
www.ssoar.info

Historical Information Science: Is There Such a
Thing? New Comments on an Old Idea [1993]
Thaller, Manfred

Veröffentlichungsversion / Published Version
Zeitschriftenartikel / journal article

Zur Verfügung gestellt in Kooperation mit / provided in cooperation with:
GESIS - Leibniz-Institut für Sozialwissenschaften

Empfohlene Zitierung / Suggested Citation:
Thaller, M. (2017). Historical Information Science: Is There Such a Thing? New Comments on an Old Idea [1993].
Historical Social Research, Supplement, 29, 260-286. https://doi.org/10.12759/hsr.suppl.29.2017.260-286

Nutzungsbedingungen:
Dieser Text wird unter einer CC BY Lizenz (Namensnennung) zur
Verfügung gestellt. Nähere Auskünfte zu den CC-Lizenzen finden
Sie hier:
https://creativecommons.org/licenses/by/4.0/deed.de

Terms of use:
This document is made available under a CC BY Licence
(Attribution). For more Information see:
https://creativecommons.org/licenses/by/4.0

Diese Version ist zitierbar unter / This version is citable under:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-54046-9

http://www.ssoar.info
https://doi.org/10.12759/hsr.suppl.29.2017.260-286
https://creativecommons.org/licenses/by/4.0/deed.de
https://creativecommons.org/licenses/by/4.0
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-54046-9

Historical Social Research

Historische Sozialforschung

Manfred Thaller:

Historical Information Science: Is there such a Thing?

New Comments on an old Idea [1993]

doi: 10.12759/hsr.suppl.29.2017.260-286

Cite as:

Manfred Thaller. 2017. Historical Information Science: Is there such a Thing? New

Comments on an old Idea [1993]. Historical Social Research Supplement 29: 260-286.

doi: 10.12759/hsr.suppl.29.2017.260-286.

For further information on our journal, including tables of contents, article abstracts,
and our extensive online archive, please visit http://www.gesis.org/en/hsr.

Published in:

Historical Social Research Supplement 29 (2017)

Historical Social Research

Historische Sozialforschung

Other articles published in this Supplement:

Manfred Thaller

Between the Chairs. An Interdisciplinary Career.

doi: 10.12759/hsr.suppl.29.2017.7-109

Manfred Thaller

Automation on Parnassus. CLIO – A Databank Oriented System for Historians [1980].

doi: 10.12759/hsr.suppl.29.2017.113-137

Manfred Thaller

Ungefähre Exaktheit. Theoretische Grundlagen und praktische Möglichkeiten einer Formulierung historischer

Quellen als Produkte ,unscharfer’ Systeme [1984].

doi: 10.12759/hsr.suppl.29.2017.138-159

Manfred Thaller

Vorüberlegungen für einen internationalen Workshop über die Schaffung, Verbindung und Nutzung großer

interdisziplinärer Quellenbanken in den historischen Wissenschaften [1986].

doi: 10.12759/hsr.suppl.29.2017.160-177

Manfred Thaller

Entzauberungen: Die Entwicklung einer fachspezifischen historischen Datenverarbeitung in der Bundesrepublik

[1990].

doi: 10.12759/hsr.suppl.29.2017.178-192

Manfred Thaller

The Need for a Theory of Historical Computing [1991].

doi: 10.12759/hsr.suppl.29.2017.193-202

Manfred Thaller

The Need for Standards: Data Modelling and Exchange [1991].

doi: 10.12759/hsr.suppl.29.2017.203-220

Manfred Thaller

Von der Mißverständlichkeit des Selbstverständlichen. Beobachtungen zur Diskussion über die Nützlichkeit formaler

Verfahren in der Geschichtswissenschaft [1992].

doi: 10.12759/hsr.suppl.29.2017.221-242

Manfred Thaller

The Archive on Top of your Desk. An Introduction to Self-Documenting Image Files [1993].

doi: 10.12759/hsr.suppl.29.2017.243-259

Manfred Thaller

Historical Information Science: Is there such a Thing? New Comments on an old Idea [1993].

doi: 10.12759/hsr.suppl.29.2017.260-286

Manfred Thaller

Source Oriented Data Processing and Quantification: Distrustful Brothers [1995]

doi: 10.12759/hsr.suppl.29.2017.287-306

Manfred Thaller

From the Digitized to the Digital Library [2001].

doi: 10.12759/hsr.suppl.29.2017.307-319

Manfred Thaller

Reproduktion, Erschließung, Edition, Interpretation: Ihre Beziehungen in einer digitalen Welt [2005].

doi: 10.12759/hsr.suppl.29.2017.320-343

Manfred Thaller

The Cologne Information Model: Representing Information Persistently [2009].

doi: 10.12759/hsr.suppl.29.2017.344-356

For further information on our journal, including tables of contents, article abstracts,
and our extensive online archive, please visit http://www.gesis.org/en/hsr.

Historical Social Research

Historische Sozialforschung

https://dx.doi.org/10.12759/hsr.suppl.29.2017.7-109
https://dx.doi.org/10.12759/hsr.suppl.29.2017.113-137
https://dx.doi.org/10.12759/hsr.suppl.29.2017.138-159
https://dx.doi.org/10.12759/hsr.suppl.29.2017.160-177
https://dx.doi.org/10.12759/hsr.suppl.29.2017.178-192
https://dx.doi.org/10.12759/hsr.suppl.29.2017.193-202
https://dx.doi.org/10.12759/hsr.suppl.29.2017.203-220
https://dx.doi.org/10.12759/hsr.suppl.29.2017.221-242
https://dx.doi.org/10.12759/hsr.suppl.29.2017.243-259
https://dx.doi.org/10.12759/hsr.suppl.29.2017.260-286
https://dx.doi.org/10.12759/hsr.suppl.29.2017.287-306
https://dx.doi.org/10.12759/hsr.suppl.29.2017.307-319
https://dx.doi.org/10.12759/hsr.suppl.29.2017.320-343
https://dx.doi.org/10.12759/hsr.suppl.29.2017.344-356

Historical Social Research Supplement 29 (2017), 260-286 │© GESIS
DOI: 10.12759/hsr.suppl.29.2017.260-286

Historical Information Science: Is there such a Thing?
New Comments on an old Idea [1993]

Manfred Thaller ∗

Abstract: »Historische Fachinformatik: Gibt es so etwas? Neue Anmerkungen zu
einer alten Idee«. After a summary of earlier arguments for the differences be-
tween information handled in contemporary data bases and information in his-
torical information systems, the model previously proposed for that is extended
to include the possibilities introduced by digital image processing, notably the
processing of digitized manuscripts. From this conceptual model, a blueprint for a
data type “extended string” is derived, which proposes to represent historical
texts not as arrays, as usual in computer technology, but by a special data type
which implies the representation of strings as graphs. Some engineering consid-
erations for the realization of such a graph based handling of strings are given.
Keywords: Source oriented data processing, non linear strings, manuscript pro-
cessing.

1. An Intuitive Description

1.1 Introduction

During recent years the computer has been increasingly prominent in many of the
disciplines of the Humanities. In the majority of cases, however, this meant just that
researchers with a Humanities background discovered that they as well could use
tools developed for other people.

This author has for a number of years now proposed, that history would ulti-
mately have to go beyond this stage; that history as a discipline would use data
which in the very structure of their informational content would deviate from “in-
formation“ as it is known in the disciplines dealing with phenomena of current
society. We will not repeat the arguments1 for this line of reasoning, which have

∗ Reprint of: Manfred Thaller. 1993. Historical Information Science: Is there such a Thing?

New Comments on an old Idea. In Seminario discipline umanistiche e informatica. Il prob-
lema dell' integrazione, ed. Tito Orlandi, 51-86 (= Contributi del Centro Linceo interdiscipli-
nare 'Beniamino Segre' 87). Rome.

1 Most recently: Wolfgang Levermann: Kontextsensitive Datenverwaltung, St. Katharinen:
Scripta Mercaturae 1991 (= Halbgraue Reihe zur Historischen Fachinformatik Band B8). See
also among others: Manfred Thaller: “Zur Formalisierbarkeit hermeneutischen Verstehens in
der Historie.“ In: Mentalitäten und Lebensverhältnisse. Beispiele aus der Sozialgeschichte der
Neuzeit. Rudolf Vierhaus zum 60. Geburtstag. Göttingen: Vandenhoeck & Ruprecht 1982,

HSR Suppl. 29 (2017) │ 261

been given in the papers quoted: we would rather more show, that more recent
techniques lend additional arguments to it.

