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Abstract

This contribution deals with the fundamentals of weighting and with the different types of weights. 
Terms such as design weighting and adjustment weighting are explained, and the Horvitz-Thompson 
estimator and the GREG estimator are presented.
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1. What ¡s ¡t about?

In most surveys, the underlying samples are not drawn by means of simple random sampling. Rather, 
complex sampling procedures are used. One example is disproportionate stratified random sampling. In 
such samples, the sample mean is no longer an adequate estimator for the population mean of the 
variable of interest. For this reason, suitable weights are applied to the individual elements in the 
sample, and the individual data sets are enhanced with a weighting variable. When these weights are 
the inverse of the inclusion probabilities, this is referred to as design weighting, which is a statistically 
sound procedure.

Another case is present when the realised sample deviates from the target sample due to nonresponse, 
for example. Here, weighting is applied by adjusting the sample data to known marginal distributions 
of key variables, thereby endeavouring to correct skewness in the sample. However, adjustment 
weighting should never be applied independently of design weighting. Fundamental articles on this 
subject can be found in Bethlehem (2002), Dorofeev and Grant (2006), Kish (1965), Lohr (1999), and 
Särndal et al. (1992).

2. Design weighting

Let U denote a population, and let uf denote the elements of the population, where / = . N is

the population size. Frequently, only the index set U = {1,...,/V} is used for the target population. A 

sample S comprising n units is a sequence of n elements (^,...,1^ drawn from U. Index ik represents 

the unit selected in the Arth draw; n is the sample size.

Random samples are characterised by the fact that each possible sample S is assigned a known 
probability P(5). The set of all samples where Ff5) > 0 is referred to as the sample space. The probability 
of selection, or inclusion,

= E
S:i,jcS

gives the probability that the units / and j will be selected into the sample. Instead of 7ití , we use the

shorter notation лг . If / is not equal to j, this is referred to as second-order Inclusion probability, if I is 

equal to j, it is termed first-order inclusion probability. In the case of simple random sampling (without 
replacement) of n units from a population with N units,

Л-, =
n
Ñ
n(n - 1) 

/V(/V-1)
for / У j.

A sample drawn in such a way that all possible samples of n elements from the population are equally 
likely is called a simple random sample. All other samples are called complex samples. Complex samples 
also include cluster samples, where the first-order selection probabilities for every element of the 
population are identical but the second-order selection probabilities are not.
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Consider, as a further example, stratified random samples. Assume that the population U is divided into 
H strata. The stratification of Germany according to federal states would yield 16 strata, for example. If 
a simple random sample of exactly rih units is drawn from the hth stratum comprising N h units, then

nh r . r ,
л-, = —  for / from stratum h

Nh
nh(nh - f ]  r . . , , r ,

n; ;= —— -----  for i ф i both from stratum h

n n
Ti-,-, = h k for / from stratum h and /' from stratum к with k. J NhNk J

When the (unequal) probabilities of selection of the sample units yielded by the sampling design are 
taken into account at the estimation stage, this is referred to as design weighting. Design weights are 
computed as the inverses of the probabilities of selection of the sampled units and applied to the data. 
The weights are often normalised, so that the sum of the weights equals the number of observations. In 
practice, second-order selection probabilities are usually unknown for complex sampling designs. Thus, 
for variance and confidence interval estimation, most statistical software packages will either ignore 
the complex design, try to approximate the sampling variance, or use a model-based approach.

The selection probabilities for units (e.g., municipalities) in the first stage of sampling are often 
unequal. Cities are given a higher probability of selection than small municipalities. However, if an 
element that had a very low probability a priori of being selected into the sample is selected after all, it 
has a larger weight than an element that had a very high probability a priori of being selected. Hence, 
the element with a low probability o f selection has a large weight, whereas the element with a high 
probability o f selection has a small weight. In order to avoid an extreme spread in the weight 
distribution, a transformation can be used that introduces an upper, and sometimes also a lower, 
bound.

3. Which estimators are typically used?

N

The Horvitz-Thompson estimator is used as an unbiased estimator for the total Y = Z r
/=1

N V

Y = Y L1 нт /  , A
,=1 Я-/

Í1 if /th unit is selected
where L¡ = t for / = 1,...,/v.

