Mining Social Science Publications for Survey Variables
Zielinski, Andrea; Mutschke, Peter

Postprint / Postprint
Konferenzbeitrag / conference paper

Zur Verfügung gestellt in Kooperation mit / provided in cooperation with:
GESIS - Leibniz-Institut für Sozialwissenschaften

Empfohlene Zitierung / Suggested Citation:

Nutzungsbedingungen:
Dieser Text wird unter einer CC BY-NC-SA Lizenz (Namensnennung-Nicht-kommerziell-Weitergabe unter gleichen Bedingungen) zur Verfügung gestellt. Nähere Auskünfte zu den CC-Lizenzen finden Sie hier: https://creativecommons.org/licenses/by-nc-sa/4.0/deed.de

Terms of use:
This document is made available under a CC BY-NC-SA Licence (Attribution-NonCommercial-ShareAlike). For more Information see: https://creativecommons.org/licenses/by-nc-sa/4.0
Mining Social Science Publications for Survey Variables

Abstract

Research in Social Science is usually based on survey data where individual research questions relate to observable concepts (variables). However, due to a lack of standards for data citations a reliable identification of the variables used is often difficult. In this paper, we present a work-in-progress study that seeks to provide a solution to the variable detection task based on supervised machine learning algorithms, using a linguistic analysis pipeline to extract a rich feature set, including terminological concepts and similarity metric scores. Further, we present preliminary results on a small dataset that has been specifically designed for this task, yielding modest improvements over the baseline.

1 Introduction

In face of the growing number of scientific publications, Text Mining (TM) becomes increasingly important to make hidden knowledge explicit. A particular challenge in this regard is to identify research data citations in scholarly publications, due to their wide variety, ranging from quotations to free paraphrases. The problem of detecting dataset references in Social Science publications has been addressed so far by Boland et al. (2012) who mine patterns for discovering dataset citations in full texts to link them to the corresponding entries in a Social Science dataset repository. The recognition, however, has been done just on study name level, in the Social Sciences typically a survey study, e.g. the International Social Survey Programme ISSP. Survey studies, however, usually consist of several hundreds of concepts, so-called variables, each of them representing a single survey question (e.g. Do you believe in Heaven?). Therefore, from the perspective of Social Sciences, having a linkage just to the entire study would not be sufficient to clearly identify the data actually used. For this, identifying the precise variable, the precise subset of variables respectively, that was referenced is strongly needed.

A fine-grained linking between publications and data on the level of variables would have a number of benefits to researchers: It would enable indexing publications by survey variables and discovering publications that discuss the concept of interest (a particular variable). Moreover, it would facilitate a monitoring of the relevance of topical issues (by tracking the use of variables for research) as well as detecting research gaps (by tracking the variables not being addressed by researchers).

The problem, however, is that even though variables are usually assigned a code and a label (e.g. V39: Belief in life after death or V40: Believe in Heaven from the ISSP 1998 study) as well as the question text from the questionnaire, in practice, authors often do not adhere to citation standards, neither for study names nor for variables. Instead, authors tend to use variations of label and/or question text or combine several variables in one phrase (such as “...belief in afterlife and Heaven...”).

In this paper, we introduce the novel task of identifying variables which we define as a multilabel classification task, drawing on ideas from Paraphrase Identification, Citation Matching, and Answer Retrieval in a Question Answering (QA) scenario. Given a set of survey variables, the system needs to examine if one or more of them are mentioned in a text. The task is particularly challenging for the following reasons: The scholarly

Publications are heterogeneous, covering various styles and topics, and noisy due to pdf-to-text conversion. Moreover, training data is sparse. Therefore, it is crucial to investigate how existing methods in the field of NLP can be applied to our use case. We present a work-in-progress study that seeks to provide a solution to the variable detection task based on supervised ML, using a linguistic analysis pipeline to extract indicative features, ranging from surface-oriented to lexical semantic features.

The overall task can be interpreted either as an information retrieval task, trying to return the most relevant spans of text, as exemplified in TREC QA track (Voorhees, 1999), or as the task to assess the semantic similarity between two (generally very short) text pairs (Agirre et al., 2013). Both approaches can also be combined, i.e. by filtering out good candidates from (possibly huge) document collections in the first stage, and using higher-level semantic processing tools in the second step in order to increase precision.

The paper is organized as follows: Section 2 presents related work, Section 3 describes the Social Science use case, Section 4 reports on two recent approaches, Section 5 shows the experiments and discusses the results. Finally, Section 6 draws the conclusions and shows future directions.

2 Related Work

Variable Detection is a new task, yet closely related to several existing lines of work in the field of NLP. At its core is detecting the similarity between sentences which is still conceived as a complex and difficult task, involving textual entailment recognition and paraphrase detection at the upper end of the spectrum, and can be re-casted into a surface string matching task, prominent for, e.g., detecting plagiarism, at the lower end of it.

