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Original Research Article

Archiving information from geotagged
tweets to promote reproducibility and
comparability in social media research

Katharina Kinder-Kurlanda1, Katrin Weller1,
Wolfgang Zenk-Möltgen1, Jürgen Pfeffer2 and Fred Morstatter3

Abstract

Sharing social media research datasets allows for reproducibility and peer-review, but it is very often difficult or even

impossible to achieve due to legal restrictions and can also be ethically questionable. What is more, research data

repositories and other research infrastructure and research support institutions are only starting to target social media

researchers. In this paper, we present a practical solution to sharing social media data with the help of a social science

data archive. Our aim is to contribute to the effort of enhancing comparability and reproducibility in social media

research by taking some first steps towards setting standards for sustainable data archiving. We present a showcase

for sharing social media data with the example of a big dataset containing geotagged tweets (several months of continued

geotagged tweets from the United States from 2014 and 2015; nearly half a billion tweets in total) through a research

data archive. We provide a general background to the process of long-term archiving of research data. After some

consideration of the current obstacles for sharing and archiving social media data, we present our solution of archiving

the specific dataset of geotagged tweets at the GESIS Data Archive for the Social Sciences, a publicly funded German data

archive for secure and long-term archiving of social science data. We archived and documented tweet IDs and additional

information to improve reproducibility of the initial research while also attending to ethical and legal considerations, and

taking into account Twitter’s terms of service in particular.
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Introduction

In May 2016, a group of researchers shared a dataset
online which they had compiled from the dating site
OKCupid (Kirkegaard and Bjerrekær, 2014). The data-
set included information such as usernames, gender,
location and sexual preferences of nearly 70,000 users
and its publication led to a critical discussion among
researchers about several ethical questions such as the
lack of OKCupid users’ informed consent and the dif-
ficulties of anonymization.1 In particular, it was criti-
cized that the researchers claimed that it was ethically
and legally defensible to publicly share the dataset as
the data was already published. However, even if a user
of an online platform knowingly shares a piece of infor-
mation by posting it on the platform, Big Data analysis

can publicize and amplify it in a way the user never
intended or agreed to (Zimmer, 2016). Many of the
basic requirements of research ethics – protecting user
privacy, maintaining data confidentiality and minimiz-
ing harm – are not sufficiently addressed in this scen-
ario. Zimmer (2010) argues that it is our responsibility
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2Bavarian School of Public Policy, Technical University of Munich, Munich,

Germany
3Information Sciences Institute, University of Southern California, Marina

Del Rey, California, USA

Corresponding author:

Katharina Kinder-Kurlanda, GESIS – Leibniz Institute for the Social

Sciences, Unter Sachsenhausen 6-8, D-50667 Köln, Germany.
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as scholars to ensure that research methods and pro-
cesses remain rooted in long-standing ethical practices:
‘Concerns over consent, privacy and anonymity do not
disappear simply because subjects participate in online
social networks; rather, they become even more import-
ant’ (p. 324).

Sharing social media content repurposed for
research cannot be divorced from the wider debates
about the role of ethical research practices within
data science. There is currently a concern that the
research practices of data science do not make use of
established tools of research ethics regulation or that
some practitioners are even rejecting ethics regulations
outright (Metcalf and Crawford, 2016). However, as
the number of case studies from various disciplines is
growing, social media research is also increasingly
aiming at improving practices, which includes an –
often ethically motivated – strive for better standards
for validity (e.g., Fricke, 2014), comparability and
reproducibility of research results. Amongst others,
issues of representativeness (Boyd and Crawford,
2012; Ruths and Pfeffer, 2014) are being addressed.

With this paper, we contribute to the aim of improv-
ing social media research practices by combining two
previously distinct efforts: approaches to measure qual-
ity and representativeness of big datasets collected from
Twitter on the one hand (contributed by Morstatter
and Pfeffer), and initiatives to establish a framework
for sharing datasets used in social media research
through archiving in a sustainable and documented
way on the other hand (contributed by Kinder-
Kurlanda, Weller and Zenk-Möltgen). In this paper,
we are also looking at the issue of data sharing as an
area within a research project’s lifetime that is of par-
ticular concern for many of the debated and as of yet
unsolved ethical issues surrounding the use for research
of data ‘found’ on the internet. Data sharing thus may
help to address the ethical concerns surrounding repro-
ducibility and ‘best practice’ research, but may also
sometimes be hard to bring in line with ethical issues
arising out of the origin of the data as user-generated
content.

In an interdisciplinary effort all authors of this paper
came together to archive2 a large-scale dataset collected
from Twitter. The dataset was collected specifically to
allow for archiving and future reuse and to serve as a
reference dataset for geotagged tweets. We explored the
challenges when archiving several months of continued
geotagged tweets from the United States from 2014 and
2015 (about half a billion tweets altogether). While the
dataset was large, there was no guarantee that the data
we collected was representative of the population that
future researchers might wish to study, for example, all
Twitter users or even all users posting geotagged tweets
(Ruths and Pfeffer, 2014). Moreover, a collection of

geotagged tweets provided by the Twitter API (which
employs opaque sampling techniques) was not guaran-
teed to be complete or to provide a representative
sample of all geotagged messages on Twitter
(Morstatter et al., 2013).

Nevertheless, geotagged Twitter data is particularly
useful for research. For example, it has been used to
help first responders gain situational awareness in dis-
aster scenarios (Verma et al., 2011) or to uncover global
patterns of tourism travel (Hawelka et al., 2014). There
is also potential with this kind of data to learn more
about various other spatio-temporal patterns, for
example, of biodiversity conservation activities (Di
Minin et al., 2015). Knowing the location from which
a user is tweeting is also useful to gauge the value of the
data she is producing (Morstatter et al., 2014). In add-
ition, the location information allows comparison of
Twitter data with other, ‘offline’ data, for example,
socio-demographic variables from censuses or surveys,
health data, geographic information, environmental
data, etc. Our dataset can also serve as a reference
dataset for comparative work, for example, for
researchers studying similar characteristics of geo-
tagged tweets with other datasets (other periods of
time and other geographical regions) who want to com-
pare their results to existing work. Our dataset can also
be used for quality control, for example, to test repro-
ducibility of the existing dataset or to study the impact
of platform changes on social media data, as Twitter
changed the way geotagged information was created
halfway through our data collection. To summarize,
there are various possibilities for new research projects
to be performed on this data which makes archiving
even more desirable. At the same time, the fact that
the data is geotagged makes it more sensitive in terms
of user privacy, which requires special consideration
during a formal archiving process. At present, there
are first approaches to archiving Twitter-based datasets
that comply with Twitter’s Terms of Service, but they
are usually not rooted in practical archiving experience
and therefore lack measures for long-term availability
or documentation. They also do not yet focus on the
specific setup of geotagged data. With this paper, we
want to fill these gaps by proposing a way to handle
and archive geotagged tweets and to make a reference
dataset available for reuse. To this end, we archived the
dataset in the German Data Archive for the Social
Sciences at GESIS, founded in 1960 as one of the first
archives for social science data. It specializes in survey
data of interest to social and political scientists and has
accumulated expertise, tools and networks in this area.
The archive recently started archiving social media
data, which poses some unique challenges but also the
opportunity to make new use of a well-established data
sharing infrastructure. A pilot project archived a
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Twitter dataset related to the Federal Elections in
Germany 2013; as a result, a set of IDs from all
tweets sent by election candidates and information
about candidates’ Facebook profiles was archived and
is available for reuse (Kaczmirek and Mayr, 2015). The
dataset used in the present case study goes beyond that,
as it is bigger and more complex due to the inclusion of
geo-information.

