordant pairs: (A,D) and (B,D) and (C,D).
The RBO value of the first pair is 0.2 according to the origi-
nal measure and also according to our tie-corrected variant.
The RBO value of the second pair is 0.34 according to the
original measure and 0.17 according to our tie-corrected vari-
ant. This example nicely shows that while the original RBO
measure tends to overestimate ties, our variant slightly pe-
nalizes ties. For our use case this makes sense since we do
not want to overestimate the semantic stability of a resource
where users have not agreed on a ranking of tags but only
find that all of tags are equally important.
Demonstration: Figure 5 shows the RBO of the tag

distributions of resources over time for our people tagging
dataset. The RBO value between the tag distribution after
N and N +M tag assignments is high if the M new tag as-
signments do not change the ranking of the (top-weighted)
tags. One can see that the RBO of a randomly generated

(a) Heavily tagged users (b) Moderately tagged users

Figure 5: Rank Biased Overlap (RBO) measures
with p = 0.9. The black dotted line shows the
weighted average RBO of a random tagging process
over time, while each colored line corresponds to the
RBO of one Twitter user.

tag distribution is pretty low and increases slowly as more
and more tags are added over time. Contrary, the RBO of
real tag distributions increases as more and more tags are
added. At the beginning, it increases quickly and remains
relatively stable after few thousand tag assignments. This
indicates that RBO allows identifying a consensus in the tag
distributions which may emerge over time and which goes be-
yond what one would expect from a random tagging process.
A random tagging process produces relative tag proportions
which are all very similar (i.e., all tags are equally impor-
tant or unimportant). Therefore, the probability that the
ranking changes after new tag assignments is higher than
it is for real tagging streams where users have produced a
clear ranking of tags where some tags are much more impor-
tant for a resource than others. Over time, the gap between
real tagging streams and random tagging streams will de-
crease. Yet, one can see that within the time-window in
which real tagging streams semantically stabilize (i.e., few
thousand tag assignments) tag distributions produced by a
random process are significantly less stable. Again, we can
see that the tag distributions of heavily tagged resources are
slightly more stable than those of moderately tagged ones.

In our work, we empirically chose p = 0.9 which means
that the first 10 ranks have 86% of the weight of the evalua-
tion. We got similar results when choosing higher values of
p. For example, when choosing p = 0.98 the first 50 items
get 86% of the weight. If one would chose a lower value for p
such as p = 0.1 (or p = 0.5) the first two elements would get
99.6% (or 88.6%) of the weight. That means, all elements
with a rank lower than two would be almost ignored and
therefore the RBO values show more fluctuation. However,
in all our experiments with different p values the RBO of
real tag distributions was significantly higher than the RBO
of random tag distributions.

Limitations and Potentials: One advantage of RBO is
that it handles mutually non-conjoint lists of tags, weights
highly ranked tags more heavily than lower ranked tags, and
is monotonic with increasing depth of evaluation. A poten-
tial limitation of RBO is that it requires to pick the param-
eter p which defines the decline in weights - i.e., how top-
weighted the RBOmeasure is. Which level of top-weightness
is appropriate for the tag distributions in different tagging
systems might be a controversial question. However, our
experiments revealed that as long as the parameter p was
not chosen to be small (i.e., p < 0.5), the results remained
essentially the same.



Figure 6: The percentage of resources (in this case
heavily tagged Twitter users) stabilized at time t
with stability threshold k. For example, point P
indicates that after 1250 tag assignments 90% of re-
sources exhibit semantic stability (an RBO value) of
0.61 or higher.

4.2 A Rank-based Stability Method
Based on the previously defined Rank Biased Overlap we

propose a method which allows to investigate the stabiliza-
tion process in a social tagging system (or other systems in
which social streams are generated) based on the stabiliza-
tion process of individual social tagging streams of resources.
This method allows to compare the stabilization process of
different social stream based systems over time. Given a
sample of tagged resources (the sample size N and the type
of resources can be chosen arbitrarily) the goal is to specify
how many resources of the sample have stabilized after a
certain number of consecutive tag assignments.
We propose a flexible and fluid definition of the concept

of stabilization by introducing (a) a parameter k that con-
stitutes a threshold for the RBO value and (b) a parameter
t that specifies the number of consecutive tag assignments.
We call a resource in a social tagging system semantically
stable at point t, if the RBO value between its tag distribu-
tion at point t − 1 and t is equal or greater than k. Our
proposed method allows to calculate the percentage of re-
sources that have semantically stabilized after a number of
consecutive tag assignments t according to some threshold
for stabilization k. We can define this function by:

f(t, k) =
1

N

N∑
i=1

{
1, if RBO(σit−1 , σit , p) > k.