In the Pascal Challenge Recognizing Textual Entailment (RTE) (Dagan et al., 2006), QA systems have been designed to identify texts that entail a hypothesized answer (T) to a given question (H). The best results were obtained by lexically-based systems without deeper semantic reasoning, relying on ML techniques, similarity measures (string, lexical and syntactic-based), knowledge resources (e.g., WordNet, paraphrase corpora) and linguistic analysis. Even though results to the RTE task in general were modest with accuracy scores between 50-60%, for specific task settings, they could bring accuracy gains: Harabagiu (2006) report an increase in performance from 30.6% to 42.7% on an open-domain QA task.

An overview of the plagiarism detection competition in PAN-PC11 is given in Potthast (2011). Best results on extrinsic plagiarism, with a focus on cases made up of < 50 words, achieve 14% recall and 70% precision (evaluated on a character basis). A more fine grained typology of plagiarism is given in (cf. Baron (2013)) who reports that while copy&paste plagiarism can be detected reliably using VSMs, fingerprinting or substring matching methods, cases involving the recognition of text segments plagiarized by humans involving paraphrasing, are extremely hard to detect (Gipp and Meuschke, 2011) with a recall of 33% for the best system on a balanced corpus.

3 Task Description

Identifying mentions of survey variables in texts can be defined as a multi-label classification problem: given a set of sentences \(S \subseteq \{s_1, ..., s_i\} \) and variables \(V \subseteq \{v_1, ..., v_j\} \), we need to build a classifier function \(h : S \rightarrow V \). Each variable \(v \) has a unique label (i.e. class) characterizing its semantics. Each sentence \(s \) is represented by a single instance which can be associated with one (or more) class label(s), including non-related as a label. Usually, the number of labels assigned to \(s \) is relatively small. Since the link between a publication and a study has been established beforehand, the set of labels can be reduced to those that occur in the respective study.

A gold standard corpus entitled ALLBUS-English and ALLBUS-German has been compiled and annotated by two Social Sciences students. In doing so, they have taken the specific document context as well as dependencies among variables belonging to the same study into account. Identical survey variables (ca. 8%) have been clustered beforehand. ALLBUS-English and ALLBUS-German are composed of sentences labeled with any of the 78 (92) variables from the underlying survey studies, yielding 88 (103) sentences classified as relevant. Average density of labels is 1.02 for English and German, respectively. The vast majority of sentences is unrelated, i.e. 4,585 (8,467) sentences. Average length of a variable text is ca. 500 tokens with about 14.3 tokens per sentence. An example is provided below:

Reference: “Foreigners should not be al-
lowed to engage in political activities.”

Survey: “Please tell me for each statement to what extent you agree with it. [...] Foreigners living in Germany should be prohibited from taking part in any kind of political activity in Germany.”

A first empirical investigation revealed different types of variable references, most prominently:

- Citations, reported speech, i.e., either exact copies of a text fragment or marked by quotation marks
- Lexical modifications, due to synonym substitution or compounding
- Trend to shorten and summarize the variable
- Word order modifications along with verb/noun conversions.

4 Approaches for Variable Detection

In our experiments, we tested (A) a supervised ML model based on a Bag of Words (BoW) representation, using linguistic and conceptual features, and integrating external knowledge resources, and (B) a supervised ML model using real-valued feature vectors derived from computing semantic similarity metrics for pairs of variables and sentences. In both approaches, A and B, documents are first pre-processed and the variable lists are retrieved from the data catalog. Then, a rich set of features is computed from sentences and variables.

4.1 Feature Extraction

For pre-processing, we use a pipeline of tools from DKPro (de Castilho and Gurevych, 2014) that supports tokenization, lemmatization, part-of-speech tagging and Named Entity Recognition. For text segmentation, i.e. extracting sentences from sections and paragraphs, we use a pdf-to-text converter. Titles as well as tables are largely ignored.

For approach A we integrate general lexical resources as well as the thesaurus for Social Sciences TheSoz (Zapilko et al., 2013), extracting the following features from sentences and variables:

- Tokens, lemmas, PoS using (Schmid, 1995)
- Named Entities using Stanford NER (Finkel et al., 2005; Faruqui et al., 2010)
- Term filter, selecting lemmas with PoS=Noun, Verb, Adjective (idf-weighted)
- Keyterm terms, synonyms and hypernyms from TheSoz
- Synonyms, hypernyms as well as derivational variants from WordNet (Fellbaum, 1998; Hamp and Feldweg, 1997)

For B we rely on a set of similarity distance metrics provided by DKPro Similarity (Bär et al., 2013) and by the Evaluation Framework for Statistical Machine Translation. In particular, the METEOR metric has proven to yield competitive results in the paraphrase detection task (Pado et al., 2014). Extracted features from all the S-V-pairs are:

- n-grams (1,2,3,4), greedy string tiling, longest common subsequence, using DKPro Similarity (Bär et al., 2013)
- BLEU: maximum n-gram order of 4 (Papineni et al., 2002).
- METEOR, using the standard setting with normalization and all variants exact, stem, synonym and paraphrase (Banerjee and Lavie, 2005) with extended DBnary for German (Elloumi et al., 2015).