As shown in the section titled ‘Challenges in archiv-
ing Twitter data’, there are legal, ethical, practical and
technical challenges when archiving tweets (and geo-
tagged tweets in particular) which require novel
approaches that deviate from the standard practices
for survey data. Our solution for archiving the geo-
tagged tweets balances three requirements: sharing leg-
ally and ethically, sharing to allow for reproducibility
(e.g., precise documentation) and sharing to allow for
novel questions and reuse (i.e. researcher friendly data
provision).

First, we will explain some general principles for
archiving research data with particular focus on experi-
ences from the social sciences.

Sharing for reproducibility in specialized archives

Research data archives are built on the premise that
science is not an individual endeavour; rather, research-
ers aim to achieve provisional results for others to criti-
cize and build upon. In order for this continued critique
to happen, researchers are required to make transpar-
ent and understandable the way in which they have
come to their conclusions. In the quantitative social
sciences, for example, research striving for objectivity
is required to be reproducible (Popper, 1959). In add-
ition to a sound methodology section in publications,
research data sharing plays a major role in achieving
reproducibility of research. It is for this reason that
there is a long tradition of specialized archives that
facilitate research data sharing in the social sciences
and in empirical social research in particular.
Conducting large surveys is also very costly and using
the data to answer multiple research questions is there-
fore highly advantageous. However, there are also well-
known obstacles to sharing data for reuse or reprodu-
cibility such as researchers’ fear of opening their
research to attack, legal limitations due to intellectual
property and data protection issues, and in particular
the effort required to prepare the data for reproducibil-
ity and reuse. Offering reproducibility always requires
much work, effort and knowledge in documentation,
preservation and curation of digital data (Borgman,
2012). Specialized data archives thus play an important
role in sharing research data. The GESIS archive is
publicly funded and offers mainly long-term preserva-
tion for digital survey data, which is reviewed,

processed and documented to provide easily re-usable
datasets to the scientific community following well-
established archiving standards for social science
survey data (e.g., Freese, 2007; King, 2011). The collec-
tion can be accessed via an online catalogue.3 Over
time, archives have developed sophisticated standards
and procedures for archiving digital data. For example,
there are archiving and data provisioning workflows
which require (a) following documented procedures in
archiving, (b) ensuring that preserved information is
understandable and findable for researchers and (c)
guaranteeing long-term preservation of the data
(CCSDS, 2012).

The documented procedures applied in most archives
concern the registration of research data with persistent
identifiers, its archiving, distribution and long-term
preservation. Archiving follows an established work-
flow (Schumann and Recker, 2013): First, acquisition
takes place; second, processing is performed (e.g.,
quality control, documentation); third, storage occurs
(i.e. preservation actions are taken); and fourth, dissem-
ination and access are provided (e.g., include in
catalogue).4

To ensure that the documented information is under-
standable and findable, documentation of research data
at the GESIS archive occurs in accordance with the
Data Documentation Initiative (DDI) metadata stand-
ard (http://www.ddialliance.org/). DDI is the most
important standard for the description of quantitative
social science research data and covers the whole data
life cycle (Vardigan et al., 2016). The datorium reposi-
tory used in this example contains DDI-compliant
documentation for the datasets which allows to cite,
find and better understand them. We will show below
that this documentation is, however, currently still
insufficient to document all the details required for
reproducibility of a social media dataset.

Long-term preservation refers to the fact that digital
information is by no means stable. Its accessibility and
understandability depend on storage media, hard- and
software environments and formats. In order to pre-
serve digital objects such as the desired documentation
of a data collection process for the long term, they need
to be constantly altered and, for example, file formats
require constant updating (Recker and Müller, 2015).
Archives ensure long-term preservation in a continuous
process of data curation.

In the past, the GESIS archive focused on providing
survey data to social scientists. However, disciplinary
boundaries are becoming less important when it comes
to the sharing of research data, particularly for
researchers who are trying to understand social phe-
nomena on the web or who are working with new
and computational approaches (Kinder-Kurlanda and
Weller, 2014). A growing number of researchers are
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using multiple or mixed methods and want to utilize
data of different types and from various primary and
secondary sources (Borgman, 2012). Social media data
and particularly Twitter data are in especially high
demand.

Research with Twitter data

There is a growing body of scholarly publications that
utilize Twitter data to study various phenomena. In
fact, Twitter has become one of the most frequently
targeted platforms in social media research (Tufekci,
2014; Weller, 2015). This phenomenon cannot only be
explained by the platform’s popularity: While Twitter’s
active user community is relatively small, a search of
the publications database Scopus retrieves more publi-
cations about Twitter than about the ‘bigger’ platforms
YouTube and Wikipedia (Weller, 2015). Twitter’s APIs
make it relatively easy to access user data, Twitter has
the advantage of relatively simple privacy settings
(Zimmer and Proferes, 2014b), a clear structure and
short texts; all of which may have also increased its
popularity in research. Some researchers consequently
are referring to Twitter as the ‘model organism’ of
social media research – and Tufekci (2014) has outlined
the problematic consequences this has for the field.
Williams et al. (2013a, 2013b) as well as Zimmer and
Proferes (2014a) have conducted meta-analyses of
Twitter studies that illustrate their diversity, for
example, when it comes to approaches used for data
collection, sample sizes or research ethics. There are,
however, only a small number of publications that
use preexisting datasets (Zimmer and Proferes,
2014a). Most significantly, there is currently no bench-
mark dataset (in the sense of a ‘standard’ dataset, for
example, for a specific timeframe or topic that fulfills
agreed-upon quality requirements) and no possibility to
easily relate data and results from one publication to
those from another. Frequently, information given
about data used for a study does not enable others to
even reproduce the same dataset. All this puts the val-
idity and expressiveness of Twitter research into
question.

