Computing weights for the German Longitudinal Election Study (GLES) 2009-2013
Gummer, Tobias; Blumenberg, Manuela S.; Vilgis, Constanze

Veröffentlichungsversion / Published Version
Arbeitspapier / working paper

Zur Verfügung gestellt in Kooperation mit / provided in cooperation with:
GESIS - Leibniz-Institut für Sozialwissenschaften

Empfohlene Zitierung / Suggested Citation:

Nutzungsbedingungen:
Dieser Text wird unter einer CC BY-NC Lizenz (Namensnennung-Nicht-kommerziell) zur Verfügung gestellt. Nähere Auskünfte zu den CC-Lizenzen finden Sie hier: https://creativecommons.org/licenses/by-nc/4.0/deed.de

Terms of use:
This document is made available under a CC BY-NC Licence (Attribution-NonCommercial). For more Information see:
https://creativecommons.org/licenses/by-nc/4.0
Computing weights for the German Longitudinal Election Study (GLES) 2009–2013

Tobias Gummer, Manuela S. Blumenberg & Constanze Vilgis
Computing weights for the German Longitudinal Election Study (GLES) 2009–2013

Tobias Gummer, Manuela S. Blumenberg & Constanze Vilgis
GESIS-Papers

GESIS – Leibniz-Institut für Sozialwissenschaften
Dauerbeobachtung der Gesellschaft
GESIS-Projektleitung German Longitudinal Election Study
Postfach 12 21 55
68072 Mannheim
Telefon: (0621) 1246 - 502
Telefax: (0221) 1246 - 530
E-Mail: manuela.blumenberg@gesis.org

ISSN: 2364-3781 (Online)
Herausgeber,
Druck und Vertrieb: GESIS – Leibniz-Institut für Sozialwissenschaften
Unter Sachsenhausen 6-8, 50667 Köln
Contents

1 Introduction ... 5
2 Design weights ... 7
3 Adjustment weights .. 9
 3.1 Iterative proportional fitting ... 9
 3.2 Operationalization .. 10
4 Panel weights ... 14
 4.1 Propensity score weighting ... 14
 4.2 Predictors of response propensities ... 15
 4.3 Propensity models .. 16
5 Remarks on the use of weighting .. 23

References .. 25
Data sets ... 28
Appendix ... 30
1 Introduction

The German Longitudinal Election Study (GLES) is a research project funded by the DFG that began with the German federal election in 2009. Up until now, it is the biggest German national election study and aims to observe and analyze the German electorate at three consecutive federal elections, starting with the election in 2009. It is envisaged that the research project will continue after 2017 as an institutionalized German election study.

In 2009, the study was launched by Prof. Dr. Hans Rattinger (University of Mannheim), Prof. Dr. Sigrid Roßteutscher (University of Frankfurt), Prof. Dr. Rüdiger Schmitt-Beck (University of Mannheim), and Prof. Dr. Bernhard Weßels (Social Science Research Center, Berlin). At present, the study is managed by Prof. Dr. Sigrid Roßteutscher, Prof. Dr. Rüdiger Schmitt-Beck, Prof. Dr. Harald Schoen (Mannheim Centre for European Social Research), Prof. Dr. Bernhard Weßels (Social Science Research Center, Berlin), and Prof. Dr. Christof Wolf (GESIS). The principal investigators are conducting the study in close cooperation with the German Society for Electoral Studies (DGFV) and the GESIS – Leibniz Institute for the Social Sciences.

In order to observe short-term as well as long-term dynamics within the electorate, a complex project design was developed for the GLES (see Figure 1). This resulted in a mix of different research methods (surveys, content analysis, experiments). These methods partly link quantitative and qualitative elements. Furthermore, different types of survey design (cross-sections, rolling cross-sections, and panels), as well as interview techniques (CATI, CAPI, PAPI, web), are applied to collect data at an individual level.

![Figure 1: Overview of the GLES design, 2009 and 2013](image)

1 The present report is strongly based on the following previously published reports: “Gewichtung in der German Longitudinal Election Study 2009” (Blumenberg & Gummer, 2013) and “Gewichtung in der German Longitudinal election Study 2013” (Blumenberg & Gummer, 2016).

2 We would like to thank Patrik Haffner for his valuable assistance when preparing this report.
During data preparation, GLES data is enriched with additional information, such as weighting factors. This technical report provides a general discussion of the computation of weights that was done in the context of the 2009 and 2013 data collection efforts. Further information about the weights can be found in the study descriptions of the respective GLES data sets.

The basic idea of providing users with pre-calculated weights was to ensure homogeneity between the different parts of the GLES, while considering the specific context of the different components. For instance, one issue is that it might not be possible to calculate similar weights for studies with different survey modes. This can severely hinder comparison between these two studies, as applying different weights might introduce additional differences between the studies. In the GLES, efforts were taken to use a consistent approach when computing weights for different components. These efforts aim at easing inter-component comparisons by reducing the influence that the use of weights (presumably) has on discrepancies between these components. Furthermore, the calculation of similar weights makes GLES data more readily assessable. In other words, users are required to make less effort to understand how weights were computed for several components of the GLES, as similar methods were applied throughout.

For each of the GLES studies that were conducted between the federal elections in 2009 and 2013, design, adjustment, and panel weights were calculated as required. Table 1 gives an overview of the relevant components of the GLES for 2009 and 2013 and shows which weights were computed.

Table 1: Weights in the GLES, 2009 and 2013

<table>
<thead>
<tr>
<th>Study</th>
<th>East/West</th>
<th>Transformation</th>
<th>Adjustment</th>
<th>Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre- and Post-election Cross Section (2009: ZA5300, ZA5301, ZA5302; 2013: ZA5700, ZA5701, ZA5702)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Rolling Cross-Section Campaign Survey with Post-election Panel Wave (2009: ZA5303; 2013: ZA5703)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short-term Campaign Panel (2009: ZA5305; 2013 ZA5704)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Candidate Campaign Survey* (2009: ZA5318, ZA5319; 2013 ZA5716)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long-term Online Tracking (ZA5334-ZA5350, ZA5719-ZA5729)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long-term Online Tracking of State Elections (ZA5324-ZA5333, ZA5735-ZA5741)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Adjustment weights were calculated for the candidate study. In contrast to other GLES surveys, cases were adjusted to the population of all candidates and not the electoral population. Thus, in this report, no detailed description of the candidate study’s weights is provided. For details, see the relevant study description.
2 Design weights

Design weights can tackle biases introduced by the survey design. Within the GLES, design weights are calculated in order to correct selective overrepresentation of eastern German respondents. Other design weights, like a transformation weight, can be used to transform a household sample into a person sample (Schumann, 2012, p. 101f). For some parts of the GLES study, both weights (i.e., east/west and transformation) were calculated.

For both federal elections in 2009 and 2013, the east/west weight was calculated for the pre- and post-election cross-section surveys, as well as for the first wave in the long-term panel survey. In these studies, an oversampling of the population in the new federal states (including Berlin) was implemented to allow for analyses of subgroups in eastern Germany. The east/west weight can help to account for the disproportionality of the sample and permit generalized estimates for the whole of Germany.

In order to calculate the east/west weight, cell weighting was used to adjust the survey data to distributions taken from the German Micro Census of 2009 (for the election in 2009) and the Micro Census of 2012 (for the election in 2013). Only people aged 16 years or older (respectively 18 years of age) that held German citizenship and resided in private households at the location of the principal domicile were considered.

The east/west weight w_{ew} was calculated as the ratio between the relative frequencies of the respondents in either one of the regions in the survey (h_{ew}) and the respective true relative frequencies (h_{e}).

\[
w_{ew} = \begin{cases}
\frac{h_{e}}{h_{w}} & \text{if east} = 1 \\
\frac{h_{w}}{h_{e}} & \text{if east} = 0
\end{cases}
\]

Accordingly, respondents in eastern Germany (including Berlin) received a weighting factor below one, while respondents in the old federal states received a factor slightly above 1.

Several components of the GLES are not only based on person samples but on household samples. In face-to-face and telephone samples, individuals in households of different sizes do not have the same probability for participating in the survey. The larger the household, the smaller the probability is for an individual to be selected for the survey. This issue concerns the cross-sections and rolling cross-section surveys. Hence, transformation weights are provided for these surveys. Transformation weights provide a tool to correct for different selection probabilities within households. The weights are based on a reduced household size. That is, only people belonging to the target population are considered. For instance, if a household consists of four people older than 16 years of age, each person in this household has a 25% chance of being selected. However, if a household is comprised of two individuals older than 16 years of age, each has a 50% probability of being selected.

The calculation of the transformation weights is straightforward – respondents receive a factor corresponding to their inverted selection probability. For the cross-section surveys, the reduced household size was used to calculate the probabilities, while the number of telephone connections was used in

3 In every component of the GLES, except the rolling cross section and the long-term-panel from 2005-2009-2013, people over 18 years of age or older who hold German citizenship were defined as the target population. In the cross sections, as well as the long-term panel from 2002-2005-2009, the minimum age was 16.
the case of the telephone surveys. Finally, the weights were standardized to a mean of 1 in order to keep the sample size the same.

The use of transformation weights is controversially discussed in the social sciences. Some argue that transformation weights are necessary, due to the sampling procedure. Others claim that biases which are corrected by transformation weights are counteract another bias, which is generated by the fact that smaller households are more difficult to reach than larger ones (Arzheimer, 2009, p. 363; Hartmann & Schimpi-Neimanns, 1992; Terwey, Bens, Baumann, & Baltzer, 2007).
3 Adjustment weights

Weights can be used to adjust the distributions of a survey’s sample to the distributions in the target population. If the true distribution of the target population is known, adjustment weights may be used to calibrate the survey's distribution. Nonresponse is one possible reason why the distributions of individuals’ characteristics in a sample may significantly differ from distributions among the population (Gabler, 2004, p. 128). The intention of using these weights is to allow one to draw conclusions related to the target population, even if the sample is subject to some degree of selectivity (Faas & Schoen, 2009, p. 146).

It is important to note that, for the GLES, external references had to be used to refer to the target population’s “true” distributions. The calculation of weights for the GLES had two requirements: First, the distribution of variables that were selected for adjustment had to be available in some sort of reference study. The Micro Census of 2009 (German federal election in 2009) and the Micro Census of 2012 (German federal election in 2013) were used as reference studies, since these were considered to represent the target population most closely. Parts of the GLES were conducted web-based and, hence, the (N)Onliner Atlas for 2012 and 2014 respectively were used as reference studies for the online population of Germany. Second, as argued above, the GLES aimed to provide similar weighting factors for different components to allow for comparisons between the different data sets. Hence, variables that were available in most of the GLES data sets were selected for computing adjustment variables.

3.1 Iterative proportional fitting

There are different procedures for computing adjustment weights. In the GLES, cell and IPF weighting (iterative proportional fitting) were used. In cell weighting, a weighting factor to adjust a sample’s distribution to the population’s distribution (i.e., the reference study) is calculated by dividing the “true” by the “actual” relative frequencies. Note that a distribution may be the distribution of a single variable or the multivariate distribution of several variables. This demands that the “true” distribution of all adjusted variables and characteristics is known. Accordingly, two problems may arise (Gabler, 2004, p. 128ff):

(i) If not only one but multiple variables are adjusted for, it is frequently the case that distributions can only be known for the individual variables but not the multivariate (crossed) distributions. In this case, cell weighting is not possible.

(ii) Even if the multivariate distribution with respect to all adjustment variables is known, problems may arise because of empty or sparse cells. In this case, again, simple cell weighting is not possible.

When creating the east/west design weight, a cell-weighting approach was used. Assuming that a second variable is selected to create an adjustment weight for, say, the region of residence (east/west) and gender, the multivariate distribution would presumably pose no problems, as only four cells are present (east/west x female/male). If multiple additional variables are considered (e.g., age or education), the number of cells will markedly increase. As a consequence, empty or sparse cells will occur more frequently. One possible solution would be to group cells together to reduce the overall number of cells. However, this would result in a loss of precision and information.

IPF offers an alternative method to cell weighting for calculating adjustment weights. In this iterative adjustment procedure, based on the work of Deming and Stephan (1940), the actual distribution of the sample gets adjusted in iterative steps to the target (“true”) distribution. That is, weights are com-
puted for one of the adjustment variables and are then modified to adjust for the next variable as well. In other words, the calculated weighting factor after an iteration step is the initial value for the adjustment of the next variable. The adjustment procedure is completed when the target distribution equals the actual weighted distribution. Since it may not be possible or mandatory to achieve perfect equivalence, a termination criterion can be defined. Two possible solutions define percentage differences between the adjusted and target distributions or the number of iteration. A detailed discussion of the method is given by Deming und Stephan (1940, p. 428ff).

The adjustment weights of the GLES are based on five variables that have a multivariate (crossed) distribution with a total of 144 cells. Accordingly, cell weighting was not feasible due to the huge number of cells. Thus, in the GLES the IPF weighting was used to calculate the adjustment weights.

The weights were calculated in Stata with the user-written ipfweight command (Bergmann, 2011). In general, the algorithm mostly converges after 5 to 10 iterations. The failure to achieve convergence or a large number of iterations may point to the presence of many empty cells and/or a highly skewed sample.

3.2 Operationalization

The aim of appending GLES data sets with weighting factors is to provide users with a tool to achieve equivalent distributions with respect to the target population. On the one hand, applying weights also increases variation. On the other hand, the selection of variables determines whether a bias might be reduced. A variable’s bias is only reduced if, first, the variable is indeed correlated with the adjustment variables and if, second, these adjustment variables are correlated with the source of the bias (e.g., a nonresponse process). If there is no relationship between biased variables and adjustment variables, applying weights may only conceal the problem, while not providing any substantial effect (Gabler, 2004, p. 141).

The GLES faced the challenge to calculate adjustment weights with the same procedure for different components. Therefore, the variables used for adjustment had to be available for every data set with comparable scales. Since sociodemographic variables were used for adjustment weighting (as the distributions in the target population were known), this was considered a minor issue. Yet, the best way to handle missing values remained a pressing consideration in this process. One possible solution would have been to exclude cases with missing values (i.e., listwise deletion). However, this would have resulted in a subset of cases without weights and thus a reduction of the effective sample size when using weights. A different solution was the use of complex imputation procedures. Since there were only very few cases with missing values (constantly below 2%), a simple assignment of the missing values was preferred. For these cases, the modal category was assigned when calculating the weights (single imputation). As a consequence, missing values were, depending on the component, assigned to different categories (i.e., the modal categories of a variable differ between studies). However, the procedure for assigning and selecting the category was always the same. For instance, take the respondents’ education: whereas the modal category of education in pre- and post-election cross sections was “low” education, in the RCS, the modal category was “high” education.

To ensure perfect comparability, each adjustment variable would need to be collected with identical question wording, scales, and questionnaire design. Due to the specific focus of each component and differences in survey design (e.g., mode), this was not always the case in the GLES. However, differences largely remained minor as the GLES features a set of shared key questions.

Note that the adjustment weights were not calculated for specific research questions but to balance distributions of the survey data according to the target population. Furthermore, it is important to
acknowledge that only sociodemographic variables for which a reference distribution was available could be considered for calculating the weights.

Accordingly, two main rationales guided the selection of adjustment variables. First, there had to be an (assumed) relationship between the variables and the general topics of the GLES. Second, the variables had to be available in the Micro Censuses of 2009 and 2012. In the end, five adjustment variables were selected, all of which were sociodemographic variables.

Gender

Substantive variables are often analyzed for, and these analyses often highlight, differences between men and women. For example, it has been shown that women report lower levels of political interest in comparison to men and that they additionally report less involvement in traditional structures of politics (Keil & Holtz-Bacha, 2008, p. 242). Furthermore, differences can be found when looking at voting behavior. For instance, women more frequently identify themselves as voters for The Greens in comparison to men (Roth & Wüst, 2006, p. 49).

Age

Differences between age groups can be found both in political behavior and turnout. Representative voting statistics show that younger people are less likely to vote in comparison to older people. Differences between age groups have been also reported for actual voting behavior (Wagner, Konzelmann, & Rattinger, 2012, p. 274ff), especially when looking at the decisions made to vote for different political parties. For example, people voting for the Pirate Party are generally younger than voters of the Christian Democratic Union of Germany (CDU).5

Since there seems to be a relationship between age and substantive variables in political interest, age was used in the weighting procedure. To prevent empty cells, the year of birth was recoded into age groups. When deciding on the construction of these groups, it had to be considered whether the groups were theoretically reasonable. The concept of one’s life course suggests that there are different stages of life that proceed continuously but are separable. Hence, groups were constructed to account for these different phases of life (i.e., “elderly people” or “people entering the family phase”), which are associated with certain social characteristics (Backes & Clemens, 2008, p. 160). The definition of life phases is not always clear cut. For instance, family formation may take place in early years of life but also significantly later. Despite these problems, four groups were constructed that correspond to phases of life that commonly occur over the one’s life course. The first group covers young people up to 30 years of age. People from 30 up to 45 years of age were assigned to the second group. The third group covers people from 45 to 60 years of age. The exemplary characteristic for this group is a well-established private and professional life. The last group includes everyone over 60 years of age. Here, the social characteristic is the start of a new phase of life by entering retirement.

