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ETA, DISCO, ODISCO, AND F

Louis  Guttman 1*

Abstract: Two coefficients are proposed for measuring the
extent of overlap in distributions as a direct function of the
variance between the arithmetic means (»disco« and »odis-
co«). They are designed to answer such questions as: »Given
the value of a numerical variable x, to which population
should an individual be assigned so that minimum error
would be incurred?« This is just the reverse of the question
addressed by ANOVA. These coefficients are shown to be
analytic in x and they are related to.Pearson's eta and
Fisher's F. Extensions of these coefficients (designed for
univariate, one way discrimination) to k-way and multiva-
riate discriminant analysis and measurement of »interac-
tion« are suggested.

The Problem of Overlap

When two or more populations have distributions on the same numerical
variable x, it is of interest to know to what extent these distributions over-
lap. One motivation for this interest is the problem of discriminant ana-
lysis. Suppose an individual has a known value of x, but his/her popula-
tion is unknown. To which population should he/she be assessed to belong,
with minimal expected error? The problem can be illustrated by Figure 1,
for the case of three finite populations. For each value of x there, to what
extent can one correctly say to which population the individuals with that
value belong? The population means are indicated on the x-axis, labelled
£i, £>°"d &, respectively. Overlap is indicated by the crossing of frequency
density curves.

There has been no standard loss function for error of misclassification
(as for populations 1 and 3, or 2 and 3 in Figure 1). One popular way for
handling this problem is merely to count the number (or proportion) of
errors. The present paper is devoted to expressing the loss due to overlap as

* Reprinted by permission of The Psychometric Society. Printed in Psychometrika,
1988, 53, Nr. 3.
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Figure 1: An Example of Three Population Distributions.

a direct function of the variance between the arithmetic means of the
distributions.

Two coefficients will be presented for this purpose. One was developed
elsewhere (Guttman, 1981); it is not yet very well-known, so it may be
helpful to review it here.

The other is new, given here for the first time. The first has been called
»disco« for »discrimination coefficient - by the Computer Center of the
Hebrew University. The second is called »odisco«; it is more relaxed than
disco in a certain sense of overlap. Both coefficients vary between 0 and 1.
They equal 0 if there is no difference among the means (which is not
necessarily true for coefficients based on counting or other coefficients).
Each equals 1 if there is no loss (perfect discrimination holds) in its sense.
Each is distribution-free, avoiding traditional assumptions of normality of
population distributions and equality of variances within the populations.
Such conventional assumptions are unrealistic and misleading in many
cases.

The distinction between disco and odisco can be phrased as follows. For
each pair of populations a and b, if £b<d«, 1°' '™ largest value of x for b be
denoted by max(x |b), and let the smallest value of x for a be denoted by
min(x | a). Then disco asks whether or not

(DISCO condition) max(z|b) < min(z|a) (& < &a).

In contrast, odisco asks whether or not two inequalities hold:

max(z[b) < £a

(ODISCO condition) {m.in(zla) S6
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for: §h<§n. When the DISCO condition holds, then there is no overlap
between the distributions (except possibly at a single point). When the
ODISCO condition holds, no member of population b has an x-value ab-
ove é‘, and no member of population a has an x-value below &,: there may
be overlap in the interval between the two means, but no overlap in the
two intervals outside the means. The »O« at the beginning of »odisco« is
meant to indicate that some overlap is allowed.

Another important difference between the DISCO and ODISCO con-
ditions is with respect to the determination of cutting points for discrimi-
nating between the distributions. For each pair of distributions, the DIS-
CO condition implies but a single cutting point and does not require its
actual determination. The ODISCO condition explicitly introduces two
cutting points, namely the arithmetic means themselves.

Disco is but one member of a relatively new class of coefficients for the
discrimination problem (Guttman, 1981). These all equal 1 if there is per
fect discrimination, but differ in how they weight error. The present disco
is actually a special case of the monotonicity coefficient I, (Raveh, 1978;
Guttman, 1986a).