To prepare this, we will just as briefly as possible summarize the position pre-
sented in earlier contributions. There our argument has been as follows.

Processing of historical sources is different from the processing of present day
data by a number of reasons: on the most abstract level, this is the case because
historians, when they start their research, do not really “know“ with absolute cer-
tainty, what their texts mean. Therefore, historical data should be administered in a
way, which closely resembles the basic principles of a printed edition as used in the
historical disciplines, particularly in the schools of medieval studies. The source
itself, we said, could not possibly be wrong: if a name was spelled differently at two
occasions this could have been an oversight of the scribe; it could be just as well,
however, that this “scribal error” was just the only trace left of the existence of two
individuals, separated by a minor difference in the spelling of their names. This
being so, we claimed, genuinely “historical“ data processing must keep the source
as closely to the uncorrected original as possible. Now, six different orthographical
representations of one word quite obviously tend to frustrate computer supported
analysis; as does the use of currencies of unknown interpretation, complex refer-
ences to calendar dates and the like. All these problems, however, occur also in
printed editions: where in the best ones, from a historians point of view, therefore

439-54; Manfred Thaller: “Ungefähre Exaktheit. Theoretische Grundlagen und praktische
Möglichkeiten einer Formulierung historischer Quellen als Produkte ‘unscharfer’ Systeme.“
In Neue Ansätze in der Geschichtswissenschaft. In this HSR Supplement 29, 138-159. Ed. H.
Nagl-Docekal and F. Wimmer. Wien: VWGÖ 1984 (= Conceptus Studien 1), pp. 77-100;
Manfred Thaller: “Can We Afford to Use the Computer, Can We Afford Not to Use it?“ In:
Informatique et Prosopographie. Ed. H. Millet. Paris: CNRS 1985, pp. 339-51; Manfred Thal-
ler (ed.): Datenbanken und Datenverwaltungssysteme als Werkzeuge historischer Forschung.
St. Katharinen: Scripta Mercaturae 1986 (= Historisch-Sozialwissenschaftliche Forschungen
20), available at <http://www.gesis.org/hsr/archiv/buchreihe-historisch-sozialwiss-
forschungen-hsf/hsf-20>; Manfred Thaller, A Draft Proposal for the Coding of Machine
Readable Sources, in: Historical Social Research 11 (1986) 4, 3-46, doi: 10.12759/hsr.
11.1986.4.3-46; Manfred Thaller. “The Daily Life of the Middle Ages, Editions of Sources and
Data Processing.“ Medium Aevum Quotidianum, 10 (1987), 6-29; Manfred Thaller “Secund-
um Manus. Zur Datenverarbeitung mehrschichtiger Editionen.“ In Geschichte und ihre Quel-
len. Festschrift für Friedrich Hausmann zum 70. Geburtstag. Ed. R. Härtel et al. Graz: Akade-
mische Druck- u. Verlagsanstalt 1987, 629-37; Computing. Ed. P. Denley and D. Hopkin.
Manchester: Manchester University Press 1987, 147-56; Manfred Thaller: “Vom Beleg zum
Begriff. Der Beitrag der Datenverarbeitung zur Lösung von Terminologieproblemen.“ In: Ut
populus ad historiam trahatur. Ed. G. M. Dienes et al. Graz, Leykam 1988, 237-54; Manfred
Thaller: “Gibt es eine fachspezifische Datenverarbeitung in den historischen Wissenschaften?
Quellenbanktechniken in der Geschichtswissenschaft.“ In: Geschichtswissenschaft und elekt-
ronische Datenverarbeitung. Ed. K. H. Kaufhold and J. Schneider. Wiesbaden: Steiner 1988,
45-83; Manfred Thaller: “Draft Proposal for a Format Exchange Program.“ In Standardisa-
tion et échange des bases de données historiques. Actes de la troisième Table Ronde inter-
nationale tenue au L.f.S.H. (C.N.R.S.) Ed. J.-P. Genet. Paris: CNRS 1988, pp. 329-75; Manfred
Thaller: Datenbankensystem St. Katharinen: Scripta Mercaturae 1989; Manfred Thaller:
“Have Very Large Data Bases Methodological Relevance?“ In: Conceptual and Numerical
Analysis of Data Ed. O. Opitz. Berlin etc.: Springer 1989; Manfred Thaller: “Geographische
Angaben in einer Historischen Datenbank.“ Eratosthene-Sphragide 2 (1990).

Schulz
Unterstreichen

https://dx.doi.org/10.12759/hsr.suppl.29.2017.138-159
https://dx.doi.org/10.12759/hsr.suppl.29.2017.138-159
https://dx.doi.org/10.12759/hsr.suppl.29.2017.138-159
Schulz
Unterstreichen

https://www.gesis.org/en/hsr/archive/book-series-historisch-sozialwissenschaftliche-forschungen-hsf/hsf-20/
https://www.gesis.org/en/hsr/archive/book-series-historisch-sozialwissenschaftliche-forschungen-hsf/hsf-20/
https://www.gesis.org/en/hsr/archive/book-series-historisch-sozialwissenschaftliche-forschungen-hsf/hsf-20/
https://www.gesis.org/en/hsr/archive/book-series-historisch-sozialwissenschaftliche-forschungen-hsf/hsf-20/
Schulz
Unterstreichen

Schulz
Unterstreichen

https://dx.doi.org/10.12759/hsr.11.1986.4.3-46
https://dx.doi.org/10.12759/hsr.11.1986.4.3-46

HSR Suppl. 29 (2017) │ 262

two types of information are carefully kept: the literal transcription of a text and a
complex environment of apparatuses and appendices, which contain the interpreta-
tions the editor has for the text he presents to the historian using the edition.

This structure, we claimed, would have to be repeated in historical data pro-
cessing. As a result we presented the basic architecture of the Kλειω software
system, which carefully distinguishes between the strings of characters adminis-
tered, which are whenever possible taken literally from the corpus of source materi-
al, and the expert knowledge, necessary to process such data: which are adminis-
tered by a huge array of dedicated subsystems, applying specific historical
knowledge to the data, when they are processed by the computer. So, if two entries
in a source, which we have reason to expect to be related to only one individual,
refer to this individual once as Josephus de Mons Friduinus and another time as Joe
of Montefreidin both forms will be in the data base; the various representations of
historical knowledge operating in the background being responsible for handling
the fact that these two forms might actually be just one name. If a document hap-
pens to be produced on the Tuesday after Esto mihi 1513, that is precisely what
enters the data base: that it has been written on February the 8th of that year re-
mains to be computed dynamically, when the software of the DBMS actually ac-
cesses such an information.

If we summarize a little bit more abstractly the position we have taken with this
approach, we might say in source-oriented data processing, as we have propagated
it over the years: A database contains strings of characters, which are organized for
speedy processing. It does not contain assumptions, however, what these strings of
characters symbolize. To access such a database, it has to exist within an environ-
ment of expert knowledge administered by the machine.

Graphically, we have usually described this situation as in Fig. 1.

1.2 New Technologies: Image Processing

In the context of the network of projects, which used these software compo-
nents during recent years, a lot of work has been done to incorporate image
processing as a set of additional capabilities into such a software environment.
We try to summarize in the following the four major branches, which we con-
sidered as relatively independent approaches to what image processing means
within historical research. In all these cases, we restrict ourselves to the pro-
cessing of digital images.2 The following paragraphs assume, that the software
environment which is being used contains “fields“ of a data type “image”,
which can be addressed by any query possible within the available query lan-
guage: so an image can become a candidate for processing because of any
combination of values within the other fields it is related to. We assume, that
the typical historical research project uses data bases, which handle medium
numbers of images: in the pilot projects which are currently being undertaken

2 Still a good introduction: Rafael C. Gonzalez and Paul Wintz: Digital Image Processing,

Addison-Wesley, 2nd ed. 1987.

HSR Suppl. 29 (2017) │ 263

approximately 20.000 color images (of 2-5 MB each) or 20.000-100.00 manu-
script pages (of 0.5-3 MB) are planned to be handled.