Education

An additional variable for adjustment is the respondents’ levels of education. In particular, the existence of a relationship between turnout and level of education has been demonstrated in previous research (Niedermayer, 2001, p. 169). Hence, education was considered for the calculation of adjustment weights. Therefore, different categories of education had to be grouped together. Again, this was done

5 Rattinger (1994) has examined the influence of age and the cohorts effect on voter turnout and voter decision-making (also Gummer, 2015, pp. 145-187).
to reduce the overall number of cells in the multivariate distribution. A further reason for this decision was that education was measured differently across different components of the GLES. Comparability was achieved by arranging the detailed scales within three broader categories:

Lower education: school finished without degree, degree from secondary level school, degree from elementary school, degree from polytechnic secondary school after 8th or 9th grade, or still in school

Intermediate education: intermediate school-leaving certificate, qualification for admission to a technical college, or degree from polytechnic secondary school at the 10th grade

Higher education: qualification for admission to universities of applied sciences, general qualification for university admission, or extended secondary school with degree from 12th grade

As discussed above, "different degrees" and the missing value were assigned to the modal category.

Region

Apart from the last two sociodemographic characteristics, two more variables regarding the respondent’s geographical context were added. The region of residence can be assumed to influence the choice of political party as well as voting turnout. In the German political sciences, there is still some debate as to whether Germany (still) has two different political party systems. Western Germany has a party system with two bigger (CDU/CSU, SPD) and three smaller parties (FDP, Grüne, Linke), whereas eastern Germany’s party system is a bit different. Since 1990, there are three medium-sized parties (CDU, Linke, SPD) and two smaller (FDP, Grüne) ones (Jesse, 2003, p. 17). Even though a constant change in the political party system can be observed, in both German federal elections of 2009 and 2013, differences between the eastern and western German electorate remained clearly visible. Consequently, region was considered in the calculation of the GLES adjustment weights. Note that Berlin was treated as being part of eastern Germany.

BIK region

As a second variable for the respondents’ geographical context, the size of a municipality was selected. This variable was shown to influence political views and political behavior (Rattinger, 2009, p. 234). For the weighting, the BIK regions were used, instead of the political municipality. BIK regions do not classify municipalities based on their population, but on the amount of the population that is functionally integrated into the municipality. 6

BIK classifies municipalities in ten groups. To calculate the adjustment weights, these groups were recoded into three groups: smaller municipalities with fewer than 50,000 (functionally integrated) inhabitants and larger municipalities. The larger municipalities were divided based on their structural typology (core area versus compression, transition, and peripheral areas). In the GLES from 2013, online samples were adjusted too. Due to a lack of available information, more specifically in terms of reference studies, only two groups were formed. As such, distinction was made between municipalities with more or less than 20,000 inhabitants.

Based on these five variables, the GLES adjustment weights were calculated. As a termination criterion, a value of 0.05 was selected. That is, if the difference between the weighted actual distribution (i.e., based on the sample) and the target distribution was lower than 0.05 percentage points, the iterative process was stopped.

6 BIK Institut Aschpurwis+Behrens (2001) offers a detailed description and assignment of BIK regions.
As discussed in the technical report from the ANES (American National Election Study) (DeBell, Krosnick, & Lupia, 2010, p. 75), extremely large weights can cause methodological issues, as they may inflate variances (Kalton & Flores-Cervantes, 2003). To avoid this issue, the GLES relied on a trimming procedure that was also used in the ANES and the European Social Survey (ESS). All design and adjustment weights exceeding a value of 5 were trimmed to that value. The trimming was done, if necessary, after every step of the iteration process and not at the end of the whole iteration process. Within the GLES, trimming had to be used in just a few cases. In the majority of cases, the computed weightings factors were lower than 5.

7 The decision to select 5 as the threshold to trim weights is arbitrary. In the GLES, this decision was based on a similar strategy utilized by the ANES. In that case, this threshold was selected for the ANES panel study of 2008/2009, after consulting with weighting experts. The ESS uses the same limit of 5 as the threshold for trimming weights (Gabler & Ganniger, 2010, p. 158).
4 Panel weights

In the past few decades, longitudinal data have been more frequently used in the social sciences. Panel studies offer one form of longitudinal research design that is often used to assess changes at the individual level (within individual change). In other instances, longitudinal data are used to observe social change by calculating the difference between aggregate measures over time (cf. Gummer, 2015). Panel surveys face two important challenges: panel conditioning and attrition. In panels, attrition occurs when panelists decide to no longer participate in the panel and, thus, do not respond in re-interviews. Such nonresponse may be only temporary—that is, the panelist does not participate in one or more waves of the survey but participates again at a later point in time. However, it is also possible that the panelists may completely quit the panel and no longer participate. Hence, panel attrition can be perceived as a longitudinal sub-form of unit nonresponse and may result in bias if attrition occurs in a systematic way. In other words, if specific panelists attrite from the panel, this will result in an attrition bias. Weights represent a minimally invasive method and might offer a way to reduce this bias. Accordingly, large panel surveys (such as SOEP and PASS) often provide their users with panel weights. A more detailed discussion of different strategies to deal with missing data can be found in Allison (2002).

4.1 Propensity score weighting

As discussed above, adjustment weighting relies on distributions that are available from reference studies to adjust a survey’s own distributions. In a panel, respondents may have participated in earlier waves of the survey. Thus, information about these respondents is available to the researcher. In order to correct a panel attrition bias, the respondent’s propensity for participation can be predicted based on this information. The respective response propensity can then be used to calculate a weight. This panel weight follows a similar logic to the ones discussed above. That is, respondents with a high propensity for participation receive lower weights compared to respondents with a low response propensity. This approach is called propensity score weighting (e.g., Loosveldt & Sonck, 2008; Rosenbaum & Rubin, 1983) and is based on inverting the probability of participation (Horvitz & Thompson, 1952). The method that is used in the GLES to correct for panel attrition is a longitudinal form of propensity score weighting to correct for unit nonresponse (e.g., Blumenstiel & Gummer, 2015).

In the first step of calculating the weights, each respondent’s propensity for participation was estimated for each wave of a panel survey. For this prediction, survey practice frequently relies on logistic regression models (Kroh & Spieß, 2008; Lipps, 2007; Vandecasteele & Debels, 2006). Accordingly, large panel surveys such as the German Socio-Economic Panel (SOEP) (Kroh & Spieß, 2008), the Labor Market and Social Security (PASS) panel (Trappmann, 2011), as well as the European Community Household Panel (ECHP) (Vandecasteele & Debels, 2006), provide a detailed description of how they implemented propensity score weighting. As information on the respondents is available from earlier waves of a panel survey, a more diverse set of variables can be used to compute these weights. For instance, the SOEP draws on the respondent’s willingness to cooperate to predict the likelihood that they will participate again. The aim of modeling participation in a panel survey wave is to depict the structure of attrition most accurately.

8 Panel conditioning describes a process in which respondents change their behaviour in subsequent surveys as a consequence of their earlier participation in [a] survey(s). For an overview, see Sturgis, Allum, and Brunton-Smith (2009).
A propensity model for a wave t, for which the participation of a panelist i is known (Y_i), draws on characteristics of the respondents in wave $t-1$. With the help of this model, the individual’s response propensities can be computed as

$$\Pr(Y_i = 1 | X_i) = \frac{e^{\alpha + \beta X_i}}{1 + e^{\alpha + \beta X_i}}$$

where X is a vector of independent variables, β a vector of the respective regression coefficients, and α the intercept. The inverted response propensities are denoted π^{-1}, while the inverted average response propensity of the sample is $\bar{\pi}^{-1}$. Consequently, the inverted propensities are larger for respondents with a low response propensity in comparison to those with high propensity.

For the cases of individuals who did not participate in the wave $t-1$, the response propensities could not be predicted. In these cases, the last known weighting factor of the case was imputed. For instance, if an individual did not participate in the fourth wave of a panel survey, it would not be possible to calculate a weight for wave 5. In this case, the weight computed for wave 4 was imputed. Another problem of missing values is item nonresponse. Due to listwise deletion, these cases are omitted from the propensity models and no prediction was possible. In these cases, the sample’s averaged weighting factor for the wave was assigned.

For the first wave of a panel survey, no attrition weight was calculated because nonresponse in this wave is not attrition but unit nonresponse. In addition, in this case, no information from prior waves is available.

As before, the weights were standardized to a mean of 1. Therefore, the individual weighting factor w_i can be defined as

$$w_i = \pi^{-1}_i / \bar{\pi}^{-1}.$$

4.2 Predictors of response propensities

A crucial part in propensity score weighting is modelling the attrition process. Within the larger context of the GLES modelling, attrition is relevant for the long-term and short-term campaign panel, as well as the post-election panel wave of the rolling cross-section survey.

When computing propensity score weights for a research program such as the GLES, it may be desirable to build these models as similarly as possible. As argued above, this may help to further increase the level of homogeneity between the weighting procedures. The GLES tries to follow this strategy as far as is reasonable and relies on one theoretical model that is used to predict the propensity models for each survey.

The theoretical model of the GLES draws on different approaches discussed in the literature. Watson and Wooden (2009) provide a classification and discussion of determinants for panel attrition, which closely relates to an approach by Lepkowski and Couper (2002). Lynn (2008) gives a rather similar classification but focuses more closely on mode and design determinants that influence the respondent’s decision to participate. In contrast, Groves et al. (2004) devote more attention to the effects of the interviewers and the survey design.

As the different authors argue in their approaches, the response process can be decomposed into different steps from which nonresponse may originate. For the present theoretical framework, four different steps were distinguished: locating the respondent, making contact, ensuring cooperation, and other characteristics. The problem of locating the respondent is not only a problem for cross-sectional
surveys but also panel surveys. One reason why tracing respondents may prove problematic is spatial mobility. Couper and Ofstedal (2009, p. 190) offer different views on this issue and provide various possible solutions. If respondents are located (once again), the next step would be to make contact with them. There are several characteristics of the respondents that influence the likelihood of successfully establishing contact. These include age, gender, work status, and the range of possible contact times, among others. From the perspective of a field institute, the possibility of making contact is further determined by the workload of the interviewers, the length of the field phase, and the number of contact attempts. If these obstacles are overcome and contact with the respondent can be established, it is necessary to ensure cooperation. At this stage, the respondents’ characteristics, such as their interest in the topic of the survey and other individual attitudes, come into play and may influence their willingness to cooperate. These determinants also include elements of the survey design. For instance, often incentives are used to stimulate the respondents’ willingness to cooperate (Laurie & Lynn, 2009). Furthermore, prior knowledge about how to make contact with a specific respondent may prove useful, as well as the process of selecting specific interviewers. For instance, Steinkopf, Bauer, and Best (2010) report evidence of a relationship between the interviewers’ vocal characteristics and their success rate. Further factors that have been shown to relate to the decision of a respondent to further participate in a panel include gender, age, ethnicity, relationship status, household size and composition, education, home ownership, income, work status, and place of residence (Watson & Wooden, 2009, p. 165ff).

The approach of Groves et al. (2004) offers more insights that can be used to better structure this “residual category of determinants.” The authors argue that the cooperation of a respondent is a function of opportunity costs, the degree of social isolation, interest in the topic, and over-surveying through previous surveys.

Within the GLES, a diversity of variables was used to operationalize the different dimensions of the different approaches. These variables cover sociodemographic, attitudinal, behavioral, and paradata elements. The explanatory models consider variables that take the specificity of the situation for participation in a survey into account. For instance, in the campaign panel, information about the device used by the respondent while answering an online survey were included in the explanatory model to account for the respondent’s survey experience in previous waves.

4.3 Propensity models

The following section provides an overview of how the explanation model was operationalized in the components of the GLES. Note that due to differences in mode and design, the selection and operationalization of variables may differ between these components.

Tables 2 and 3 show logistic regressions used in the RCS surveys of 2009 and 2013. Table 4 shows models for the short-term campaign panel of 2013, while Tables 5 and 6 give details on the regression used in the long-term panels of 2002-2005-2009 and 2009-2013. A detailed description of the models (and method) used in the campaign panel of 2009 is included in the respective study description and the Technical Report (Steinbrecher, Roßmann, & Bergmann, 2013). More details on propensity score weighting in the RCS are given in the respective study descriptions. For the long-term panels, a series of Technical Reports provide additional details on the weighting procedure used in each of the panels (Blumenstiel & Gummer, 2012, 2013, 2014).
Table 2: Regression models on participation in the post-election re-interview of the RCS from 2009 (ZA5303)

<table>
<thead>
<tr>
<th></th>
<th>(1) With transformation weight</th>
<th></th>
<th>(2) Without transformation weight</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>SE</td>
<td>B</td>
<td>SE</td>
</tr>
<tr>
<td>Gender: female</td>
<td>-0.100</td>
<td>0.0690</td>
<td>-0.0857</td>
<td>0.0604</td>
</tr>
<tr>
<td>Age: 18-30</td>
<td>Ref.</td>
<td></td>
<td>Ref.</td>
<td></td>
</tr>
<tr>
<td>Age: 31-40</td>
<td>0.206</td>
<td>0.117</td>
<td>0.193</td>
<td>0.102</td>
</tr>
<tr>
<td>Age: 41-50</td>
<td>0.275*</td>
<td>0.109</td>
<td>0.277**</td>
<td>0.0953</td>
</tr>
<tr>
<td>Age: 51-60</td>
<td>0.503***</td>
<td>0.120</td>
<td>0.505***</td>
<td>0.103</td>
</tr>
<tr>
<td>Age: 61+</td>
<td>0.407**</td>
<td>0.151</td>
<td>0.450***</td>
<td>0.134</td>
</tr>
<tr>
<td>Education: low</td>
<td>Ref.</td>
<td></td>
<td>Ref.</td>
<td></td>
</tr>
<tr>
<td>Education: intermediate</td>
<td>0.178</td>
<td>0.0949</td>
<td>0.178*</td>
<td>0.0836</td>
</tr>
<tr>
<td>Education: high</td>
<td>0.160</td>
<td>0.0959</td>
<td>0.197*</td>
<td>0.0846</td>
</tr>
<tr>
<td>Region: eastern Germany (0/1)</td>
<td>-0.259</td>
<td>0.170</td>
<td>-0.306*</td>
<td>0.148</td>
</tr>
<tr>
<td>Work status: employed person</td>
<td>0.107</td>
<td>0.132</td>
<td>0.123</td>
<td>0.120</td>
</tr>
<tr>
<td>Work status: housewife/-husband</td>
<td>-0.212</td>
<td>0.164</td>
<td>-0.174</td>
<td>0.150</td>
</tr>
<tr>
<td>Work status: retired</td>
<td>0.107</td>
<td>0.132</td>
<td>0.123</td>
<td>0.120</td>
</tr>
<tr>
<td>Partnership (0/1)</td>
<td>0.191**</td>
<td>0.0721</td>
<td>0.186**</td>
<td>0.0627</td>
</tr>
<tr>
<td>Household size > 5 peop. (0/1)</td>
<td>0.0843</td>
<td>0.129</td>
<td>0.0815</td>
<td>0.111</td>
</tr>
<tr>
<td>Participation: day 1-10</td>
<td>Ref.</td>
<td></td>
<td>Ref.</td>
<td></td>
</tr>
<tr>
<td>Participation: day 11-20</td>
<td>-0.395**</td>
<td>0.131</td>
<td>-0.372**</td>
<td>0.114</td>
</tr>
<tr>
<td>Participation: day 21-30</td>
<td>-0.194</td>
<td>0.129</td>
<td>-0.213</td>
<td>0.114</td>
</tr>
<tr>
<td>Participation: day 31-40</td>
<td>-0.332*</td>
<td>0.132</td>
<td>-0.304**</td>
<td>0.115</td>
</tr>
<tr>
<td>Participation: day 41-50</td>
<td>-0.375**</td>
<td>0.127</td>
<td>-0.299**</td>
<td>0.111</td>
</tr>
<tr>
<td>Participation: day 51-60</td>
<td>-0.414***</td>
<td>0.125</td>
<td>-0.381***</td>
<td>0.110</td>
</tr>
<tr>
<td>Turnout (0/1)</td>
<td>0.356***</td>
<td>0.0982</td>
<td>0.319***</td>
<td>0.0848</td>
</tr>
<tr>
<td>Disenchantment with parties (0/1)</td>
<td>-0.0528</td>
<td>0.0878</td>
<td>-0.0182</td>
<td>0.0763</td>
</tr>
<tr>
<td>Chancellor preference (0/1)</td>
<td>-0.144</td>
<td>0.121</td>
<td>-0.106</td>
<td>0.105</td>
</tr>
<tr>
<td>Interest in politics: low</td>
<td>Ref.</td>
<td></td>
<td>Ref.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interest in politics: intermediate</td>
<td>0.314**</td>
<td>0.0976</td>
<td>0.293***</td>
<td>0.0853</td>
</tr>
<tr>
<td>Interest in politics: high</td>
<td>0.637***</td>
<td>0.108</td>
<td>0.569***</td>
<td>0.0944</td>
</tr>
<tr>
<td>Frequency of pol. conversations</td>
<td>0.412**</td>
<td>0.150</td>
<td>0.441***</td>
<td>0.131</td>
</tr>
<tr>
<td>Missing index (0/1)</td>
<td>-1.531***</td>
<td>0.396</td>
<td>-1.343***</td>
<td>0.337</td>
</tr>
<tr>
<td>High duration of interview (0/1)</td>
<td>-0.570***</td>
<td>0.151</td>
<td>-0.606***</td>
<td>0.126</td>
</tr>
<tr>
<td>Eastern Germany. X turnout</td>
<td>0.296</td>
<td>0.192</td>
<td>0.262</td>
<td>0.167</td>
</tr>
<tr>
<td>Test score pol. knowledge</td>
<td>0.308***</td>
<td>0.0697</td>
<td>0.316***</td>
<td>0.0630</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.166</td>
<td>0.169</td>
<td>-0.173</td>
<td>0.148</td>
</tr>
<tr>
<td>N</td>
<td>5,895</td>
<td></td>
<td>5,895</td>
<td></td>
</tr>
<tr>
<td>Pseudo R²</td>
<td>0.056</td>
<td></td>
<td>0.052</td>
<td></td>
</tr>
</tbody>
</table>