Pearson's Eta and the »Analysis of Variance«

The study of differences among means is typically thought to be a problem
of »analysis of variance« (ANOVA). This should not be confused with
analysis of discrimination. The ANOVA problem may be regarded as
addressing the reverse of the question stated above for discriminant ana-
lysis, namely: »Suppose the population of an individual is known, but not
his x-value. What is the best predicted value of x?« (cf. Guttman, 1941).
The answer - when expected square deviation is taken as the loss-function
- is the arithmetic mean of that population. Over all individuals, zero loss
occurs only if there is no variation within any of the populations: each
distribution is degenerate, being concentrated at but a single point. More
generally, the size of the loss is expressed by the variances within the
populations - which are traditionally compared with the variance between
the means. A standardized coefficient for this comparison purpose is
Pearsons's classical correlation ratio »eta« (Pearson, 1905) - or, equivalent-
ly, Pearson's pointbiserial r for the special case of only two populations.
Eta varies between 0 and 1, equaling 0 when there is no difference among
the means and equaling 1 for the degenerate case of no variation within
each of the population.

When eta = 1, there is, of course, perfect discrimination. However, the

converse is not true; perfect discrimination can exist even when eta is
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small. For example, in Figure 1 there is no overlap between the distribu-
tions of populations 1 and 2. Perfect discrimination holds even though eta
here is less than 1.

For the x-prediction problem of ANOVA, the means and variances enter
»naturally«. This is not true for the discrimination problem. Both pro-
blems are alike in that the defininition of their respective loss-functions
are distribution-free.

While the problems of eta, disco, and odisco refer to the population
distributions, only sample data are available in practice. ANOVA con-
ventionally focuses largely on the null hypothesis of no difference between
the population means, and usually calculates R. A. Fisher's F statistic in-
stead of Karl Pearson's earlier eta. In a way, this is quite surprising, since F
is a simple transformation of eta:

_ (n—m)p?
Fem-na-»

where n is the total sample size and m is the number of population dis-
tributions. (More generally, (n - m) is the degree of freedom of the de-
nominator, while (m - 1) is the degrees of freedom of the numerator). The
tables of probabilities could just as well have been made in terms of eta,
making F superfluous. Fisher himself essentially implies this in his dis-
cussion of testing eta for »significance« (Fisher, 1950, p. 256). F is a pe-
culiar statistic that estimates no population parameter (which may be why
non-mathematical students have trouble with it). Historically, when Fisher
introduced ANOVA, he prepared probability tables by use of his z statistic
for technical calculation reasons. To be more user-friendly, he later adop-
ted Snedecor's transformation of z into F by the formula: F = e*. But the
transformation could have been made just as easily from z directly into
eta, which would be even more user-friendly; students and practitioners
would not have to learn F any more than the now forgotten z = In(s,/s,).
In any event, we shall not be concerned here with the testing of null
hypotheses and all its problematics (cf. Cowger, 1984; Guttman, 1977; and
many others), but rather with consistent estimation. As discussed else-
where (cf. Muller, 1982, p. 342; Guttman, 1985; Ross, 1985) consistent
estimation is necessary and sufficient for cumulative science. As Muller
states in a context parallel to ANOVA, »This article will ignore questions
associated with significance testing. For purposes of estimation, the focus
of this article, only the usual least squares assumptions will be required.«
Estimates are always only tentative in cumulative science, to be continual-
ly improved upon by further data gathering at other times and places.
Experience has shown that, in practice, eta generally is much less than 1
(which may be a reason for many authors not to publish it with their
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ANOVA results, giving only F instead). Similarly, generally neither of the
DISCO and ODISCO conditions holds exactly, and one must consider loss
functions. Before going on to the algebra of the respective loss functions, it
may be useful to look at two numerical examples for showing the different
roles played by the various coefficients. The first example is of artificial
data, while the second is of actually observed data. Following these pres-
entations, we shall develop the algebra for the coefficients within a syste-
matic framework. It will be shown that eta, disco, and odisco all have the
same numerator; they differ only in their denominators, and in such a way
that always

(The INEQUALITIES) odisco > disco > eta,

the equalitiy between any two of the coefficients holding if and only if the
one on the right equals 0 or 1. The discrimination coefficients can be quite
large even when eta is small, as will be illustrated next.