Validity and reproducibility in Twitter
research

Validity of Twitter research is also to some degree ques-
tioned by the lack of clarity about its representativeness
(Boyd and Crawford, 2012). This problem has already
been addressed in different ways. Ruths and Pfeffer
(2014) urge to consider whether a given dataset is rep-
resentative of the actual population one wishes to
study. Bruns and Stieglitz (2014) describe different
levels on which representativeness of Twitter data

needs to be considered, the most important distinction
being between whether a Twitter-based dataset is rep-
resentative of all Twitter data or of specific user groups
and whether Twitter data can be representative of
(parts of) society at all. They highlight how the specific
characteristics used to retrieve a dataset (e.g., hashtags)
may filter specific types of users from the entire user
community (e.g., those speaking a specific language).
Busch (2014) also points out how decisions made in
sampling and filtering may highlight certain aspects of
targeted data and obscure others. Other research has
investigated the bias in the APIs provided to research-
ers by Twitter (e.g., Morstatter et al., 2013). In our case,
the completeness of the geotagged tweets data returned
from the Twitter Streaming API varied: Over 90% of
all geotagged tweets for the United States were returned
through the service for the first half of the data (col-
lected in 2014). The second half of the data (collected in
2015), however, indicates a considerable sampling bias
which still warrants further exploration and was con-
nected to Twitter fundamentally changing the way it
reported its data during this time: It moved from an
automated geotag-only feature to including the ‘place’
feature which allowed users to set their own location.
When Twitter switched to the place feature, we received
substantially less data with the geotag query.

Understanding (and documenting) underlying biases
of collection methods is the first step towards methodo-
logical standards in social media research and towards
enabling validity and reproducibility. The next import-
ant step is to share the data and code used in a research
project.

Challenges in archiving Twitter data

Twitter is but one, albeit a remarkable, case for investi-
gating possibilities for sharing and archiving social
media data. On the one hand, it is the only major
social media platform so far that has made significant
attempts to publicly preserve their entire history of data
(Stone, 2010), although their agreement with the
Library of Congress (2013) has not yet led to any tan-
gible outcome (Zimmer, 2015). On the other hand,
Twitter itself currently5 prohibits sharing of collected
Twitter datasets to a considerable degree; the Twitter
Terms of Service are the first challenge when archiving
Twitter data. The Twitter Developer Agreement
(Twitter, 2014) states: ‘if you provide Content to third
parties, including downloadable datasets of Content or
an API that returns Content, you will only distribute or
allow download of Tweet IDs and/or User IDs’. Some
exceptions are being made for lists of tweets in PDF and
excel files,6 but it is not allowed to provide bigger data-
sets in their native JSON format for third party usage.
Twitter has even demanded that individual researchers
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stop sharing Twitter datasets. For example, the dataset
used by Cha et al. (2010) was originally provided on the
authors’ institutional website for download but has
since been removed upon Twitter’s request (MPI-
SWS, 2010). Legal challenges based on the Twitter
Terms of Service thus are the first set of obstacles for
archiving and sharing Twitter data.

Research ethics. A second set of issues arises out of ethi-
cal concerns for users’ privacy and their consent to being
studied. Particularly, when dealing with large volumes
of user generated content, obtaining informed consent
to research from the users of a social media platform is
difficult or even impossible (Zook et al., 2017). While
users may have formally agreed to their data being used
as stated in the platform’s Terms of Service by clicking
‘OK’, they may not even be aware of being observed by
researchers (Hutton and Henderson, 2015). It thus
becomes even more important to take steps to protect
users’ privacy. However, there is a high risk that indivi-
duals may be re-identified from publications, published
datasets or additional material (Zimmer, 2010).
Researchers working with social media data need to
make decisions about how to protect users in ways
appropriate for the specific context, research topic and
user-group (Weller and Kinder-Kurlanda, 2015). For
example, data from vulnerable groups may require dif-
ferent handling than politician tweets.

Technical challenges. Technical challenges to archiving
Twitter data are connected to the way the data needs
to be shared: Providing a list of tweet IDs as suggested
by Twitter (instead of a file containing the complete
tweet texts and metadata such as author and time-
stamp) means that to recreate the dataset, every indivi-
dual tweet needs to be requested again via its ID from
the API – a process referred to as rehydrating. This
process requires some additional time and tools
during the research process and we offer assistance in
our archiving solution (see below). The Twitter
Developer Agreement (Twitter, 2014) requires research-
ers to ‘Delete Content that Twitter reports as deleted or
expired; Change treatment of Content that Twitter
reports is subject to changed sharing options (e.g.,
become protected); and Modify Content that Twitter
reports has been modified’. Sharing only tweet IDs
ensures that a user’s decision to delete a tweet will
also result in that tweet being removed from future
and (ideally also) existing data collections. However,
sharing only tweet IDs also means that someone who
wants to re-build the dataset from the IDs may find
that many of the tweets are no longer available. It
may not be possible to create the exact Twitter dataset
twice and archiving tweet IDs is thus no guarantee for
reproducibility of Twitter-based research. In fact, every

rehydration may result in a different dataset as more
and more tweets are deleted over time. What is more,
content may no longer be available once platform func-
tionalities change, for example, once Twitter modifies
the way in which geotagging works (see below).

Documentation standards. Archiving Twitter data is also
challenged by a lack of established standards for doc-
umentation of the different stages of data collection,
processing and analysis for social media data. The
examples for social media data sharing listed in the
section ‘Current approaches to sharing datasets col-
lected from Twitter’ mostly include little explicit data
documentation or definition of what the data’s essential
properties to be preserved are. One solution to this
issue is to extend the well-established standards for
metadata and documentation of social science survey
data to also be applicable to social media data.

Current approaches to sharing datasets
collected from Twitter

Despite the challenges, several approaches for sharing
Twitter data with other researchers or with the broader
public already exist. The current approaches to sharing
datasets collected from Twitter come from the follow-
ing groups (also see Thomson, 2016):

1. Individual researchers or projects provide the data-
sets they have used for publications on their own
website, on university websites or through third
party platforms.

2. Conference organizers and other publishers of scho-
larly work provide the datasets used for publica-
tions. For example, the ICWSM conference has
been including datasets for accepted conference
papers since 2012.7 Users request access by emailing
a usage agreement.8

3. Third parties, commercial companies or individual
laymen make available datasets via their websites.

4. Libraries and (web) archives provide sets of collected
tweets. The GESIS archive’s social media election
data (Kaczmirek and Mayr, 2015) and the geotagged
tweets in this paper are some of the first examples of
this.