Categorical variable with details about reference dichotomous variable marked with (0/1)
* p < 0.05, ** p < 0.01, *** p < 0.001
Table 3: Regression models on participation in the post-election re-interview of the RCS from 2013 (ZA5703)

<table>
<thead>
<tr>
<th></th>
<th>With transformation weight</th>
<th>Without transformation weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>SE</td>
</tr>
<tr>
<td>Gender: female</td>
<td>-0.104</td>
<td>0.059</td>
</tr>
<tr>
<td>Age: 18-30</td>
<td>Ref.</td>
<td></td>
</tr>
<tr>
<td>Age: 31-40</td>
<td>0.135</td>
<td>0.124</td>
</tr>
<tr>
<td>Age: 41-50</td>
<td>0.410***</td>
<td>0.112</td>
</tr>
<tr>
<td>Age: 51-60</td>
<td>0.503***</td>
<td>0.117</td>
</tr>
<tr>
<td>Age: 61+</td>
<td>0.548***</td>
<td>0.126</td>
</tr>
<tr>
<td>Education: low</td>
<td>Ref.</td>
<td></td>
</tr>
<tr>
<td>Education: intermediate</td>
<td>0.177*</td>
<td>0.081</td>
</tr>
<tr>
<td>Region: eastern Germany</td>
<td>0.140*</td>
<td>0.069</td>
</tr>
<tr>
<td>Work status: employed person</td>
<td>-0.039</td>
<td>0.082</td>
</tr>
<tr>
<td>Partnership</td>
<td>0.075</td>
<td>0.071</td>
</tr>
<tr>
<td>Household size</td>
<td>0.017</td>
<td>0.036</td>
</tr>
<tr>
<td>Participation: day 1-10</td>
<td>Ref.</td>
<td></td>
</tr>
<tr>
<td>Participation: day 11-20</td>
<td>0.119</td>
<td>0.112</td>
</tr>
<tr>
<td>Participation: day 21-30</td>
<td>0.064</td>
<td>0.107</td>
</tr>
<tr>
<td>Participation: day 31-50</td>
<td>0.16</td>
<td>0.115</td>
</tr>
<tr>
<td>Participation: day 41-50</td>
<td>0.103</td>
<td>0.111</td>
</tr>
<tr>
<td>Participation: day 51-60</td>
<td>0.141</td>
<td>0.111</td>
</tr>
<tr>
<td>Participation: day 61+</td>
<td>0.196</td>
<td>0.101</td>
</tr>
<tr>
<td>Turnout</td>
<td>0.162*</td>
<td>0.079</td>
</tr>
<tr>
<td>Disenchantment with parties</td>
<td>0.023</td>
<td>0.063</td>
</tr>
<tr>
<td>Chancellor preference</td>
<td>0.239*</td>
<td>0.116</td>
</tr>
<tr>
<td>Interest in politics: low</td>
<td>Ref.</td>
<td></td>
</tr>
<tr>
<td>Interest in politics: intermediate</td>
<td>0.438***</td>
<td>0.086</td>
</tr>
<tr>
<td>Interest in politics: high</td>
<td>0.752***</td>
<td>0.094</td>
</tr>
<tr>
<td>Pol. knowledge</td>
<td>0.386***</td>
<td>0.059</td>
</tr>
<tr>
<td>High duration of interview</td>
<td>0.061***</td>
<td>0.018</td>
</tr>
<tr>
<td>Missing index</td>
<td>-1.418***</td>
<td>0.279</td>
</tr>
<tr>
<td>Duration of interview</td>
<td>-0.385**</td>
<td>0.123</td>
</tr>
<tr>
<td>Constant</td>
<td>-1.147***</td>
<td>0.213</td>
</tr>
<tr>
<td>Pseudo R^2</td>
<td>0.055</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>7,882</td>
<td></td>
</tr>
</tbody>
</table>

* p<0.05, ** p<0.01, *** p<0.001
<table>
<thead>
<tr>
<th></th>
<th>Wave 2</th>
<th>Wave 3</th>
<th>Wave 4</th>
<th>Wave 5</th>
<th>Wave 6</th>
<th>Wave 7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>SE</td>
<td>B</td>
<td>SE</td>
<td>B</td>
<td>SE</td>
</tr>
<tr>
<td>Age</td>
<td>0.039*</td>
<td>-0.021</td>
<td>-0.05</td>
<td>-0.033</td>
<td>0.017</td>
<td>-0.033</td>
</tr>
<tr>
<td>Age²</td>
<td>0.001*</td>
<td>0.000</td>
<td>0.017</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Education: intermediate</td>
<td>0.430***</td>
<td>-0.117</td>
<td>0.131</td>
<td>-0.163</td>
<td>-0.047</td>
<td>-0.187</td>
</tr>
<tr>
<td>Education: high</td>
<td>0.352**</td>
<td>-0.126</td>
<td>0.155</td>
<td>-0.175</td>
<td>-0.032</td>
<td>-0.204</td>
</tr>
<tr>
<td>Life partner</td>
<td>-0.042</td>
<td>-0.11</td>
<td>-0.316*</td>
<td>-0.157</td>
<td>0.048</td>
<td>-0.173</td>
</tr>
<tr>
<td>Work status: housewife/husb.</td>
<td>0.491*</td>
<td>-0.215</td>
<td>0.118</td>
<td>-0.297</td>
<td>0.327</td>
<td>-0.324</td>
</tr>
<tr>
<td>Work status: retired</td>
<td>0.116</td>
<td>-0.187</td>
<td>-0.059</td>
<td>-0.253</td>
<td>0.185</td>
<td>-0.306</td>
</tr>
<tr>
<td>Household size</td>
<td>-0.097*</td>
<td>-0.04</td>
<td>-0.088</td>
<td>-0.056</td>
<td>-0.109*</td>
<td>-0.066</td>
</tr>
<tr>
<td>Eastern Germany</td>
<td>-0.032</td>
<td>-0.114</td>
<td>0.073</td>
<td>-0.158</td>
<td>0.253</td>
<td>-0.186</td>
</tr>
<tr>
<td>Interest in politics</td>
<td>0.093</td>
<td>-0.059</td>
<td>0.085</td>
<td>-0.078</td>
<td>0.128</td>
<td>-0.091</td>
</tr>
<tr>
<td>Frequency of pol. Conversations</td>
<td>-0.111</td>
<td>-0.106</td>
<td>-0.176</td>
<td>-0.145</td>
<td>-0.134</td>
<td>-0.17</td>
</tr>
<tr>
<td>Strength of party identification</td>
<td>-0.029</td>
<td>-0.028</td>
<td>-0.062</td>
<td>-0.039</td>
<td>0.016</td>
<td>-0.045</td>
</tr>
<tr>
<td>Satisfaction with democracy</td>
<td>0.141*</td>
<td>-0.056</td>
<td>-0.079</td>
<td>-0.077</td>
<td>0.038</td>
<td>-0.087</td>
</tr>
<tr>
<td>Chancellor preference</td>
<td>0.078</td>
<td>-0.101</td>
<td>0.185</td>
<td>-0.14</td>
<td>-0.07</td>
<td>-0.162</td>
</tr>
<tr>
<td>Intention to vote</td>
<td>-0.04</td>
<td>-0.139</td>
<td>0.2</td>
<td>-0.185</td>
<td>0.29</td>
<td>-0.208</td>
</tr>
<tr>
<td>Political knowledge</td>
<td>0.198*</td>
<td>-0.114</td>
<td>0.09</td>
<td>-0.15</td>
<td>0.161</td>
<td>-0.177</td>
</tr>
<tr>
<td>Internet usage</td>
<td>0.057</td>
<td>-0.043</td>
<td>0.137*</td>
<td>-0.056</td>
<td>0.055</td>
<td>-0.068</td>
</tr>
<tr>
<td>Motivation to participate</td>
<td>0.248***</td>
<td>-0.061</td>
<td>0.162*</td>
<td>-0.072</td>
<td>0.171*</td>
<td>-0.085</td>
</tr>
<tr>
<td>Big 5: extraversion</td>
<td>-0.198***</td>
<td>-0.059</td>
<td>-0.102</td>
<td>-0.078</td>
<td>-0.173*</td>
<td>-0.092</td>
</tr>
<tr>
<td>Big 5: openness</td>
<td>-0.06</td>
<td>-0.067</td>
<td>-0.02</td>
<td>-0.088</td>
<td>-0.084</td>
<td>-0.104</td>
</tr>
</tbody>
</table>

Table 4: Regression models on participation in the short-term campaign panel of 2013 (ZA5704)
Table 4: Regression models on participation in the short-term campaign panel of 2013 (ZA5704)

<table>
<thead>
<tr>
<th></th>
<th>Wave 2</th>
<th>Wave 3</th>
<th>Wave 4</th>
<th>Wave 5</th>
<th>Wave 6</th>
<th>Wave 7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>SE</td>
<td>B</td>
<td>SE</td>
<td>B</td>
<td>SE</td>
</tr>
<tr>
<td>Big 5: conscientiousness</td>
<td>0.097</td>
<td>-0.067</td>
<td>-0.016</td>
<td>-0.089</td>
<td>-0.01</td>
<td>-0.106</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.116</td>
<td>-0.104</td>
<td>-0.016</td>
<td>-0.099</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.247</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.148</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Big 5: neuroticism</td>
<td>0.112</td>
<td>0.064</td>
<td>-0.115</td>
<td>-0.086</td>
<td>0.108</td>
<td>0.114</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.114</td>
<td>-0.103</td>
<td>0.035</td>
<td>-0.097</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.028</td>
<td>-0.145</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Big 5: compatibility</td>
<td>0.079</td>
<td>-0.067</td>
<td>0.006</td>
<td>-0.09</td>
<td>0.293</td>
<td>-0.108</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.148</td>
<td>-0.106</td>
<td>-0.008</td>
<td>-0.103</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.085</td>
<td>-0.153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monetary motivation</td>
<td>0.189</td>
<td>0.114</td>
<td>0.022</td>
<td>-0.151</td>
<td>-0.066</td>
<td>-0.173</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.238</td>
<td>-0.181</td>
<td>0.092</td>
<td>-0.168</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.21</td>
<td>-0.238</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experiences with surveys</td>
<td>0.341</td>
<td>0.058</td>
<td>0.351</td>
<td>-0.08</td>
<td>0.185</td>
<td>-0.091</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.109</td>
<td>-0.09</td>
<td>0.1</td>
<td>-0.086</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.016</td>
<td>-0.126</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previous participations</td>
<td>---</td>
<td>---</td>
<td>1.910</td>
<td>-0.201</td>
<td>1.269</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.918</td>
<td>0.016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item nonresponse</td>
<td>-0.038</td>
<td>-0.008</td>
<td>-0.007</td>
<td>-0.012</td>
<td>-0.012</td>
<td>-0.009</td>
</tr>
<tr>
<td>Item nonresponse</td>
<td></td>
<td></td>
<td>-0.023</td>
<td>-0.007</td>
<td>0</td>
<td>-0.013</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.101</td>
<td>-0.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration of last interview</td>
<td>-0.000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Duration of last interview²</td>
<td>0.000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Duration of last interview²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device: smartphone</td>
<td>-0.228</td>
<td>-0.228</td>
<td>0.215</td>
<td>-0.389</td>
<td>0.452</td>
<td>-0.517</td>
</tr>
<tr>
<td>Device: tablet</td>
<td>-0.211</td>
<td>-0.258</td>
<td>0.245</td>
<td>-0.438</td>
<td>0.311</td>
<td>-0.477</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.321</td>
<td>-0.596</td>
<td>1.691</td>
<td>-0.827</td>
<td>-3.893</td>
<td>-1.118</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.267</td>
<td>-1.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nagelkerke R²</td>
<td>0.12</td>
<td>0.08</td>
<td>0.11</td>
<td>0.13</td>
<td>0.14</td>
<td>0.19</td>
</tr>
<tr>
<td>N</td>
<td>4,810</td>
<td>4,142</td>
<td>3,959</td>
<td>3,914</td>
<td>3,823</td>
<td>3,719</td>
</tr>
</tbody>
</table>

* p<0.10. ** p<0.05. *** p<0.01. ****
Table 5: Regression models on participation in the long-term panel from 2002-2005-2009 (ZA5320)

<table>
<thead>
<tr>
<th></th>
<th>Wave 2005</th>
<th>B</th>
<th>SE</th>
<th>Wave 2009</th>
<th>B</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender: female</td>
<td></td>
<td>0.121</td>
<td>0.0957</td>
<td>-0.296</td>
<td>0.159</td>
<td></td>
</tr>
<tr>
<td>Age: 16-29</td>
<td>Ref.</td>
<td></td>
<td></td>
<td>Ref.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age: 30-39</td>
<td>-0.791*</td>
<td>0.380</td>
<td></td>
<td>0.204</td>
<td>1.296</td>
<td></td>
</tr>
<tr>
<td>Age: 40-49</td>
<td>0.412*</td>
<td>0.166</td>
<td></td>
<td>0.935**</td>
<td>0.334</td>
<td></td>
</tr>
<tr>
<td>Age: 50-59</td>
<td>0.541**</td>
<td>0.171</td>
<td></td>
<td>1.226***</td>
<td>0.337</td>
<td></td>
</tr>
<tr>
<td>Age: 60+</td>
<td>0.314</td>
<td>0.221</td>
<td></td>
<td>0.698</td>
<td>0.401</td>
<td></td>
</tr>
<tr>
<td>Education: low</td>
<td>Ref.</td>
<td></td>
<td></td>
<td>Ref.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education: intermediate</td>
<td>0.296**</td>
<td>0.106</td>
<td></td>
<td>-0.204</td>
<td>0.182</td>
<td></td>
</tr>
<tr>
<td>Education: high</td>
<td>0.305*</td>
<td>0.135</td>
<td></td>
<td>0.174</td>
<td>0.246</td>
<td></td>
</tr>
<tr>
<td>Region: eastern Germany (0/1)</td>
<td>-0.430***</td>
<td>0.0941</td>
<td></td>
<td>-0.273</td>
<td>0.162</td>
<td></td>
</tr>
<tr>
<td>Work status: employed</td>
<td>Ref.</td>
<td></td>
<td></td>
<td>Ref.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work status: housewife/-husband</td>
<td>-0.549**</td>
<td>0.211</td>
<td></td>
<td>0.291</td>
<td>0.381</td>
<td></td>
</tr>
<tr>
<td>Work status: retired</td>
<td>0.0346</td>
<td>0.169</td>
<td></td>
<td>0.274</td>
<td>0.255</td>
<td></td>
</tr>
<tr>
<td>Marital status: marriage (0/1)</td>
<td>0.347***</td>
<td>0.0938</td>
<td></td>
<td>-0.105</td>
<td>0.160</td>
<td></td>
</tr>
<tr>
<td>Household size > 5 peop. (0/1)</td>
<td>0.425*</td>
<td>0.185</td>
<td></td>
<td>0.348</td>
<td>0.301</td>
<td></td>
</tr>
<tr>
<td>Voter turnout (0/1)</td>
<td>0.244*</td>
<td>0.123</td>
<td></td>
<td>0.509</td>
<td>0.357</td>
<td></td>
</tr>
<tr>
<td>Disenchantment with parties (0/1)</td>
<td>-0.0348</td>
<td>0.109</td>
<td></td>
<td>-0.122</td>
<td>0.172</td>
<td></td>
</tr>
<tr>
<td>Tie candidates (0/1)</td>
<td>-0.0603</td>
<td>0.133</td>
<td></td>
<td>-0.184</td>
<td>0.188</td>
<td></td>
</tr>
<tr>
<td>Political knowledge</td>
<td>0.244**</td>
<td>0.0859</td>
<td></td>
<td>0.0421</td>
<td>0.147</td>
<td></td>
</tr>
<tr>
<td>Interest in politics: low</td>
<td>Ref.</td>
<td></td>
<td></td>
<td>Ref.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interest in politics: intermediate</td>
<td>0.500***</td>
<td>0.121</td>
<td></td>
<td>0.887**</td>
<td>0.277</td>
<td></td>
</tr>
<tr>
<td>Interest in politics: high</td>
<td>1.048***</td>
<td>0.128</td>
<td></td>
<td>0.856**</td>
<td>0.283</td>
<td></td>
</tr>
<tr>
<td>Missing index (0/1)</td>
<td>-1.364**</td>
<td>0.478</td>
<td></td>
<td>-1.895</td>
<td>1.110</td>
<td></td>
</tr>
<tr>
<td>Woman X age: 30-39</td>
<td>0.480*</td>
<td>0.237</td>
<td></td>
<td>0.432</td>
<td>0.496</td>
<td></td>
</tr>
<tr>
<td>Picture: matriculation standard X age: 60+</td>
<td>0.439*</td>
<td>0.205</td>
<td></td>
<td>0.339</td>
<td>0.318</td>
<td></td>
</tr>
<tr>
<td>Age: 30-39 X turnout</td>
<td>0.603</td>
<td>0.364</td>
<td></td>
<td>-0.416</td>
<td>1.257</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>-2.453***</td>
<td>0.199</td>
<td></td>
<td>-1.930***</td>
<td>0.514</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>3,193</td>
<td></td>
<td></td>
<td>895</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudo R^2</td>
<td>0.081</td>
<td></td>
<td></td>
<td>0.060</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Categorical variable with details about reference dichotomous variable marked with (0/1).