4.2 Classification Algorithms

For approach A, we use a BoW representation of features from 4.1 and experiment with 3 learning algorithms from the ML framework WEKA (Witten et al., 1999), Naive Bayes, KNN and SVM linear. In order to rank candidate sentences, we use the Nearest Neighbor algorithm which returns the closest instances for V based on majority voting. KNN already provides a simple, yet effective solution to the multi-label problem.

In B, similarity is encoded in the similarity scores (cf. 4.2). Generally, for a new task, finding the best measures and thresholds is difficult, since no prior heuristics exist. In order to find out which scores correlate most with human judgments, we computed the Pearson correlation coefficient $r_{S,V}$.

5 Experiments and Results

5.1 Supervised ML model based on BoW (A)

The variables’ texts were used to train a set of classifiers, resulting in one classifier per variable. For our experiments, we varied over different feature sets and iterated over the set of ML algorithms. In order to be able to detect irrelevant sentences,
we introduced some noise (1% non-related) from withheld sentences. Testing was carried out on the entire German and English ALLBUS corpus (disjoint from the training set).

Results are given in Table 2, showing a modest achievement over the keyword match baseline (cf. (Light et al., 2001)). An interesting finding is that domain-specific TheSoz terms help to increase recall, when run in isolation. In combination with WordNet terms, synonyms bring most gain, followed by hypernyms and derivations. Also, the performance of classifiers varies considerably. We observed that when running multiple classifiers in an ensemble, different result sets could be retrieved, increasing recall. Adding features derived from the answers of the variables improved recall slightly. Furthermore, we applied NN search and ranking algorithm on the combined feature set up to rank 100. Results reveal that most mentions of variables are among the top 10. Overall, MAP is higher for English than for German due to the higher coverage of English WordNet. Note that the class distributions also vary.

5.2 Supervised ML model on similarity metrics (B)

For this experiment, we aimed for a balanced dataset consisting of all positive pairings (from our gold standard) and adding randomly generated combinations of S-V pairings to constitute the ‘unrelated’ class (with 10-fold cross-validation). Then, for all German and English pairs, the individual similarity scores for different standard metrics were computed and fed into a linear regression classifier.

Results are listed in Table 1 and indicate that overall Pearson correlation scores are relatively low - in particular for German (between 0.06 and 0.62). Surprisingly, robust metrics like Levenshtein yield a relatively high correlation score, out-ranking METEOR. Due to its ability to detect citations and deal with noisy input, results are overall better, while term expansion/weighting and unigram alignment cannot compensate for this.

6 Conclusion and Future Work

On the variable detection task, our first experiments give insights into the performance for various NLP methods. The choice of features was motivated by empirical corpus investigations. While the dataset is relevant for the task, it is still too small to train and develop robust ML classifiers. Yet, evaluating the two approaches with different parameter settings and testing them individually provides interesting results which we will use for future work. First, we will elaborate on the BoW approach, by a) integrating further knowledge resources (such as word embeddings) to increase recall and b) enhancing term weights from external resources, since terminology proved to be important for retrieving variables. Second, we will devise specialized classifiers for the recognition of citations and reported speech for which string similarity based classifiers are well suited. Last but not least, we will adapt METEOR to better fit the task, e.g. optimizing the penalty score and matching, because it has a high potential for disambiguating related variables.

Table 1: Pearson Correlation Scores (G: German; E: English; LSSC: Levenshtein Second String Comparator; LC: Levenshtein Comparator; JWSSC: JaroWinkler SecondString Comparator; GTSS: Greedy String Tiling; JSSC: Jaro Second String Comparator; BLEU: MET\textsubscript{esp.}; MET\textsubscript{ess}: Meteor stem-synonym-paraphrase; MET\textsubscript{ess}: Meteor exact-stem-synonym)