While most of these examples already allow for sec-
ondary use of Twitter datasets, data is not yet presented
in a way that advances social media research more gen-
erally. Datasets are not presented in a sustainable
format that can be referenced consistently (e.g., via a
digital object identifier (DOI)) and that is guaranteed to
be available over time. Most fundamentally, they also
usually lack detailed information about how data was
collected and processed. Documentation standards or
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metadata guidelines (comparable to the DDI standard
mentioned above) are not yet available for social media
research. Possibly as a consequence of these gaps, avail-
able datasets are not frequently re-used in the research
community. During a series of expert interviews, it was
shown that at least more advanced researchers were
reluctant to re-use datasets collected by others if they
had no way to judge quality due to a lack of informa-
tion about how the data had been produced (Weller
and Kinder-Kurlanda, 2015). Documentation and dis-
semination in accordance with archival best practice
may improve datasets’ attractiveness. Archives decide
which ’significant properties’ of a digital object are
indispensable and therefore need to be preserved for
the long term ‘to ensure its continued access, use, and
meaning, and its capacity to be accepted as evidence of
what it purports to record’ (Grace et al., 2009). One of
several strategies for determining significant properties
(Faniel and Yakel, 2001) is a people-centric approach
that considers the producers and re-users of data and
their requirements. At the GESIS archive, these consid-
erations of past and future data users are paired with a
process-centric approach that also takes into account
the different steps of the collaborative social science
research process (Schumann and Recker, 2013).
Required information about the social science research
process includes how, when and why data was created
and details of how it was processed and analyzed. In the
case of survey data intended to be preserved for re-use
by quantitative social scientists who want to test
hypotheses, it is required that contextual information
such as the composition of the target population and
the selection of respondents is preserved as well as the
data itself (Recker and Müller, 2015). When archiving a
geotagged Twitter dataset, we are addressing a different
target audience, namely computational social scientists
as well as other social media researchers; a different
type of data, namely geotagged Twitter data; and
potentially more diverse methodologies that we need
to make allowances for. Not everyone may want to
test hypotheses and ‘kludginess’ of methods is both
common and required in internet-based research
(Karpf, 2012). We have to consider the needs of the
producers and users of the archived dataset, as well as
the overall characteristics of this new type of dataset. In
our example, contextual pieces of information that we
need to preserve in addition to the tweets themselves
are shapefiles9 and the codes used for collection, clean-
ing and analysis. The codes together with the documen-
tation also provide information about collection details
such as time frames, geographic selection of tweets and
assignment of states by geographic coordinates. In
other cases, such necessary contextual information
may include, for example, explanations about the hash-
tags used for collection. We will now take a closer look

at our specific dataset and its properties before explain-
ing our approach to archiving it.

The dataset

The dataset used in this work consists of geotagged
Twitter posts obtained by setting up our own data col-
lection pipeline (see Figure 2). In this section, we out-
line the methodology and tools used to collect these
tweets.

Targeting a specific dataset

To assemble the dataset used in this work, we collected
geotagged tweets from within the United States from 1
June 2014 until the end of November 2014 and again
for the same time period in 2015. Tweets with geoloca-
tion were selected within a geographic bounding box
(�128.6, 24.5), (�59, 50) and then allocated to US
states using a script. The tweet location was provided
by the users who tagged their tweets using Twitter’s
‘geolocation’ feature: a feature that allows the user to
leverage the latitude/longitude information from the
device’s GPS sensor to add location information to
the tweet. The geolocation could also be derived from
the wifi or IP addresses in the case of a tweet being
authored on a desktop or laptop computer. While wifi
provides a very accurate location with an average error
of 40 centimeters,10 an IP address is less accurate11; but
IP address is rarely used in these cases. The geolocation
information was thus accurate to the sub–city-block
level and was provided in real time. Another benefit
of this information source was that it came from the
user’s current position and not from the user’s profile
location field. This gave us the benefit of timelines as we
did not need to rely on the user to change her location
manually in real time. It also gave us the benefit of
accuracy. One drawback of this data outlet was that
only about 1% of all users chose to geolocate their
tweets, making data from this outlet relatively sparse.

A shift in location information

In April 2015, Twitter substantially changed the way
users shared their location. Users were still able to
post their geolocation through the geotagging feature,
but they were now also prompted to tag their location
with the ‘place’ where their tweet was produced.12

Before the change, the only information that was
revealed was the latitude/longitude pair indicating the
location on Earth where the tweet was created. After
the change, the user chose the name of their location
from a dropdown list thus allowing for a potentially
richer dataset that could also include the place name
(e.g., a coffee shop in New York City), an ID and in the
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case of larger places (e.g., cities), a geographic bound-
ing box. The downside of the ‘place’ is that the infor-
mation is prone to human error, may reflect whimsical
decisions and that it is much easier to add ‘wrong’13

locations. Our data collection script only collected the
coordinates field (i.e. the geolocation provided by GPS,
wifi or IP address) as this was all that was available at
the start of the crawl. When Twitter unveiled the ‘place’
feature, we did not modify the crawler to collect it.
However, as one can see in Figure 1, the change in
the way Twitter handled locations had a major
impact on the number of actual geotagged tweets in
our sample. The overall number of tweets with geo-
graphic information went up due to the new geotagging
feature, and thus the data collection with the API got
sampled more dramatically. Previously, collecting
tweets with a geographic bounding box ensured a
high sampling rate (Morstatter et al., 2013). This was
no longer the case. While the change between the first
and the second half of the data was obviously due to
this platform effect, the smoother change in the number
of geotagged tweets happening between mid-August
and mid-September 2014 cannot be explained at this
point.

Collection methodology

Twitter provides two API endpoints called the
‘Streaming APIs’.14 We collected the data using the
Filter API, which provides tweets in real time. The
Filter API allows to supply parameters that direct the

crawl. The API further allows for three types of para-
meters: keywords, usernames and geographical regions
that we wish to crawl. Geographic regions are provided
as geographic bounding boxes in the form of a south-
west and northeast latitude/longitude pair.

Once these parameters are specified, the Filter API
returns the tweets immediately after they are produced.
One caveat is that the Filter API returns a sample of the
tweets matching the parameters, at most 1% of all of
the data available on Twitter. We leveraged the API to
collect geotagged tweets originating within the United
States15 using the Twython16 library, a popular Python
Twitter API interface. All of the collected data was
stored in a MySQL database. Figure 2 shows the
steps involved in collecting and archiving the data.
First, the query with the geographic bounding box is
sent to the Filter API. The API returns the sample of
the matching tweets to the MySQL database used to
store the data. For archiving, we exported all Tweet
IDs into separate text files for months and counties.
Finally, these were compressed into ZIP-files to archive
them in datorium.