* $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$
Table 6: Regression models on participation in the long-term panel from 2009-2013 (ZA5322).

<table>
<thead>
<tr>
<th></th>
<th>With transformation weight</th>
<th>Without transformation weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>SE</td>
</tr>
<tr>
<td>Region: western Germany</td>
<td>0.076</td>
<td>-0.075</td>
</tr>
<tr>
<td>Gender: female</td>
<td>0.107</td>
<td>-0.073</td>
</tr>
<tr>
<td>Age</td>
<td>0.119***</td>
<td>-0.015</td>
</tr>
<tr>
<td>Age²</td>
<td>-0.001***</td>
<td>0</td>
</tr>
<tr>
<td>Work status: housewife/-husband</td>
<td>-0.367*</td>
<td>-0.186</td>
</tr>
<tr>
<td>Work status: retired</td>
<td>-0.099</td>
<td>-0.128</td>
</tr>
<tr>
<td>Married</td>
<td>-0.103</td>
<td>-0.091</td>
</tr>
<tr>
<td>Household size</td>
<td>0.143***</td>
<td>-0.038</td>
</tr>
<tr>
<td>Intention to vote</td>
<td>0.361***</td>
<td>-0.096</td>
</tr>
<tr>
<td>No disenchantment with parties</td>
<td>-0.047</td>
<td>-0.1</td>
</tr>
<tr>
<td>No chancellor preference</td>
<td>-0.098</td>
<td>-0.085</td>
</tr>
<tr>
<td>Pol. knowledge: importance of second vote</td>
<td>-0.031</td>
<td>-0.076</td>
</tr>
<tr>
<td>Pol. knowledge: 5% obstacle</td>
<td>0.251**</td>
<td>-0.09</td>
</tr>
<tr>
<td>Interest in politics: intermediate</td>
<td>0.600***</td>
<td>-0.097</td>
</tr>
<tr>
<td>Interest in politics: high</td>
<td>1.239***</td>
<td>-0.104</td>
</tr>
<tr>
<td>Item nonresponse</td>
<td>-1.038**</td>
<td>-0.345</td>
</tr>
<tr>
<td>Constant</td>
<td>-5.618***</td>
<td>-0.395</td>
</tr>
<tr>
<td>Pseudo R²</td>
<td>0.084</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>4,866</td>
<td></td>
</tr>
</tbody>
</table>

* p<0.05, ** p<0.01, *** p<0.001
5 Remarks on the use of weighting

In the German social sciences, there seems to be widespread skepticism about the use of weights. In the end, researchers have to decide whether they want to use weighting and, if so, which weights they would like to rely on. This Technical Report aims to provide a most transparent description of the underlying methodology, as well as theoretical and practical considerations that were taken into account when computing the weights to facilitate the researchers’ decisions. Therefore, typical mistakes and use cases for the application will be briefly discussed for the weights presented in this report. In addition, the present section illustrated the computation of (additional) combinations of weights. Combining weights gives the research a way to create flexible weighting that can be useful for very specific research questions.

Design weights can be considered to be useful in most situations, since they correct biases caused by the survey design. Examples for this are the oversampling of respondents in eastern Germany in the two face-to-face cross-sectional surveys (east/west weight) or the differences in selection probabilities for people in households of different sizes. While the use of the east/west weight is widely recommended, there are different viewpoints on using transformation weights. Thus, for a sample at the individual level, a correction of the household size is deemed necessary due to the probability of selection. For instance, in a four-person household, each person has only a chance of 25% of being interviewed, while in a household with only two people, the probability to be selected is 50%, and for a single-person household the probability is 100% (always assuming that all people are part of the target population). According to this reasoning, the use of a transformation weight would be useful. However, critics argue that a target person in a one-person household is much harder to reach than a target person in a four-person household. From this point of view, the transformation weight would need to be calculated in the opposite way.

Adjustment weights can be used when analyses aim to reach a conclusion about the population, but the respective distribution in the sample is biased due to nonresponse. In this case, adjustment weighting may prove useful if the variable of interest relates to the variables used for adjustment. This requirement is the subject of scientific debate, as in most cases these weights fail to correct all of the bias or the bias (and, therefore, the correction of the bias) cannot be assessed for all substantive variables of interest. In addition, it is argued that adjustment weights are only important when calculating point estimators but do not influence the results of multivariate analysis (Arzheimer, 2009).

Panel weights are used when panel attrition is considered a problem for the researcher's analyses. For instance, if the data from the short-term campaign panel survey’s second wave is used to conduct research, panel attrition (dropouts in wave two) may bias the results. If one assumes this is the case, panel weights may prove useful for reducing this bias. However, it must be considered that panel weights will only help to reduce the bias if the variables of interest are actually biased due to attrition and are correlated to the variables used in the propensity model. Otherwise, the weights may have no effect on the nonresponse bias or may even increase the bias (Kreuter & Olson, 2011; Little & Vartivarian, 2005; Roßmann & Gummer, 2015).

In general, weighting can be useful when working with point estimators. In the case of multivariate analysis, one can also rely on methods that explicitly model possible biases. In each instance, the researcher has to decide which procedure is better for answering the respective research questions.

In order to provide the researchers with a set of weights for a diversity of research questions, the GLES offers different weights. The set of weights that is provided depends on the respective data set and its context. In a few cases, combinations of weights are provided. Depending on the number of available weights, a huge number of combinations are possible. Related to this, combinations of weights can be
assumed only to be useful when answering very specific research questions. Consequently, in order to
provide a comprehensible (and manageable) selection of weights, not every possible combination was
calculated.

However, a combination of different weighting factors is possible by multiplying weights. Accordingly,
based on the weights of a data set, every user can self-create combined weights as needed. The RCS
survey may serve as an example: assume that the post-election re-interview is to be used to draw con-
cclusions about the German population. Further assume that the variable of interest is related to the
characteristics used for the adjustment weights (age, education, and region). It may be useful, in this
case, to adjust the marginal distribution to the target population and control for the panel attrition that
occurred between the pre-election and post-election surveys. This combination of weights can be calcu-
lated as the product of adjustment weight w_A and panel weight w_P:

$$w_C = w_A \times w_P.$$

Depending on the research question and whether appropriate weights are available for combination,
this method is an easily applicable way for the researcher to calculate specific weighting factors. Yet,
it needs to be noted that these weights were not calculated as part of the GLES data preparation and
are, thus, not subject to review (such as, trimming and control for extreme values).
Computing weights for the German Longitudinal Election Study (GLES) 2009-2013

References

Data sets

9 Sorted by ZA-number in ascending order.

Appendix

Table A.1: Weighting Factors in Pre-Election Cross Section (ZA5300)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ost-/West Gewicht (wei_ow)</td>
<td>2,173</td>
<td>0.602</td>
<td>1.224</td>
<td>0.602</td>
<td>1.224</td>
</tr>
<tr>
<td>Transformationsgewicht (wei_tran)</td>
<td>2,173</td>
<td>0.571</td>
<td>2.854</td>
<td>0.571</td>
<td>2.854</td>
</tr>
<tr>
<td>Kombination Transformations- und Ost-West-Gewicht (wei_trow)</td>
<td>2,173</td>
<td>0.343</td>
<td>3.494</td>
<td>0.343</td>
<td>2.796</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturrelles Gewicht, gesamt (mit Tran.- & mit OW-Gewicht) (wei_ipfges_1)</td>
<td>2,173</td>
<td>0.254</td>
<td>4.503</td>
<td>0.287</td>
<td>2.702</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturrelles Gewicht, gesamt (ohne Tran.- & mit OW-Gewicht) (wei_ipfges_2)</td>
<td>2,173</td>
<td>0.475</td>
<td>2.050</td>
<td>0.482</td>
<td>1.826</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturrelles Gewicht. Ost (mit Transformationsgewicht) (wei_ipfost_1)</td>
<td>783</td>
<td>0.206</td>
<td>3.502</td>
<td>0.306</td>
<td>2.683</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturrelles Gewicht. Ost (ohne Transformationsgewicht) (wei_ipfost_2)</td>
<td>783</td>
<td>0.371</td>
<td>1.838</td>
<td>0.416</td>
<td>1.769</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturrelles Gewicht. West (mit Transformationsgewicht) (wei_ipfwes_1)</td>
<td>1,390</td>
<td>0.358</td>
<td>3.871</td>
<td>0.376</td>
<td>2.492</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht. West (ohne Transformationsgewicht) (wei_ipfwes_2)</td>
<td>1,390</td>
<td>0.648</td>
<td>1.961</td>
<td>0.648</td>
<td>1.783</td>
</tr>
</tbody>
</table>