Figure 1: Traditional Architecture of Κλειω Data Bases

Query of Historian as User ↓
Data Base Software ↓

Knowledge Environment

Local Orthography
Applicable Currencies

Local Calendar
Local Social Terminology

Lemmatization of Source Language
etc. etc. etc. ↓

Uninterpreted Strings as Data Base

The experiences from the early stages of these projects can be summarized as fol-
lows:

Immediate Image Retrieval. This describes the basic methodology we hinted at,
that is, the ability of a software system to display as the result of a query not just the
description of an image, but the image itself. To do this within a research environ-
ment, a number of practical considerations apply:
- A hierarchical storage administration3 should be mandatory. This means, that

each of the images out of the whole set of 20.000 or 100.000 administered ones
can be displayed in the form of a small snapshot without noticeable delay. This
is due to the fact that such small snapshots are being kept on the fastest medium
within a storage hierarchy, while the bulk of the image data resides on slower
media in the background, access to them possibly even implying the manual
mounting of discrete storage media, like magnetooptical cartridges.

- Each detail of an image has to be available for zooming with an arbitrary size of
the zooming step. This is methodologically extremely important. If you provide
images and the possibility to look at only four or five predefined details, the edi-
tor of a CD-ROM based system considered to be the most important, the editor
is still the only one who controls what you are allowed to be interested in within
an image. This does not change dramatically the way of your approach to the
images, as compared to a printed book. Only when the user has the possibility to

3 In this context it has been implemented for the first time, to the best of our knowledge,

within a joint project of IBM Japan and the National Museum of Ethnology at Osaka. See
Jung-Kook Hong and Sigeharu Sugita: A Color Image Database for an Ethnology Museum,
in: Heinrich Best et al. (Eds.): Computers in the Humanities and Social Sciences. München:
K. G. Saur 1991, 53-60.

HSR Suppl. 29 (2017) │ 264

control, what details shall be zoomed – preferably zooming with gain of infor-
mation – access to the material is better than in the printed solution.

- Of course the usual cutting, pasting, mirroring and similar tools are also neces-
sary within a historical working process.

Image Enhancement. Within the experimental system about 30 statistical operations
for transforming and filtering image data have been implemented.4 These methods –
as well as the usual false color techniques – can be applied to any image within the
database and or to any segment thereof. The application of these techniques within
historical research has usually one or more of the following goals:
- Improving the readability of portions of manuscripts, which became unreadable,

because either the writing itself or the material upon which it has been written
has changed color, resulting in a reduction of contrast.

- The processing of documents, parts of which have been damaged by mould,
humidity or similar reasons.

- The processing of items (inscriptions, coins, etc.) where letters which were cut
into the surface or are higher than it were partially destroyed by damage to the
object; under some circumstances such material can be partially restored.

Image Binding. Many authors would describe this concept by hinting at “Hyper-
text“, or some of the other “Hyper“ concepts. We would like to avoid this, as a
matter of intellectual strictness. In data processing there is the concept of nonlinear
representations of text: these make up the bulk of this paper, following below.
“Hypertext“ is a phrase coined by Theodor Nelson, for a very specific and con-
sistent model of a textual data type defined on the basis of specific tools out of the
general realm of nonlinear – or nonsequential – texts.5 This model has so far never
been fully implemented. Application systems like HyperCard6 are no implementa-
tions of Hypertext, but systems to administer subsets of the general concept of
nonlinear structures.

We therefore prefer to give a more precise definition of our approach, than just a
global – and wrong – reference to Hypertext. “Bound Images“ we call the admin-
istration of bit mapped data objects, which are non-linearily related themselves, can
at the same time also be parts of an arbitrarily complex network of transcribed
information, however. This is done in a way, where each portion of the transcription

4 These techniques are currently realized with the help of an image processing library, Image

Assistant, which has not been released by IBM for public availability yet, which has been
made available to the project, however, by the IBM research laboratory at Winchester by
special agreement. At this moment we are testing, whether the general layout of the system
is flexible enough to allow for the speedy substitution of this library by a similar - also not
yet released - product by Digital Equipment, known as DECImage.

5 For reasons which have to do with the very peculiar funding of this project, it is somewhat
difficult to give good bibliographic references. Theodor H. Nelson: Literary Machines has
since 1981 been published in various versions, usually by the author himself. A good sum-
mary, which is also easily available: Theodor H. Nelson: Managing Immense Storage in: Byte
13/1 (1988), 225-238; on the concept see also Janet Fiderio: A Grand Vision, in: Byte 13/10
(1988), 237-244; see particularly 238.

6 This difference is quite oftenly ignored in the HyperCard literature: a particularly bad exam-
ple in Carol Kaehler: HyperCard Power, Addison-Wesley 1988, 366-367.

HSR Suppl. 29 (2017) │ 265

or description in text form, is explicitly related to an area within the bit mapped
object. For the sake of completeness we add, that such areas in our implementation
may overlap.

The intention behind such a design is the ability to describe in textual form – or
by an arbitrarily complex structured description in a factual data base – any object
within a manuscript or image. For the practicability of such solutions it is of tanta-
mount importance that the general software system used allows arbitrary and varia-
ble degrees of complexity. The examples which have been used for most of our
tests are based on descriptions of images, which employ up to eleven hierarchical
levels and about two thousand conceptual “fields“.

The purpose of these techniques is:
- It shall become possible to search specifically for parts of images. Getting as

result of a query find me a good example of an early modern scabbard the whole
of Altdorfer’s “Battle of Alexander“ is not what the analytical user of an image
is looking for.

- To evaluate the relative position of elements within images. This allows for the
systematic processing of questions of the composition of images: e.g., by query-
ing for images, which seem to conflict with the currently assumed canonical
rules of medieval painters regarding the placement of motives relative to each
other on a picture. In the processing of manuscripts, this allows an analysis of
the relative placement of blocks of text, which may help in the differentiation
between several layers of writing in a source which has been produced by more
than one scribe over time.

Pattern Recognition. Within the projects about which we are reporting here, the
application of the techniques which were already mentioned in the section on “Im-
age Enhancement“ gave encouraging results in a number of areas, both when ap-
plied to color images and manuscripts. More specifically:
- It is definitely possible, to design sequences of image processing steps, which

can be applied systematically to segments of true color images selected by the
human using the system. Such sequences are able to reduce the original image
towards a representation which shows clearly defined polygons with very few
different grey scales.

- The same holds true for manuscripts.
- The polygons resulting in both applications, can be related towards and “meas-

ured“ against ideal types of basic forms.
- While this is definitely not sufficient to clearly identify forms in unprepared

images and/or manuscripts, a systematic comparison of the similarities / dissimi-
larities between various sets of images and manuscripts, or their development
over time, becomes possible.

1.3 Manuscript Processing – the Next Frontier?

When we try to apply the tools we have just described with regard to images sys-
tematically to manuscripts, we can and will aim at the following process in “edit-
ing“ a manuscript. For the sake of clarity, it should be made explicit, however, that
so far we have described experiences we have gotten with software developed
already: the following description is dedicated to our next plans for development.

HSR Suppl. 29 (2017) │ 266

Step 1: A set of manuscript sources is scanned with medium resolution. Accord-
ing to earlier experiences with the integration of WORM disks and magneto-optical
devices into traditional workstations, we can assume that the administration of
10.000-20.000 pages of manuscript on PCs of the upper or workstations of the
lower range will be fairly easily possible within two or three years from now. For a
precise definition of the capacities which we can achieve, we do not have sufficient
experiences with the speed possible in scanning such sources with a satisfactory
quality.

Step 2: The documents which in that way are preserved permanently in photo-
graphic quality, are loaded into a data base: this data base contains at the beginning
just a series of document identifications (basically archival numbers) and the
scanned images of these documents.

Step 3: When working with such sources, the historian first of all transcribes the
manuscripts literally. For this purpose the following tools are at his command:
- By a system of graphically displayed reference coordinates, the historian can

bind individual transcribed phrases (or important abbreviations, or individual let-
ters significant for the specific scribe) to the transcription of these portions of the
text.

- Is a reading difficult, it is possible
• To improve it by the means of the image enhancement techniques dis-

cussed.
• But also to get a set of comparable portions of the manuscript transcribed so

far. Either by asking for the graphical representation of cases where the pos-
sible readings have been transcribed at earlier stages of the working process
or asking for cases where such transcriptions are within a given degree of
similarity to the graphical form to be transcribed now.

Step 4: As soon as a continuous transcription exists, or parallel to its creation, tools
exist to insert into the text symbolic markup, specifying e.g. persons mentioned or
topographical entities referenced. While in the design plans of our project a more
general notion of markup is employed, specifically emphasizing that there are
situations, where the graphical representation of symbols may be important, SGML
(Standard Generalized Markup Language)7 would be a good example for a fairly
general markup language which could be employed for such purposes. While we
would like to stress, that we consider the question of how such markup schemes
should be constructed for other than printing purposes to be anything but closed –
rather more: not even opened up – one should point to the efforts of the Text Encod-
ing Initiative8 to define common rules for the applications of such markup schemes
in specific areas of the Humanities.