Archiving the project dataset

So far we have explored (a) general practices in archiv-
ing research data, (b) general challenges of handling
and archiving Twitter data and (c) the particular char-
acteristics of our case study dataset composed of geo-
tagged tweets. In the following, we are combining these
three dimensions and present our solution for archiving
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Figure 1. Number of tweets per day in our dataset.
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the dataset considering requirements from data archiv-
ing practice and Twitter specifics. For future research-
ers to use any archived dataset in a way that allows
them to assess its explanatory power in the context of
their research question, the dataset and complementary
material need to be documented in such a way as to
make the exact circumstances of its origination trans-
parent without overwhelming researchers with the level
of detail of documentation. These two requirements
need to be balanced. A third requirement for archiving
is that it occurs in accordance with legal and ethical
frameworks, which also means to balance the obliga-
tion for transparency and reproducibility with privacy
considerations. Out of these three sets of requirements,
we can distill the following questions and answers that
need to be dealt with when archiving our dataset:

1. What is required for archiving and sharing to occur
legally and ethically? We need permission to share all
data that the dataset is based on, for example, we
need to check usage agreements not only of the geo-
tagged Twitter data but also of any additional data
that it is enriched with. In our case, this concerns the
shapefiles, but it could be other information, for
example, census data. We also need to decide how
to contend with the issues around privacy and miss-
ing informed consent.

2. What is required for supporting reproducibility? We
need to document in detail how the dataset was con-
structed. For example, this includes information
about analysis scripts that show how we controlled
for longitude/latitude issues in the dataset. For
reproducibility, we also need to archive the tweets
exactly in the way in which they were used in a spe-
cific study – which may not be the way in which the
data should be presented to make it easy to reuse it
for other new projects.

3. What is required for allowing new questions to be
asked of the data? We need to provide the data in a

user-friendly way so that it is easy to download and
allows researchers to quickly assess its value for
answering different research questions. For example,
we may want to provide all tweets during a certain
period or from a certain geographical area.

Selecting an archival setup

We decided to archive the dataset via the datorium
repository at GESIS17 datorium is a light-weight shar-
ing platform for social science research data which
enables researchers to deposit, document and publish
their data (Wira-Alam et al., 2015). It thus allows
researchers across the world to upload and share their
datasets. The fact that it is hosted by a publicly funded
research service institute guarantees that data is stored
securely and persistently. For each dataset, datorium
guarantees that it will be available for at least 10
years. Each uploaded dataset also receives a DOI
which is persistent and unique and makes the dataset
citable and accessible. All metadata of the dataset are
made available via the DOI registration services da-ra18

and DataCite19 by assigning the DOI to the datorium
dataset. Our dataset is citable as Pfeffer and Morstatter
(2016). datorium uses different access categories for
researchers to share the uploaded data. Consequently,
data may be openly accessible to everyone, accessible
only after registration, restricted to be accessed only
after the data depositor has accepted a request or acces-
sible only after an embargo period. We chose to make
our dataset accessible upon request after an embargo
period.20 To request the data, researchers need to state,
amongst other information, their institutional affilia-
tion and the topic of the planned research. The dator-
ium repository also allows choosing a license for the
dataset, preferably one of the creative commons
licenses. Thus, researchers can ensure, for example,
that there is an attribution of their work or that

Figure 2. Schematic of the collection pipeline.
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usage is for scientific purposes only. Archive staff advise
on and eventually approve the level of access and licen-
sing to ensure that sharing complies with legal and
ethical requirements. The datorium repository thus
allows to control who has access to what data.
Archive staff also apply (partially automated) checks
of the quality and level of disclosiveness of the data
to avoid accidental sharing of sensitive information.

Data aggregation and date/time information

We aggregated information extracted from tweets to
the level of US counties, of which there are 3108 in
the continental part of the United States (without
Alaska, Hawaii and territories). The county-level
information can later be aggregated to the state
level. The grouping of tweets to counties was based
on the tweets’ geolocation. Tweets are generated in
different time zones. If we want to aggregate and ana-
lyze them on a daily basis, we need to make a decision
on whether to split the days at midnight in each time
zone or for one specific time zone. We decided on the
latter as we were just covering tweets from four time
zones and events most likely are discussed in real-time
within these time zones. As a consequence, we stored
all tweets in UTC time zone in the database when we
collected the tweets and subtracted 6 hours (¼ US
Central Time Zone) to decide on the day of a tweet.
We ignored daylight saving differences in time zones
(e.g., Arizona).

Archived data, code and shapefiles

The dataset itself was archived in the form of text files.
These files did not include any raw tweets, that is, not
the tweet text, user names, timestamps or other meta-
data usually provided through the API – and also not
the explicit geocodes from the tweets. Instead, we
archived tweet IDs only in order to comply with the
Twitter Terms of Service, which means that anyone
who wants to reuse the data will have to rehydrate
the tweets based on their IDs. To improve user friendli-
ness, we also archived some basic analysis results,
namely aggregated counts of hashtags. Overall, we
archived 53 files (48 files with tweet IDs, two scripts
and three help files) with about 21 GB of data in
zipped files, organized as follows (for [date], we used
the month of data collection, six each in 2014 and
2015):

. state_id_[date].zip: Text files per state for one day
including IDs of geotagged tweets of the states.

. county_id_[date].zip: Text files per county for one
day including IDs of geotagged tweets of the
counties.

. state_hash_[date].zip: Text files per state for one day
including hashtag counts of geotagged tweets of the
states.

. county_hash_[date].zip: Text files per county for one
day including hashtag counts of geotagged tweets of
the counties.

. state_codes.txt: US states mapped to two-digit
codes.

We hence published the tweet ID data in such a way
that it easily can be correlated with other data that is
available on the county level, for example, census data,
health data, environmental data or other measurement
data. In order to understand collection and processing
of the data, scripts and shapefiles were shared.
Specifically, we shared the Python script used for data
collection with the Twitter API and the Python script
used for sorting geotags. In the documentation of our
dataset, we also link to a Github page containing the
Python scripts used for collection and analysis21 to
allow for more interaction and feedback between
researchers. The county shapefile (with geo-polygone
information of US counties) originated from the
Unites States Census Bureau website,22 the other sha-
pefile (with geo-polygone information of US states cre-
ated from the county file) was created with the Dissolve
geo-processing tool in QGIS 2.6.1 Brighton (QGIS
Development Team, 2009).

Almost all potential uses of the dataset rely on the
‘rehydration’ of the list of tweet IDs by the future user.
To lower the barriers to using the dataset, we offer
assistance for rehydration in two ways: We archived
in datorium a ‘Python Script to rehydrate Tweets
from Tweet IDs’23 to retrieve tweets from the API.
We also link to the ‘Hydrator’ tool in the documenta-
tion.24 This tool also allows rehydration and its docu-
mentation links to more information about the process
of rehydration.