Table A.2: Weighting Factors in Post-Election Cross Section (ZA5301)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>East-West Weighting (wei_ow)</td>
<td>2,115</td>
<td>0.617</td>
<td>1.207</td>
<td>0.617</td>
<td>1.207</td>
</tr>
<tr>
<td>Transformation weighting (wei_tran)</td>
<td>2,115</td>
<td>0.542</td>
<td>3.250</td>
<td>0.542</td>
<td>2.250</td>
</tr>
<tr>
<td>Combination Transformation and East-West Weighting (wei_trow)</td>
<td>2,115</td>
<td>0.347</td>
<td>3.923</td>
<td>0.347</td>
<td>2.616</td>
</tr>
<tr>
<td>Sociodemographic and regional weight with transformation weight (whole) (wei_ipfges_1)</td>
<td>2,115</td>
<td>0.243</td>
<td>4.859</td>
<td>0.271</td>
<td>3.044</td>
</tr>
<tr>
<td>Sociodemographic and regional weight without transformation weight (whole) (wei_ipfges_2)</td>
<td>2,115</td>
<td>0.446</td>
<td>1.921</td>
<td>0.458</td>
<td>1.839</td>
</tr>
<tr>
<td>Sociodemographic and regional weight with transformation weight (east) (wei_ipfost_1)</td>
<td>743</td>
<td>0.216</td>
<td>4.298</td>
<td>0.298</td>
<td>2.692</td>
</tr>
<tr>
<td>Sociodemographic and regional weight without transformation weight (east) (wei_ipfost_2)</td>
<td>743</td>
<td>0.462</td>
<td>2.252</td>
<td>0.499</td>
<td>2.083</td>
</tr>
<tr>
<td>Sociodemographic and regional weight with transformation weight (west) (wei_ipfwes_1)</td>
<td>1,372</td>
<td>0.335</td>
<td>4.013</td>
<td>0.352</td>
<td>2.693</td>
</tr>
<tr>
<td>Sociodemographic and regional weight without transformation weight (west) (wei_ipfwes_2)</td>
<td>1,372</td>
<td>0.587</td>
<td>1.742</td>
<td>0.587</td>
<td>1.742</td>
</tr>
</tbody>
</table>
Table A.3: Weighting Factors in Pre- and Post-Election Cross Section Cumulation (ZA5302)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ost/WestGewicht (wei_ow)</td>
<td>4,288</td>
<td>0.602</td>
<td>1.224</td>
<td>0.602</td>
<td>1.224</td>
</tr>
<tr>
<td>Transformationsgewicht (wei_tran)</td>
<td>4,288</td>
<td>0.542</td>
<td>3.250</td>
<td>0.542</td>
<td>2.283</td>
</tr>
<tr>
<td>Kombination Transformations- und Ost/West-Gewicht (wei_trow)</td>
<td>4,288</td>
<td>0.343</td>
<td>3.923</td>
<td>0.343</td>
<td>2.796</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht, gesamt (mit Tran.- & mit OW-Gewicht) (wei_ipfges_1)</td>
<td>4,288</td>
<td>0.243</td>
<td>5.158</td>
<td>0.276</td>
<td>2.866</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht, gesamt (ohne Tran.- & mit OW-Gewicht) (wei_ipfges_2)</td>
<td>4,288</td>
<td>0.446</td>
<td>2.050</td>
<td>0.463</td>
<td>1.839</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht, Ost (mit Transformationsgewicht) (wei_ipfost_1)</td>
<td>1,526</td>
<td>0.206</td>
<td>4.298</td>
<td>0.303</td>
<td>2.683</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht, Ost (ohne Transformationsgewicht) (wei_ipfost_2)</td>
<td>1,526</td>
<td>0.371</td>
<td>2.252</td>
<td>0.462</td>
<td>2.011</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht, West (mit Transformationsgewicht) (wei_ipfhes_1)</td>
<td>2,762</td>
<td>0.335</td>
<td>4.013</td>
<td>0.352</td>
<td>2.585</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht, West (ohne Transformationsgewicht) (wei_ipfhes_2)</td>
<td>2,762</td>
<td>0.587</td>
<td>1.961</td>
<td>0.587</td>
<td>1.742</td>
</tr>
<tr>
<td>Sozial- & regional. Gewicht. Gesamt (mit Transformationsgewicht). vw&nw (vn_wei_ipfg_1)</td>
<td>4,288</td>
<td>0.243</td>
<td>4.859</td>
<td>0.276</td>
<td>2.866</td>
</tr>
<tr>
<td>Sozial- & regional. Gewicht. Gesamt (ohne Transformationsgewicht). vw&nw (vn_wei_ipfg_2)</td>
<td>4,288</td>
<td>0.446</td>
<td>2.050</td>
<td>0.463</td>
<td>1.839</td>
</tr>
<tr>
<td>Sozial- & regional. Gewicht. Ost (mit Transformationsgewicht). vw&nw (vn_wei_ipfo_1)</td>
<td>1,526</td>
<td>0.206</td>
<td>4.298</td>
<td>0.303</td>
<td>2.683</td>
</tr>
<tr>
<td>Sozial- & regional. Gewicht. Ost (ohne Transformationsgewicht). vw&nw (vn_wei_ipfo_2)</td>
<td>1,526</td>
<td>0.206</td>
<td>4.298</td>
<td>0.303</td>
<td>2.683</td>
</tr>
<tr>
<td>Sozial- & regional. Gewicht. West (mit Transformationsgewicht). vw&nw (vn_wei_ipfw_1)</td>
<td>2,762</td>
<td>0.335</td>
<td>4.013</td>
<td>0.352</td>
<td>2.585</td>
</tr>
<tr>
<td>Sozial- & regional. Gewicht. West (ohne Transformationsgewicht). vw&nw (vn_wei_ipfw_2)</td>
<td>2,762</td>
<td>0.335</td>
<td>4.013</td>
<td>0.352</td>
<td>2.585</td>
</tr>
</tbody>
</table>
Table A.4: Weighting Factors in Rolling Cross-Section Campaign Survey (ZA5303)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transformationsgewicht (gesamt) (wei-trang)</td>
<td>6,008</td>
<td>0.159</td>
<td>4.660</td>
<td>0.212</td>
<td>2.548</td>
</tr>
<tr>
<td>Transformationsgewicht (Woche) (wei_tranw)</td>
<td>6,008</td>
<td>0.155</td>
<td>4.388</td>
<td>0.209</td>
<td>2.592</td>
</tr>
<tr>
<td>Transformationsgewicht (Tag) (wei_trant)</td>
<td>6,008</td>
<td>0.150</td>
<td>4.264</td>
<td>0.205</td>
<td>2.633</td>
</tr>
<tr>
<td>Bildungsgewicht mit Transformationsgewicht (gesamt) (wei_bil1g)</td>
<td>6,008</td>
<td>0.092</td>
<td>5.000</td>
<td>0.122</td>
<td>3.450</td>
</tr>
<tr>
<td>Bildungsgewicht ohne Transformationsgewicht (gesamt) (wei_bil2g)</td>
<td>6,008</td>
<td>0.554</td>
<td>1.402</td>
<td>0.554</td>
<td>1.402</td>
</tr>
<tr>
<td>Bildungsgewicht mit Transformationsgewicht (Woche) (wei_bil1w)</td>
<td>6,008</td>
<td>0.084</td>
<td>5.000</td>
<td>0.119</td>
<td>3.390</td>
</tr>
<tr>
<td>Bildungsgewicht ohne Transformationsgewicht (Woche) (wei_bil2w)</td>
<td>6,008</td>
<td>0.526</td>
<td>1.472</td>
<td>0.526</td>
<td>1.472</td>
</tr>
<tr>
<td>Bildungsgewicht mit Transformationsgewicht (Tag) (wei_bil1t)</td>
<td>6,008</td>
<td>0.073</td>
<td>5.000</td>
<td>0.121</td>
<td>3.474</td>
</tr>
<tr>
<td>Bildungsgewicht ohne Transformationsgewicht (Tag) (wei_bil2t)</td>
<td>6,008</td>
<td>0.449</td>
<td>1.776</td>
<td>0.449</td>
<td>1.619</td>
</tr>
<tr>
<td>Soziodemographisches Gewicht mit Transformationsgewicht (gesamt) (wei_soz1g)</td>
<td>6,008</td>
<td>0.085</td>
<td>4.966</td>
<td>0.117</td>
<td>3.189</td>
</tr>
<tr>
<td>Soziodemographisches Gewicht ohne Transformationsgewicht (gesamt) (wei_soz2g)</td>
<td>6,008</td>
<td>0.523</td>
<td>1.617</td>
<td>0.523</td>
<td>1.617</td>
</tr>
<tr>
<td>Soziodemographisches Gewicht mit Transformationsgewicht (Woche) (wei_soz1w)</td>
<td>6,008</td>
<td>0.073</td>
<td>4.950</td>
<td>0.115</td>
<td>3.305</td>
</tr>
<tr>
<td>Soziodemographisches Gewicht ohne Transformationsgewicht (Woche) (wei_soz2w)</td>
<td>6,008</td>
<td>0.456</td>
<td>1.908</td>
<td>0.475</td>
<td>1.773</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht mit Transformationsgewicht (gesamt) (wei_ipf1g)</td>
<td>6,008</td>
<td>0.075</td>
<td>5.000</td>
<td>0.114</td>
<td>4.155</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht ohne Transformationsgewicht (gesamt) (wei_ipf2g)</td>
<td>6,008</td>
<td>0.446</td>
<td>2.855</td>
<td>0.446</td>
<td>2.753</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht mit Transformationsgewicht (Woche) (wei_ipf1w)</td>
<td>6,008</td>
<td>0.064</td>
<td>5.000</td>
<td>0.115</td>
<td>4.307</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht ohne Transformationsgewicht (Woche) (wei_ipf2w)</td>
<td>6,008</td>
<td>0.228</td>
<td>5.000</td>
<td>0.384</td>
<td>3.089</td>
</tr>
<tr>
<td>Panelgewicht mit Transformationsgewicht (gesamt) (wei_panel1)</td>
<td>4,027</td>
<td>0.735</td>
<td>4.265</td>
<td>0.770</td>
<td>1.915</td>
</tr>
<tr>
<td>Panelgewicht ohne Transformationsgewicht (gesamt) (wei_panel2)</td>
<td>4,027</td>
<td>0.740</td>
<td>3.981</td>
<td>0.769</td>
<td>1.856</td>
</tr>
</tbody>
</table>
Table A.5: Weighting Factors in Short-term Campaign Panel (ZA5305)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Querschnittgewicht inkl. Zei...</td>
<td>3,771</td>
<td>0.482</td>
<td>4.528</td>
<td>0.482</td>
<td>3.387</td>
</tr>
<tr>
<td>Querschnittgewicht inkl. Zei...</td>
<td>3,689</td>
<td>0.478</td>
<td>4.898</td>
<td>0.478</td>
<td>3.493</td>
</tr>
<tr>
<td>Querschnittgewicht inkl. Zei...</td>
<td>3,401</td>
<td>0.482</td>
<td>4.903</td>
<td>0.482</td>
<td>3.518</td>
</tr>
<tr>
<td>Querschnittgewicht inkl. Zei...</td>
<td>3,129</td>
<td>0.439</td>
<td>4.973</td>
<td>0.439</td>
<td>3.697</td>
</tr>
<tr>
<td>Querschnittgewicht inkl. Zei...</td>
<td>3,002</td>
<td>0.424</td>
<td>4.982</td>
<td>0.424</td>
<td>3.859</td>
</tr>
<tr>
<td>Querschnittgewicht inkl. Zei...</td>
<td>2,774</td>
<td>0.434</td>
<td>4.972</td>
<td>0.434</td>
<td>4.269</td>
</tr>
<tr>
<td>Querschnittgewicht inkl. Zei...</td>
<td>2,658</td>
<td>0.469</td>
<td>4.904</td>
<td>0.469</td>
<td>3.951</td>
</tr>
<tr>
<td>Querschnittgewicht inkl. Zei...</td>
<td>3,771</td>
<td>0.656</td>
<td>1.876</td>
<td>0.656</td>
<td>1.577</td>
</tr>
<tr>
<td>Querschnittgewicht inkl. Zei...</td>
<td>3,689</td>
<td>0.559</td>
<td>2.548</td>
<td>0.559</td>
<td>2.004</td>
</tr>
<tr>
<td>Querschnittgewicht inkl. Zei...</td>
<td>3,401</td>
<td>0.537</td>
<td>2.626</td>
<td>0.537</td>
<td>2.101</td>
</tr>
<tr>
<td>Querschnittgewicht inkl. Zei...</td>
<td>3,129</td>
<td>0.521</td>
<td>2.794</td>
<td>0.521</td>
<td>2.242</td>
</tr>
<tr>
<td>Querschnittgewicht inkl. Zei...</td>
<td>3,002</td>
<td>0.524</td>
<td>2.869</td>
<td>0.524</td>
<td>2.265</td>
</tr>
<tr>
<td>Querschnittgewicht inkl. Zei...</td>
<td>2,774</td>
<td>0.540</td>
<td>2.626</td>
<td>0.540</td>
<td>2.256</td>
</tr>
<tr>
<td>Querschnittgewicht inkl. Zei...</td>
<td>2,658</td>
<td>0.517</td>
<td>2.714</td>
<td>0.517</td>
<td>2.280</td>
</tr>
<tr>
<td>Querschnittgewicht ohne Zei...</td>
<td>3,376</td>
<td>0.492</td>
<td>4.183</td>
<td>0.492</td>
<td>3.170</td>
</tr>
<tr>
<td>Querschnittgewicht ohne Zei...</td>
<td>3,299</td>
<td>0.461</td>
<td>4.726</td>
<td>0.461</td>
<td>3.238</td>
</tr>
<tr>
<td>Querschnittgewicht ohne Zei...</td>
<td>3,032</td>
<td>0.450</td>
<td>4.576</td>
<td>0.450</td>
<td>3.249</td>
</tr>
<tr>
<td>Querschnittgewicht ohne Zei...</td>
<td>2,789</td>
<td>0.406</td>
<td>4.765</td>
<td>0.406</td>
<td>3.414</td>
</tr>
<tr>
<td>Querschnittgewicht ohne Zei...</td>
<td>2,681</td>
<td>0.397</td>
<td>4.992</td>
<td>0.397</td>
<td>3.559</td>
</tr>
<tr>
<td>Querschnittgewicht ohne Zei...</td>
<td>2,463</td>
<td>0.401</td>
<td>4.985</td>
<td>0.401</td>
<td>3.904</td>
</tr>
<tr>
<td>Querschnittgewicht ohne Zei...</td>
<td>2,377</td>
<td>0.443</td>
<td>4.635</td>
<td>0.443</td>
<td>3.599</td>
</tr>
<tr>
<td>Querschnittgewicht ohne Zei...</td>
<td>3,376</td>
<td>0.622</td>
<td>1.943</td>
<td>0.622</td>
<td>1.648</td>
</tr>
<tr>
<td>Querschnittgewicht ohne Zei...</td>
<td>3,299</td>
<td>0.527</td>
<td>2.767</td>
<td>0.527</td>
<td>2.155</td>
</tr>
<tr>
<td>Querschnittgewicht ohne Zei...</td>
<td>3,032</td>
<td>0.516</td>
<td>2.745</td>
<td>0.516</td>
<td>2.214</td>
</tr>
<tr>
<td>Querschnittgewicht ohne Zei...</td>
<td>2,789</td>
<td>0.496</td>
<td>3.002</td>
<td>0.496</td>
<td>2.446</td>
</tr>
<tr>
<td>Weight</td>
<td>N</td>
<td>Min.</td>
<td>Max.</td>
<td>1% Percentile</td>
<td>99% Percentile</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Querschnittgewicht ohne Zeitunterschreiter. angepasst an (N)Onliner-Atlas (gew_q4_w5)</td>
<td>2,681</td>
<td>0.500</td>
<td>3.023</td>
<td>0.500</td>
<td>2.431</td>
</tr>
<tr>
<td>Querschnittgewicht ohne Zeitunterschreiter. angepasst an (N)Onliner-Atlas (gew_q4_w6)</td>
<td>2,463</td>
<td>0.511</td>
<td>2.846</td>
<td>0.511</td>
<td>2.463</td>
</tr>
<tr>
<td>Querschnittgewicht ohne Zeitunterschreiter. angepasst an (N)Onliner-Atlas (gew_q4_w7)</td>
<td>2,377</td>
<td>0.488</td>
<td>2.882</td>
<td>0.488</td>
<td>2.496</td>
</tr>
<tr>
<td>Querschnittgewicht inkl. Zeitunterschreiter. angepasst an Mikrozensus (gew_q5_w2)</td>
<td>781</td>
<td>0.351</td>
<td>4.908</td>
<td>0.351</td>
<td>3.820</td>
</tr>
<tr>
<td>Querschnittgewicht inkl. Zeitunterschreiter. angepasst an (N)Onliner-Atlas (gew_q6_w2)</td>
<td>781</td>
<td>0.416</td>
<td>4.878</td>
<td>0.429</td>
<td>2.526</td>
</tr>
<tr>
<td>Querschnittgewicht ohne Zeitunterschreiter. angepasst an Mikrozensus (gew_q7_w2)</td>
<td>720</td>
<td>0.318</td>
<td>4.694</td>
<td>0.318</td>
<td>3.526</td>
</tr>
<tr>
<td>Querschnittgewicht ohne Zeitunterschreiter. angepasst an (N)Onliner-Atlas (gew_q8_w2)</td>
<td>720</td>
<td>0.353</td>
<td>5.000</td>
<td>0.377</td>
<td>2.886</td>
</tr>
<tr>
<td>Panelgewicht inkl. Zeitunterschreiter. angepasst an Mikrozensus (gew_p1_w1)</td>
<td>3,771</td>
<td>0.482</td>
<td>4.528</td>
<td>0.482</td>
<td>3.387</td>
</tr>
<tr>
<td>Panelgewicht inkl. Zeitunterschreiter. angepasst an Mikrozensus (gew_p1_w2)</td>
<td>3,689</td>
<td>0.351</td>
<td>4.992</td>
<td>0.373</td>
<td>3.809</td>
</tr>
<tr>
<td>Panelgewicht inkl. Zeitunterschreiter. angepasst an Mikrozensus (gew_p1_w3)</td>
<td>3,401</td>
<td>0.426</td>
<td>4.994</td>
<td>0.458</td>
<td>3.680</td>
</tr>
<tr>
<td>Panelgewicht inkl. Zeitunterschreiter. angepasst an Mikrozensus (gew_p1_w4)</td>
<td>3,129</td>
<td>0.428</td>
<td>4.983</td>
<td>0.439</td>
<td>4.015</td>
</tr>
<tr>
<td>Panelgewicht inkl. Zeitunterschreiter. angepasst an Mikrozensus (gew_p1_w5)</td>
<td>3,002</td>
<td>0.421</td>
<td>5.000</td>
<td>0.440</td>
<td>4.092</td>
</tr>
<tr>
<td>Panelgewicht inkl. Zeitunterschreiter. angepasst an Mikrozensus (gew_p1_w6)</td>
<td>2,774</td>
<td>0.411</td>
<td>4.990</td>
<td>0.429</td>
<td>4.327</td>
</tr>
<tr>
<td>Panelgewicht inkl. Zeitunterschreiter. angepasst an Mikrozensus (gew_p1_w7)</td>
<td>2,658</td>
<td>0.416</td>
<td>5.000</td>
<td>0.442</td>
<td>4.361</td>
</tr>
<tr>
<td>Panelgewicht inkl. Zeitunterschreiter. angepasst an (N)Onliner-Atlas (gew_p2_w1)</td>
<td>3,771</td>
<td>0.656</td>
<td>1.876</td>
<td>0.656</td>
<td>1.577</td>
</tr>
<tr>
<td>Panelgewicht inkl. Zeitunterschreiter. angepasst an (N)Onliner-Atlas (gew_p2_w2)</td>
<td>3,689</td>
<td>0.416</td>
<td>5.000</td>
<td>0.445</td>
<td>2.388</td>
</tr>
<tr>
<td>Panelgewicht inkl. Zeitunterschreiter. angepasst an (N)Onliner-Atlas (gew_p2_w3)</td>
<td>3,401</td>
<td>0.503</td>
<td>5.000</td>
<td>0.522</td>
<td>2.524</td>
</tr>
<tr>
<td>Panelgewicht inkl. Zeitunterschreiter. angepasst an (N)Onliner-Atlas (gew_p2_w4)</td>
<td>3,129</td>
<td>0.493</td>
<td>5.000</td>
<td>0.512</td>
<td>2.663</td>
</tr>
<tr>
<td>Panelgewicht inkl. Zeitunterschreiter. angepasst an (N)Onliner-Atlas (gew_p2_w5)</td>
<td>3,002</td>
<td>0.487</td>
<td>5.000</td>
<td>0.492</td>
<td>2.519</td>
</tr>
<tr>
<td>Panelgewicht inkl. Zeitunterschreiter. angepasst an (N)Onliner-Atlas (gew_p2_w6)</td>
<td>2,774</td>
<td>0.509</td>
<td>5.000</td>
<td>0.513</td>
<td>2.684</td>
</tr>
<tr>
<td>Panelgewicht inkl. Zeitunterschreiter. angepasst an (N)Onliner-Atlas (gew_p2_w7)</td>
<td>2,658</td>
<td>0.470</td>
<td>4.998</td>
<td>0.490</td>
<td>2.805</td>
</tr>
<tr>
<td>Panelgewicht inkl. Zeitunterschreiter. angepasst an Mikrozensus (gew_p3_w1)</td>
<td>3,376</td>
<td>0.492</td>
<td>4.183</td>
<td>0.492</td>
<td>3.170</td>
</tr>
<tr>
<td>Panelgewicht inkl. Zeitunterschreiter. angepasst an Mikrozensus (gew_p3_w2)</td>
<td>3,299</td>
<td>0.318</td>
<td>4.993</td>
<td>0.424</td>
<td>3.526</td>
</tr>
<tr>
<td>Panelgewicht inkl. Zeitunterschreiter. angepasst an Mikrozensus (gew_p3_w3)</td>
<td>3,032</td>
<td>0.419</td>
<td>4.998</td>
<td>0.444</td>
<td>3.451</td>
</tr>
<tr>
<td>Panelgewicht inkl. Zeitunterschreiter. angepasst an Mikrozensus (gew_p3_w4)</td>
<td>2,789</td>
<td>0.401</td>
<td>4.993</td>
<td>0.424</td>
<td>3.723</td>
</tr>
<tr>
<td>Panelgewicht inkl. Zeitunterschreiter. angepasst an Mikrozensus (gew_p3_w5)</td>
<td>2,681</td>
<td>0.391</td>
<td>5.000</td>
<td>0.415</td>
<td>3.739</td>
</tr>
<tr>
<td>Weight</td>
<td>N</td>
<td>Min.</td>
<td>Max.</td>
<td>1% Percentile</td>
<td>99% Percentile</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>---------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Panelgewicht inkl. Zeitunterschreiter. angepasst an Mikrozensus (gew_p3_w6)</td>
<td>2,463</td>
<td>0.375</td>
<td>4.998</td>
<td>0.404</td>
<td>4.159</td>
</tr>
<tr>
<td>Panelgewicht inkl. Zeitunterschreiter. angepasst an Mikrozensus (gew_p3_w7)</td>
<td>2,377</td>
<td>0.390</td>
<td>5.000</td>
<td>0.440</td>
<td>4.168</td>
</tr>
<tr>
<td>Panelgewicht inkl. Zeitunterschreiter. angepasst an (N)Onliner-Atlas (gew_p4_w1)</td>
<td>3,376</td>
<td>0.622</td>
<td>1.943</td>
<td>0.622</td>
<td>1.648</td>
</tr>
<tr>
<td>Panelgewicht inkl. Zeitunterschreiter. angepasst an (N)Onliner-Atlas (gew_p4_w2)</td>
<td>3,299</td>
<td>0.356</td>
<td>5.394</td>
<td>0.390</td>
<td>2.686</td>
</tr>
<tr>
<td>Panelgewicht inkl. Zeitunterschreiter. angepasst an (N)Onliner-Atlas (gew_p4_w3)</td>
<td>3,032</td>
<td>0.453</td>
<td>5.000</td>
<td>0.482</td>
<td>2.427</td>
</tr>
<tr>
<td>Panelgewicht inkl. Zeitunterschreiter. angepasst an (N)Onliner-Atlas (gew_p4_w4)</td>
<td>2,789</td>
<td>0.458</td>
<td>5.000</td>
<td>0.470</td>
<td>2.857</td>
</tr>
<tr>
<td>Panelgewicht inkl. Zeitunterschreiter. angepasst an (N)Onliner-Atlas (gew_p4_w5)</td>
<td>2,681</td>
<td>0.454</td>
<td>5.000</td>
<td>0.465</td>
<td>2.687</td>
</tr>
<tr>
<td>Panelgewicht inkl. Zeitunterschreiter. angepasst an (N)Onliner-Atlas (gew_p4_w6)</td>
<td>2,463</td>
<td>0.474</td>
<td>5.000</td>
<td>0.480</td>
<td>2.884</td>
</tr>
<tr>
<td>Panelgewicht inkl. Zeitunterschreiter. angepasst an (N)Onliner-Atlas (gew_p4_w7)</td>
<td>2,377</td>
<td>0.429</td>
<td>5.000</td>
<td>0.457</td>
<td>3.060</td>
</tr>
<tr>
<td>Querschnittgewicht inkl. Zeitunterschreiter. angepasst an Mikrozensus (gew_q1_ges)</td>
<td>1,792</td>
<td>0.207</td>
<td>5.000</td>
<td>0.277</td>
<td>5.000</td>
</tr>
<tr>
<td>Querschnittgewicht inkl. Zeitunterschreiter. angepasst an (N)Onliner-Atlas (gew_q2_ges)</td>
<td>1,792</td>
<td>0.263</td>
<td>4.989</td>
<td>0.285</td>
<td>2.783</td>
</tr>
<tr>
<td>Querschnittgewicht ohne Zeitunterschreiter. angepasst an Mikrozensus (gew_q3_ges)</td>
<td>1,594</td>
<td>0.162</td>
<td>5.000</td>
<td>0.217</td>
<td>5.000</td>
</tr>
<tr>
<td>Querschnittgewicht ohne Zeitunterschreiter. angepasst an (N)Onliner-Atlas (gew_q4_ges)</td>
<td>1,594</td>
<td>0.081</td>
<td>5.000</td>
<td>0.086</td>
<td>2.526</td>
</tr>
<tr>
<td>Panelgewicht inkl. Zeitunterschreiter. angepasst an Mikrozensus (gew_p1_ges)</td>
<td>1,792</td>
<td>0.155</td>
<td>5.000</td>
<td>0.244</td>
<td>5.000</td>
</tr>
<tr>
<td>Panelgewicht inkl. Zeitunterschreiter. angepasst an (N)Onliner-Atlas (gew_p2_ges)</td>
<td>1,792</td>
<td>0.184</td>
<td>5.000</td>
<td>0.222</td>
<td>3.867</td>
</tr>
<tr>
<td>Panelgewicht inkl. Zeitunterschreiter. angepasst an Mikrozensus (gew_p3_ges)</td>
<td>1,594</td>
<td>0.133</td>
<td>5.000</td>
<td>0.207</td>
<td>5.000</td>
</tr>
<tr>
<td>Panelgewicht inkl. Zeitunterschreiter. angepasst an (N)Onliner-Atlas (gew_p4_ges)</td>
<td>1,594</td>
<td>0.068</td>
<td>5.000</td>
<td>0.084</td>
<td>3.563</td>
</tr>
</tbody>
</table>
Table A.6: Weighting Factors in Candidate Campaign Survey (ZA5318)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundgewicht (Kandidaten) (wei_gesamt_kand)</td>
<td>790</td>
<td>0.618</td>
<td>1.618</td>
<td>0.663</td>
<td>1.481</td>
</tr>
<tr>
<td>Grundgewicht (Mandatsträger) (wei_gesamt_mdb)</td>
<td>198</td>
<td>0.418</td>
<td>2.466</td>
<td>0.430</td>
<td>2.028</td>
</tr>
<tr>
<td>Gewichtung Kandidatentyp (Kandidaten) (wei_ktyp_kand)</td>
<td>790</td>
<td>0.862</td>
<td>1.073</td>
<td>0.862</td>
<td>1.073</td>
</tr>
<tr>
<td>Gewichtung Mandatsgewinner (Kandidaten) (wei_mand_kand)</td>
<td>790</td>
<td>0.935</td>
<td>1.195</td>
<td>0.935</td>
<td>1.195</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewicht: Ost/West (wei_ow)</td>
<td>3,263</td>
<td>0.688</td>
<td>1.153</td>
<td>0.688</td>
<td>1.153</td>
</tr>
<tr>
<td>Transformationsgewicht (wei_tran)</td>
<td>3,256</td>
<td>0.440</td>
<td>3.959</td>
<td>0.440</td>
<td>2.200</td>
</tr>
<tr>
<td>Kombination Transformations- und Ost/West-Gewicht (wei_trow)</td>
<td>3,256</td>
<td>0.361</td>
<td>3.522</td>
<td>0.361</td>
<td>2.348</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturuelles Gewicht. gesamt (mit Tran.- t mit OW-Gewicht) (wei_ipf_1)</td>
<td>3,256</td>
<td>0.158</td>
<td>4.512</td>
<td>0.254</td>
<td>2.950</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturuelles Gewicht. gesamt (ohne Tran.- t mit OW-Gewicht) (wei_ipf_2)</td>
<td>3,263</td>
<td>0.275</td>
<td>2.028</td>
<td>0.301</td>
<td>2.015</td>
</tr>
<tr>
<td>Panelgewichte Welle 1. angepasst an Mikrozensus (wei_w1)</td>
<td>3,263</td>
<td>0.275</td>
<td>2.028</td>
<td>0.301</td>
<td>2.015</td>
</tr>
<tr>
<td>Panelgewichte Welle 2. angepasst an Mikrozensus (wei_w2)</td>
<td>902</td>
<td>0.131</td>
<td>10.427</td>
<td>0.180</td>
<td>4.104</td>
</tr>
<tr>
<td>Panelgewichte Welle 3. angepasst an Mikrozensus (wei_w3)</td>
<td>641</td>
<td>0.036</td>
<td>6.123</td>
<td>0.045</td>
<td>4.452</td>
</tr>
</tbody>
</table>