7 Charles Goldfarb: The SGML Handbook. Oxford: Oxford University Press 1991; vgl. Lou

Burnard: What is SGML and how does it help? in: Daniel Greenstein (Ed.): Modelling Histori-
cal Data. St. Katharinen: Scripta Mercaturae 1991 (=Halbgraue Reihe zur historischen
Fachinformatik), 65-79.

8 C. Michael Sperberg-McQueen and Lou Burnard (Edd.): Guidelines for the Encoding and
Interchange of Machine-Readable Text, Chicago and Oxford, Draft Version 1.0, 1990.

HSR Suppl. 29 (2017) │ 267

In our context such markup is instrumental in converting the transcribed text into
a component of a structured data base, into which each portion of the transcription
is supposed to be parsed immediately after markup has been completed.

1.4 How do those things interrelate?

We have started with a description of why we have during recent years argumented
for a specific architecture of data base systems in historical research; we have em-
phasized, that they have to contain a considerable number of tools to apply specific
knowledge to transcriptions of text, the precise meaning of which changes during a
project. The more recent developments we described very sketchily above fit into
such an architecture very well: actually we expand the model just in two ways. On
the one hand, we assume, that such a system is now able to refer from a character-
coded transcription to a bit mapped representation and back; on the other we as-
sume, that the knowledge administered by the system as a whole now contains
additional items of knowledge, e.g., the set of “ideal forms“ of the letters peculiar to
a specific scribe. Schematically, we therefore get the result displayed as Figure 2.

Figure 2: Enhanced Architecture of Κλειω Data Bases

Query of Historian as User ↓
Data Base Software ↓

Knowledge Environment

Local Orthography
Applicable Currencies

Local Calendar
Local Social Terminology

Lemmatization of Source Language
Catalogue of Forms of Letters

Catalogue of Sigla
etc. etc. etc. ↓

Uninterpreted Strings as Data Base ↓
Bit Mapped Manuscripts as Bound Images

There remains the original aim of this paper. We claimed, that the line of reasoning,
which brought this author for a number of years to the assumption already, that the
use of computer techniques in the Humanities would need more than just the appli-
cation of commercial packages, would get further support, if we consider more
recent technologies. Here the type of our argument, unfortunately, has to change
abruptly: while so far, we more or less tried to describe fairly intuitively, how such
technologies may influence our current work, we can prove the need for more
systematic developments only, when we try to enter a serious technical argument.
The remainder of this paper is therefore dedicated to an attempt to define a concise

HSR Suppl. 29 (2017) │ 268

implementation of a non-linear data type “text“ for a Humanities’ – and specifically
– Historian’s application system, which fully supports the closely bound mixture of
transcribed text and bound images. What we describe on the following pages, is a
fully non-sequential data type; it is not hypertext, however, but an alternative pro-
posal for a data type “text“.

2. Design Proposal for a Nonlinear Data Type

2.1 What makes a text “historical“?

Speaking on the most general level, we consider a text to be “historical“, when it
describes a situation, where we do neither know for sure, what the situation has
been “in reality“, nor according to which rules it has been converted into a written
report about reality. On an intuitive level this is exemplified by cases, where two
people with the same graphic representation of their names are mentioned in a set of
documents, which possibly could be two cases of the same “real“ individual being
caught acting, which, however could also be homographic symbols for two com-
pletely different biological entities. At a more sublime level, a change in the color
of the ink a given person uses in an official correspondence of the 19th century
could be an indication of the original supply of ink having dried up; or of a consid-
erable rise of the author within the bureaucratic ranks. Let us just emphasize for non
historians, that the second example is all but artificial: indeed the different colors of
comments to drafts for diplomatic documents are in the 19th century quite often the
only identifying mark, which diplomatic agent added which opinion.

What these introductory examples should demonstrate, is, that the text – the
computer interpretable representation of a written document – forms in historical
research an intermediate layer between two other layers of information. On the one
extreme we have abstract factual knowledge about the various entities described in
a text, which allows the interpretation of it; on the other there are purely graphical
characteristics of the written document, which may carry meaning, but need not do
so.

That the second problem is a genuine markup problem is probably obvious: if
we use a computer to prepare diplomatic drafts of the 19th century for printing, we
obviously need a way to describe a portion of the document as being “written with
blue pencil“. Which, at the time of the first transcription is exactly what it says, a
literal description of a graphic property, though during the process of research it
may well acquire a more abstract connotation, like author=M.Simpson. This
could of course be interpreted as such properties being eminently fitted to abstract
rules for markup, because at the time of producing the markup we have not yet the
faintest idea what the final representation in print, if any, of the specific graphic
property is to be. Quite besides that at least I cannot very well see, how it should
become possible to propose a finite list of such potentially significant graphical
properties, there is a more basic problem. We all the time have now been speaking
about graphical properties which may represent some meaning. Which is another
way of saying, that this graphic property is purely accidental. To bring it to a point:

HSR Suppl. 29 (2017) │ 269

almost all the examples given in the discussions on standardization during the last
few years dealt with how to tag a structure which is clearly understood and where
the graphic representation is accidental. Historical work deals with structures in a
text which we want to discover, where the graphics we see may be all the clues we
ever might get.

The real difficulty behind this might be a somewhat imprecise definition of what
a “text“ is to begin with. To me it seems, that in almost all the contributions to
relevant discussions, a “text“ is seen as either the starting point for research or the
result of research: either what you get from a colleague to make your linguistic,
stylometric or whatsoever analysis from or what you are going to deliver to the
printer and, potentially, at the same time to another colleague. In the understanding
of this document a text needs to be a considerably more dynamic kind of thing, the
formally treatable representation of the current assumptions of a researcher about
what his documents actually contain.

This on the one hand means, that we have to provide facilities to mark up graph-
ical attributes which may acquire substantial meaning; on the other there have to be
provisions for a link between a text and a set of assumptions about portions of it. To
go back to our initial example: when we provide for marking a portion of a text as
representing the “name of a person“, we will also have to provide for a link to some
background data base, which contains descriptions of “real“ persons, being repre-
sented in the text by all kinds of conflicting graphic representations. State of the art
data bases in history actually carry this a step further, by providing separate links
between the graphical variation of a name to an algorithm, which is supposedly able
to filter out the “accidental“ orthographic variation of the name, before it is being
linked to factual knowledge about the person this name is a tag for.

So, a historical text is in this document considered to be a representation of as-
sumptions about some historical reality, containing on the one hand descriptions of
graphical properties, which may require interpretation, at the other linkages to
representations of knowledge, which are connected to a specified portion of the
text.

This simple model has, however, to be extended into two directions. A “histori-
cal“ text is in our opinion something which has come to us under a consistent set of
circumstances: our interpretation of colored annotations can obviously be valid only
within a corpus of materials which came into existence within one bureaucratic
unit. Similarly the language of a medieval chronicle can be analyzed, at least in the
first step, only within one copy of that chronicle, though it may have been transmit-
ted, with minor variations, in a whole family of texts. At the same time, however,
the reality described by the process of formulating a political document can very
often be understood only, if two parallel sets of comments upon some drafts, by
different branches of the bureaucracy, are interpreted synchronously; and the “sto-
ry“ told by a medieval chronicle can only be analyzed, if it is seen as complete as
possible: though sometimes no single text exists, which contains all the parts of it.

By first approximation this means, we need a mechanism, to administer an inte-
grated document as an entity, which consists of several layers of traditions, each
consisting of some “text“ – i.e. a collection of words – which can only be interpret-
ed in the context of some assumptions about the rules applicable to it. As, obvious-
ly, for some portions of the fictitious “true chronicle of x“ texts will exist which

HSR Suppl. 29 (2017) │ 270

have survived in conflicting versions, this leads directly to the requirement of a text
representation which allows a given portion of text to have more than one equally
valid form. We have, therefore, also to provide for a mechanism, which allows a
dynamic handling of variants, which enables software, to treat one coherent repre-
sentation of a text on a computer, as if it would just consist of one manuscript as
well as if it would consist of the logical sum of two or more manuscripts. The com-
puter representation of a machine readable text should therefore in our opinion not
only make it possible to handle variants, but to treat all streams of tradition com-
bined into a “text“ as potentially equal.