A first step towards setting standards for
future archiving

We were trying to improve best practice by setting an
example, but were limited in what we could accomplish
in terms of setting actual standards for archiving social
media data at the current point in time. Setting such
standards will require involving others, such as, for
example, the DDI community, other archives and
researchers working with different kinds of social
media data. Nevertheless, our sharing solution in the
archive satisfied the demands mapped out at the begin-
ning of this section.

Sharing legally and ethically. Sharing of the geotagged
tweets occurred with legal requirements and ethical
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considerations in mind. As described above, only tweet
IDs and aggregated information (i.e. the counts of
hashtags) are stored to comply with Twitter’s require-
ments. The datorium system further allows us to retain
control over who has access to the data and for what
purposes it will be used. There are still no standards for
handling the lack of informed consent from social
media users who may also have certain privacy expec-
tations. Archiving only tweet IDs addresses this issue to
a certain degree: Removing a tweet from Twitter also
means that the tweet will be removed from future ver-
sions of the dataset as deleted tweets cannot be rehy-
drated. Users therefore have at least some form of
control. However, we are still sharing information
from users who may be unaware of being the target
of research. This is why we decided to additionally con-
trol access to ensure that only researchers who we can
expect to adhere to common principles of research
ethics access the data. Each access request is decided
on individually based on the information provided in
the application (e.g., research topic, methods, etc.)
Additionally, the geolocation information may pose a
particular threat to privacy. Thus, while this feature
needs to be explicitly activated by users, we do not
provide detailed geoinformation in datorium – it can
however still be accessed on Twitter itself once the
tweets have been rehydrated. After some deliberation,
we decided that in the interest of replicability such a
solution would be acceptable, if not ideal. The
shapefiles posed no issue as they can be used and
shared in publications, as long as the US Census
Bureau is acknowledged as their source (which we
do). Our sharing solution thus aims to balance privacy
requirements and the (ethical) obligation to make
research reproducible and comparable. We expect
that it will require deliberation and careful considera-
tion for every individual social media dataset shared in
the future in order to find similar (and never ideal)
compromises that balance conflicting demands.

Sharing to ensure reproducibility and comparability. While
not all data is publicly available to everyone in our
solution (it is to researchers after request, though),
the detailed documentation of the dataset in datorium
using the DDI standard and the provision of code
allows everyone to check how collection, cleaning and
analysis were performed. This applies to geographic
and time coverage, technical infrastructures used for
data collection and assignment of geographic coordi-
nates to US states. However, more detailed information
could only be described in a non-standardized way or
not at all due to the lack of metadata standards cover-
ing the specific tweet data type and related data collec-
tion issues. Examples of such additional information
required for reproducibility of geotagged Twitter data

are: API biases (i.e. the API would only return a sample
of respective tweets upon a specific query); changes in
data availability and formats (e.g., Twitter made
changes to its geotagging feature in the middle of
data collection); or explanations about code and
(ready-made) scripts used in collection, cleaning and
analysis (in addition to the code itself).

Sharing to allow for new research projects. The data was
aggregated into easily downloadable, user-friendly
units containing tweet IDs of single months/days.
Additional aggregated information was added to
allow other researchers to base new investigations
upon the data. Standardized metadata (compatible
with DDI) for the whole dataset was created within
datorium to inform secondary users about the research
methods and context. The documentation includes
information such as the title of the dataset, the primary
researchers, the dataset’s availability (restricted), the
subject area, a topic classification, the collection
period, notes, publications already made using this
dataset and other information. A citation suggestion
is also included. The usage of a DOI for citation of
the exact dataset in datorium enables unambiguous
identification of the data and should be considered a
major benefit. We also shared a script to assist research-
ers in the process of rehydration.

Conclusion

We successfully archived a dataset of geotagged tweets
that can now be used in various ways: It can be used for
secondary research, that is, if researchers want to
address new research questions based on the existing
dataset. This could, for example, be sentiment analyses
of tweets per US state or content analyses of how cer-
tain topics have been discussed across the United
States. The dataset can also be used to enrich other
existing datasets, such as survey data or statistical
data (e.g., surveys on internet usage or census data)
or data from other social media platforms. It can also
be used for comparisons with other, similar datasets,
for example, tweets from other periods of time and for
testing reproducibility. The dataset is particularly inter-
esting for studying the impact of platform effects on
social media data as Twitter changed the way geo-
tagged tweets were handled between the two time per-
iods of our data collection and as we witnessed different
sampling effects of the API.

Our dataset will be useful for researchers across sev-
eral disciplines, both for those who work with social
media data to answer specific research questions and
for those who want to assess the quality of social
media data in general. In addition, this particular data-
set also is a use case of archiving that serves the more
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general purpose of establishing a routine for document-
ing and sharing social media data. We show that
Twitter data can be archived in the form of meaningful
collections of tweet IDs, that is, stored as filtered by
region and time and enriched with documentation of
collection methods (via shared code, additional data
such as shapefiles and metadata about the collection
process). Assigning a persistent DOI to the dataset
allows us to establish referencing standards. This and
the guaranteed availability for at least 10 years under-
score the official nature of this dataset. Restricting the
access to the dataset as well as storing only tweet IDs
helps to secure compliance with Twitter’s Terms of
Service and users’ privacy protection. Although this
constitutes significant achievements, there is more
work ahead and some open challenges remain.

First of all, we cannot solve the challenge that tweets
can only be archived and shared in the form of tweet
IDs, which means additional effort to rehydrate the
tweets and data loss due to deleted tweets. For a
researcher accessing the data via the archive, it is
impossible to recreate the original dataset exactly.
Unless Twitter changes its policy here (e.g., by allowing
to save and share the entire tweet texts for research
purposes), full reproducibility of a given dataset may
not become possible. In fact, sharing tweet IDs has just
become more difficult: Twitter’s new Terms of Service,
in effect since June 2017, state that it is not allowed to
distribute more than 1,500,000 Tweet IDs without the
express written permission of Twitter.25 Had these
terms already been in effect in our case, it would not
have been possible to share our dataset without apply-
ing for an individual permission from Twitter – which
they may or may not have granted. It thus has become
even more difficult to share data for the sake of research
transparency. However, researchers are also in constant
negotiation with Twitter about improving data sharing
options. For example, Twitter reacted to researchers’
concerns over the new Terms of Service by clarifying
that it would still be possible for researchers from
accredited institutions to share more than 1,500,000
tweets.26

Second, possibilities for documentation of existing
repositories need to be extended and adjusted to fit
both traditional and novel requirements for reproduci-
bility. As data can only be shared in very limited ways,
the sharing of other information and materials becomes
even more important. For example, additional fields in
datorium to allow documentation of API bias, usage of
popular scripts and social media platform functionality
changes and the points in time at which they occur
would improve future social media archiving projects.
As a next step, we will propose a draft of a metadata
format for social media data archiving to be discussed
by the research community and by DDI practitioners in

order to set a standard format. In addition to petition-
ing platform providers to allow more data sharing for
research purposes, we see the sharing of additional
information and materials as the most promising way
to make social media research more transparent and to
improve its quality.

