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Temporal Perspectives of Nonresponse
During a Survey Design Phase

Taylor Lewis
U.S. Office of Personnel Management

Abstract

Invariably, full response is not achieved with a single survey solicitation, and so a sequence
of follow-up attempts typically ensues in an effort to mitigate the potentially detrimental
effects of nonresponse. Rather than permitting the follow-up campaign to continue indefi-
nitely or until some preset response rate is met, a potentially more efficient alternative is to
track a key point estimate in real-time as data is received and alter the survey design phase
(i.e., modify the recruitment protocol) once the point estimate stabilizes. The notion of
point estimate stability has been referred to as phase capacity in the survey methodology
literature, and several methods to detect when it has occurred have been proposed in recent
years. Noticeably absent from those works, however, is statistical theory providing insight
into how point estimates can change during the course of data collection in the first place.
The goal of this paper is to take a first step in developing that theory. To do so, the two es-
tablished perspectives of survey nonresponse — deterministic and stochastic — are extended
to account for the temporal dimension of responses obtained during a survey design phase.
An illustration using data from the 2014 Federal Employee Viewpoint Survey is included to
provide empirical support for the new theory introduced.

Keywords: responsive design, adaptive design, phase capacity, nonresponse bias, stopping
rules
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1 Background

Unit nonresponse, which occurs whenever sampled cases (e.g., individuals, estab-
lishments) fail to respond to a survey request, is a ubiquitous problem faced by
practitioners. Indeed, evidence abounds that response rates have been declining in
surveys worldwide (Atrostic et al., 2001; de Leeuw & de Heer, 2002; Curtin et al.,
2005; Brick & Williams, 2013). The typical data collection protocol in a survey
involves making a sequence of follow-up attempts on cases yet to respond, which
can take on a variety of forms depending on the survey’s mode — reminder mailings,
additional telephone calls, or revisits to a residence, to name a few. Each follow-up
attempt generally yields more survey completes, which can be considered incom-
ing waves of data. More follow-up attempts are ostensibly desirable, as they serve
to reduce the nonresponse rate, but they can be costly and extend the field period,
in turn delaying subsequent stages of the survey process, such as the reporting and
analysis stages. And from a purely practical standpoint, empirical evidence (e.g.,
Table 1 in Potthoff et al., 1993; Table 1 in Lewis, 2017) suggests returns diminish
with each subsequent wave; fewer and fewer completes are obtained, resulting in
smaller and smaller changes in point estimates.

Rather than focusing on a target response rate or a predetermined number of
completes, Groves & Heeringa (2006) advocate for the use of responsive survey
design, which Schouten et al. (2013) note is a special case of adaptive survey design
(Wagner, 2008). The premise of responsive survey design is to monitor in real-time
the accumulating survey data in combination with data about the data collection
process, referred to as paradata (Couper, 1998; Kreuter, 2013), to help inform deci-
sions on whether, and when, to modify the current recruitment protocol. Groves &
Heeringa (2006) define a design phase to be a data collection period with a stable
sampling frame, sample, and recruitment protocol and phase capacity as the point
during a design phase at which the additional responses cease influencing key esti-
mates. Once phase capacity has been reached, some form of a design phase change
is warranted. Examples include switching modes (de Leeuw, 2005), increasing the
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incentive offered (McPhee & Hastedt, 2012), or terminating nonrespondent follow-
up altogether (Rao et al., 2008). While being an intriguing idea that could poten-
tially lead to data collection efficiencies, an obstacle to those wishing to implement
their approach was that no specific, calculable rule was given regarding how to
formally test for phase capacity. The concept was only demonstrated visually in
Figure 2 of their paper in which they plotted the trend of a key National Survey of
Family Growth point estimate.

Over the last ten or so years, several phase capacity testing methods have
emerged in the literature. The first was Rao et al. (2008), who developed a set of
closely related methods to determine whether the most recent wave of data pro-
duced a statistically significant change in a sample mean. Lewis (2017) proposed
a variant to their general approach amenable to any kind of point estimate, not
strictly sample means. Wagner & Raghunathan (2010) took a prospective approach
to testing for phase capacity, deriving a rule for determining whether or not a pend-
ing follow-up attempt was necessary. In addition, Moore et al. (2016) proposed
identifying phase capacity based on coefficient of variation thresholds of an overall
and unconditional partial R-indicator (Schouten et al., 2009; Schouten et al., 2012).