Finally, we have to define the relationship between a “text“ as a running repre-
sentation of a surviving document and a “text“ as converted into a database accord-
ing to some abstract model. In our opinion these two representations should be seen
as very close to each other, allowing the database to inspect the natural language
context out of which its entities of attributes have been derived, and on the other
hand allowing the user of the machine readable text to jump from one portion of it
to another portion which, irrespective of the language used, deals with the same
abstract concept. More pragmatically: if you enter into a historical database a query
like “When did the monastery of St. X receive more than five solidi from a single
tenant?“ we want to see at least the unstructured description of the relevant entries
in the administrative records, if not the scanned image of the respective page, and
when we encounter in our running text a peculiarly verbose eulogy about a given
benefactor, we would like to be able to get all other sources related to that benefac-
tor, be they in the same source or not.

We are quite aware, that the requirements we just described can be met only in
part by existing software. We think however, that there is small, if any, sense to
concentrate completely upon the task of how to code data in such a way, that the
can be handled by present day software. As a matter of fact, tagging a text exhaust-
ively and completely seems to create such an additional overhead, that I see spuri-
ous chances at best, that any historian could be convinced to enter all needed tags
by hand. So what we define in the text representation committee is certainly no
markup, which normally will and shall be entered by a historian: to pretend other-
wise would in my opinion be nothing but fictitious. The sense of a standardized text
representation at least in historical research – and decidedly there – can only be to
create a means for the communication between software systems, not between
human historians.

As such, however, we need a medium that does take account of things to come
and is broad enough to give software designers some reason, why they should
invest into implementing components, which support such recommendations as an
exchange format. To do so we need some foresight; which is why we start from a
non-existing system.

2.2 A “Historical Text Engine“

To allow us to do all the things specified in a coherent computing environment, we
would first of all like to sketch how such an environment should behave.

We assume on the following pages, that all texts are treated as “information
strings”. A running text consists simply of a collection of linearily ordered strings

HSR Suppl. 29 (2017) │ 271

of this type; a data base or knowledge representation consists of texts which are
connected in a non-linear way. As every linear structure can be described as a trivi-
al case of a non-linear one, running texts, (factual) data bases, full text bases,
knowledge bases and, as we will see, collections of bit-mapped data objects are all
to be considered as specific realizations of a general representation of information.
To make that possible, we assume further, that all the necessary string handling
operations are taken care of by a “text engine“ which relies on other software com-
ponents to be provided with correct “information strings“ irrespective of how they
are administered. We will see, however, that links to other “information strings“
can be part of any of them.

In any implementation of the following concepts, a “text engine“ could therefore
be only realized in close connection with other dedicated software systems, which
take care of administering the relationships between various information strings.
These do not form part of the present considerations. As the definition of the vari-
ous items of information to be handled requires references to them sometimes, we
will, however, just shortly define the three most important tools of that type.

In our concept we did stress the similarity between a running text and a struc-
tured data base; indeed we will later see, that we are also considering cases, where
one collection of information strings can alternatively but synchronously be inter-
preted as a running text and as a data base. To make that possible, we assume that
besides the text engine, which we cover here the following exist.

A text administrator. This is a very primitive program, which does not very
much more, than performing I/O on strictly sequentially stored collections of in-
formation strings. A text processing system in our concept would use such a text
administrator to save and load information strings from background media, which
then are processed with the help of tools from the text engine. Whenever we use the
term “text processing“ in the remainder of this paper, we refer to software, which
performs typical tasks of current day text processing, including primitive full text
retrieval applications, by using the services of both, text administrator and text
engine.

A data base engine. This is a family of software tools, which are responsible to
administer nonlinear collections of information strings. These software components
are responsible for the handling of all problems resulting from the adaptation of
current retrieval concepts to handle context sensitivity of queries and uncertainty or
ambiguity of structural relationships.

A knowledge engine. This is a family of software tools, which are responsible
for the administration of all such conversion and transformation processes, which
are built upon knowledge as are based upon dictionary-like structures or complex
sets of rules. As all information is supposed to be evaluated dynamically, these
software components in turn use components of the text engine, when the need to
handle information strings arises.

These “information strings“ which are treated by our assumed text engine in the
environment shared with these other major modules, consist of linked lists of “unin-
terpreted items“, which exist in an “interpretative environment“. Whenever an
information string is handed to the text engine, it is guaranteed, that the later is
supplied with a full copy of an interpretative environment.

HSR Suppl. 29 (2017) │ 272

While more precise definitions of interpretative environment and uninterpreted
items will be given shortly, it makes their respective roles probably easier to under-
stand, when we describe them somewhat intuitively first. As a first approximation,
we could consider the interpretative environment as a table of mappings of abstract
font commands into concrete printer operations. So when we look at the text engine
operation “prepare output on a specific printer“ the printing of the string starts with
all such applicable parameters regarding printing and spacing, as can be derived
from the interpretative environment handed over with the string to be printed. After
this, the uninterpreted items are inspected and item by item converted into such
strings and/or printer commands as represent their output form in the light of the
current interpretative environment. While this is a description of a current day
printing process, in our opinion it should get further: the “font“ of a text not only
being relevant, when it is being printed, but also, when a string in font “A“ is com-
pared to a string in font “B“.

A very important consequence of this separation between uninterpreted items
and interpretative environment has however to be clarified already now. As men-
tioned initially, we deal not immediately with the question of markup. We assume,
however, that the internal representation of a historical texts indeed needs some
features, which are inherently like a symbolic markup: i.e., some information about
how the text shall be processed, which is interpreted only, when the text is being
processed. This produces a subtle difficulty, when we are speaking about non-linear
structures of text, where individual parts of the text shall be accessible. As we will
see further, the interpretation of character i of a text may depend on some infor-
mation, that is contained between character i – 100 and i – 90 of that text. So, if we
want to interpret the i character correctly, we would have to know, that information
relevant to that character occurs before it in the string. Therefore we assume, that a
“string of information“, as we define it, is always administered so, that it is only
accessed at a point, where it can be guaranteed, that all information necessary for its
interpretation is available. More formally, we speak of entrance points into a collec-
tion of strings, where a complete copy of the interpretative environment for the
following character is available. All characters between two entrance points can
only be correctly interpreted, when the text engine reads and interprets first all parts
of the string of information, which are situated between the nearest entrance point
and the character in question.

The importance of this concept can scarcely be overestimated. Indeed, the need
to provide a sufficiently but not unnecessarily large number of entrance points, is
the main reason, why we distinguish so sharply between a strictly sequential and
linear text administrator, a strictly non linear data base engine, which, however, can
assume, that from each of its items a path to the nearest applicable entrance point is
defined, and a knowledge engine, which handles dictionaries of relatively small
information strings, each of which has its own entrance point, as they can be ac-
cessed completely at random.

2.2.1 Types of Uninterpreted Items

Strings of uninterpreted items are made up of five different classes of items:
- Basic items.

HSR Suppl. 29 (2017) │ 273

- String qualities.
- String links.
- String variants.
- Embedded structures.

The role of these classes of constituents are in turn:

2.2.1.1 Basic Items

These items carry the actual information derived from a historical source. In the
most trivial case, they consist of simple character codes. All such items, however,
are considered to have logically the same rank. That is, a small bit map (e.g. for a
non-deciphered language like the Indus hieroglyphs or a non-textual symbol, like a
water mark in paper) or a plain ASCII character can both form distinct items of a
“string“ in our sense. This assumes, that the text engine contains tools, which can
sort and compare all types of basic items.

The following types of basic items are defined:
- Simple characters.
- Character tokens.
- Bit mapped tokens.
- Pictures.

2.2.1.1.1 Simple characters

Simple characters are described by a sequence of n bytes per character, n defaulting
to one in most text engines. It is assumed in this paper, that characters which repre-
sent letters, have one case only. For reasons which are given further below, it is
assumed that case is just another string quality which does not justify a special
treatment. Each simple character is represented by a numeric value, which indexes a
table that contains a variable amount of information about the character. That in-
formation consists of:
- Sorting position of the character within the table.
- ‘Binding’ of the character. By this property we define its behavior in conjunction

with neighboring items to its left and right within the same string.

2.2.1.1.2 Character tokens

A character token is represented by a traditional – henceforth called primitive –
string of simple characters; in most real-world application starting with a common
escape character. While being represented by a primitive string, they are conceptu-
ally, however, just the same as simple characters: the degree of similarity between
two text tokens – as, e.g, expressed by a table of sorting values – is therefore com-
pletely independent of the string representation of the tokens. As the two primitive
characters “a“ and “A“ may or may not be considered identical, independent of the
code values assigned to them, in a historical text the two text tokens “\chrismon“
and “\cross“ may or may not be considered to be identical or similar; there is,
however, no inherent relationship created by both tokens starting with the primitive
string “\c“.