The First (Artificial) Numerical Example

Figure 1 illustrates the theoretical discrimination problem in terms of po-
pulation distributions. These distributions, of course, are generally not
available in practice. To illustrate the discrimination problem in terms of
sample data, suppose that a sample P, of four individuals is drawn from
population 1, a sample P, of five is drawn from population 2, and a sample
P, of five is drawn from population 3. Suppose the respective sample va-
lues of the numerical variable x turn out to be as in Table 1, where the
sample means, standard deviations, and sizes are as indicated.

Let us begin by comparing the first two distributions. The means of P,
and P, are 54 and 29, respectively. But how much overlap is there between
the two distributions? Inspection of the first two columns of Table 1 shows
that there is no overlap at all: the smallest value in P, is 37, while the
largest value in P, is 36. Not only is the mean of P, larger than that of P,
but every member of P, is larger than every member of P,: the DISCO
condition is fulfilled. Mere inspection of the difference between means
cannot reveal the perfect discrimination. Comparing the difference in
means with the standard deviations within the distributions is more infor-
mative about the overlap, but still leaves something to be desired.

Disco for these first two distributions equals 1. (Since odisco is never
less than disco, odisco also equals 1 in this case). Eta (pointbiserial r) is far
from 1, having the value .80. Even less informative is Fisher's F, which
equals 12.46.
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Table 1
An Example of Three Sample Distributions.

Py P P

59 29 54

72 22 21

48 36 28

37 27 47

31 35
T = 54 T, =129 Fg = 37
s; = 13.0 5 =46 g3 =124
ny =4 ny =5 ng=>5

Now let us compare the first and third distributions. The respective
means are 54 and 37. While such a difference may be regarded as substan-
tial, there is nevertheless overlap between distributions P, and P,. Disco
equals .84 here. However, the overlap is of a certain limited kind. Every
value of P, is greater than or equal to the mean of P, and every value of P,
id less than or equal to the mean of P.: the ODISCO condition is perfectly
satisfied. For the data of P, and P,, odisco = 1.00. Thus, odisco supple-
ments disco by assessing the extent to which overlap is bounded by the
means. Odisco can equal 1 when disco does not.

Eta and F are even less informative about the situation addressed by
odisco. For comparing P, with P, eta = .56 and F = 3.20.

Proceeding with the remaining comparison of P, with P,, none of the

coefficients reaches 1. The respective values are: odisco = .82, disco = .65,
eta’ = A0 (Fi'= A°53):

By looking more closely at the last two distributions in Table 1, we can
see a certain asymmetry in discrimination not revealead even by odisco.
While only three of the five values of P, are above the mean of P,, all of
the values of P, are below the mean of P,. There is perfect onesided
discrimination here in the odisco sense. Odisco itself essentially averages
the errors of discrimination of both sides.

Such an averaging process occurs when more than two populations are
compared simultaneously. Just as eta (and F) can be computed over all
three distributions in Table 1 at the same time, so can disco and odisco. The
respective values are: odisco = .98 and disco = .91. Neither of these over-
all indices equals 1, even though perfect discrimination exists between
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some of the pairs. For this reason, the DISCO computer program (part of
HUDAP - the Hebrew University Data Analysis Package) gives all the
pairwise comparisons as well as the overall coefficients.

Note that the simultaneous estimation of many (and interrelated) coef-
ficients remains consistent. In contrast, simultaneous or stepwise testing of
null hypotheses vitiates the traditional calculations of probabilities for F
(cf. Muller, 1982, p. 342; Guttman, 1977). Therefore, the DISCO program
calculates F along with the other coefficients only for historical reasons,
and refrains from printing »probabilities« (or stars).

It may be helpful to review all the numerical coefficient values just
cited by putting them into a single table, as in Table 2. Each row of Table 2
shows how eta < disco< odisco (unless one of these equals 1, as in the first
row; also unless one equals 0, implying that all equal 0). F cannot be
compared directly with these since it has no upper bound. Each column of
Table 2 indicates that the overall coefficient in the last row is some weigh-
ted average of the corresponding ones in the first three rows.

Table 2
The Values of the Coefficients for the Data of Table 1.