Noticeably absent in the works cited above is statistical theory to provide
insight into the phenomenon of point estimate stability. That is, there is no theory
offered to answer the following primordial question: How is it possible for a point
estimate to change (or not change) over the course of a design phase? The works
typically discuss the traditional nonresponse theory, but the traditional theory falls
short because it is rooted in treating the act of responding as an all-or-nothing, yes-
or-no event. In other words, the temporal dimension of the response process is not
explicitly considered. This paper aims to fill that gap in the literature by extending
the two traditional perspectives of nonresponse — deterministic and stochastic — to
account for the timing of responses received during a survey design phase. Restrict-
ing the focus to a sample mean, we derive expressions of expected change to be
observed with each new wave of responses obtained. These expressions are enlight-
ening and provide a theoretical underpinning for the empirical tendency for point
estimates computed from the accumulating data to deviate less, relatively speaking,
later on in a survey design phase (e.g., Figure 3 in Peytchev et al. 2009; Figure 3 in
Wagner, 2010; Figure 1 in Lewis, 2017).

The paper is structured as follows. In Section 2, we review the two traditional
perspective of nonresponse. In Section 3, we factor into those perspectives a tempo-
ral dimension to account for changes that may be observed during a survey design
phase. A brief illustration is given in Section 4 using data from the 2014 Federal
Employee Viewpoint Survey. We conclude in Section 5 by suggesting avenues for
further research.
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2 Traditional Nonresponse Perspectives

The typical survey’s data collection campaign commences by selecting a random
sample of size n from a sampling frame constructed to represent all N units in a
finite population. It has long been known from survey sampling theory that a ran-
domly selected sample, even one of moderate size, can be used to form unbiased
(or approximately unbiased) estimates of the attributes of the target population. The
conundrum introduced by unit nonresponse is that, because only a portion of the
sample is observed, unbiasedness properties are no longer guaranteed. Restricting
analysis to the observed data without making any statistical adjustments may intro-
duce nonresponse error (Groves, 1989), or a deviation from the quantity that would
be computed had data been available for the full sample.

As discussed in Chapter 1 of Groves & Couper (1998), the magnitude of non-
response error in a simple random sample of size n depends on both the statistic
at hand and the degree of dissimilarity between the r observed cases and the m

missing cases (r + m = n). To consider one example, suppose we were interested
N

1
in estimating a finite population mean y = —Z ¥; . We can formulate an unbiased
NS
~ v
estimate from the full sample by finding y, = —2 »; . In the presence of unit non-
n

i=1
response, however, we do not have all of the necessary information to compute this

, T B
estimate. If we were to substitute y, = —2 ¥; , the sample mean of the r observed
r
i=1
cases, as the estimate of the finite population mean, the nonresponse error would be

NRerror(3,) = [%] 3, =) 6

~ I .
where y,, = —Z y; represents the mean of the m missing cases. In other words,
m
i=1
nonresponse error is the product of the nonresponse rate and the difference in

means between the observed and missing cases. Note, however, that in the presence
of an unequal probability of selection sample design where each sampled case has
been assigned a base weight equaling the inverse of its selection probability, one
would need to substitute base-weighted versions of the two sample means in equa-
tion 1. Additionally, one would need to replace the term m/n with the base-weighted
nonresponse rate.

Nonresponse error in a sample mean can be partitioned further to account
for two or more causes of nonresponse. For instance, a common differentiation is
the portion attributable to noncontact versus explicit refusal given that contact has
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been made (e.g., Lynn et al., 2002). To see this, suppose that the m nonrespondents
in the sample are comprised of m,,. cases never contacted and m, . cases who were
reached but declined to participate in the survey (v + m,, + m, .= n). If we let ﬁnc
denote the mean of the m, . cases never contacted and let y,, denote the mean of
the m,,; cases refusing to participate, then the nonresponse error can be expressed
as

mﬂC

A A A Mper ~ A
NRerror(y,) = O =Vpe)t Tf(yr = Vrer) @

n

Further decompositions of nonresponse error are possible, but the formulaic aug-
mentation always abides by the same pattern: a new term is added representing the
product of the prevalence of the group in the sample and the difference between the
sample mean of the observed cases and the like for the group.