HSR Suppl. 29 (2017) │ 274

2.2.1.1.3 Bit mapped tokens

Bit mapped tokens are tokens, for which all is valid, what has been said about the
properties of text tokens. Bit mapped tokens do not consist of a sequence of primi-
tive characters, however, but of a sequence of the form: escape-character-
length-bitmap. A further difference is, that their similarity is defined not by a
tabular listing of their relationships, but the decision rules for the comparison of the
bitmaps themselves.

2.2.1.1.4 Pictures

Intuitively pictures are obviously the same as bitmaps: indeed, their internal repre-
sentation is assumed to follow the same rules, as just given in the preceding section.
While a bit mapped token is assumed to be an atomic item of information, a picture
is assumed to be a possibly structured entity, which may occur as part of a text, will
more often be connected to it, however, by the mechanism described in section
2.2.1.3.5 for text links.

2.2.1.2 String qualities

As mentioned initially, each uninterpreted information string exists in an interpreta-
tive environment. This is defined by a number of assumptions, which are true for
the first information of the string. The information string contains, besides the basic
items discussed so far, which carry the “real“ information, indications for a change
in any of these assumptions. This implies for the text engine, that all of its constitu-
ents are guaranteed to start the processing of a string only at well defined starting
points, all operations defined on the strings while parsing along them. While this
may seem to be a distraction, we would like to emphasize it here, as otherwise the
concept of string quality cannot be understood. Every string of information exists in
an environment which defines its
- modes,
- style,
- color,
- size and
- view.

It should be noted here, that these names have been chosen for intuitive plausibility,
as have the examples below. The flexibility of the concepts, however, is to be de-
rived from the abstract definitions given.

2.2.1.2.1 String modes

String modes define the absence or the presence of a set of attributes. That is, a
given item of information can have an attribute or can miss it. It is not possible, to
have a mode in a certain degree. Every string of information inherits from its inter-
pretative environment a set of default modes. If a certain mode is not defined in the
environment, it is assumed to be absent.

HSR Suppl. 29 (2017) │ 275

The most intuitive example of a string mode is the case of a character. As we de-
fined before, that simple characters are assumed to be caseless, it would completely
depend on the interpretative environment, whether the string

 this is a string

would be interpreted by the text engine as upper or lower case. By interpretation we
mean in this and all following examples, the behaviour of all components: an “up-
per case“ string would be printed as upper case (if possible on the output device)
but its being uppercase would also influence comparison operations (see below).

At any point in a string a mode can be activated or deactivated:

Mode: +case this is a string

would always result in an uppercase string, irrespective of the assumptions of the
interpretative environment,

Mode: –case this is a string

always in a lowercase one. The interpretation of

Mode: +case t Mode: –case his is a string

is clear.

As each mode, which is not explicitly defined in the interpretative environment,
is assumed to be absent, their number is arbitrary and has not to be known by the
text engine. Modes which are encountered in an information string, for which the
text engine has no explicit instructions are therefore completely ignored. In the case
of

Mode: +case t Mode: –case his is a Mode: +german

Mode: +case z Mode: –case eichenkette Mode: -german

the mode “german“ would in most search operations be ignored; in full text or data
base applications it could, however, be used as a selection criterion irrespective of
the structure which defines the relationship between this information string and all
others in the currently administered data; in Anglosaxon text processing applica-
tions it could be interpreted as underlining.

2.2.1.2.2 String style

While any item in a string of information can at the same time have an arbitrarily
large number of modes, it always has precisely one style. Statistically speaking, the
style of an item is handled on a strictly nominal level: there are no assumptions
about any relationship between two different styles expressed in the internal repre-
sentation of styles.

The most intuitive example for the style of a text would be font information, as
in the example

HSR Suppl. 29 (2017) │ 276

Style: german zeichenkette Style: basic

Please note, that this is not exactly the same than the previous example: while in the
previous one, “z“ could acquire the mode case, without losing the mode german, no
part of Zeichenkette could acquire the style gothic without losing the style german.

2.2.1.2.3 String color

The quality of color is similar to that of style, by its values being mutually exclu-
sive. Its intuitive interpretation is probably obvious and the introductory remarks of
this paper show a potential application. For a systematic interpretation, however, it
is much more important, that this quality is supposed to represent statistically an
ordinal level. That is, it is assumed to be represented internally by ordinal numbers,
which allow expressions of similarity. (A similarity to the implementation of the
enum concept in the ‘C’ programming language is intentional.) The two strings:

Color: dark blue George Smith

and

Color: light blue George Smith

would in most interpretative environments therefore be assumed to be closer to each
other, than the strings:

Color: dark blue George Smith

and

Color: light red George Smith

It would, however, not be possible, to express the difference in the degree of simi-
larity between the two pairs of names. (This is a statistical statement and a defini-
tion of the concept of color, not a statement about artistic and/or biological percep-
tion of colors.)

2.2.1.2.4 String size

String size, too, has a pretty obvious application. It is similar to the concept of
color, allows additionally, however, to express a difference in the degree of similar-
ity between two strings of information being compared. In the three fragments:

Charter a Size: 20pt \chrismon Size: 10pt In nomine
individue trinitatis...
Charter b Size: 30pt \chrismon Size: 10pt In nomine
individue trinitatis...
Charter c Size: 40pt \chrismon Size: 20pt In nomine
individue trinitatis...

HSR Suppl. 29 (2017) │ 277

the chrismon in a is more similar to the one in charter b therefore, than to the one in
charter c; the proportion between the sizes of chrismon and main body of script,
however, is identical between charters a and c, while both are dissimilar to b in
precisely the same degree.

2.2.1.2.5 String views

The qualities so far – with the possible exception of color – may be seen as an
attempt to define classical typesetting attributes in a sufficiently systematic way to
allow their interpretation on an intermediate level between typographical represen-
tation and conceptual understanding. We recapitulate: the color of a note in a dip-
lomatic document may ultimately acquire some meaningful, abstract interpretation;
at the beginning of an editorial process, however, it will be exactly what it looks
like: proof that Mr. X used a blue pencil.

The concept of string view, on the other hand, has been introduced to handle
phenomena, which often occur in manuscripts, have, however, no generally accept-
ed typographical conventions assigned to them.

Typical examples would be portions of a text, which are legible and obviously
part of the original manuscript, but which later have been crossed out, additions
being added at the same time, or manuscripts, which have been written by a number
of scribes, some of which can be identified, while others cannot clearly be distin-
guished. Obviously all these properties of a manuscript could in principle be cov-
ered by the string qualities given so far.

The tools provided so far, did always assume, however, that each of the qualities
would exist alone: a set of binary qualities, exactly one nominal quality, exactly one
ordinal and exactly one which allows comparisons of degrees of similarity. To
generalize this model, we introduce the concept of a text view, which is defined as
View: Type, Name, n. As its first argument, it accepts any of the previously
identified text qualities, i.e., mode, style, color or size. It introduces a
named text quality, which has the properties discussed so far. So our previous nota-
tions could be seen as shorthand for a more general text view notation. The follow-
ing equivalences would hold:

Mode: n == View: mode, default, n

Style: n == View: style, default, n

Color: n == View: color, default, n

Size: n == View: size, default, n

The difference between these two definitions is, however, more important, when it
comes to actually implementing such a model. We assume, that a text engine opti-
mizes the four default views with regard to speed of processing of individual infor-
mation string. This means, that when one of the default views is encountered in an
information string, it will be taken care of by an extremely quick operation. When
an explicitly named view is encountered, however, the text engine is allowed to
reorganize the interpretative environment to allow for it. (All comparison opera-
tions have to allow for size sensitivity without loss of efficiency; a comparison
which has to allow for five independent sensitivities for views of type size,

HSR Suppl. 29 (2017) │ 278

however, is allowed to be significantly less efficient than a comparison that handles
just the default size view).

This differentiation – and more so the space it is assigned – may be a reflection
about the author’s background in actual program development: we consider this
differentiation to be extremely important, however, as, on the other hand we as-
sume, that historical texts can be handled correctly only, if the number of views
allowed is unlimited.

2.2.1.3 String links

While we consider string qualities to be a more systematic description of classical
textual properties, string links define the conditions for assembling individual in-
formation strings into larger objects, like texts or data bases. Basically we consider
it necessary to embed into a string reference points, from which it is possible to
branch to other strings. The intuitive example for this would be a footnote.