Samples
Compared Eta Disco Odisco F
Pi, Pi 80 1.00 1.00 12.46
PiP, .56 .84 1.00 3.20
P2,P, .40 .65 .82 1.53
PLP2.P3 .70 91 .98 5.17

The reader may have noticed by now that the sample data in Table 1
could well have been drawn from the population distributions of Figure 1.
Inspection of Figure 1 suffices to show that disco = 1 for populations 1
and 2, while odisco = 1 for populations 1 and 3 as well as for 1 and 2.
Clearly, if disco = 1 for populations, it must equal 1 for any samples
drawn from them. However, even if odisco = 1 for populations, it need
not equal 1 in the samples. Conversely, if disco and/or odisco = 1 for
samples, this does not necessarily mean that the same must be true in the
populations - sampling error has to be considered.
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The Second (Empirical) Numerical Example

The second example is of actual data, relating a psychological variable to a
medical variable (Rogentine, et al., 1979). The population sampled was of
patients diagnosed to have malignant melanoma. The psychological va-
riable was self-assessment by the patients of the amount of adjustment
needed to cope with their illness, the scores ranging from 1 to 100. The
medical variable was dichotomous: relapse or non-relapse of the illness
within one year after the psychological self-assessment. The problem here
posed is to estimate the extent to which the numerical psychological va-
riable can discriminate between the two subpopulations defined by the
medical variable: relapsers and nonrelapsers.

The authors of this data have shown them in graphic form, as repro-
duced in Figure 2. The numerical variable is shown here as the vertical
axis. The authors performed a number of analyses on aspects of these and
related data. Among other things, they noted the discrimination role of the
means of the psychological variable in Figure 2: the vast majority of the
nonrelapsers are above the mean of the relapsers, while the vast majority
of the relapsers are below the mean of the nonrelapsers. This is the type of
discrimination addressed by odisco. It is not studied by any of the standard
techniques for discriminant analysis: the latter are focussed largely on the
problem addressed by disco.

Instead of simply counting the number of aberrant cases in the two end
intervals outside the means, as do the authors, odisco uses a loss function
that weights the extent of deviation in terms of the numerical variable.
Our own calculations show that the values of the several coefficients for
the data of Figure 2 are: odisco = .84, disco = .73, eta = .46, and F =
17.10. The large size of odisco here - and the substantial increase over disco

indicate that the two means play a substantial discrimination role.

The Algebraic Notation

Each of the sample coefficients eta, disco, and odisco is a consistent esti-
mate of its corresponding population parameter. (In contrast, as remarked
above, F estimates no population parameter; it was not devised for des-
criptive purposes). It will be convenient to develop the algebraic structure
of all these coefficients in sample terms. Restatement in population terms
is easily done by using expected values in place of mean values throughout.

We consider the general case of m populations, with a sample from each.
Let P, denote the set of sample values from population a (a = 1, 2, ..., m)
and let n, denote the number of individuals in P,. Individuals will be
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Figure 2: Distributions of Melanoma Adjustment Scores for Relapsers
and Non-relapsers (from Rogentine, et al., 1979, p.650).

100

*
90 — . e
L]
80 — . ww—7F, —
w " 0
g 70 — -
E 60 [ .
E PR Dp—
g 50 — uo:o -
< .
g 40 — . .
3
g 30 .
20 h
L]
10 = .
0 ]
RELAPSERS NON-RELAPSERS

denoted by p, q, ..., etc. If individual p belongs to P, we write p £ P,.
The total sample is the union of all the P,, and will be denoted by P. The

number of individuals in the total sample will be denoted by n:
m
a=S
a=1
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It will also be convenient to use a characteristic function e,, to indicate
ap
to which sample p belongs:

b 5 1, ifpe P,
% ™ 10, otherwise.