Lessler & Kalsbeek (1992) discuss at length the two traditional perspectives
of nonresponse. The simpler view is the deterministic perspective, which stipulates
that the N units on the sampling frame are comprised of two types: (1) a set of R
units that will always respond when sampled; and (2) a set of M units that will
never respond. Under this view, Valliant et al. (2013, equation 13.1) report that the
nonresponse bias is

=~ MY _ _
NRbias(y,) = (W) (Vr =) )

where ', represents the population mean of the units that always respond and y;,
represents the like for units that never respond. Despite the resemblance to equa-
tion 1, equation 3 is expressed in terms of finite population quantities. In fact, the
quantity in equation 1 can be considered an estimate of the quantity in equation 3.

An arguably more realistic view of nonresponse is the stochastic perspec-
tive, which assumes instead that all units in the finite population have some prob-
ability, or propensity, of responding to the survey request, a value between 0 and
1 frequently denoted ¢,. The concept and terminology are most often credited to
Rosenbaum & Rubin (1983), but one can argue that the ideas trace back as far as

Hartley (1946) and Politz & Simmons (1949). Given fixed propensities, if we let
N

- 1 . . . .

o= —2 @, symbolize the average response propensity for all N population units,
i=1

Bethlehem (1988) showed that the nonresponse bias introduced by utilizing ﬁ, , the

sample mean for only the observed portion of the sample data, is approximately

equal to

N
NRbias(5,) = 31 3,6~ 0~ @
i=1
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which reveals how the bias is proportional to the population covariance of the
propensities and the survey outcome variable. A preliminary result of the proof is
that the expected value of y, over the sampling and the nonresponse mechanisms

N
z b
i=1

is N— , which can be interpreted as the propensity-weighted mean of the out-
20
i=1

come variable in the population. Derivations appearing in the next section will
make use of that result.

The expression in equation 4 attributable to Bethlehem (1988) can be related
to the three missingness mechanisms defined by Little & Rubin (2002). The first
is that data are missing completely at random (MCAR), which is to say that all
units in the population share the same propensity, or ¢, = ¢ . In such a situation,
there is no bias in fz,, because the first term in the summation is 0. The second
mechanism, the one justifying most of the procedures used in practice to compen-
sate for unit nonresponse, is that data are missing at random (MAR). Nonresponse
adjustment techniques predicated on this mechanism exploit auxiliary data known
for all sample units, both respondents and nonrespondents, such as information
from the sampling frame or paradata. The MAR assumption permits response pro-
pensities to vary amongst sample units with different auxiliary variable profiles,
but supposes that the propensities are identical for all sample units with the same
profile. Hence, data are assumed MCAR conditional on the sample units’ auxiliary
variables. The third mechanism is the most perilous, data that are not missing at
random (NMAR), meaning the sample units’ response propensities vary as a func-
tion of the outcome variable beyond what can be explained (and adjusted for) by the
auxiliary variables.

3 Alternative Nonresponse Perspectives to Frame
the Phase Capacity Problem

The purpose of this section is to introduce extensions to the traditional nonresponse
perspectives outlined in the previous section. These extensions are motivated by the
objective of providing theoretical insight into how a sample mean can change, and
eventually stabilize, over the course of a survey design phase. Both the determinis-
tic and stochastic perspectives are considered.

A straightforward extension of the ideas behind the deterministic perspective
of nonresponse for a survey collecting data over K waves is to conceptualize the N
population units as falling within one of K +1 mutually exclusive and exhaustive
domains: K domains of size N, N,, ..., N comprised of units that, if sampled, will
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always respond to the survey during the k™ wave, and a domain of size M com-
prised of units that will never respond. Because of the empirical tendency for the
number of respondents to decrease with each subsequent follow-up attempt within a
survey design phase (e.g., Table 1 in Potthoff et al., 1993; Table 1 in Lewis, 2017), it
seems reasonable to expect the N,’s to decrease in size as k increases.