Third, while we aimed to protect social media users’
privacy, we only achieved this to a certain extent and
we could not solve the issue of the lack of informed
consent. Our aim to protect privacy on the one hand
and to make research reproducible and comparable on
the other forced us to compromise on both.

We see our attempt at archiving the Twitter dataset
as a step towards establishing archiving best practice
for social media data. Due to the lack of standards in
this area, we followed well-established archiving stan-
dards for survey data. While many of the steps per-
formed in survey data archiving could be applied to a
social media dataset (e.g., establishing significant prop-
erties to be preserved for the long term), some had to be
adapted (e.g., documentation of data collection proce-
dures) as best as possible within the existing infrastruc-
tures and conventions. Based on this experience, we
suggest the following requirements for future standards
for archiving social media data:

To ensure that others can understand or even repro-
duce the process of constructing the initial dataset, var-
ious additional information and materials need to be
provided. This concerns programming code (scripts or
codes used for collection and cleaning), information on
the collection setup (APIs, software, services and hard-
ware used), information about time and place of the
collection, information about social media platform
functionality changes and information on sampling
caused by the way the data is provided to researchers
(e.g., the API). In addition, it should be best practice to
offer assistance to other researchers who want to repro-
duce the dataset, for example, by sharing a rehydration
script.

To ensure that issues of representativeness can be
addressed, any available information on the specific
user groups as content providers needs to be
documented.

To advance ethically reflective social media data
sharing, it needs to be best practice to establish a care-
fully considered balance between protecting user inter-
ests and ensuring research transparency that is also in
adherence with the data provider’s terms of service. The
sharing of information and materials in addition to the
data needs to be facilitated to make it easier to find such
a balance. Sharing legally and ethically also means to
follow the changes and updates in terms of services and
policies and to participate in negotiations about data
sharing for the sake of reproducibility with platform
providers.
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Finally, it remains to be seen how much of the prac-
tices described here can be transferred to datasets col-
lected from other social media platforms. In the
meantime, researchers who study alternative social
media platforms may profit from archived Twitter
datasets as a source for enabling cross-platform studies.
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Notes

1. http://openpsych.net/forum/showthread.php?tid¼284
2. As explained in the section titled ‘Archiving the Project

Dataset’, we archive the dataset in the datorium reposi-

tory. The dataset was submitted and accepted by the

repository in January 2016. Documentation and meta-

data are accessible under the DOI:10.7802/1166. Data

itself was under an embargo until May 2016 when it

was opened for access.

3. https://dbk.gesis.org/dbksearch/
4. For more details on the archive’s workflows and proce-

dures, see GESIS Data Archive (2014).
5. Twitter’s Terms of Service are subject to change over time

which may open or close possibilities for sharing research

data. We discuss one such change (a limit to the number

of shareable tweet IDs) in the text.
6. https://developer.twitter.com/en/developer-terms/policy
7. http://www.icwsm.org/2015/datasets/datasets/

8. http://www.icwsm.org/2015/datasets/datasets/icwsm_

user_agreement_v1.pdf
9. Shapefiles include geospatial vector data and are used in

geographic information system software to generate

representations of geographic data.
10. See https://www.technologyreview.com/s/542561/wi-fi-

trick-gives-devices-super-accurate-indoor-location-fixes/
11. See https://support.clickmeter.com/hc/en-us/articles/

211035626-How-accurate-reliable-is-IP-GeoLocation-
12. https://support.twitter.com/articles/122236?lang¼en

13. A user may add ‘London’ as the location because she is

tweeting about events there, but she could be anywhere

else in the world.

14. See Twitter’s developer documentation: https://dev.twit-

ter.com/streaming/public

15. The geographic bounding box we used for the United

States was the Southwest and Northeast point (�128.6,

24.5), (�59, 50), respectively. Alaska, Hawaii and terri-

tories were thus not included.
16. https://twython.readthedocs.org/en/latest/

17. https://datorium.gesis.org/
18. http://www.da-ra.de
19. http://www.datacite.org

20. For our reasoning see below: ‘Sharing legally and

ethically’.
21. https://github.com/fredzilla/mysql-tweet-crawler-bigdata

22. ftp://ftp2.census.gov/geo/tiger/TIGER2015/COUNTY/
23. The script to rehydrate the tweets can be found at http://

doi.org/10.7802/1504 and has the persistent identifier

doi:10.7802/1504
24. https://github.com/docnow/hydrator#readme
25. See https://dev.twitter.com/overview/terms/agreement-

and-policy
26. See https://twittercommunity.com/t/policy-update-clari-

fication-research-use-cases/87566
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Frické MH (2014) Big data and its epistemology. Journal of

the Association for Information Science and Technology

66(4): 651–661.
GESIS Data Archive (2014) Data seal of approval assessment

report. Available at: https://assessment.datasealo-

fapproval.org/assessment_116/seal/html/ (accessed 20

May 2016).

12 Big Data & Society

http://openpsych.net/forum/showthread.php?tid284
http://openpsych.net/forum/showthread.php?tid284
https://dbk.gesis.org/dbksearch/
https://developer.twitter.com/en/developer-terms/policy
http://www.icwsm.org/2015/datasets/datasets/
http://www.icwsm.org/2015/datasets/datasets/icwsm_user_agreement_v1.pdf
http://www.icwsm.org/2015/datasets/datasets/icwsm_user_agreement_v1.pdf
https://www.technologyreview.com/s/542561/wi-fi-trick-gives-devices-super-accurate-indoor-location-fixes/
https://www.technologyreview.com/s/542561/wi-fi-trick-gives-devices-super-accurate-indoor-location-fixes/
https://support.clickmeter.com/hc/en-us/articles/211035626-How-accurate-reliable-is-IP-GeoLocation-
https://support.clickmeter.com/hc/en-us/articles/211035626-How-accurate-reliable-is-IP-GeoLocation-
https://support.twitter.com/articles/122236?langen
https://support.twitter.com/articles/122236?langen
https://dev.twitter.com/streaming/public
https://dev.twitter.com/streaming/public
https://twython.readthedocs.org/en/latest/
https://datorium.gesis.org/
http://www.da-ra.de
http://www.datacite.org
https://github.com/fredzilla/mysql-tweet-crawler-bigdata04
ftp://ftp2.census.gov/geo/tiger/TIGER2015/COUNTY/
http://doi.org/10.7802/1504
http://doi.org/10.7802/1504
doi:10.7802/1504
https://github.com/docnow/hydrator#readme
https://dev.twitter.com/overview/terms/agreement-and-policy
https://dev.twitter.com/overview/terms/agreement-and-policy
https://twittercommunity.com/t/policy-update-clarification-research-use-cases/87566
https://twittercommunity.com/t/policy-update-clarification-research-use-cases/87566
http://public.ccsds.org/publications/archive/650x0m2.pdf
http://public.ccsds.org/publications/archive/650x0m2.pdf
https://assessment.datasealofapproval.org/assessment_116/seal/html/
https://assessment.datasealofapproval.org/assessment_116/seal/html/