Each individual belongs to one and only one sample, so for each p € P:

m
Ze” = 1.
a=1

Furthermore, for each a,

= E Cap-

pEP

The summation in the right could just as well have been written as over
P, instead of P; indeed this would be more convenient for actual calcula-
tions. However, using P here and below is more convenient for the alge-
braic exposition - emphasizing the overall sample as the point of dep-

arture.
The value of the numerical variable x for individual p will be denoted
by x,. The arithmetic mean of x for P, will be denoted by X.:

a 1
Lg = — E €aplyp.
a n, ap<p
PEP
The total mean over P will be denoted by X:
Tl Y e A
= - o= —En - F28
n P i
pPEP a=1
-
5B

The »between« variance f% the means will be denoted by SJB:

2 1 b Fie —
1 m

e G§== D na(Z-7)%
a=1

An equivalent formula for s’ that will be more convenient for the

developments below is:
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1 e~ g
(2) H= mzz%nb(xa - :cb)z.

a=1b=1

The equivalence is easily established by expanding the right member of
(2). Such an equivalence is well-known for variances in general (cf. Ken-
dall, 1943; p. 42). For example, if the total variance of x over all samples,
denoted by s, is defined by

1
3) s2==2 (%-7),
pEP

then a formula equivalent to (3) is

€] 8= 511-5 E Z (zp — x,)2.

PEP qeP

The Algebraic Structure of Disco

In sample terms, the DISCO condition above can be regarded as asking,
for each P, and P,: if X, > X}, to what extent does this imply that x,>x, for
ecach p € P, and each q €P,? Let Uyppy be definded by

(5 Uabpg = €apig(Zp — Z¢)(Ta — Ts).

An algebraic condition for perfect discrimination is that the following
inequality be satisfied for all p,q,a and b:
(6) Uabpg 2 0.
According to this inequality, x, - x, must have the same sign as X, - X,
whenever p € P, and q € P,, unless one of these differences is 0. The
inequality does allow the two distributions to meet at a single point.

Let u,, and u be defined respectively by:
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(7) Uagp = E zuabpq

PEP gEP

m m
®) U=y .

a=1 b=1

When m = 2, u = 2u,.
Now, a condition equivalent to inequality (6) is the equality:

9) Yabpg = [Uabpg]-

Let v,, and v be defined respectively by

(10) wh =0 Bl

pEP gqeP

m m
(11) v=3"3 va.

a=1bh=1

Whdlipis &2, Ve =2V
A necessary and sufficient condition for inequality (6) to hold for all p
and q (for fixed a and b) is

(12) u, = v,

This is so because, if (6) is violated even once by some p and q, then it must
be that u,, <v,. Similarly, for equality (12) to hold over all a and b, a
necessary and sufficient condition is that

(13) u =

We shall define a loss function for misclassification between P, and P, to
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be v,, - u,,. Similarly, we shall define a loss function for misclassification
over all the samples to be v - u. Each of these loss functions is nonne-
gative, and equals zero if there is perfect discrimination (except possibly at
endpoints). The disco coefficient simply restates these loss functions in a
standardized form. Thus, for discriminating between P, and P,,

(14) disco(P,, Py) = -:-":”
a

For overall discrimination among the m samples,

. u
(15) disco = —.
v
When m = 2, (14) and (15) are equivalent. In each case, for any m,
(16) disco < 1,

the equality on the right holding if and only if the corresponding loss is
Zero.

We now also want to show that disco is always nonnegative:

(17) disco > 0.

To this end, perform the summations in the right of definition (7) to see
that

(18) Uap = nany(Z, —55)2,

whence the numerator in the right of (14) in nonnegative. Since always
V., >0, the ratio defining disco in the right of (14) is always nonnegative.

To see the same for u, sum both members of (18) over a and b, and recall
(2) and (8) to establish that

80



Historical Social Research, Vol.14 — 1989 — No. 1, 68-88

(19) u = 2ns,

According to (19), the numerator of disco is nonnegative, which establi-
shes (17). An important further consequence of (19) is that disco vanishes
if and only if there is no difference among the m means.