0, otherwise.
(5)

We illustrate the semantic stabilization for our sample
of heavily tagged Twitter users in Figure 6. The contour
plot depicts the percentage of resources (i.e., Twitter users)
which have become semantically stable according to some
RBO threshold k after t tag assignments. The figure shows
that after 1k tag assignments 90% of Twitter users have an
RBO value above 0.5 which can be considered as a medium
level of stability. We define RBO values below 0.4 as a sign
for no stability, values between 0.4 and 0.7 as medium sta-
bility and values above 0.7 as high stability.

4.2.1 Results & Discussion
In this section we use our novel method to explore and

compare the semantic stabilization process of different social
tagging systems introduced in Section 3.
The contour plot in Figure 7 depicts the percentage of re-

sources which have become semantically stable according to
some RBO threshold k after t tag assignments in different
social tagging systems. First of all, we can see that the ran-
dom dataset exhibits by far the lowest stabilization since the

resources just stabilize for low k (k < 0.2) even after a large
amount of tag assignments t. That means, the k threshold
for which 90%, 75%, 60% and 45% of all resources have an
equal or higher RBO values than k is very low. Contrary,
we can see that real-world tagging systems exhibit much
higher stability. The highest (i.e., high k values) and fastest
(i.e., low t values) overall tag stabilization can be observed
for Delicious and LibraryThing which both encourage imi-
tation behavior by suggesting previously assigned tags (see
Delicious) and by making previously assigned tags visible
during the tagging process (see LibraryThing).

In Twitter users first have to create a tag (aka user list)
and afterwards select the resources (aka users) to which they
want to assign the tag. During this tagging process, tags
which have been previously assigned to users are not visible
and therefore it is unlikely that imitation behavior plays a
major role in Twitter6.

Interestingly, our results show that despite the difference
in the user interfaces, the people tagging streams in Twitter
exhibit similar stabilization patterns as the book and website
tagging streams in Delicious and LibraryThing. However,
people tagging streams in Twitter stabilize slightly slower
and less heavily than the tagging streams in Delicious and
LibraryThing where imitation behavior is encouraged. This
result is striking since it suggests that imitation cannot be
the only factor which causes the stable patterns which arise
when a large group of users tag a resource. Our empirical
results from different social tagging systems are in line with
the results from the user study presented in [2] which also
shows that tag distributions of resources become stable re-
gardless of the visibility of previously assigned tags. The
presence of tag suggestions may provoke a higher and faster
agreement between users who tag a resource and may there-
fore lead to higher levels of stability, but it is clearly not
the only factor causing stability. Our results suggest that in
tagging system which encourage imitation less than 1k tag
assignments are necessary before a tagging stream becomes
semantically stable (i.e., the rank agreement has reached a
certain level and does not change anymore), while in tagging
systems which do not encourage imitation more than 1k tag
assignments are required.

5. EXPLAINING SEMANTIC STABILITY
The experimental results reported in [2] as well as our own

empirical results on the people tagging dataset from Twitter
suggest that stable patterns may also arise in the absence
of imitation behavior. As a consequence, other factors that
might explain semantic stabilization, such as shared back-
ground knowledge and stable properties of natural language,
deserve further investigation.

5.1 Imitation and Background Knowledge
To explore the potential impact of imitation and shared

background knowledge we simulate the tag choice process.
According to [7] there are several plausible ways how the tag
choice process can be modeled:

6If users want to see which other tags have previously been
assigned to a user they need to visit her profile page and
navigate to the list membership section. Since this is fairly
time intensive one can speculate that it is unlikely that users
imitate the previously assigned tags but create their own
tags and assign users to them based on what they know
about them and how they want to organize them.



