SSOAR

Open Access Repository

CENSSYS - a system for analyzing census-type

data
Oldervoll, Jan

Verdffentlichungsversion / Published Version
Zeitschriftenartikel / journal article

Zur Verfiigung gestellt in Kooperation mit / provided in cooperation with:

GESIS - Leibniz-Institut fir Sozialwissenschaften

Empfohlene Zitierung / Suggested Citation:

Oldervoll, J. (1989). CENSSYS - a system for analyzing census-type data. Historical Social Research, 14(3), 17-22.

https://doi.org/10.12759/hsr.14.1989.3.17-22

Nutzungsbedingungen:

Dieser Text wird unter einer CC BY Lizenz (Namensnennung) zur
Verfligung gestellt. Ndhere Ausklinfte zu den CC-Lizenzen finden
Sie hier:

https://creativecommons.org/licenses/by/4.0/deed.de

gesis

Leibniz-Institut
fiir Sozialwissenschaften

Terms of use:

This document is made available under a CC BY Licence
(Attribution). For more Information see:
https://creativecommons.org/licenses/by/4.0

Mitglied der

Leibniz-Gemeinschaft ;‘

Diese Version ist zitierbar unter / This version is citable under:

https://nbn-resolving.org/urn:nbn:de:0168-ssoar-51885



http://www.ssoar.info
https://doi.org/10.12759/hsr.14.1989.3.17-22
https://creativecommons.org/licenses/by/4.0/deed.de
https://creativecommons.org/licenses/by/4.0
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-51885

Historical Social Research, Vol. 14 — 1989 — No. 3, 17-22

CENSSYS - A System for Analyzing Census-Type Data

Jan Oldervoll*

The very first census of Norway was taken in the 1660ies. This census
contains only the male population. The same is true for the next census, in
1701. In 1769 it was decided to count the women as well. This time the
local authorities were asked to make the tables for their own area, and only
submitted those. The government made the final statistics based on those
aggregates. The same was true for the five censuses in the period
1815-1855. In 1801, 1865, 1875, 1891 and every 10th year from 1900 on-
ward, there are regular censuses with an increasing number of variables on
every individual in the country.

At the History department, University of Bergen, the census of 1801 was
put into the mainframe. The database consists of records on 879 020 in-
dividuals. At the same institution, most of the 1660-material was put into
the computer as well. The project is not yet finished.

At the worlds northernmost university, Tromso, there is an institution
called RHD, or Registreringsseniralen for historiske data (Norwegian Hi--
storical Data Archives). Their main objective is to make the censuses of
1875, 1891 and 1900 ready for computer analysis. They have finished ap--
prox. 1 million records. Other institutions has put some hundred thousand
records on disk. All together, there are close to 3 million records on indi--
viduals in computers of Norwegian historians. This is a vast source of
knowledge about Norwegian history. It has been used by a variety of peop-
le, but more by family historians, local historians, schools and by people
generally interested in their past than by professional scientists.

The main reason for this is that the former is content with unrefined
material (lists), which is easily made, while the scientists want to do their
own analysis.

This can be done. There are programs to do it on the mainframes in
Bergen and Tromso, but not without problems. Few historians seems to
cope with the mainframes, even if they seem to do well on their PC's. Most
of the programs were written in the late 70ies, and may be inconvenient by
today's standard. And if you are situated in a different institution than the
data, there may be nobody to ask when you have trouble. The old systems
seem to have a too high a learning barrier. And for most people the so-
lution seems to be, do without it. This is a negative solution.

* Address all communications to Jan Oldervoll, University of Bergen, Dept. of
History, N-5007 Bergen- Universitet, Norway.

17




Historical Social Research, Vol. 14 — 1989 — No. 3, 17-22

There are a positive solution as well. We can make the barrier drama-
tically lower. But then we have to make a completely new system for ana-
lyzing census data. To do this, there are a few requirements that have to be
fulfilled:

- The system has to run on a standard PC, engined by anything from a
8088 and upwards. Even if many people have a 80286 or even 80386,
there are still a lot of 8088 and 8086 around, and will be for quite a few
years.

- The system should wuse a minimum of disk space. There are many
reasons for this. One is that people alwaysrun out of space on their
hard disk. Only data allowed to stay on the disk permanently or can
used or loaded from a single floppy, will be used. Very often, you even
saves time by reducing storage. To move data between disk and me-
mory (I/0) is a very time consuming tasks in most applications.