Without loss of generality, as before, let us assume a simple random sample of
size n has been selected and we are interested in making inferences on a finite pop-
ulation mean. We can expect the wave-specific respondent counts 7, 7,, ..., 1, and
the count of nonrespondents m (r; + r, + ... + r, + m = n) to fall approximately in
proportion to their respective prevalences in the population — that is, E(r,) = n(N,/N)
fork=1, ..., K and E(m) = n(M/N). Provided r, > 1 for all K waves, we can express

K K
~ e ~ ~
the ultimate respondent sample mean asy, = Ei Yy, » wWherer = Zrk and y,
k=1 k=1

represents the sample mean of the r, cases responding during wave k, specifically.
Following the same strategy used to partition nonresponse error in equation 2, we
k

rjyrj
. 2 =1 .
can conceive of ylk =7 T , the respondent mean using data from waves 1 to k
2 T
Jj=1
inclusive (k < K) (i.e., calculated using data from the r,, r,, ..., r, respondents thus

far obtained) as susceptible to nonresponse error due to the fact that there have been

m nonrespondents drawn into the sample with mean fzm that will never respond and
K

2 1. cases that have yet to respond:
k*=k+1

K
N N ~ m -~ ~ Vex  ~ S
NRerror(ylk)=y1k—yn =—(y1k — V)t 2 ‘ (ylk _yrk*) ©)
n o1

We can consider )1}11 an estimate of 3 , the mean of the population domain consisting
of N, cases, and y;* an estimate of 3", the mean of the population domain consisting
of N; + N, cases, and so on. In terms of conventional statistical hypothesis testing,
methods to test for phase capacity, at least those described in Rao et al. (2008) and
Lewis (2017), use the accumulating data to assess H,: 8¢, = y{ ' —y{ =0 versus
H; 8¢, =7 "' =3F #0. Granted, the hypotheses can be written in terms of other
population parameters, and non-zero differences for that matter.

Note, however, that the difference specified in the hypotheses above can be re-
expressed as 8, = (yf ' —=%,)—(¥f —¥,), which reveals a parallel interpretation,
and key finding, that testing for phase capacity is tantamount to testing whether
there is any change with respect to nonresponse bias. In other words, if the cumu-
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lative sample mean has not changed with the most recent wave of data set, then
nonresponse bias has neither decreased nor increased.

The sample-based estimate of §_,isd;_; =y ' =y, which can be re-
expressed as follows:
Sk 21 2
S =3 — N

21 =~ 2~k o~
:(yl _yn)_(yl _yn)

= NRerror()A/]]‘f_1 )— NRerror()A/]k)

K
S LA R IR SRR

k*=k+1

=—<"” I =W +y,,,>+—(—“—y,,)+ 2[ (—"‘—iﬁ—ﬁhipj
=k+1
=— (_kl—J’1)+ 2 (
k*=k+1
K
m+ z I’k*

= % Or =3+ "("“ V) ©)

2 2 Ve ~p— S
oF 1—y{‘))+7"(y1" )

which illustrates how the observed change in the sample mean is equal to the sum
of two terms: (1) the product of the portion of sample cases yet to be observed fol-
lowing wave k and the most recently observed change in the cumulative sample
mean; and (2) the product of the portion of sample cases responding during wave &,
specifically, and the difference between cumulative sample mean as of the previous
wave and the sample mean of those responding during wave k. Because the r,’s tend
to decrease as k increases, we would expect both terms to get closer and closer to
zero. With respect to the first term, this is because ﬁl" consists of fewer and fewer
new values relative to 334!, causing the difference 3/~! — ¥ to become smaller and
smaller. With respect to the second term, this is because the multiplicative factor
r,/n gets progressively smaller.

We next consider augmentations with respect to the stochastic perspective of
nonresponse. The fundamental difference is that we must broaden the idea of a
single response propensity @; for the i population unit into a K-dimensional vector
of wave-specific propensities, @, =[@;,®,; ..., #x; ] , where each entry represents the
unit’s propensity to respond during the k' wave, specifically. This implies that the
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response process for the i sample unit abides by a multinomial distribution with
K + 1 events: responding during one of the K waves or not responding. Because all
events are disjoint, we can treat the probability of responding by a particular wave
as the sum of the entries in ¢, from the first position up to and including the entry
indexing that wave. For example, the probability of the i" sample unit responding

k
before or during wave k is ¢]kl- = Z Pji.
J=1
Alluded to earlier, a key preliminary result in the derivation of Bethlehem’s
(1988) nonresponse bias formula is that, given a set of fixed response propensities,
the expectation of the sample mean from any sample design is shown to equal