Table A.8: Weighting Factors in Long-Term Online Tracking T1 (ZA5334)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewichtung T1 (Anpassung an Mikrozensus) (gew1_t1)</td>
<td>2,045</td>
<td>0.368</td>
<td>4.018</td>
<td>0.389</td>
<td>2.967</td>
</tr>
<tr>
<td>Gewichtung T1 (Anpassung an Onliner) (gew2_t1)</td>
<td>2,045</td>
<td>0.616</td>
<td>1.786</td>
<td>0.706</td>
<td>1.543</td>
</tr>
</tbody>
</table>

Table A.9: Weighting Factors in Long-Term Online Tracking T2 (ZA5335)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewichtung T2 (Anpassung an Mikrozensus) (gew1_t2)</td>
<td>1,071</td>
<td>0.295</td>
<td>4.361</td>
<td>0.330</td>
<td>3.677</td>
</tr>
<tr>
<td>Gewichtung T2 (Anpassing an Onliner) (gew2_t2)</td>
<td>1,071</td>
<td>0.295</td>
<td>1.970</td>
<td>0.417</td>
<td>1.710</td>
</tr>
</tbody>
</table>

Table A.10: Weighting Factors in Long-Term Online Tracking T3 (ZA5336)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewichtung T3 (Anpassung an Mikrozensus) (gew1_t3)</td>
<td>1,133</td>
<td>0.325</td>
<td>5.170</td>
<td>0.325</td>
<td>4.079</td>
</tr>
<tr>
<td>Gewichtung T3 (Anpassing an Onliner) (gew2_t3)</td>
<td>1,133</td>
<td>0.773</td>
<td>1.845</td>
<td>0.773</td>
<td>1.670</td>
</tr>
</tbody>
</table>
Table A.11: Weighting Factors in Long-Term Online Tracking T4 (ZA5337)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewichtung T4 (Anpassung an Mikrozensus) (gew1_t4)</td>
<td>1,144</td>
<td>0.494</td>
<td>3.707</td>
<td>0.494</td>
<td>3.428</td>
</tr>
<tr>
<td>Gewichtung T4 (Anpassung an Onliner) (gew2_t4)</td>
<td>1,144</td>
<td>0.762</td>
<td>1.362</td>
<td>0.762</td>
<td>1.362</td>
</tr>
</tbody>
</table>

Table A.12: Weighting Factors in Long-Term Online Tracking T5 (ZA5338)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewichtung T5 (Anpassung an Mikrozensus) (gew1_t5)</td>
<td>1,139</td>
<td>0.325</td>
<td>3.752</td>
<td>0.336</td>
<td>3.529</td>
</tr>
<tr>
<td>Gewichtung T5 (Anpassung an Onliner) (gew2_t5)</td>
<td>1,139</td>
<td>0.623</td>
<td>1.498</td>
<td>0.715</td>
<td>1.498</td>
</tr>
</tbody>
</table>

Table A.13: Weighting Factors in Long-Term Online Tracking T6 (ZA5339)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewichtung T6 (Anpassung an Mikrozensus) (gew1_t6)</td>
<td>1,153</td>
<td>0.388</td>
<td>3.857</td>
<td>0.388</td>
<td>2.869</td>
</tr>
<tr>
<td>Gewichtung T6 (Anpassung an Onliner) (gew2_t6)</td>
<td>1,153</td>
<td>0.683</td>
<td>1.741</td>
<td>0.713</td>
<td>1.527</td>
</tr>
</tbody>
</table>

Table A.14: Weighting Factors in Long-Term Online Tracking T7 (ZA5340)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewichtung T7: Anpassung an Mikrozensus (Gesamttes Sample) (gew1_t7_v0)</td>
<td>1,147</td>
<td>0.449</td>
<td>3.627</td>
<td>0.449</td>
<td>3.224</td>
</tr>
<tr>
<td>Gewichtung T7: Anpassung an Onliner (Gesamtes Sample) (gew2_t7_v0)</td>
<td>1,147</td>
<td>0.160</td>
<td>6.549</td>
<td>0.160</td>
<td>5.385</td>
</tr>
<tr>
<td>Gewichtung T7: Anpassung an Mikrozensus (Ohne Zeitunterschreiter) (gew1_t7_v1)</td>
<td>1,027</td>
<td>0.446</td>
<td>3.713</td>
<td>0.446</td>
<td>3.285</td>
</tr>
<tr>
<td>Gewichtung T7: Anpassung an Onliner (Ohne Zeitunterschreiter) (gew2_t7_v1)</td>
<td>1,027</td>
<td>0.174</td>
<td>6.143</td>
<td>0.174</td>
<td>5.751</td>
</tr>
<tr>
<td>Gewichtung T7: Anpassung an Mikrozensus (Ohne Zeitunterschreiter und Mutationen) (gew1_t7_v2)</td>
<td>928</td>
<td>0.443</td>
<td>3.659</td>
<td>0.443</td>
<td>3.151</td>
</tr>
<tr>
<td>Gewichtung T7: Anpassung an Onliner (Ohne Zeitunterschreiter und Mutationen) (gew2_t7_v2)</td>
<td>928</td>
<td>0.167</td>
<td>6.140</td>
<td>0.167</td>
<td>5.865</td>
</tr>
<tr>
<td>Table A.15: Weighting Factors in Long-Term Online Tracking T8 (ZA5341)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>N</td>
<td>Min.</td>
<td>Max.</td>
<td>1% Percentile</td>
<td>99% Percentile</td>
</tr>
<tr>
<td>Gewichtung T8: Anpassung an Mikrozensus (Gesamtes Sample) (gew1_t8)</td>
<td>1,131</td>
<td>0.516</td>
<td>2.625</td>
<td>0.516</td>
<td>2.625</td>
</tr>
<tr>
<td>Gewichtung T8: Anpassung an Onliner (Gesamtes Sample) (gew2_t8)</td>
<td>1,131</td>
<td>0.179</td>
<td>4.171</td>
<td>0.179</td>
<td>4.088</td>
</tr>
<tr>
<td>Gewichtung T8: Anpassung an Mikrozensus (Zeitunterschreiter: Version A) (gew1_t8_v1)</td>
<td>998</td>
<td>0.522</td>
<td>2.678</td>
<td>0.522</td>
<td>2.678</td>
</tr>
<tr>
<td>Gewichtung T8: Anpassung an Onliner (Zeitunterschreiter: Version A) (gew2_t8_v1)</td>
<td>998</td>
<td>0.445</td>
<td>1.557</td>
<td>0.538</td>
<td>1.557</td>
</tr>
<tr>
<td>Gewichtung T8: Anpassung an Mikrozensus (Zeitunterschreiter: Version B) (gew1_t8_v2)</td>
<td>1,027</td>
<td>0.523</td>
<td>2.702</td>
<td>0.523</td>
<td>2.702</td>
</tr>
<tr>
<td>Gewichtung T8: Anpassung an Onliner (Zeitunterschreiter: Version B) (gew2_t8_v2)</td>
<td>1,027</td>
<td>0.461</td>
<td>1.518</td>
<td>0.550</td>
<td>1.518</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table A.16: Weighting Factors in Long-Term Online Tracking T9 (ZA5342)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
</tr>
<tr>
<td>Gewichtung T9: Anpassung an Mikrozensus (Gesamtes Sample) (gew1_t9)</td>
</tr>
<tr>
<td>Gewichtung T9: Anpassung an Onliner (Gesamtes Sample) (gew2_t9)</td>
</tr>
<tr>
<td>Gewichtung T9: Anpassung an Mikrozensus (Zeitunterschreiter: Version A) (gew1_t9_v1)</td>
</tr>
<tr>
<td>Gewichtung T9: Anpassung an Onliner (Zeitunterschreiter: Version A) (gew2_t9_v1)</td>
</tr>
<tr>
<td>Gewichtung T9: Anpassung an Mikrozensus (Zeitunterschreiter: Version B) (gew1_t9_v2)</td>
</tr>
<tr>
<td>Gewichtung T9: Anpassung an Onliner (Zeitunterschreiter: Version B) (gew2_t9_v2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table A.17: Weighting Factors in Long-Term Online Tracking T10 (ZA5343)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
</tr>
<tr>
<td>Gewichtung T10: Anpassung an Mikrozensus (Gesamtes Sample) (gew1_t10)</td>
</tr>
<tr>
<td>Gewichtung T10: Anpassung an Onliner (Gesamtes Sample) (gew2_t10)</td>
</tr>
<tr>
<td>Gewichtung T10: Anpassung an Mikrozensus (Zeitunterschreiter: Version A) (gew1_t10_v1)</td>
</tr>
<tr>
<td>Gewichtung T10: Anpassung an Onliner (Zeitunterschreiter: Version A) (gew2_t10_v1)</td>
</tr>
<tr>
<td>Gewichtung T10: Anpassung an Mikrozensus (Zeitunterschreiter: Version B) (gew1_t10_v2)</td>
</tr>
<tr>
<td>Gewichtung T10: Anpassung an Onliner (Zeitunterschreiter: Version B) (gew2_t10_v2)</td>
</tr>
</tbody>
</table>
Table A.18: Weighting Factors in Long-Term Online Tracking T11 (ZA5344)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewichtung T11: Anpassung an Mikrozensus (Gesamtes Sample) (gew1_t11_v0)</td>
<td>1,148</td>
<td>0.492</td>
<td>3.353</td>
<td>0.492</td>
<td>2.838</td>
</tr>
<tr>
<td>Gewichtung T11: Anpassung an Onliner (Gesamtes Sample) (gew2_t11_v0)</td>
<td>1,148</td>
<td>0.619</td>
<td>1.342</td>
<td>0.619</td>
<td>1.337</td>
</tr>
<tr>
<td>Gewichtung T11: Anpassung an Mikrozensus (Zeitunterschreiter: Version A) (gew1_t11_v1)</td>
<td>1,043</td>
<td>0.508</td>
<td>3.193</td>
<td>0.508</td>
<td>2.800</td>
</tr>
<tr>
<td>Gewichtung T11: Anpassung an Onliner (Zeitunterschreiter: Version A) (gew2_t11_v1)</td>
<td>1,043</td>
<td>0.578</td>
<td>1.396</td>
<td>0.597</td>
<td>1.396</td>
</tr>
<tr>
<td>Gewichtung T11: Anpassung an Mikrozensus (Zeitunterschreiter: Version B) (gew1_t11_v2)</td>
<td>1,021</td>
<td>0.538</td>
<td>2.999</td>
<td>0.538</td>
<td>2.659</td>
</tr>
<tr>
<td>Gewichtung T11: Anpassung an Onliner (Zeitunterschreiter: Version B) (gew2_t11_v2)</td>
<td>1,021</td>
<td>0.544</td>
<td>1.468</td>
<td>0.563</td>
<td>1.468</td>
</tr>
</tbody>
</table>

Table A.19: Weighting Factors in Long-Term Online Tracking T12 (ZA5345)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewichtung T12: Anpassung an Mikrozensus (Gesamtes Sample) (gew1_t12_v0)</td>
<td>1,144</td>
<td>0.553</td>
<td>3.012</td>
<td>0.553</td>
<td>2.300</td>
</tr>
<tr>
<td>Gewichtung T12: Anpassung an Onliner (Gesamtes Sample) (gew2_t12_v0)</td>
<td>1,144</td>
<td>0.677</td>
<td>1.479</td>
<td>0.677</td>
<td>1.436</td>
</tr>
<tr>
<td>Gewichtung T12: Anpassung an Mikrozensus (Zeitunterschreiter: Version A) (gew1_t12_v1)</td>
<td>1,027</td>
<td>0.546</td>
<td>2.968</td>
<td>0.546</td>
<td>2.246</td>
</tr>
<tr>
<td>Gewichtung T12: Anpassung an Onliner (Zeitunterschreiter: Version A) (gew2_t12_v1)</td>
<td>1,027</td>
<td>0.669</td>
<td>1.454</td>
<td>0.669</td>
<td>1.442</td>
</tr>
<tr>
<td>Gewichtung T12: Anpassung an Mikrozensus (Zeitunterschreiter: Version B) (gew1_t12_v2)</td>
<td>1,023</td>
<td>0.553</td>
<td>2.906</td>
<td>0.553</td>
<td>2.189</td>
</tr>
<tr>
<td>Gewichtung T12: Anpassung an Onliner (Zeitunterschreiter: Version B) (gew2_t12_v2)</td>
<td>1,023</td>
<td>0.639</td>
<td>1.467</td>
<td>0.639</td>
<td>1.467</td>
</tr>
</tbody>
</table>