<table>
<thead>
<tr>
<th>Metrics</th>
<th>(E_{P}V)</th>
<th>(G_{P}V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSSC</td>
<td>0.2602</td>
<td>0.3379</td>
</tr>
<tr>
<td>LC</td>
<td>0.52536</td>
<td>0.3361</td>
</tr>
<tr>
<td>JWSSC</td>
<td>0.2479</td>
<td>0.3586</td>
</tr>
<tr>
<td>GTSS\textsubscript{S}</td>
<td>0.42132</td>
<td>0.4039</td>
</tr>
<tr>
<td>JSSC</td>
<td>0.28602</td>
<td>0.3379</td>
</tr>
<tr>
<td>GTSS\textsubscript{G}</td>
<td>0.78116</td>
<td>0.6216</td>
</tr>
<tr>
<td>BLEU</td>
<td>0.20972</td>
<td>0.2648</td>
</tr>
<tr>
<td>MET\textsubscript{esp.}</td>
<td>0.75164</td>
<td>0.92678</td>
</tr>
<tr>
<td>ngram\textsubscript{m}</td>
<td>0.49991</td>
<td>0.4039</td>
</tr>
<tr>
<td>ngram\textsubscript{L}</td>
<td>0.09381</td>
<td>0.1478</td>
</tr>
<tr>
<td>(\text{MET}_{es})</td>
<td>0.75164</td>
<td>0.92678</td>
</tr>
</tbody>
</table>

References

<table>
<thead>
<tr>
<th>Feature Set</th>
<th>MAP ALLBUS English</th>
<th>MAP ALLBUS German</th>
<th>MAP Naïve Bayes ALLBUS English</th>
<th>MAP Naïve Bayes ALLBUS German</th>
<th>MAP SVN linear ALLBUS English</th>
<th>MAP SVN linear ALLBUS German</th>
</tr>
</thead>
<tbody>
<tr>
<td>Token</td>
<td>0.05 0.06 0.05</td>
<td>0.04 0.05 0.06</td>
<td>0.03 0.04 0.05</td>
<td>0.03 0.04 0.05</td>
<td>0.03 0.04 0.05</td>
<td>0.03 0.04 0.05</td>
</tr>
<tr>
<td>Lemma</td>
<td>0.05 0.06 0.05</td>
<td>0.04 0.05 0.06</td>
<td>0.03 0.04 0.05</td>
<td>0.03 0.04 0.05</td>
<td>0.03 0.04 0.05</td>
<td>0.03 0.04 0.05</td>
</tr>
<tr>
<td>Terms</td>
<td>0.04 0.07 0.08</td>
<td>0.15 0.13 0.1</td>
<td>0.02 0.08 0.03</td>
<td>0.02 0.08 0.03</td>
<td>0.01 0.04 0.02</td>
<td>0.01 0.04 0.02</td>
</tr>
<tr>
<td>NER</td>
<td>0.01 0.02 0.01</td>
<td>0.01 0.01 0.01</td>
<td>0.01 0.03 0.01</td>
<td>0.01 0.03 0.01</td>
<td>0.01 0.03 0.01</td>
<td>0.01 0.03 0.01</td>
</tr>
<tr>
<td>TS-S</td>
<td>0.05 0.10 0.05</td>
<td>0.10 0.04 0.12</td>
<td>0.02 0.09 0.01</td>
<td>0.02 0.09 0.01</td>
<td>0.01 0.04 0.02</td>
<td>0.01 0.04 0.02</td>
</tr>
<tr>
<td>WN-S</td>
<td>0.05 0.08 0.04</td>
<td>0.18 0.08 0.18</td>
<td>0.02 0.05 0.01</td>
<td>0.02 0.05 0.01</td>
<td>0.01 0.05 0.02</td>
<td>0.01 0.05 0.02</td>
</tr>
<tr>
<td>WN-H</td>
<td>0.04 0.13 0.05</td>
<td>0.18 0.04 0.13</td>
<td>0.01 0.05 0.03</td>
<td>0.01 0.05 0.03</td>
<td>0.01 0.05 0.03</td>
<td>0.01 0.05 0.03</td>
</tr>
<tr>
<td>WN-D</td>
<td>0.04 0.16 0.04</td>
<td>0.12 0.03 0.15</td>
<td>0.02 0.04 0.01</td>
<td>0.02 0.04 0.01</td>
<td>0.01 0.04 0.02</td>
<td>0.01 0.04 0.02</td>
</tr>
<tr>
<td>Comb</td>
<td>0.06 0.17 0.03</td>
<td>0.23 0.05 0.16</td>
<td>0.03 0.09 0.01</td>
<td>0.03 0.09 0.01</td>
<td>0.01 0.04 0.03</td>
<td>0.01 0.04 0.03</td>
</tr>
</tbody>
</table>

Table 2: Performance on ALLBUS for different Feature Sets (Terms; NER: Stanford NER; TS-S: TheSoz; WN-S: WordNet Synonyms; WN-H: WordNet Hypernyms; WN-D: WordNet Derivations; All Features combined; measures are: Macro Average Precision (MAP); Macro Average Recall (MAR))

In *ACL (Conference System Demonstrations)*, pages 121–126.