E(y,)=— ()

which is a weighted mean for all population units, where the response propensity
serves as the weight. Using this result, we can reason that the expectation of the

N N
2 Dii Z ¢11iyi
i=1

sample mean at the first wave is £ ()%11) = i:}V ==
1

Yoo D4

i=1 i=1

N
z Sy

tion of the sample mean at the second wave is E ()A_/lz) ==L

N
2
2.4
i=1
fore, we can express the expectation of the difference between two adjacent-wave
sample means as
N N
k-1 k
2¢1i Yi z¢liyi

B -5t = - ®

N
f—1 k
Yo D
i=1 i=l1

, and that the expecta-

, and so on. There-

N N
2 ¢1ki_1yi z D ¥
i=1

This difference will only exactly equal zero if i:}v

TN
-1
2O X
im1 i=1

, but as k
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N

increases, the ¢,’s decrease, rendering the component of Z qjlki y; attributable to
N i=1 N

2 @;y; to become smaller, and the same with the component of z #1: attribut-

i=1 N i=1
able to Z @, - Hence, just as we could from the extended deterministic perspec-

i=l
tive, we can extract theoretical justification from equation 8 for the empirical ten-

dency of point estimate differences to get progressively smaller during a survey
design phase.

4  Illustration in the 2014 Federal Employee
Viewpoint Survey

The purpose of this section is to provide an empirical illustration of the concepts
and expressions presented in the previous section using data from the 2014 Fed-
eral Employee Viewpoint Survey (FEVS) (www.fedview.opm.gov). The FEVS, for-
merly known as the Federal Human Capital Survey (FHCS), was first launched in
2002 by the U.S. Office of Personnel Management (OPM). Initially administered
biennially, the Web-based survey is now conducted yearly on a sample of full- or
part-time, permanently employed civilian personnel of the U.S. federal government.

With few exceptions, the 2014 FEVS sampling frame was derived from
a comprehensive personnel database managed by OPM known as the Statistical
Data Mart of the Enterprise Human Resources Integration (EHRI-SDM). A total
of 839,788 individuals from over 80 agencies were sampled as part of a single-stage
stratified design, where strata were defined by the cross-classification of work unit
and whether or not the employee was part of the Senior Executive Service (SES)
or equivalent. The latter was done so that executives could be sampled with cer-
tainty, as they represent a rare population domain of analytic interest. The work-
unit stratification ensured adequate numbers of employees appeared in the sample
for all pre-identified agency subdivisions for which a separate report was desired.
For agencies with exceedingly intricate reporting needs, a census was conducted.
See U.S. Office of Personnel Management (2014) for more details about the FEVS
sampling methodology.

The FEVS instrument consists of 84 work environment questions and 14
demographic questions. The work environment questions are predominantly atti-
tudinal, capturing responses via a five-point Likert-type scale, such as one ranging
from Strongly Agree to Strongly Disagree or Completely Satisfied to Completely
Dissatisfied. Tests of statistical significance are typically performed after collaps-
ing these categories into the dichotomy of a positive/non-positive response. The key
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Table 1 2014 Federal Employee Viewpoint Survey Items Comprising the
Global Satisfaction Index

Item

Number Wording

40 I recommend my organization as a good place to work.

69 Considering everything, how satisfied are you with your job?

70 Considering everything, how satisfied are you with your pay?

71 Considering everything, how satisfied are you with your organization?

estimate from each item thus reduces to the proportion (or percentage) of employ-
ees who react positively to the statement posed, what the FEVS administration
team refers to as a “percent positive” statistic. For purposes of the present illustra-
tion, we restrict the focus to percent positive statistics for the four items comprising
the Global Satisfaction Index (GSI). These items were purposefully chosen because
they represent a cross-section of the typical satisfaction dimensions the FEVS is
designed to capture. The wording for the four items is summarized in Table 1.

The 2014 FEVS was administered between April 29 and June 13, 2014. Participat-
ing agencies were given a choice of two possible start dates, April 29 or May 6. Each
agency’s field period spanned six work weeks. At survey close, 392,752 completes had
been obtained, corresponding to an overall response rate of 47.4% per formula RR3 of
the American Association for Public Opinion Research (AAPOR) (2016).