Table A.20: Weighting Factors in Long-Term Online Tracking T13 (ZA5346)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewichtung T13: Anpassung an Mikrozensus (Gesamtes Sample) (gew1_t13_v0)</td>
<td>1,137</td>
<td>0.532</td>
<td>2.880</td>
<td>0.532</td>
<td>2.512</td>
</tr>
<tr>
<td>Gewichtung T13: Anpassung an Onliner (Gesamtes Sample) (gew2_t13_v0)</td>
<td>1,137</td>
<td>0.712</td>
<td>1.786</td>
<td>0.712</td>
<td>1.534</td>
</tr>
<tr>
<td>Gewichtung T13: Anpassung an Mikrozensus (Zeitunterschreiter: Version A) (gew1_t13_v1)</td>
<td>1,024</td>
<td>0.551</td>
<td>2.756</td>
<td>0.551</td>
<td>2.553</td>
</tr>
<tr>
<td>Gewichtung T13: Anpassung an Onliner (Zeitunterschreiter: Version A) (gew2_t13_v1)</td>
<td>1,024</td>
<td>0.658</td>
<td>1.756</td>
<td>0.658</td>
<td>1.608</td>
</tr>
<tr>
<td>Gewichtung T13: Anpassung an Mikrozensus (Zeitunterschreiter: Version B) (gew1_t13_v2)</td>
<td>1,006</td>
<td>0.581</td>
<td>2.732</td>
<td>0.581</td>
<td>2.559</td>
</tr>
<tr>
<td>Gewichtung T13: Anpassung an Onliner (Zeitunterschreiter: Version B) (gew2_t13_v2)</td>
<td>1,006</td>
<td>0.657</td>
<td>1.806</td>
<td>0.657</td>
<td>1.621</td>
</tr>
</tbody>
</table>
Table A.21: Weighting Factors in Long-Term Online Tracking T14 (ZA5347)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewichtung T14: Anpassung an Mikrozensus (Gesamtes Sample) (gew1_t14_v0)</td>
<td>1,150</td>
<td>0.457</td>
<td>2.709</td>
<td>0.457</td>
<td>2.384</td>
</tr>
<tr>
<td>Gewichtung T14: Anpassung an Onliner (Gesamtes Sample) (gew2_t14_v0)</td>
<td>1,150</td>
<td>0.704</td>
<td>1.403</td>
<td>0.704</td>
<td>1.357</td>
</tr>
<tr>
<td>Gewichtung T14: Anpassung an Mikrozensus (Zeitunterschreiter: Version A) (gew1_t14_v1)</td>
<td>1,039</td>
<td>0.485</td>
<td>2.373</td>
<td>0.485</td>
<td>2.134</td>
</tr>
<tr>
<td>Gewichtung T14: Anpassung an Onliner (Zeitunterschreiter: Version A) (gew2_t14_v1)</td>
<td>1,039</td>
<td>0.669</td>
<td>1.471</td>
<td>0.669</td>
<td>1.471</td>
</tr>
<tr>
<td>Gewichtung T14: Anpassung an Mikrozensus (Zeitunterschreiter: Version B) (gew1_t14_v2)</td>
<td>1,039</td>
<td>0.494</td>
<td>2.312</td>
<td>0.494</td>
<td>2.096</td>
</tr>
<tr>
<td>Gewichtung T14: Anpassung an Onliner (Zeitunterschreiter: Version B) (gew2_t14_v2)</td>
<td>1,039</td>
<td>0.646</td>
<td>1.551</td>
<td>0.646</td>
<td>1.551</td>
</tr>
</tbody>
</table>

Table A.22: Weighting Factors in Long-Term Online Tracking T15 (ZA5348)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewichtung T15: Anpassung an Mikrozensus (Gesamtes Sample) (gew1_t15_v0)</td>
<td>1,158</td>
<td>0.407</td>
<td>2.199</td>
<td>0.407</td>
<td>2.199</td>
</tr>
<tr>
<td>Gewichtung T15: Anpassung an Onliner (Gesamtes Sample) (gew2_t15_v0)</td>
<td>1,158</td>
<td>0.467</td>
<td>1.604</td>
<td>0.526</td>
<td>1.604</td>
</tr>
<tr>
<td>Gewichtung T15: Anpassung an Mikrozensus (Zeitunterschreiter: Version A) (gew1_t15_v1)</td>
<td>1,020</td>
<td>0.438</td>
<td>2.007</td>
<td>0.438</td>
<td>2.007</td>
</tr>
<tr>
<td>Gewichtung T15: Anpassung an Onliner (Zeitunterschreiter: Version A) (gew2_t15_v1)</td>
<td>1,020</td>
<td>0.408</td>
<td>1.616</td>
<td>0.480</td>
<td>1.616</td>
</tr>
<tr>
<td>Gewichtung T15: Anpassung an Mikrozensus (Zeitunterschreiter: Version B) (gew1_t15_v2)</td>
<td>1,028</td>
<td>0.438</td>
<td>1.978</td>
<td>0.438</td>
<td>1.978</td>
</tr>
<tr>
<td>Gewichtung T15: Anpassung an Onliner (Zeitunterschreiter: Version B) (gew2_t15_v2)</td>
<td>1,028</td>
<td>0.419</td>
<td>1.584</td>
<td>0.475</td>
<td>1.583</td>
</tr>
</tbody>
</table>

Table A.23: Weighting Factors in Long-Term Online Tracking T16 (ZA5349)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewichtung Welle T16 (Anpassung an Mikrozensus) (Version Z) (gew1_t16_v0)</td>
<td>1,114</td>
<td>0.481</td>
<td>3.435</td>
<td>0.481</td>
<td>2.916</td>
</tr>
<tr>
<td>Gewichtung Welle T16 (Anpassung an Onliner) (Version Z) (gew2_t16_v0)</td>
<td>1,114</td>
<td>0.794</td>
<td>1.355</td>
<td>0.794</td>
<td>1.319</td>
</tr>
<tr>
<td>Gewichtung Welle T16 (Anpassing an Mikrozensus) (Version A) (gew1_t16_v1)</td>
<td>994</td>
<td>0.497</td>
<td>3.360</td>
<td>0.497</td>
<td>2.826</td>
</tr>
<tr>
<td>Gewichtung Welle T16 (Anpassing an Onliner) (Version A) (gew2_t16_v1)</td>
<td>994</td>
<td>0.782</td>
<td>1.339</td>
<td>0.782</td>
<td>1.339</td>
</tr>
<tr>
<td>Gewichtung Welle T16 (Anpassing an Mikrozensus) (Version B) (gew1_t16_v2)</td>
<td>999</td>
<td>0.498</td>
<td>3.206</td>
<td>0.498</td>
<td>2.740</td>
</tr>
<tr>
<td>Gewichtung Welle T16 (Anpassing an Onliner) (Version B) (gew2_t16_v2)</td>
<td>999</td>
<td>0.777</td>
<td>1.365</td>
<td>0.777</td>
<td>1.365</td>
</tr>
</tbody>
</table>
Table A.24: Weighting Factors in Long-Term Online Tracking T17 (ZA5350)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sozial- und regionalstrukt Gewicht (Anpassung MZ2009. mit Zeitunterschreiter) (wei_mzz)</td>
<td>1,016</td>
<td>0.536</td>
<td>3.328</td>
<td>0.539</td>
<td>2.746</td>
</tr>
<tr>
<td>Sozial- und regionalstrukt Gewicht (Anpassung MZ2009. ohne Zeitunterschreiter) (wei_mzoz)</td>
<td>914</td>
<td>0.563</td>
<td>3.018</td>
<td>0.573</td>
<td>2.467</td>
</tr>
<tr>
<td>Sozial- und regionalstrukt Gewicht (Anpassung Onliner. mit Zeitunterschreiter) (wei_onz)</td>
<td>1,016</td>
<td>0.112</td>
<td>5.648</td>
<td>0.112</td>
<td>5.648</td>
</tr>
<tr>
<td>Sozial- und regionalstrukt Gewicht (Anpassung Onliner. ohne Zeitunterschreiter) (wei_onoz)</td>
<td>914</td>
<td>0.079</td>
<td>5.490</td>
<td>0.079</td>
<td>5.490</td>
</tr>
</tbody>
</table>

Table A.25: Weighting Factors in Long-Term Online Tracking T18 (ZA5351)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (Anpassung MZ2009. mit Zeitunterschreiter) (wei_mzz)</td>
<td>1,075</td>
<td>0.497</td>
<td>3.435</td>
<td>0.497</td>
<td>2.621</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (Anpassung MZ2009. ohne Zeitunterschreiter) (wei_mzoz)</td>
<td>967</td>
<td>0.521</td>
<td>2.954</td>
<td>0.521</td>
<td>2.453</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (Anpassung Onliner. mit Zeitunterschreiter) (wei_onz)</td>
<td>1,075</td>
<td>0.603</td>
<td>1.505</td>
<td>0.618</td>
<td>1.390</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (Anpassung Onliner. ohne Zeitunterschreiter) (wei_onoz)</td>
<td>967</td>
<td>0.657</td>
<td>1.403</td>
<td>0.671</td>
<td>1.381</td>
</tr>
</tbody>
</table>

Table A.26: Weighting Factors in Long-Term Online Tracking T19 (ZA5719)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (Anpassung MZ2009. mit Zeitunterschreiter) (wei_mzz)</td>
<td>1,034</td>
<td>0.386</td>
<td>5.000</td>
<td>0.386</td>
<td>3.720</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (Anpassung MZ2009. ohne Zeitunterschreiter) (wei_mzoz)</td>
<td>930</td>
<td>0.388</td>
<td>4.943</td>
<td>0.388</td>
<td>3.378</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (Anpassung ONLINER. mit Zeitunterschreiter) (wei_onz)</td>
<td>1,034</td>
<td>0.575</td>
<td>1.794</td>
<td>0.618</td>
<td>1.643</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (Anpassung ONLINER. ohne Zeitunterschreiter) (wei_onoz)</td>
<td>930</td>
<td>0.594</td>
<td>1.666</td>
<td>0.628</td>
<td>1.576</td>
</tr>
</tbody>
</table>

Table A.27: Weighting Factors in Long-Term Online Tracking T20 (ZA5720)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (Anpassung MZ2009. mit Zeitunterschreiter) (wei_mzz)</td>
<td>1,048</td>
<td>0.378</td>
<td>3.813</td>
<td>0.392</td>
<td>3.455</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (Anpassung MZ2009. ohne Zeitunterschreiter) (wei_mzoz)</td>
<td>943</td>
<td>0.396</td>
<td>3.499</td>
<td>0.412</td>
<td>3.115</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (Anpassung ONLINER. mit Zeitunterschreiter) (wei_onz)</td>
<td>1,048</td>
<td>0.591</td>
<td>1.475</td>
<td>0.610</td>
<td>1.390</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (Anpassung ONLINER. ohne Zeitunterschreiter) (wei_onoz)</td>
<td>943</td>
<td>0.678</td>
<td>1.316</td>
<td>0.678</td>
<td>1.302</td>
</tr>
</tbody>
</table>
Table A.28: Weighting Factors in Long-Term Online Tracking T21 (ZA5721)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (Anpassung MZ2012 mit Zeitunterschreiter) (wei_mzz)</td>
<td>1,012</td>
<td>0.339</td>
<td>4.113</td>
<td>0.373</td>
<td>3.481</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (Anpassung MZ2012 ohne Zeitunterschreiter) (wei_mzoz)</td>
<td>910</td>
<td>0.403</td>
<td>3.525</td>
<td>0.415</td>
<td>2.972</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (Anpassung ONLINER mit Zeitunterschreiter) (wei_onz)</td>
<td>1,012</td>
<td>0.558</td>
<td>1.788</td>
<td>0.581</td>
<td>1.576</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (Anpassung ONLINER ohne Zeitunterschreiter) (wei_onoz)</td>
<td>910</td>
<td>0.715</td>
<td>1.403</td>
<td>0.715</td>
<td>1.344</td>
</tr>
</tbody>
</table>

Table A.29: Weighting Factors in Long-Term Online Tracking of State Election North Rhine-Westphalia 2010 (ZA5324)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anpassung an Mikrozensus (Gesamtes Sample) (gew1_nrw)</td>
<td>572</td>
<td>0.360</td>
<td>2.635</td>
<td>0.360</td>
<td>2.635</td>
</tr>
<tr>
<td>Anpassung an Onliner (Gesamtes Sample) (gew2_nrw)</td>
<td>572</td>
<td>0.454</td>
<td>1.959</td>
<td>0.454</td>
<td>1.824</td>
</tr>
<tr>
<td>Anpassung an Mikrozensus (Zeitunterschreiter: Version A) (gew1_nrw_v1)</td>
<td>512</td>
<td>0.388</td>
<td>2.505</td>
<td>0.388</td>
<td>2.505</td>
</tr>
<tr>
<td>Anpassung an Onliner (Zeitunterschreiter: Version A) (gew2_nrw_v1)</td>
<td>512</td>
<td>0.436</td>
<td>1.853</td>
<td>0.436</td>
<td>1.853</td>
</tr>
<tr>
<td>Anpassung an Mikrozensus (Zeitunterschreiter: Version B) (gew1_nrw_v2)</td>
<td>520</td>
<td>0.387</td>
<td>2.437</td>
<td>0.387</td>
<td>2.437</td>
</tr>
<tr>
<td>Anpassung an Onliner (Zeitunterschreiter: Version B) (gew2_nrw_v2)</td>
<td>520</td>
<td>0.449</td>
<td>1.847</td>
<td>0.449</td>
<td>1.847</td>
</tr>
</tbody>
</table>

Table A.30: Weighting Factors in Long-Term Online Tracking of State Election Saxony-Anhalt 2011 (ZA5325)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anpassung an Mikrozensus (Version Z)</td>
<td>580</td>
<td>0.391</td>
<td>6.508</td>
<td>0.391</td>
<td>6.508</td>
</tr>
<tr>
<td>Anpassung an Onliner (Version Z) (gew2_st_v0)</td>
<td>580</td>
<td>0.540</td>
<td>2.033</td>
<td>0.540</td>
<td>1.781</td>
</tr>
<tr>
<td>Anpassung an Mikrozensus (Version A) (gew1_st_v1)</td>
<td>516</td>
<td>0.412</td>
<td>6.621</td>
<td>0.412</td>
<td>6.621</td>
</tr>
<tr>
<td>Anpassung an Onliner (Version A) (gew2_st_v1)</td>
<td>516</td>
<td>0.478</td>
<td>2.087</td>
<td>0.478</td>
<td>2.009</td>
</tr>
<tr>
<td>Anpassung an Mikrozensus (Version B) (gew1_st_v2)</td>
<td>529</td>
<td>0.401</td>
<td>6.682</td>
<td>0.401</td>
<td>6.608</td>
</tr>
<tr>
<td>Anpassung an Onliner (Version B) (gew2_st_v2)</td>
<td>529</td>
<td>0.481</td>
<td>2.095</td>
<td>0.481</td>
<td>1.992</td>
</tr>
</tbody>
</table>

Table A.31: Weighting Factors in Long-Term Online Tracking of State Election Bremen 2011 (ZA5326)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anpassung an Mikrozensus (Version Z) (gew1_tb_v0)</td>
<td>510</td>
<td>0.380</td>
<td>5.211</td>
<td>0.380</td>
<td>5.211</td>
</tr>
<tr>
<td>Anpassung an Onliner (Version Z) (gew2_tb_v0)</td>
<td>510</td>
<td>0.429</td>
<td>2.882</td>
<td>0.429</td>
<td>2.882</td>
</tr>
<tr>
<td>Anpassung an Mikrozensus (Version A) (gew1_tb_v1)</td>
<td>453</td>
<td>0.373</td>
<td>4.839</td>
<td>0.373</td>
<td>4.839</td>
</tr>
<tr>
<td>Anpassung an Onliner (Version A) (gew2_tb_v1)</td>
<td>453</td>
<td>0.411</td>
<td>2.793</td>
<td>0.411</td>
<td>2.793</td>
</tr>
<tr>
<td>Anpassung an Mikrozensus (Version B) (gew1_tb_v2)</td>
<td>466</td>
<td>0.366</td>
<td>4.843</td>
<td>0.366</td>
<td>4.843</td>
</tr>
<tr>
<td>Anpassung an Onliner (Version B) (gew2_tb_v2)</td>
<td>466</td>
<td>0.385</td>
<td>2.910</td>
<td>0.385</td>
<td>2.910</td>
</tr>
</tbody>
</table>
Table A.32: Weighting Factors in Long-Term Online Tracking of State Election Rhineland-Palatinate 2011 (ZA5327)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anpassung an Mikrozensus (Version Z) (gew1_rp_v0)</td>
<td>565</td>
<td>0.426</td>
<td>2.734</td>
<td>0.426</td>
<td>2.734</td>
</tr>
<tr>
<td>Anpassung an Onliner (Version Z) (gew2_rp_v0)</td>
<td>565</td>
<td>0.588</td>
<td>1.412</td>
<td>0.588</td>
<td>1.412</td>
</tr>
<tr>
<td>Anpassung an Mikrozensus (Version A) (gew1_rp_v1)</td>
<td>509</td>
<td>0.419</td>
<td>2.630</td>
<td>0.419</td>
<td>2.630</td>
</tr>
<tr>
<td>Anpassung an Onliner (Version A) (gew2_rp_v1)</td>
<td>509</td>
<td>0.519</td>
<td>1.626</td>
<td>0.519</td>
<td>1.540</td>
</tr>
<tr>
<td>Anpassung an Mikrozensus (Version B) (gew1_rp_v2)</td>
<td>528</td>
<td>0.438</td>
<td>2.571</td>
<td>0.438</td>
<td>2.571</td>
</tr>
<tr>
<td>Anpassung an Onliner (Version B) (gew2_rp_v2)</td>
<td>528</td>
<td>0.539</td>
<td>1.541</td>
<td>0.539</td>
<td>1.500</td>
</tr>
</tbody>
</table>