[0 otherwise

It is assumed that all лг are positive. For the variance of the Horvitz-Thompson estimator, we obtain 

. 4 N N y  Yvar( Á ) = É É ^ - ^ ( ^ - ^ ) -
/=1 ;= i  'А л j

In the case of a sampling procedure with a fixed sample size n
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N N N
¿  л, = nK¡ and ¿  £  л,- = n2
7=1 ,=1y=17=1

applies, and the Yates-Grundy variance estimator

yields an unbiased estimate of the var (^нг) when all n- are positive. It is clearly non-negative when

applies to all / and j.

In the case of simple random sampling (without replacement) or stratified sampling, the Horvitz- 
Thompson estimator and the variance estimator correspond to the usual estimates.

Although the Horvitz-Thompson estimator is always unbiased, its variance may be very large. If this is 
the case, another estimator should be used. An amusing example of this is given in Basu (1971).

4. GREG estimator

Incorporation of auxiliary information into the estimator
Even in the case of simple random sampling, it may be expedient to incorporate auxiliary information 
into the estimator, for example from official statistics sources. Examples of this are the ratio estimator 
and the regression estimator.

Besides the у values of interest, x  values are also assigned to the units of the population. The estimator
used then takes the form

j 5 -ß (x 5 -x a)

where is the sample mean of the у values, xs is the sample mean of the x values, and В is a known 

parameter, which is often estimated from the sample.

The advantage of estimators of the aforementioned type is that they then have a smaller variance than 
the sample mean if the relationship between the у values and the x values is nearly linear.

GREG estimator
In complex samples, the Elorvitz-Thompson estimator can be modified in a similar way, and the 
resulting general regression (GREG) estimator is

i=i

with
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¿,=
1 if /th unit is selected 

0 otherwise
for / =  1 , Л/.

and

ил = £77
л

X,
У

where сг are positive numbers specified by the statistician and q, are the response probabilities of the 

/th element. сг is often set equal to 1 and then corresponds to the two-phase GREG estimator 

proposed by Särndal and Lundström (2005: 64). The values of the auxiliary variable К for the kth person 

are summarised in the К-dimensional vector x k . As a rule, the response probability q, for the unit / is 

unknown. Homogeneous response groups are frequently assumed, or q, is estimated using a logistic 

regression model. In the majority of applications, q, is set equal to 1, which yields the calibration 

weights

ил =

V У

For the GREG estimator

_ w N
У6Д£6 = = 22^/ clearly applies for all auxiliary variables x. In this sense, the GREG estimator

/=1 /=1

is "representative". The concept of calibration is dealt with in Deville and Särndal (1992).

Example
Consider a simple example where the response probabilities are known. In a company that has 300 male 
and 1000 female employees, a random sample comprising 100 men and 100 women is drawn. Thirty of 
the men and 50 of the women answer questions about their job satisfaction. Of the 30 men, 20 are 
satisfied; of the 50 women, 10 are satisfied. If one wishes to estimate the number of employees who 
are satisfied with their jobs, one computes

as an estimated value. The proportion of employees who are satisfied with their jobs is therefore 
estimated to be 31%. Here, it is assumed that the response probability is 0.3 for all the men and 0.5 for 
all the women. But because one knows from experience that the expected response rate of men is 24°/o 
and that of women is 5O°/o, the estimate would be

100

300
•0.24

= 250 + 200 = 450.20- 10--

0.5
100

1000
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However, this estimate has one disadvantage: if one had asked about the number of employees who 
were dissatisfied with their jobs, one would have obtained

1 1 
10--------------+ 4 0 --------------

100 100
------0 . 2 4 -------- 0.5
300 1000

= 125 + 800 = 925

and would have therefore estimated that the total number of employees was 1,375. The estimated 
percentage of employees who are satisfied with their jobs plus the estimated percentage of dissatisfied 
employees does not add up to one. This can be taken into account by calibrating an all-ones vector. If 

one sets for the calibration weights >r,, the values x i = 1, ct = 1 for all / and тг = 100 / 300 = 1/3 for 

the men and л  = 10011000 = 0.1 for the women, and g. = 0.24 for the men and qi = 0.5 for the

women, and therefore w,- =
1 N 130

/̂9/ 1 ”  11

Respondents ^/9/

208
for the men and ----- for the women, the

11

estimator for the number of employees who are satisfied with their jobs would be

130 208 4680
20 ------+ 10-------= -------

11 11 11
425.45

that is, 32.72%, and the estimate for the number of employees who are dissatisfied with their jobs 
would be