With respect to the responsive survey design terminology attributable to
Groves & Heeringa (2006), the 2014 FEVS data collection protocol can be consid-
ered a single survey design phase. On the survey’s launch date, an email invitation
containing the website URL and log-in credentials was sent to sampled employees.
Five reminder emails were sent to those who had yet to respond, in weekly incre-
ments thereafter. A final, sixth reminder was sent on Friday morning of the sixth
field period week with messaging emphasizing that the survey would close at the
end of the day. In all, seven email notifications were sent. A natural demarcation
of a data collection wave, the one used in this illustration, is the set of responses
obtained between two chronologically adjacent email notifications.

Table 2 summarizes the wave-specific respondent counts for one exam-
ple agency participating in 2014 FEVS that conducted a census of its N = 5,188
employees. The greatest number of responses was obtained in the first wave, fol-
lowed by the second wave, with returns diminishing in subsequent waves. A total of
m = 1,592 employees never responded, even after being sent seven email notifica-
tions. Though not shown here, comparable patterns hold for most other participat-
ing agencies. Thinking back to the second term of equation 6, this lends empirical
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Table 2 Wave-Specific Response Distribution for an Example Agency
Participating in the 2014 Federal Employee Viewpoint Survey

Data Collection Wave Count Percent of Sample
k 7 (r,/ n) * 100
1 1,390 26.8

2 873 16.8

3 240 4.6

4 392 7.6

5 246 4.7

6 260 5.0

7 195 3.8
Nonrespondents 1,592 30.7
Total 5,188 100.0

credence to the assertion of the r, terms decreasing as k increases, a major factor in
the stabilization of a sample mean over the course of a survey design phase.

The decreasing r,’s also factor implicitly into the first product in equation 6,
as is evident from Figure 1, which plots the trends in the cumulative sample means
of the four GSI items using responses obtained through the given wave (i.e., the
)L;lk ’s) for the example agency. The cumulative means tend to increase with each
new wave of data, at least for the early waves, but then stabilize around wave 5. The
increasing pattern is an indication that the early responders are less positive than
later responders, something Sigman et al. (2014) noted was widespread amongst
agencies participating in the 2011 FEVS.

With respect to the stochastic perspective of nonresponse, recall the primary

takeaway argument from equation 8 was that, because the wave-specific propensi-
N

ties (i.e., the ¢,.,’s) tend to decrease as k increases, the component of z ¢1kl attrib-

N N N P
utable to Z @,; and the component of z ¢t y, attributable to 2 @, v; should both
i=1 i=1 i=1
become progressively smaller over the course of a design phase. When those respec-
tive components of the summations become negligible, phase capacity results.

To illustrate how this can happen, we can exploit information from the 2014
FEVS sampling frame. Specifically, using auxiliary information known for the
entire population of N = 5,188 individuals in the agency, we utilized the employee’s
age, gender, an indicator of being a supervisor/non-supervisor, an indicator of being
minority/non-minority race or ethnicity, and an indicator of working in the head-
quarters or field office, to fit a multinomial logistic regression model where the
outcome variable was one of 8 possible events: responding during wave 1, 2, ..., 7,



Lewis: Temporal Perspectives of Nonresponse During a Survey Design Phase 201

Survey ltem =40 Survey ltem =70
90
80
70
/—_— —
60

Survey ltem= 71 Survey ltem =72

—

90

Percent Positive Statistic

80

70

60 /_/—’__

L O O e  E R R
t 22 3 4 5 6 71 2z 3 4 5 & 7

Data Collection Wave

Figure I  Trends in the Percent Positive Statistics for [tems Comprising the
Global Satisfaction Index over an Example Agency’s 2014 Federal
Employee Viewpoint Survey Data Collection Period

or not responding at all. This model was used to generate estimated wave-specific
propensities, or @;’s, which can serve as substitutes for the ;s

Table 3 reports the proportions 2 &/ Z ¢1; and 2 O/ z ¢11 vy, for the

i=1 i=1 =1 i=1
four GSI items, where y,; is an indicator variable equalmg 1 for a positive response

to a given item and 0 otherwise. Each of these proportions converges towards zero,
which is to say that both the numerator and denominator terms of the expected
value of the cumulative sample mean (see equation 8) change less and less. By wave
5, the proportional change is less than 10%, suggesting an ineffectual impact, which
coincides with the point estimate stabilization observed in Figure 1.
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Table 3 Proportions of Estimated Wave-Specific Response Propensities, and
Proportions of the Products of Estimated Wave-Specific Response
Propensities with GSI Positive/Non-Positive Indicator Variables for
an Example Agency Participating in the 2014 Federal Employee
Viewpoint Survey