Grace S, Knight G and Montague L (2009) Investigating the
significant properties of electronic content over time. In:
SPECT: Final Report. Available at: http://www.signifi-

cantproperties.org.uk/inspect-finalreport.pdf (accessed 20
May 2016).

Hawelka B, Sitko I, Beinat E, et al. (2014) Geo-located
Twitter as proxy for global mobility patterns.

Cartography and Geographic Information Science 41(3):
260–271.

Hutton L and Henderson T (2015) ‘‘I didn’t sign up for

this!’’: Informed consent in social network research. In:
Proceedings of the ninth international AAAI conference
on web and social media (ICWSM) (eds Hogan B and

Quercia D), Oxford, UK, 26–29 May 2015, pp. 178–187.
Menlo Park, CA: AAAI Press.

Kaczmirek L and Mayr P (2015) German Bundestag

Elections 2013: Twitter usage by electoral candidates.
GESIS Data Archive, ZA5973 Data file Version 1.0.0.

Karpf DA (2012) Social science research methods in internet
time. Information, Communication & Society 15(5):

639–661.
King G (2011) Ensuring the data-rich future of the social

sciences. Science 331(6018): 719–721.

Kirkegaard E and Bjerrekær JD (2014) The OKCupid data-
set: A very large public dataset of dating site users. Open
differential psychology [Originally posted at https://osf.io/

p9ixw/]..
Library of Congress (2013) Update on the Twitter archive at

the Library of Congress. Available at: http://www.loc.gov/
today/pr/2013/files/twitter_report_2013jan.pdf (accessed

20 May 2016).
Metcalf J and Crawford K (2016) Where are human subjects

in big data research? The emerging ethics divide. Big Data

and Society 3(1): 1–14.
Morstatter F, Lubold N, Pon-Barry H, et al. (2014) Finding

eyewitness tweets during crises. In: Proceedings of the ACL

2014 workshop on language technologies and computational
social science, Baltimore, MD, 26 June 2014, pp. 23–27.
Menlo Park, CA: AAAI Press.

Morstatter F, Pfeffer J, Liu H, et al. (2013) Is the sample good
enough? Comparing data from twitter’s streaming API
with twitter’s firehose. In: Seventh international AAAI con-
ference on weblogs and social media (ICWSM),

Cambridge, MA, 8–11 July 2013, pp. 400–408. Menlo
Park, CA: AAAI Press.

MPI-SWS (2010) The Twitter project page at MPI-SWS.

Available at: http://twitter.mpi-sws.org/ (accessed 20
May 2016).

Pfeffer J and Morstatter F (2016) Geotagged Twitter posts

from the United States: A tweet collection to investigate
representativeness. Version: 1. GESIS Data Archive.
Dataset. http://doi.org/10.7802/1166.

Popper K (1959) The Logic of Scientific Discovery. London:

Hutchinson.
QGIS Development Team (2009) QGIS geographic informa-

tion system. Open Source Geospatial Foundation.

Recker A and Müller S (2015) Preserving the essence:
Identifying the significant properties of social science
research data. New Review of Information Networking

20(1–2): 231–237.

Ruths D and Pfeffer J (2014) Social media for large studies of

behavior. Science 346(6213): 1063–1064.

Schumann N and Recker A (2013) De-mystifying OAIS com-

pliance: Benefits and challenges of mapping the OAIS ref-

erence model to the GESIS data archive IASSIST

Quarterly 36(2): 6–11.
Stone B (2010) Tweet preservation. In: The official Twitter

blog. Available at: https://blog.twitter.com/2010/tweet-

preservation (accessed 20 May 2016).

Thomson SD (2016) Preserving social media. DPC technol-

ogy watch report. Available at: http://www.dpconline.org/

docman/technology-watch-reports/1486-twr16-01/file

(accessed 09 January 2017).
Tufekci Z (2014) Big questions for social media big data:

Representativeness, validity and other methodological pit-

falls. In: Proceedings of the eighth international AAAI con-

ference on weblogs and social media (ICWSM), Ann

Arbor, MI, 1–4 June 2014. Palo Alto, CA: AAAI Press.
Twitter (2014) Developer agreement & policy: Twitter devel-

oper agreement. Available at: https://dev.twitter.com/

overview/terms/agreement-and-policy (accessed 20 May

2016).

Vardigan M, Granda P and Hoelter L (2016) Documenting

survey data across the life cycle. In: Fielding N, Lee RM

and Blank G (eds) The SAGE Handbook of Survey

Methodology. London: Sage, p. 443.
Verma S, Vieweg S, Corvey W, et al. (2011) Natural language

processing to the rescue? Extracting ‘‘situational aware-

ness’’ tweets during mass emergency. In: Proceedings of

the fifth international AAAI conference on weblogs and

social media (ICWSM), Barcelona, Spain, 17–21 July

2011, pp. 385–392. Menlo Park, CA: AAAI Press.

Weller K (2015) Accepting the challenges of social media

research. Online Information Review 39(3): 281–289.

Weller K and Kinder-Kurlanda KE (2015) Uncovering the

challenges in collection, sharing and documentation: The

hidden data of social media research? In: Proceedings of

the ninth international AAAI conference on web and social

media (ICWSM), standards and practices workshop (eds

Hogan B and Quercia D), Oxford, UK, 26–29 May

2015, pp. 29–37. Menlo Park, CA: AAAI Press.
Williams SA, Terras M and Warwick C (2013a) How Twitter

is studied in the medical professions: A classification of

Twitter papers indexed in PubMed. Medicine 2.0 2(2): e2.
Williams SA, Terras M and Warwick C (2013b) What do

people study when they study Twitter? Classifying

Twitter related academic papers. Journal of

Documentation 69(3): 384–410.
Wira-Alam A, Müller S and Schumann N (2015) Datorium:

Sharing platform for social science data. In: Proceedings of

the 14th international symposium on information science
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