As we mentioned initially, we consider a text not so much to be something
which primarily has to be printed, but as a representation of the current knowledge
about some historical phenomenon. All such points, where it shall be possible to
branch from a given point of reference within a text to somewhere else, are there-
fore meaningful only as being connected to specific operations of the assumed text
engine.

These operations are:
- branches,
- text references,
- data base references,
- knowledge references and
- bitmap references.

2.2.1.3.1 Branches

A branch is the most simple string link. It consists of a pair of addresses, connecting
an arbitrary point within a string of information with the entrance point into another
string. The intuitive example for it is a note in text processing. Branches pointing
from an arbitrary point of an information string to the entrance point into another
string, we will call exceptions and denote with the symbol Name ; branches from
the entrance point of a string to an arbitrary point of another information string, we
will call reference and symbolize by Name

In the case of a footnote, these elements would be used as follows:

footnotes  this point is usually not discussed any more...

 footnotes Cf. John Smith;...

The text engine resolves the arrows in these string links as follows:
- Exceptions are plain pointers to the beginning of another string of information,

allowing the interpretative environment to be initialized the standard way.
- References are similar pointers to the arbitrary point from which the exception

did branch away. They can, however, only be traversed, if this point in the col-
lection of strings has been reached via a previous reference from the correspond-
ing exception. In such cases the text engine stacks a copy of the state the inter-

HSR Suppl. 29 (2017) │ 279

pretative environment has been in, when the exception was activated. If the ref-
erence is reached by any other navigational operation within the collection of
strings in question, it is not possible to follow it to the spot of the exception.

2.2.1.3.2 Text References

Text references allow it to bracket a specific portion of text and logically to assem-
ble all such portions into a specific collection of texts. An intuitive example within
text processing would be the creation of registers.

Text references consist of pairs of the form

Name  some string  Name

which we shall discuss as “forward reference“, “reference string“ and “backward
reference“ respectively.

A forward reference consists of
- a mark pointing to the end of the reference string,
- a pointer to the next forward reference in the collection of strings with the same

name and
- a pointer to the nearest entrance point into the information string containing the

next forward reference in front of it.

It enables a text engine therefore, to navigate from one text reference immediately
to the next; does not remove the necessity, however, to interpret the portion of the
information string in front of the respective forward references to bring the interpre-
tative environment into the state it has to be, when the reference string shall be
interpreted correctly.

A backward reference contains the same information, does so with respect to the
preceding text reference in the collection of information strings in question, howev-
er.

2.2.1.3.3 Data Base References

Data base references have no precise equivalent in traditional applications. A spe-
cific data base pointer ↑x is defined by
- the data base which shall be referenced,
- a procedure specifying for the data base engine in question, how the reference

shall be converted into an information string.

When control returns to the text engine, a modifiable copy of the information string
created in this way is brought to its disposal and for purposes of text processing
integrated transparently into the “text“ proper. Obvious, but trivial examples of
usage would be the dynamic treatment of bibliographical and/or biographical in-
formation.

2.2.1.3.4 Knowledge References

Knowledge references are denoted by identical bracketing reference symbols of the
form

HSR Suppl. 29 (2017) │ 280

↓KB object text ↓KB

Object text refers to an information – like complex chronologies, historical curren-
cies and similar, as described in previous papers by this author – which needs to be
transformed, before submitted to specific classes of treatments. (Think once more
of sorting or comparisons.)

The knowledge referenced is assumed to consist of a formal definition of the
format an object text has to have to be processed plus a collection of suitable dic-
tionaries to apply specific transformation rules.

A specific ↓x consists of
- a specification of the knowledge (base) to be accessed plus
- a set of operations of the text engine, which trigger the transformation of the

object text.

For all such operations, the text engine does not process the object text itself, but
the result of the conversion.

2.2.1.3.5 Bitmap References

A bitmap reference consists of a pair of identical bracketing symbols of the form
||x interpretable equivalent ||x

It consists of
- a reference to a bit image, which either is administered as a “picture“ as defined

above or as a completely independent file and
- a set of coordinates within the bitmap.

The text engine references the bit image, when suitable display units are available,
uses the interpretable equivalent, however, when functions are being called, which
require operations like search or comparison.

2.2.1.4 String variants

String variants have an obvious application: the administration and processing of
the apparatus criticus of a text. The following model for the integration of variance
into a general text representation model sees this only as a starting point, however.
We rather assume as application the creation of dynamic text representations, i.e. of
text representations, which allow software to treat all variances of a text as “equal“.
This could be envisaged by display modules, which allow the user to switch from
variant α to variant β by hitting a function key, the displayed text in all cases where
variants exist in both stages following the readings of manuscript α or β.

It is assumed that – unless indicated otherwise by the interpretative environment
– an information starts with a part that is present in all witnesses for a given text.
This assumption is changed, as soon as in the processing of the information string a
block border is encountered. Block borders, which can be nested, limit parts of an
information string, for which substitutable variant readings exist.

Generally a text with variants would therefore be represented as

Text present in all witnesses Block >> variant
reading << Block text present in all witnesses

HSR Suppl. 29 (2017) │ 281

The variant readings consist of blocks of the form

Variant: Name (, =>) text of reading (<=, ) Name: Variant

where nameset specifies in which witnesses a given reading is present.
The (, =>) and (<=, ) symbols indicate, that all variant readings are linked

as a list, where each atom has a pointer to the next variant reading, but at the same
time also a pointer to the end of the respective block to speed up processing.

The mechanism is probably best explained by two examples. Let’s first look at
the situation where manuscript α gives this is a text of words, while
manuscript β reads this is a string of characters. In this case we
assume a representation which is:
this is a
 Block >>

Variant: α (, =>) text (<=, ) α : Variant

 Variant: β (, =>) string (<=,) β : Variant
 << Block
of
 Block >>

Variant: α (, =>) words (<=,) α : Variant

 Variant: β (, =>) characters (<=,) β : Variant
 << Block

When, to show nesting, we add manuscript γ which reads this shall be a sen-
tence, we get:
this
 Block >>
 Variant: α, β (, =>) Is (<=, ) α, β: Variant
 Variant: γ (, =>) shall

be
(<=, ) γ: Variant

 << Block
A
 Block >>
 Variant: α, β (, =>)
 Block >>
 Variant: α, (, =>) text (<=, ) α: Variant
 Variant: β, (, =>) string (<=, ) β: Variant
 << Block
 of
 Block >>
 Variant: α, (, =>) words (<=, ) α: Variant
 Variant: β, (, =>) characters (<=, ) β: Variant
 << Block
 (<=, ) α, β : Variant
 Variant: γ (, =>) sentence (<=, ) γ: Variant
 << Block

As this may look somewhat complicated: let me remind the gentle reader, that we
are describing here a structure, which internally shall be able to handle something.
Entering markup into a text, which in turn is parsed to provide the required pointers,
would be one way to achieve this.

HSR Suppl. 29 (2017) │ 282

2.2.1.5 Embedded Structures

While the preceding parts of this paper form presumably a general model for the
representation of historical texts, this section may be more specific to the activities
of the author. It deals with the problems from representation, where a data base,
which follows a network model, is integrated into a text. The idea is, that data base
queries are processed, which are translated via structural information contained in a
data dictionary into such navigational processes as are required to select various
items of information for processing. Unlike in traditional data bases, that infor-
mation is, however, not “extracted“ from a data base. Instead of extracted infor-
mation from natural text, we assume, that the text as a whole is represented on the
machine, various pointers – similar to the classes of such, which we described so far
– being “hidden“ within the running text, which define that a given part of it is not
just a series of characters, but at the same time the content of a structurally defined
field of a data base.

The idea is, that we have a text, like the sentence On the 19th of March 1764,
John Winslow and George Bilmington appeared before this court to claim which
by software based upon our ideal text engine can be handled for typical purposes of
text processing, other software based upon this engine can at the same time, howev-
er, treat terms contained within it – like John Winslow – as the value of the attribute
name of an incidence of the entity person. Applications would be tasks like:
Select all court records, where people who have been born more than fifty miles
from a given city of reference appear as interested party; select out of the running
text all portions which are marked as “quotations“; compute a set of stylometric
indices for the vocabulary used in such quotations.

As already mentioned, we do not claim in this section, that our considerations
here are general. We assume, that such models of the combination of structured
representations of information and the covering text containing that information,
can only be realized with data structures that allow inconsistent information to be
handled and avoid normalization procedures.