Data Collection -, .- -, i,
Propensities  Propensities Propensities Propensities

W]a(we Propensities x Item 40 x Item 70 x Item 71 x Item 72
1 1.00 1.00 1.00 1.00 1.00
2 0.39 0.39 0.38 0.39 0.39
3 0.10 0.10 0.10 0.10 0.10
4 0.14 0.14 0.13 0.14 0.14
5 0.08 0.08 0.08 0.08 0.08
6 0.08 0.08 0.07 0.08 0.08
7 0.05 0.05 0.05 0.05 0.05

5 Discussion

Faced with downward pressures on response rates, practitioners must nowadays
explore alternative strategies to more effectively and efficiently manage a survey’s
data collection process. One intuitive method for doing so is to monitor a key point
estimate from the survey in real-time as completes are obtained and take note of
when it stabilizes. This is the notion of phase capacity, as defined by Groves & Hee-
ringa (2006), who argue that additional follow-up efforts are liable to be equally
inefficacious. Instead, some form of change in the data collection protocol is war-
ranted. In their terminology, a new design phase is in order.

Groves & Heeringa (2006) did not offer a formal method to test for phase
capacity, but several techniques have since been proposed in the literature (Rao
et al., 2008; Wagner & Raghunathan, 2010; Moore et al., 2016; Lewis, 2017). An
important piece missing from those proposals, however, is statistical theory illu-
minating how (or when) point estimate changes could occur in the first place. The
objective of this paper was to fill that void in the literature. Using the finite popula-
tion mean as an example, we extended the traditional deterministic and stochastic
perspectives of nonresponse to derive expressions of change that explicitly account
for incoming waves of responses within a single design phase. To connect these
ideas to practice and to secure empirical support of certain assumptions and asser-
tions made during the derivations, we included an illustration using data from the
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2014 Federal Employee Viewpoint Survey. In particular, focusing on four survey
items for one example agency, we showed how the stabilization occurring around
the fifth wave of data received was largely a function of the decreasing respondent
counts (i.e., the r,’s in equation 6) and the associated decreasing (estimated) wave-
specific propensities that factor into the two quotients in equation 8.

Of course, this paper is not without limitations. The first limitation is that
we focused solely on a sample mean. Brick & Jones (2008) derive expressions of
nonresponse bias for several other statistics. Modifications to those expressions
accounting for the temporal dimension of nonresponse could have proven equally
as enlightening. A second limitation is that, for tractability, the derivations pre-
sented in Sections 2 and 3 assumed no nonresponse adjustments have been made.
In fact, the phase capacity testing methods proposed in Rao et al. (2008), Wagner
& Raghunathan (2010), and Lewis (2017) call for nonresponse adjustments to be
made prior to assessing whether point estimate stability has occurred. A third limi-
tation is that the 2014 FEVS illustration only involved analysis of four survey items
for one example agency. Although we argued that the patterns observed are very
typical for the FEVS, both in terms of other items’ percent positive statistics and
other participating agencies, it is certainly conceivable that a comparable illustra-
tion within the design phase(s) of another survey could yield results less harmoni-
ous with the nonresponse theory extended in this paper.

Aside from addressing the limitations just cited, further research could extend
the theory to account for two or more design phases within the same survey, two
or more key outcome variables, or both. Another potential extension, motivated
by findings in Olson & Groves (2012), would be to relax the assumption of fixed
response propensities under the stochastic perspective of nonresponse, instead
allowing them to vary in some way over the course of data collection. Finally,
future research could investigate whether information gleaned from, say, estimated
wave-specific response propensities could be carried forward in a meaningful way
in an adaptive survey design approach (Schouten et al., 2013). For example, in the
FEVS there are numerous agencies that conduct a perennial census. It seems fore-
seeable that prior survey response patterns, perhaps in combination with imputation
or auxiliary information from the sampling frame, such as a variable highly cor-
related with one or more key outcome variables, could be used to derive measures
similar in spirit to those derived in this paper to help support (or refute) evidence of
phase capacity.
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