To see how disco is a monotonicity coefficient, let us assign to each p a
score on a new numerical variable y by the following formula:

m
(20) Yp = Ze,pia.
a=1
According to (20). if p £ P, then y, = Xx,. Instead of p being charac-

terized by P, only in a qualitative way, it is also characterized by the nu-
merical score x,. Each p 8 P now has two numerical values, one on x and

one on y. Definition (5) becomes equivalent to

@1 Uabpg = €apeig(Zp — Z¢)(Yp — ¥y)-

Summing over subscripts a and b in the right of (21) cancels the two e's.
Summing further over p and q yields

(22) U= ) (2p— 2g)(¥p — ¥y)-

PEP geP

Similarly, from the definition of v and (21), it follows that

(23) v= EZITP_qulyp—yql-

PEP geP

Hence, u/v or disco, has precisely the structure of monotonicity coefficient
A, (cf. Raveh, 1978; Guttman, 1986a).
A further interesting feature is that
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u —
(24) b cov(z,y),

which follows from expanding the right member of (22). Furthermore, it
follows from (19), (24), and (2) that

(25) 823 = cov(z,y) = 33.

The last equality is established by rewriting the right member of (2) as

and using definition (20).

The Structure of Odisco

Odisco will be developed along lines parallel to disco, but starting with

u defined by

abp

(26) talp = 3 taipy-
9€P

Summing the right member of (5) over q shows that
7) Uabp = eapy(Zp — T3)(Ta — T).

This differs from (5) in the first parenthesis on the right. In (27), x, is
compared with the mean of the sample of q, and not with x, itself as in (5).
To have odisco = 1 requires both parentheses in the right of (27) to have
the same sign - unless one of these vanishes - for all a, b, and p. Analo-
gously to (6) and (9), a necessary and sufficient condition for such perfect

discrimination is that, for all a, b, and p,
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(28) Uapp 2 0,

or equivalently,

(29) Uabp = |Uabp|-

Summing both members of (27) over p, and recalling (18), shows that

—
(30) Ugp = E Ugbp-
pPEP

Thus, despite the differences in their definition, u and u,,, yield the

same u,, when summed over the individuals concerned. This will provide
the numerator for odisco as well as for disco. The denominator of odisco
will, however, be different. If we denote the new denominator by V;b, then

it is defined by

31) ey il

pPEP

Note that V;h is not necessarily equal to Via (the reader can verify that, for
the data of Table 1, va3 # Vvio).

Odisco for discriminating between the distributions of P, and P, is de-
fined as

2ugp

(32) OdiSCO(Pa, Pb) = m
ab ba

This coefficient varies between 0 and 1. It equals 0 if both means are equal
[by virtue of (18)], and equals 1 if - for each sample - all members are on
the same side of the mean of the other sample, or the ODISCO condition
above is fulfilled exactly for the samples.

To define odisco over all m samples simultaneously, let v* be - analogous
to v in (11):
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m m
(33) 0= ZE”;L-

a=1b=1
Then
(34) odisco = —.
When m = 2, u = 2u,, (as for disco), whereas V' = V‘” + V},.

To show that odisco is never less than disco, we must show that always

(35) v* <.

This can be done by comparing the right member of (31) with that of (10).
Clearly the former is never greater than the latter, the equality holding if
and only if condition (9) holds throughout - or disco = 1. Summing both
over a and b establishes (35). Hence, always odisco > disco, the equality
holding if and only if disco equals 0 or I.

,  The Algebraic Structure of Eta

To help round out the picture, it may be useful to review the structure of
eta. In the present notation, Karl Pearson's eta can be defined as

sp
(36) =,
L

where s, and s, are respective square roots of the variances defined in (1)
and (3). As is well-known, an equivalent definition is as a Pearson cor-
relation coefficient r:

. _ cov(z,y)
(37) N="rgy = _3,,-8,, 3
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where y is as defined in (20). The equivalence of (36) and (37) follows from
(24) and (25). For present purposes, an important apparent difference bet-
ween (36) and (37) is in their numerators. By virtue of (25), the numerator
in (37) is equivalent to s’,; however, the numerator in (36) is s, itself.

Since the numerators of both disco and odisco are equal to 2n’s’,, these
coefficients are more conveniently compared with eta through (37) than
through (36). Only the denominators have to be compared. It has shown
elsewhere that always disco > eta. The proof consists in using the Cauchy-
Schwarz inequality in (23) to see that the denominator v/2n’ is never
greater than s;s,. Since it has already been shown above that odisco >disco,
this completes the proof of the continued INEQUALITIES asserted in the
second section above. Note that the INEQUALITIES involve eta itself and
not the square of eta.