Figure 7: Semantic stabilization of different social tagging datasets, a natural language corpus and a synthetic
random tagging dataset as a control. The x axis represents the consecutive tag assignments t while the y-axis
depicts the RBO (with p = 0.9) threshold k. The contour lines illustrate the curve for which the function
f(t, k) has constant values. These values are depicted in the lines and represent the percentage of stabilization
f . One can see that tagging streams in Delicious and LibraryThing stabilize faster and reach higher levels of
semantic stability than other datasets.

Random tag choice: Each tag is chosen with the same
probability. This corresponds to users who randomly choose
tags from the set of all available tags which seems to be only
a plausible strategy for spammers
Imitation: The tags are chosen with a probability that

is proportional to the tag’s occurrence probability in the
previous stream. This selection strategy corresponds to the
Polya Urn model described in [10] where only tags that have
been used before are in the urn and can be selected. Users
who are easily influenced by other users might apply this
tag selection strategy.
Background Knowledge: The tags are chosen with a

probability that is proportional to the tag’s probability in
the shared background knowledge of users. This corresponds
to users who choose tags that seem appropriate based on
their own background knowledge.
In our simulation, we assume that the tag choice of users

might be driven by both imitation and background knowl-
edge. Similar to the epistemic model [7] we introduce a pa-
rameter I describing the impact of imitation. Consequently,
the impact of shared background knowledge is 1−I. We run
I from 0 to 1 – i.e., we simulate tagging streams which have
been generated by users who only use the imitation strategy
to choose their tags (I = 1), users who only rely on their
background knowledge when selecting tags (I = 0), and
users who adapt both strategies. We use a word-frequency
corpus7 from Wikipedia to simulate the shared background
knowledge. For each synthetic dataset we simulate 100 tag-
ging streams in order to have the same sample size as for
our real-world datasets introduced in Section 3.
Our results in Figure 8 show the percentage of resources

which have a RBO value equal or higher than k after t tag
assignments for different synthetic tagging datasets. One

7http://www.monlp.com/2012/04/16/calculating-word-
and-n-gram-statistics-from-a-wikipedia-corpora/

can see from this figure that a synthetic tagging dataset
with I = 1 (i.e., a datasets which was solely created via
imitation behavior) does not stabilize over time since more
than 90% of the resources have very low RBO values (i.e.,
k < 0.1) also after a few thousand tag assignments. This is
consistent with our intuition since a model which is purely
based on imitation dynamics fails to introduce new tags and
therefore no ranked lists of tags per resource can be created.

Further, one can see that a synthetic tagging dataset with
I = 0 (i.e., a tagging datasets which was solely created
via background knowledge and therefore reflects the proper-
ties of a natural language system) stabilizes slightly slower
than a synthetic tagging dataset which was generated by a
mixture of background knowledge and imitation dynamics
(I = 0.7). This is particularly interesting since it suggests
that when shared background knowledge (encoded in natural
language) is combined with social imitation, tagging streams
reach higher levels of semantic stability (0.7 < k < 0.8)
quicker (for lower t) than if users either only rely on imita-
tion behavior or on background knowledge. Our findings are
in line with previous research [7] which showed that an imi-
tation rate between 60% and 90% is best for simulating real
tag streams of resources. However, as described in Section 7
their work has certain limitations which we address by (i)
exploring a range of different social tagging systems includ-
ing one where no tags are suggested and previously assigned
tags are not visible during the tagging process and (ii) study-
ing the semantic stabilization process over time rather than
the shape of the rank-ordered tag frequency distribution at
a single time point.

5.2 Stability of Natural Language
Since tagging systems are natural language systems, the

regularities and the stability of natural language (see e.g.,
[32] and [15]) may cause the stable patterns which we ob-
serve in tagging systems. That means, one can argue that



Figure 8: Semantic stabilization of synthetic (i.e., simulated) tagging processes. Tagging streams which are
generated by a combination of imitation dynamics (70%) and background knowledge (30%) tend to stabilize
faster and reach higher levels of stability than streams which are generated by imitation behavior (I=1) or
background knowledge (I=0) alone.