- The system should be very easy to run. You shouldn't have to have
formal instruction or study kilograms of documentation to use the
system.

- The system should be able to run all censuses: You should not have to
learn a new system every time you change census.

- The system should do whatever you want to do to a census. This goal is
difficult to reach. But it is more important to reach for the stars than
actually getting there.

These could be called traditional requirements. I have still another.
Before having a closer look at that one, a few words on how a census is
used is necessary.

A census is a description of a society. As everybody knows, a society is a
extremely complex structure, while a census is a fairly simple one. A
census is containing information on a society, but only an infinitesimal
part of all information possible on that society. People is reduced to a
name, an age, an occupation and a few more variables of the kind. Inter-
action between people is reduced to who is living with who, and who is the
son of who. A truly enormous reduction!

To make statistics based on a census, you need to code it. 1 the 1801
census of Norway, there are approx. 50,000 different ways of expressing
what occupation an individual had. To make sensible statistics, those have
to be reduced to a few dozens or a few hundred. There are thousands of
ways to express that a person is a Husmann(cottager). By coding you may
reducing this to one. You may loose the fact that he also may have done
some fishing. Even different spelling of the same word may carry infor-
mation. Some Husmann is spelled Huusmann, with a double »u«. It could
be that the one's with double has a higher social standing that the one's
without. Coding is another vast reduction of information.

18



Historical Social Research, Vol. 14 — 1989 — No. 3, 17-22

Cross tabulation is a frequent statistical analysis of census data. Even
tabulation is a reduction of information. If you make an age by civil status
table, you loose the information on occupation for the individuals behind
the figures in the cells of the table, which may be vital. Or, if you find a
female bishop in a sex by occupation table, is this a sensation or is it a
typing error? From a table you have no way of knowing.

You can say that making statistical analysis is a step-wise reduction of
information. And what has been taken away is gone forever. In most sy-
stems it is cumbersome to say the least to have a look at the individuals
behind a cell in a table. It is my sincere conviction that it is extremely
important to do so.

My third requirement is that from every step in the process from census
to table, you should be able to trace back to the census. When you code you
should be able to see what terms hide between the code for cottager, or you
could even look at information about the individuals with that code. When
you make a table, it should be possible to open a window where you can
look at the individuals belonging to every cell.

In short, I want a system that is easy to use, compact, fast and where the
different levels of the census (text, codes and table) is integrated. I have
not found any commercial products that even come close to the fulfilling
of my demands. It has to be written.

When you are going to make a new system, the most important thing is
to make an efficient data structure. And efficiency must be measured ac-
cording to what you are going to do. If you are going to find a particular
record, the fastest way to do is probably to have an index-sequential data
structure of some kind. But if you want to make a cross table, you don't
need any indexes, and a regular sequential file would as fast. And fastness
is only one part of efficiency. Compact storage is another. Index-sequential
files are disk consuming. If the major task is to make tables, it is better to
have a sequential file, and pay the price when you once in a while are
searching for a certain record.

Depending on the data, the price does not have to be too high. In the
coded data, the value of every variable consists of a single integer. One
individual consists of a fixed number of integers, constituting a vector.
The whole census can be interpreted as a matrix. Copying the matrix into
the memory and searching it for a certain value is an extremely fast task.
But it can be speeded. In a machine, a matrix is not stored as a matrix, but
as a number of vectors chained onto each other. The logical way to store a
census, is to store the material as chained vectors each containing a person.
If you want to search for occupation, you have no need of any of the other
variables, and you are consuming much time moving unnecessary data
into RAM. If you store the data as vectors containing all the values of a
single variable. The vector will then have as many dimensions as the num-

19



Historical Social Research, Vol. 14 — 1989 — No. 3, 17-22

ber of persons in the census. The census will then be stored as vectors
chained together, one for every variable. This very simple remedy will save
a considerable amount of time, and make it possible to search tens of
thousand of individuals per second on a regular AT. If you want to make a
cross table, you save as much, because you only have to read the variables
used. A simple, but extremely efficient remedy.

To conserve even more space, and I/O-time, one can even pack data. Sex
only needs one bit of storage, age 7 bits, and both can be stored in one byte.
If there are 100,000 persons in the census, there are 100,000 bytes of sto--
rage saved. And there are other variables where you can save.

This is a simple, very compact and from extremely to moderate fast way
of storing coded data.