Extensions

It has already been remarked that disco is but a special case of a whole
family of discrimination coefficients, the difference among the coefficients
lying in the way they weight error of misclassification. Similarly, odisco
uses but a special case of weighting error as well as in choosing cutting
points. Coefficients parallel to odisco can be constructed for pairs of cut-
ting points other than the two means. The present choices were made in
order to bring the arithmetic means in explicitly and to have the INE-
QUALITIES above hold. Other choices do not necessarily revolve about
the arithmetic means, nor do they lead to such neat inequalities. More
importantly, disco and odisco are analytic in x, facilitating multivariate
extensions.

The treatment given above has been for the case of oneway discrimi-
nation by a single numerical variable x. Extensions can be made in at least
two directions: oneway discrimination for more than one numerical va-
riable, and k-way ANOVA for a single variable x.

For the case of discrimination from more than one numerical variable,
a standard approach is to seek an optimal linear function of the variables.
Thus, if x, x,, ..., x, are k given numerical variables, the discriminant
function x is of the form

(38) z=c121+ 222+ -+ Cr Ty,

where the c's are constants to be determined optimally according to a given
loss function. For disco, a convenient way is to maximize u/v, where u is
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given by (19) and v by (23) (cf. Guttman, 1986a, p. 86). The maximization
problem concerns u/v*, which again is nonstandard. It would be desirable
to have efficient computer programs for these maximization problems.

Extension to k-way ANOVA leads to concepts other than discrimina-
tion, and in particular to »interaction«. It is curious that no coefficient
strictly comparable to eta has been proposed for expressing the size of
interaction (Hay's CO= comes closest to paralleling nz), At a recent meeting
of the Israel Statistical Association (Guttman, 1986b), I showed how to
determine upper bounds for interaction, using the absolute value approach
(in the spirit of the present paper for establishing upper bounds for s’,).
Dividing an iteraction variance by its upper bound gives a meaningful
coefficient which varies between 0 and 1, being 0 if there is no interaction,
and equaling 1 if the condition for the maximum holds.
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OBITUARY

Louis Guttman, 1916- 1987

The name of Louis Guttman is most closely associated with the de-
velopment of scaling theory. But his pioneering and seminal work stret-
ches far beyond the invention of the famous »Guttmann Scaling Method«
and his innovations in smallest space analysis or facet theory. He always
stressed the point that measurement is not just the assignment and mani-
pulation of numbers but, above all, an exercise in the application and
construction of social theory.

The broad scope of his scientific concerns was reflected by the title
»Professor of Social and Psychological Assessment at the Hebrew Uni-
versity of Jerusalem (to which he was appointed in 1955) and by the many
awards and honors given to him - among them: the Rothschild prize for
Social Sciences in Israel; his election to membership in the American Aca-
demy of Arts and Sciences; the Outstanding Achievement Award of the
University of Minnesota.

Guttman emphasized, in theory and practice, the service function of
social theory and research to the public. In his case this meant, above all,
the application of social science to the buildung of the new state of Isreal.
From 1941 - 1954 he was an expert consultant at the Research Branch of
the Information and Education Division of the War Department (see Vol. 4
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of the » American Soldier«); later he volunteered his services to the Israel
Defense Force and, still later, founded and directed the Israel Institute of
Applied Social Research.

Although historians may wonder, why they should be concerned about
choosing Eta or rather Disco or Odisco, we feel honored that Louis Gutt-
man submitted this paper (one of his last, as we have to note now) to our
journal. His presentation is a beautiful example of how one can go about
translating, step by step, a substantive analytical problem into algebraic
language. It addresses a problem which is of interest not only to psycho-
logists or sociologists, but to social historians as well:

What is the best way of discriminating populations (e.g., groups of peop-
le) which may have overlapping distributions on some variable X; and
how, with what amount of error, does one assign individuals to precon-
ceived groups on the basis of their individual measures xi? For example, to
what extent are parliamentary groupings (factions) separated on certain
dimensions of political ideology revealed by roll call behavior? Although
Guttman takes his examples from outside social history, their analytical
structure is obviously generalizable to problems in other fields of research.
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