tagging systems become stable because they are built on top
of natural language which itself is stable.
Our results presented in Figure 7 show that a natural lan-

guage corpus (see Section 3) – where users talk about a set
of sample resources – also becomes semantically stable over
time and reaches a medium level of stability (with k > 0.6 if
t > 1, 000) 8. Also, our simulation results in Figure 8 show
that a synthetic dataset which is generated using Wikipedia
word frequencies as background knowledge (I = 0.0) and is
therefore reflecting the properties of the natural language,
becomes semantically stable over time and reaches a medium
level of stability (with k > 0.6 if t > 1, 000). In both cases
one can see that the stabilization process of natural language
systems clearly differs from the stabilization process of real
tagging streams which are produced in systems supporting
imitation and synthetic tagging streams which are generated
by included imitation mechanisms. The RBO curve of nat-
ural language systems is flatter at the beginning than the
RBO curve of tagging streams which are partly generated
via imitation mechanisms which suggests that more word
assignments are needed until a high percentage of resources
have RBO values at or above a certain threshold k. The only
tagging stream dataset which shows a similar stabilization
process as the natural language dataset is the people tag-
ging dataset obtained from Twitter which does not support
any imitation mechanisms. This suggests, that the stabil-
ity of natural language systems can indeed explain a large
proportion of the stability which can be observed in tagging
systems where the tagging process is not really social (i.e.,
each user annotates a resource separately without seeing the
tags others used) and no imitation dynamics are supported.
However, tagging systems which support the social aspect
of tagging by e.g., showing tags which have been previously
applied by others, exhibit a faster and higher level of se-
mantic stabilization than tagging systems which do not im-

8One needs to note that our natural language corpus from
Twitter also contains hashtags.

plement these social functionalities. This suggests that the
semantic stability which can be observed in social tagging
systems goes beyond what one would expect from natural
language systems and that higher and faster degree of sta-
bility is achieved through the social dynamics in tagging
systems; concretely, the imitation behavior of users.

6. DISCUSSION
The main implications of our work are: (i) We highlight

limitations of existing methods for measuring semantic sta-
bility in social tagging streams and introduce a new and
more robust method which allows to analyze the stabiliza-
tion process in social tagging systems. However, our method
is not limited to social tagging systems and tagging streams
and can be used to measure stability and user agreement
in other types of data streams, such as word-streams of
hashtags in Twitter or word streams of Wikipedia concepts.
(ii) Our simulation results suggest that when aiming to im-
prove semantic stability of social tagging systems, system
designers can exploit the insights gained from our work by
implementing mechanisms which - for example - augment
imitation in 70% of cases (e.g., by suggesting or showing
previously assigned tags) while tapping into the background
knowledge of users in 30% of cases (e.g., by requiring users to
tag without recommendation mechanisms at place, thereby
utilizing background knowledge).

In future we also want to explore the lowest number of
users that need to tag a resource in order to produce a stable
tag description of the resource for which we would also need
to model the number of tags users simultaneously assign to
resources into our experiments. Further, we want to point
out that for the sake of simplicity we used the same back-
ground knowledge corpus for all resources and neglected the
impact of the user interface (i.e., the number of suggested
tags and the number of previously used tags from which they
are chosen) on the imitation process. These user interface
parameters are different for distinct tagging systems and



have been varied over time. Without exactly knowing how
the user interface looked like when the data was generated
and how the algorithm for suggesting and displaying tags
worked, it is difficult to properly choose these parameters.

7. RELATED WORK
Social tagging systems have emerged as an alternative to

traditional forms of organizing information which usually
enforce rigid taxonomies or ontologies with controlled vo-
cabulary. Social tagging systems, however, allow users to
freely choose so-called tags to annotate resources such as
websites, users, books, videos or artists.
In past research, it has been suggested that stable pat-

terns may emerge when a large group of users annotates
resources on the Web. That means, users seem to reach a
consensus about the description of a resource over time, de-
spite the lack of a centralized vocabulary which is a central
element of traditional forms of organizing information [10,
13, 4]. Several methods have been established to measure
this semantic stability: (i) in previous work one co-author
of this paper suggested to assess semantic stability by ana-
lyzing the proportions of tags for a given resource as a func-
tion of the number of tag assignments [10]. (ii) Halpin et
al. [13] proposed a direct method for quantifying stabiliza-
tion by using the Kullback-Leibler (KL) divergence between
the rank-ordered tag frequency distributions of a resource
at different points in time. (iii) Cattuto et al. [4] showed
that power law distributions emerge when looking at rank-
ordered tag frequency distributions of a resource which is an
indicator of semantic stabilization.
Several attempts and hypotheses aiming to explain the ob-