It would nice if one could do the same with the text version of the
census. One could store it as a text matrix, many systems does, but this is a
disk and memory consuming way of doing it, because you would have to
make room for the maximum length of the variable. But if one returns to
the coded version for a moment, there is text involved in that one as well.
When a person has occupation 18, the number 18 points to line 18 in a
code book, which may have the text »Farmer«. The code book may or may
not be in the machine. If one made a large code book that contained every
single term occurring in the census, the census could consist of pointers to
this »code book«, or list of terms. In that way every variable could be
reduced to 2 bytes per person, and they could be nicely organized, like in
the coded version. It would probably take something like 1/5 or 1/10 of
the space, compared to a regular text file. The compactness requirement is
fulfilled.

In addition there is the list of terms. But since very many terms are
repeated very many times in a census, and we only have to store it once in
a list, this list does not take much space. In fact, even for a large area, it is
stored permanently in RAM. To find a person called Hans, would be to
search the list for the word »hans«. This is done in fractions of a second.
The next step would be to find all pointers pointing to Hans: My AT can
search close to 100,000 records per second, if the data is in RAM, 40,000 if
they must be fetched from the hard disk. In most cases, this is acceptable.
And if it should be to slowly, there are technics that could speed it consi-
derably. The price to pay is some more disk storage. I have not as to yet
found it worth while.

Now we have a very compact data structure, which is essentially the
same for both text and coded versions of the censuses. The structure con-
sists of a list of terms and a set of pointers to list. All programs running on
the text version can also run on the coded version. The coded version is in
fact a text version where the text has been reduced to those terms defined
by the code book.

20



Historical Social Research, Vol. 14 — 1989 — No. 3, 17-22

What can we do with this data:

- It can be searched. But searching can be done in different ways. One is
what I call blind search. You ask the computer to find for example the
person Oluff Lauritzen. The problem is that his name can be written
in many ways, for example Ole Larsen. You can never be sure that you
found the right person. A better way is to present you a list of all first
names in your area, and let you choose among them. Perhaps you
choose Olaf, Olaff, Olav, Ole and Olufj. Then you can ask for a list of
last names. Then you will get only the last names of the persons with
the first names you have chosen, which should be a rather small list.
Here you can have look at the persons with the last name of Larsen
and Lauritzen, or you can choose them and ask for another variable,
for example age, and then look at persons within the right age span.

- You can code it. Coding is collecting groups of terms and giving them
the same characteristics, giving them a code. This is done easily just by
changing pointers. While the Husmann's in the text version have poin-
ters pointing to a lot of terms all meaning Husmann, this are all chan-
ged to the pointer pointing to the term Husmann. This can be done by
the same procedure that are doing the searching. Searching and coding
is the same thing, seen from the user's point of view. This helps make
the program easy to use.

- By keeping the old pointer as well, it is very easy uncode both a variab-
le, a term or a single person. The only thing to do is to change back to
the old pointer. This is easy to do technically, but also for the user.

- At all the time you can also see the persons that hide behind a term or
behind a code. You even get the household he lives in. This is done just
by pushing a key.

- You can make a subset. People living in a certain area, having a certain
name or certain occupation or whatever. This is done by the same
procedure as search and code procedure. Easy to use. You can print a
subset, copying it to a file or use it for further analysis.

- You can make cross tables. You can tabulate text version or coded
version as you wish. You can edit the table, and write it to printer or
disk. You can even open a window in each cell, looking at the indivi-
duals behind the figures, and even move them from the cell to another.
This is a very important characteristic of the system.

- The tables can be made based on the coded version, but also on the text
version as well. In most cases, the text-based tables are very large, but
otherwise they behave like a table based on the coded version. You can
even make your coding directly in the table. This is useful if you do not

want a permanent coding.

- There should be powerful statistical and graphic tools in the system. I

21



Historical Social Research, Vol. 14 — 1989 — No. 3, 17-22

am not going to make them for the time being. Instead, 1 am going to
make good interfaces to packages.

What about the future? In my opinion, the most important task is to
make good linking capabilities to link information from several censuses.
The data structure is very good for that type of task. To link, you need a
coded, or standardized version of the census. The standardization may be
done beforehand or while the program is running. The safest is to do it
beforehand, and my system has the capabilities. To do linking you need a
compact data structure because there are so much data to consider. You
need good searching capabilities. My system has it. Making good record
linkage system should not be too difficult, and I hope to do it.

22