1Л 130 20810 X----+ 40x-----
11 11

9620
11

874.55

that is, 67.28%. The estimated total of all employees would then be 1,300, which is the actual number 
of employees.

Nonresponse weighting
In sample-based survey practice, nonresponse is an unavoidable problem. The level of nonresponse 
varies across countries. However, within countries, too, response behaviour may depend on factors such 
as the length of the questionnaire, the choice of survey topic, the survey mode, or the interviewer. If a 
sampled person does not take part in the survey (e.g., because of refusal or non-contact), this is 
referred to as unit nonresponse. If a respondent fails to answer only some of the survey questions (e.g., 
the income question), this is known as item nonresponse.

What can be done when, as a result of nonresponse, the sample distributions of known variables such 
as age, sex, and region differ significantly from those in the population?

Figure 1 below illustrates the nonresponse process in the case of a two-phase sampling procedure in 
which first the sample S is selected and then the subset r e  5.



A simple way of taking nonresponse into account in the estimator is to modify the GREG estimator by 
replacing the sample S in the formula with the response set r.

i+ q tx , -Z 1 x j fz Ck X X '
л кл к X;U=i

У
k&r xkqk ) x kqk J

У

Further deliberations on nonresponse weighting can be found in Elliot (1991).

Of fundamental importance when dealing with nonresponse is the question of the nonresponse model. 
Typically, a distinction is made between (a) MCAR (missing completely at random), when nonresponse is 
completely random, (b) MAR (missing at random), when nonresponse in subgroups is completely 
random, and (c) MNAR (missing not at random), when neither MCAR nor MAR is present. The most 
frequent application is MCAR, whereby the subgroups must be defined by constellations of variables.

5. Adjustment weighting

Cell weighting, or adjustment weighting, is frequently applied in addition to design weighting. It can be 
considered when the distributions of external variables (e.g., age, sex, federal state) in the population 
are known, but they differ from those in the sample. By calibrating the marginal sample distributions to 
those in the population, it is hoped that the estimator will be improved. In many cases, design 
weighting is dispensed with, and only adjustment weighting is applied. For statistical reasons, however, 
design weighting should always precede adjustment weighting. The probabilities of selection are then 
included in the adjustment weighting.

Depending on whether the joint distribution of the adjustment variables or only their marginal 
distributions are known, two cases are distinguished:

1. The joint distribution of К variables is known. By means of simple weighting (target/actual), the 
distribution in the sample is adjusted to match the distribution in the population. This type of 
weighting is also referred to as poststratification weighting. A general formula in the case of K=2 
categorical variables is:

where 7ik denotes the first-order inclusion probabilities and S contains all units of the sample

from the //th cell. When the nonresponse process is random in every cell, a good estimate is usually 
obtained. Cases where many cells in the sample are empty are problematic. Adjoining cells must 
then be aggregated.
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2. When only the marginal distributions of the К variables are known, so-called raking methods are 
used. The best known of these methods is based on the iterative proportional fitting (IPF) algorithm 
developed by Deming and Stephan (1941), which is also applied in loglinear data analysis.

6. Other weighting methods

In addition to design weighting and adjustment weighting, the following weighting methods play a role 
at the analysis stage in surveys across several countries and rounds:

• Analyses on the basis of one country in one round

• Analyses on the basis of several countries in one round

• Analyses on the basis of the combined data sets of one country across several rounds

• Analyses on the basis of the combined data sets of several countries across several rounds

An example of this within the framework of the European Social Survey can be found in Gabler and 
Ganninger (2004).

Own weighting procedures are needed in the case of longitudinal weighting. The German Socio­
Economic Panel (SOEP) is a well-known example. The weighting applied can be found in Schupp (2004).
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