served stability have emerged. In [10] the authors propose
that the simplest model that results in a power law distribu-
tion of tags would be the classic Polya Urn model. The first
model that formalized the notion of new tags was proposed
by Cattuto et al. [4] by utilizing the Yule-Simon model [31].
Also, models like the semantic imitation model [8] or simple
imitation mechanisms [19] have been deployed for explaining
and reconstructing real world semantic stabilization.
While above models mainly focus on the imitation behav-

ior of users for explaining the stabilization process, shared
background knowledge might also be a major factor as one
co-author of this work already hypothesized in previous work
[10]. Research by Dellschaft et al. [7] picked up this hypoth-
esis and explored the utility of background knowledge as an
additional explanatory factor which may help to simulate
the tagging process. Dellschaft et al. show that combin-
ing background knowledge with imitation mechanisms im-
proves the simulation results. Although their results are very
strong, their evaluation has certain limitations since they fo-
cus on reproducing the sharp drop of the rank-ordered tag
frequency distribution between rank 7 and 10 which was
previously interpreted as one of the main characteristics of
tagging data [3]. However, recent work by Bollen et al. [2]
questions that the flatten head of these distributions is a
characteristic which can be attributed to the tagging pro-
cess itself. Instead, it may only be an artifact of the user
interface which suggests up to ten tags. Bollen et al. show
that power law forms regardless of whether tag suggestions
are provided to the user or not, making a strong point to-
wards the utility of background knowledge for explaining the
stabilization.

In addition to imitation and background knowledge, an
alternative and completely different explanation for the sta-
ble patterns which one can observe in tagging systems exists,
namely the regularities and stability of natural language sys-
tems. Tagging systems are built on top of natural language
and if all natural language systems stabilize over time, also
tagging streams will stabilize. Zipf’s law [32] states that the
frequency of a word in a corpus is proportional to the inverse
of its frequency rank and was found in many different nat-
ural language corpora (cf. [24]) However, some researcher
claim that Zipf’s law is inevitable and also a randomly gen-
erated letter sequence exhibits Zipf’s law [23, 18]. Recent
analysis refuted this claim [6, 14] and further showed that
language networks (based on word co-occurrences) exhibit
small world effects and scale-free degree distributions [15].

8. CONCLUSIONS
Based on an in-depth analysis of existing methods, we

have presented a novel method for assessing semantic sta-
bilization processes. We have applied our method to differ-
ent social tagging systems and to different synthetic tagging
streams via simulations. Our results reveal that semantic
stability in tagging systems cannot solely be explained by
imitation behavior of users, rather a combination of imita-
tion and background knowledge exhibits highest semantic
stabilization. Summarizing, our work makes contributions
on three different levels.

Methodological : Based on systematic investigations we
identify potentials and limitations of existing methods for
asserting semantic stability in social tagging systems. Us-
ing these insights, we present a novel, yet flexible, method
which allows to measure and compare the semantic stabiliza-
tion of different tagging systems in a robust way. Flexibility
is achieved through the provision of two meaningful param-
eters, robustness is demonstrated by applying it to random
control processes. Our method is general enough to be ap-
plicable beyond social tagging systems and we believe it is
also useful for analyzing stabilization in other stream based
systems such word-streams of the edit history of Wikipedia
pages or word-streams of hashtags or URLs.

Empirical : We conduct empirical analysis of semantic sta-
bilization in a series of distinct social tagging systems using
our method. We find that semantic stabilization of tags
varies across diverse systems that adopt different tagging
mechanics, which requires deeper explanations of the dy-
namics of underlying stabilization processes.

Explanatory : We investigate factors which may explain
stabilization processes in social tagging systems using sim-
ulations. Our results show that tagging streams which are
generated by a combination of imitation dynamics and shared
background knowledge exhibit faster and higher semantic
stability than tagging streams which are generated via imi-
tation dynamics or natural language phenomena alone.

Our findings are relevant for researchers interested in de-
veloping more sophisticated methods for assessing semantic
stability of tagging streams and for practitioners interested
in assessing the extent of semantic stabilization in social tag-
ging systems on a system scale.
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