As such models are few, we have so far only considered the problem of “hiding”
Κλειω data structures within the text. In the case of that system, the data are struc-
tured into a network which consists of entities9 called groups which among them-
selves can be linked by arbitrarily many relationships. Groups have an arbitrary
number of attributes, called elements, which conceptually consist of variable length
arrays allowing an arbitrary number of values, called entries, for each attribute.

To hide a network like that within a collection of information strings, as we de-
scribed them so far, we see two possibilities:

On the one hand, the structural network of a data base could simply exist parallel
to a text as we described it here, all entries of the network consisting of pointers to

9 We discuss here the problem of hiding data structures within a general text representation.
Κλειω groups are not entities in the sense of conventional DBMSs: to clarify, that they are
not, we call them groups; as a precise definition of the differences would go beyond the
scope of this paper, we do not give it however, but mention that envisaging them as entities
will not be totally wrong. The same is the case for “elements“ and “entries“ introduced be-
low.

HSR Suppl. 29 (2017) │ 283

the relevant portion of the text, together with length information. (Obviously these
pointers would have to consist of the nearest entrance point of the text plus an offset
to the relevant portion.) The advantage of such a construction is obvious: existing
database software could be taken over more or less unchanged and all textual func-
tions needed, are contained per definition in a text engine, as we defined it so far. In
our opinion this otherwise obvious model has, however, two major shortcomings:
obviously updating the text could easily corrupt all the addresses contained in the
entries of the data base, serious, as this problem is, we could handle it conceptually,
by allowing for ↑DB links with a slightly modified definition, which would have
to be inserted into the text at each point, which is the target of a data base referenc-
ing it. While this update problem is certainly tricky, it could eventually be mastered
by the techniques hinted at.

Conceptually much more severe is a problem, which is introduced, when we
consider even the most simple concept of data types. We already have introduced in
section 2.2.1.3.4 above the concept of a knowledge pointer ↓KB. We did so, be-
cause of the necessity to treat “special kinds of text“ in a special way. It is not
sensible to sort calendar dates in alphanumeric fashion; and converting temporal
notation related to the medieval saints into a notation that can meaningfully be
sorted is no completely trivial task. This, however, is a typical data base problem.
Of course a number of solutions could exist: one would be to include the functional
equivalence of a ↓KB into the data dictionary for this field – which means a type of
redundancy which is dangerous. Another solution would be, to let the ↓KB point to
the data dictionary, rather than to the relevant knowledge bases to begin with. This
could mean, that we need different implementations for a ↓KB that occurs in a text
without a hidden structured data base than the one used in texts with such an under-
lying structure; a bad solution. Avoiding that, however would bring us into the
situation, where texts without an underlying dummy structure would not be al-
lowed; not a bad solution, but an outright impossible one.

To avoid these situations, we propose therefore to discuss data models, which
are per definition built into “natural texts“. This would seem unusual from the point
of view of other disciplines, but in history – or rather in the source-oriented model
of historical data processing – data bases, as this author has pointed out elsewhere,
are always not so much collections of information, which define their own reality,
but an attempt to structure information that has survived in a coherent form, i.e.,
usually as a text.

In the case of Κλειω we consider this possible, by allowing the text engine to
administer three additional classes of constituents of a string of information: group
pointers, element pointers and entry pointers (denoted as Group:Name •, Ele-
ment:Name • and Entry:Name ∞, respectively). They are defined as a generaliza-
tion of the concept of a text reference introduced in section 2.2.1.3.2. The ∞ sym-
bol replacing the =>/<= component of the Name => / <= Name notion is assumed
to indicate that this generalization allows for an unlimited number of references
starting from each embedded structural symbol, while our textual references pro-
vided always for precisely one physical reference.

HSR Suppl. 29 (2017) │ 284

2.2.2 The Interpretative Environment

The interpretative environment, which we have known intuitively so far as a kind of
refinement to the concept of a printer driver consists of two independent compo-
nents.

There exists a table which describes for each information string to be processed
all the text qualities which it has, when any basic item is being encountered by any
component of the text engine. This part of the environment has to be complete: that
is the reason, why we introduced the concept of an entrance point into an infor-
mation string. This part of the interpretative environment is loaded whenever a
particular information string is presented to the text engine.

The second part of the interpretative environment describes not an information
string, but the status of the text engine itself: it consists of applicability information
for each possible textual quality and optionally a mapping of that quality to an input
convention or an output property. This concept can best be interpreted, if we look at
the idea of case sensitivity in text operations. Case sensitivity would be modelled in
our concept as a state of the interpretative environment, where case is an applicable
mode (and characters are during output mapped to different representations).

2.2.2.1 Applicability of Modes

The applicability of a mode consists of a statement, if the status of this mode shall
be checked, when a basic item is being encountered by the text engine. If during
printing the mode german is applicable, a mapping of characters with this mode
into another font (or underlining) will be used; if it is not applicable, such mapping
will be ignored. Mutatis mutandis this is also the case, when comparisons are per-
formed.

2.2.2.2 Applicability of Style

The applicability of style consists of a statement, if it shall be checked when a basic
item is being encountered by the text engine. For applicability style could be inter-
preted like a mode: if it is applicable, any difference in style will make two basic
items unequal; there is no way to define a degree of difference.

2.2.2.3 Applicability of Color

The applicability of color defines whether optional I/O mappings shall be used, and
a range, within which otherwise identical basic items have to be considered equal
with regard to color. This range can be given as a pair of absolute numeric values,
or as a table which specifies for each color in one information string, which
colors in the other are acceptable.

2.2.2.4 Applicability of Size

The applicability of size defines whether optional I/O mappings shall be used, and a
range, within which otherwise identical basic items have to be considered equal
with regard to size. This range can be given as a pair of absolute numeric values, or

HSR Suppl. 29 (2017) │ 285

as percentage of the larger of two basic items, within which a smaller one is still to
be considered equal.

2.2.2.5 Applicability of Views

As views are a more general form of the other textual qualities, their applicability is
identical to that of the default modes of the four classes given above. The imple-
mentation considerations given in 2.2.1.2.5 define the difference between the ap-
plicability of any named view of the four types and the four default views of each
type.

2.2.3 The Text Engine

What kind of activities our hypothetical text engine is performing, was shown
intuitively more or less during the preceding sections. Obviously it is related to the
production of output; obviously it is also performing comparison operations: our
example of a “german sensitive“ comparison as an equivalent to the optional “case
sensitivity“ of current text processing software implied so much. Though the defini-
tion of such a text engine is certainly not part of a discussion of text representation,
we would like to include a brief, but somewhat more systematic, definition than
given so far. The reason for this is, that we assume, that recent discussions on text
representation had a tendency to concentrate a bit too much on printing. We would
therefore like to describe operations, we think necessary to make use of all the
qualities described in a more general way, i.e., influencing any kind of operation the
type of text we describe here has to undergo.

Whenever we define in the following sections an ability the “text engine shall
have“, this is an abbreviated expression therefore for the following reasoning: “We
assume that processing historical data of requires a specific ability. If historical data
are to be processed by more than one software system, we therefore need a standard
for the encoding of the property calling for this ability.“

2.2.3.1 Texts Handled

The text engine shall be able to handle texts, which are mixtures of byte coded and
bit mapped items. All items a text consists of has to be processable by all compo-
nents in question. Which class an item has, has to be transparent for any applica-
tions programmer using tools provided by the text engine.

2.2.3.2 Import/Export

The text engine shall provide tools to import and export strings. This means, it shall
be able to convert its own internal representation of an information string into a
form that clearly distinguishes between different classes of items, specifically be-
tween byte coded and bit mapped ones, so software components, which do not have
the ability to handle both, can extract those portions of a text, which they can han-
dle. This export format, which is described as external text format has to be trans-
ferable on standard communication links.

HSR Suppl. 29 (2017) │ 286

2.2.3.3 Comparison and Sorting

The text engine shall have as part of its interface functions which are able to com-
pare and sort sets of information strings, fully controlled by an interpretative envi-
ronment as described above.

2.2.3.4 Searching

The text engine shall be able to use any information string, which specifically in-
cludes such as contain bit mapped items, as a search key in the administration of
large string collections, like dictionaries.

2.2.3.5 I/O

The text engine shall be able to convert its internal representation into a form which
represents its various classes of items also on output devices, which do not provide
means for the most obvious kind of presentation. It also shall contain parsing func-
tions, which convert formats provided by input devices or software supporting
sophisticated forms of input into a common internal presentation.