Table A.33: Weighting Factors in Long-Term Online Tracking of State Election Baden-Wuerttemberg 2011 (ZA5328)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anpassung an Mikrozensus (Version Z) (gew1_bw_v0)</td>
<td>562</td>
<td>0.489</td>
<td>2.275</td>
<td>0.489</td>
<td>2.275</td>
</tr>
<tr>
<td>Anpassung an Onliner (Version Z) (gew2_bw_v0)</td>
<td>562</td>
<td>0.640</td>
<td>1.484</td>
<td>0.663</td>
<td>1.484</td>
</tr>
<tr>
<td>Anpassung an Mikrozensus (Version A) (gew1_bw_v1)</td>
<td>494</td>
<td>0.499</td>
<td>2.174</td>
<td>0.499</td>
<td>2.174</td>
</tr>
<tr>
<td>Anpassung an Onliner (Version A) (gew2_bw_v1)</td>
<td>494</td>
<td>0.566</td>
<td>1.532</td>
<td>0.566</td>
<td>1.532</td>
</tr>
<tr>
<td>Anpassung an Mikrozensus (Version B) (gew1_bw_v2)</td>
<td>495</td>
<td>0.515</td>
<td>2.123</td>
<td>0.515</td>
<td>2.123</td>
</tr>
<tr>
<td>Anpassung an Onliner (Version B) (gew2_bw_v2)</td>
<td>495</td>
<td>0.575</td>
<td>1.531</td>
<td>0.575</td>
<td>1.531</td>
</tr>
</tbody>
</table>

Table A.34: Weighting Factors in Long-Term Online Tracking of State Election Berlin 2011 (ZA5329)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewichtung BE (Anpassung an Mikrozensus) (Version Z) (gew1_be_v0)</td>
<td>615</td>
<td>0.611</td>
<td>2.183</td>
<td>0.611</td>
<td>2.183</td>
</tr>
<tr>
<td>Gewichtung BE (Anpassung an Onliner) (Version Z) (gew2_be_v0)</td>
<td>615</td>
<td>0.437</td>
<td>2.268</td>
<td>0.437</td>
<td>2.097</td>
</tr>
<tr>
<td>Gewichtung BE (Anpassung an Mikrozensus) (Version A) (gew1_be_v1)</td>
<td>531</td>
<td>0.645</td>
<td>1.877</td>
<td>0.645</td>
<td>1.877</td>
</tr>
<tr>
<td>Gewichtung BE (Anpassung an Onliner) (Version A) (gew2_be_v1)</td>
<td>531</td>
<td>0.437</td>
<td>2.284</td>
<td>0.437</td>
<td>2.284</td>
</tr>
<tr>
<td>Gewichtung BE (Anpassung an Mikrozensus) (Version B) (gew1_be_v2)</td>
<td>555</td>
<td>0.644</td>
<td>2.024</td>
<td>0.644</td>
<td>2.024</td>
</tr>
<tr>
<td>Gewichtung BE (Anpassung an Onliner) (Version B) (gew2_be_v2)</td>
<td>555</td>
<td>0.426</td>
<td>2.298</td>
<td>0.426</td>
<td>2.298</td>
</tr>
</tbody>
</table>
Table A.35: Weighting Factors in Long-Term Online Tracking of State Election Berlin 2011 (ZA5330)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anpassung an Mikrozensus (Version Z) (gew1_mv_v0)</td>
<td>562</td>
<td>0.310</td>
<td>4.306</td>
<td>0.310</td>
<td>4.306</td>
</tr>
<tr>
<td>Anpassung an Onliner (Version Z) (gew2_mv_v0)</td>
<td>562</td>
<td>0.474</td>
<td>1.754</td>
<td>0.474</td>
<td>1.754</td>
</tr>
<tr>
<td>Anpassung an Mikrozensus (Version A) (gew1_mv_v1)</td>
<td>493</td>
<td>0.347</td>
<td>4.210</td>
<td>0.347</td>
<td>4.210</td>
</tr>
<tr>
<td>Anpassung an Onliner (Version A) (gew2_mv_v1)</td>
<td>493</td>
<td>0.381</td>
<td>2.008</td>
<td>0.381</td>
<td>2.008</td>
</tr>
<tr>
<td>Anpassung an Mikrozensus (Version B) (gew1_mv_v2)</td>
<td>516</td>
<td>0.337</td>
<td>4.041</td>
<td>0.337</td>
<td>4.041</td>
</tr>
<tr>
<td>Gewichtung MV (Anpassung an Onliner) (Version B) (gew2_mv_v2)</td>
<td>516</td>
<td>0.401</td>
<td>1.886</td>
<td>0.401</td>
<td>1.886</td>
</tr>
</tbody>
</table>

Table A.36: Weighting Factors in Long-Term Online Tracking of State Election Hamburg 2011 (ZA5331)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anpassung an Mikrozensus (Version Z) (gew1_hh_v0)</td>
<td>538</td>
<td>0.528</td>
<td>2.689</td>
<td>0.528</td>
<td>2.689</td>
</tr>
<tr>
<td>Anpassung an Onliner (Version Z) (gew2_hh_v0)</td>
<td>538</td>
<td>0.512</td>
<td>1.821</td>
<td>0.512</td>
<td>1.821</td>
</tr>
<tr>
<td>Anpassung an Mikrozensus (Version A) (gew1_hh_v1)</td>
<td>475</td>
<td>0.534</td>
<td>2.274</td>
<td>0.534</td>
<td>2.274</td>
</tr>
<tr>
<td>Anpassung an Onliner (Version A) (gew2_hh_v1)</td>
<td>475</td>
<td>0.461</td>
<td>2.006</td>
<td>0.461</td>
<td>2.006</td>
</tr>
<tr>
<td>Anpassung an Mikrozensus (Version B) (gew1_hh_v2)</td>
<td>490</td>
<td>0.538</td>
<td>2.461</td>
<td>0.538</td>
<td>2.461</td>
</tr>
<tr>
<td>Anpassung an Onliner (Version B) (gew2_hh_v2)</td>
<td>490</td>
<td>0.483</td>
<td>2.094</td>
<td>0.483</td>
<td>2.094</td>
</tr>
</tbody>
</table>

Table A.37: Weighting Factors in Long-Term Online Tracking of State Election Lower Saxony 2013 (ZA5735)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (MZ2009. mit Zeitunterschreiter) (wei_mzz)</td>
<td>543</td>
<td>0.229</td>
<td>5.000</td>
<td>0.229</td>
<td>5.000</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (MZ2009. ohne Zeitunterschreiter) (wei_mzoz)</td>
<td>488</td>
<td>0.234</td>
<td>5.000</td>
<td>0.234</td>
<td>5.000</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (Onliner. mit Zeitunterschreiter) (wei_onz)</td>
<td>543</td>
<td>0.569</td>
<td>2.196</td>
<td>0.631</td>
<td>2.004</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (Onliner. ohne Zeitunterschreiter) (wei_onoz)</td>
<td>488</td>
<td>0.519</td>
<td>2.102</td>
<td>0.564</td>
<td>2.102</td>
</tr>
</tbody>
</table>

Table A.38: Weighting Factors in Long-Term Online Tracking of State Election Bavaria 2013 (ZA5736)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (Anpassung MZ2009. mit Zeitunterschreiter) (wei_mzzob)</td>
<td>532</td>
<td>0.380</td>
<td>3.323</td>
<td>0.380</td>
<td>3.323</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (Anpassung MZ2009. ohne Zeitunterschreiter) (wei_mzozob)</td>
<td>478</td>
<td>0.399</td>
<td>2.981</td>
<td>0.399</td>
<td>2.981</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (Anpassung Onliner. mit Zeitunterschreiter) (wei_onzob)</td>
<td>532</td>
<td>0.285</td>
<td>1.948</td>
<td>0.285</td>
<td>1.948</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (Anpassung Onliner. ohne Zeitunterschreiter) (wei_onzoz)</td>
<td>478</td>
<td>0.281</td>
<td>2.177</td>
<td>0.281</td>
<td>2.177</td>
</tr>
</tbody>
</table>
Table A.39: Weighting Factors in Long-Term Online Tracking of State Election Hesse 2013 (ZA5737)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (Anpassung MZ2009, mit Zeitunterschreiter) (wei_mzz)</td>
<td>529</td>
<td>0.153</td>
<td>5.000</td>
<td>0.153</td>
<td>5.000</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (Anpassung MZ2009, ohne Zeitunterschreiter) (wei_mzoo)</td>
<td>476</td>
<td>0.155</td>
<td>5.000</td>
<td>0.155</td>
<td>5.000</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (Anpassung Onliner. mit Zeitunterschreiter) (wei_onz)</td>
<td>529</td>
<td>0.601</td>
<td>1.911</td>
<td>0.609</td>
<td>1.911</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (Anpassung Onliner. ohne Zeitunterschreiter) (wei_onoz)</td>
<td>476</td>
<td>0.566</td>
<td>1.830</td>
<td>0.585</td>
<td>1.830</td>
</tr>
</tbody>
</table>

Table A.40: Weighting Factors in Pre-Election Cross Section (ZA5700)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ost-/West Gewicht (w_ow)</td>
<td>2,003</td>
<td>0.558</td>
<td>1.266</td>
<td>0.558</td>
<td>1.266</td>
</tr>
<tr>
<td>Transformationsgewicht (w_tran)</td>
<td>2,003</td>
<td>0.565</td>
<td>3.391</td>
<td>0.565</td>
<td>2.351</td>
</tr>
<tr>
<td>Kombination Transformations- und Ost/West-Gewicht (w_trow)</td>
<td>2,003</td>
<td>0.328</td>
<td>4.293</td>
<td>0.328</td>
<td>2.862</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht. gesamt (mit Tran.- & mit OW-Gewicht) (w_ipfges_1)</td>
<td>2,003</td>
<td>0.172</td>
<td>5.000</td>
<td>0.210</td>
<td>3.583</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht. gesamt (ohne Tran. & mit OW-Gewicht) (w_ipfges_2)</td>
<td>2,003</td>
<td>0.260</td>
<td>2.487</td>
<td>0.289</td>
<td>2.203</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht. Ost (mit Transformationsgewicht) (w_ipfost_1)</td>
<td>753</td>
<td>0.332</td>
<td>4.223</td>
<td>0.332</td>
<td>2.814</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht. Ost (ohne Transformationsgewicht) (w_ipfost_2)</td>
<td>753</td>
<td>0.523</td>
<td>2.099</td>
<td>0.523</td>
<td>1.839</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht. West (mit Transformationsgewicht) (w_ipfwes_1)</td>
<td>1,250</td>
<td>0.261</td>
<td>4.910</td>
<td>0.293</td>
<td>3.307</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht. West (ohne Transformationsgewicht) (w_ipfwes_2)</td>
<td>1,250</td>
<td>0.410</td>
<td>2.151</td>
<td>0.410</td>
<td>1.974</td>
</tr>
</tbody>
</table>

Table A.41: Weighting Factors in Post-Election Cross Section (ZA5701)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ost-/West Gewicht (w_ow)</td>
<td>1,908</td>
<td>0.545</td>
<td>1.284</td>
<td>0.545</td>
<td>1.284</td>
</tr>
<tr>
<td>Transformationsgewicht (w_tran)</td>
<td>1,908</td>
<td>0.552</td>
<td>2.758</td>
<td>0.552</td>
<td>2.308</td>
</tr>
<tr>
<td>Kombination Transformations- und Ost/West-Gewicht (w_trow)</td>
<td>1,908</td>
<td>0.315</td>
<td>3.542</td>
<td>0.315</td>
<td>2.834</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht. gesamt (mit Tran.- & mit OW) (w_ipfges_1)</td>
<td>1,908</td>
<td>0.181</td>
<td>4.881</td>
<td>0.195</td>
<td>3.705</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht. gesamt (ohne Tran. & mit OW) (w_ipfges_2)</td>
<td>1,908</td>
<td>0.297</td>
<td>2.761</td>
<td>0.307</td>
<td>2.662</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht. Ost (mit Transformationsgewicht) (w_ipfost_1)</td>
<td>734</td>
<td>0.342</td>
<td>3.887</td>
<td>0.354</td>
<td>3.296</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht. Ost (ohne Transformationsgewicht) (w_ipfost_2)</td>
<td>734</td>
<td>0.534</td>
<td>2.282</td>
<td>0.534</td>
<td>2.282</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht. West (mit Transformationsgewicht) (w_ipfwes_1)</td>
<td>1,174</td>
<td>0.290</td>
<td>4.377</td>
<td>0.311</td>
<td>3.417</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht. West (ohne Transformationsgewicht) (w_ipfwes_2)</td>
<td>1,174</td>
<td>0.496</td>
<td>2.273</td>
<td>0.496</td>
<td>2.177</td>
</tr>
</tbody>
</table>
Table A.42: Weighting Factors in Pre- and Post-Election Cross Section (Cumulative) (ZA5702)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ost/West Gewicht (w_ow)</td>
<td>3,911</td>
<td>0.545</td>
<td>1.284</td>
<td>0.545</td>
<td>1.284</td>
</tr>
<tr>
<td>Transformationsgewicht (w_tran)</td>
<td>3,911</td>
<td>0.552</td>
<td>3.391</td>
<td>0.552</td>
<td>2.308</td>
</tr>
<tr>
<td>Kombination Transformations- und Ost/West-Gewicht (w_trow)</td>
<td>3,911</td>
<td>0.315</td>
<td>4.293</td>
<td>0.315</td>
<td>2.862</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht. gesamt (mit Tran.- & mit OW) (w_ipfges_1)</td>
<td>3,911</td>
<td>0.183</td>
<td>5.000</td>
<td>0.192</td>
<td>3.712</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht. gesamt (ohne Tran.- & mit OW) (w_ipfges_2)</td>
<td>3,911</td>
<td>0.288</td>
<td>2.620</td>
<td>0.293</td>
<td>2.420</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht. Ost (mit Transformationsgewicht) (w_ipfost_1)</td>
<td>1,487</td>
<td>0.340</td>
<td>4.099</td>
<td>0.346</td>
<td>3.074</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht. Ost (ohne Transformationsgewicht) (w_ipfost_2)</td>
<td>1,487</td>
<td>0.539</td>
<td>1.992</td>
<td>0.539</td>
<td>1.944</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht. West (mit Transformationsgewicht) (w_ipfwes_1)</td>
<td>2,424</td>
<td>0.286</td>
<td>5.000</td>
<td>0.296</td>
<td>3.315</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht. West (ohne Transformationsgewicht) (w_ipfwes_2)</td>
<td>2,424</td>
<td>0.463</td>
<td>2.159</td>
<td>0.463</td>
<td>1.980</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht. gesamt (mit Trans.-/mit OW-Gewicht) Vorwahl und Nachwahl (vn_w_ipfges_1)</td>
<td>3,911</td>
<td>0.172</td>
<td>5.000</td>
<td>0.195</td>
<td>3.705</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht. gesamt (ohne Trans.-/mit OW-Gewicht) Vorwahl und Nachwahl (vn_w_ipfges_2)</td>
<td>3,911</td>
<td>0.260</td>
<td>2.761</td>
<td>0.293</td>
<td>2.471</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht. Ost (mit Transformationsgewicht) Vorwahl und Nachwahl (vn_w_ipfost_1)</td>
<td>1,487</td>
<td>0.332</td>
<td>4.223</td>
<td>0.342</td>
<td>3.228</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht. Ost (mit Transformationsgewicht) Vorwahl und Nachwahl (vn_w_ipfost_2)</td>
<td>1,487</td>
<td>0.523</td>
<td>2.282</td>
<td>0.523</td>
<td>2.225</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht. West (mit Transformationsgewicht) Vorwahl und Nachwahl (vn_w_ipfwes_1)</td>
<td>2,424</td>
<td>0.261</td>
<td>4.910</td>
<td>0.309</td>
<td>3.307</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht. West (ohne Transformationsgewicht) Vorwahl und Nachwahl (vn_w_ipfwes_2)</td>
<td>2,424</td>
<td>0.410</td>
<td>2.273</td>
<td>0.465</td>
<td>2.106</td>
</tr>
</tbody>
</table>
Table A.43: Weighting Factors Rolling Cross-Section Campaign Survey (ZA5703)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transformationsgewicht (gesamt) (w_trang)</td>
<td>7,882</td>
<td>0.063</td>
<td>7.540</td>
<td>0.209</td>
<td>2.513</td>
</tr>
<tr>
<td>Transformationsgewicht (Woche) (w_tranw)</td>
<td>7,882</td>
<td>0.062</td>
<td>7.515</td>
<td>0.207</td>
<td>2.532</td>
</tr>
<tr>
<td>Transformationsgewicht (Tag) (w_trant)</td>
<td>7,882</td>
<td>0.060</td>
<td>7.395</td>
<td>0.194</td>
<td>2.599</td>
</tr>
<tr>
<td>Bildungsgewicht mit Transformationsgewicht (gesamt)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(w_bil1g)</td>
<td>7,882</td>
<td>0.038</td>
<td>5.000</td>
<td>0.126</td>
<td>3.420</td>
</tr>
<tr>
<td>Bildungsgewicht ohne Transformationsgewicht (gesamt)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(w_bil2g)</td>
<td>7,882</td>
<td>0.584</td>
<td>1.395</td>
<td>0.584</td>
<td>1.395</td>
</tr>
<tr>
<td>Bildungsgewicht mit Transformationsgewicht (Woche)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(w_bil1w)</td>
<td>7,882</td>
<td>0.038</td>
<td>5.000</td>
<td>0.124</td>
<td>3.422</td>
</tr>
<tr>
<td>Bildungsgewicht ohne Transformationsgewicht (Woche)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(w_bil2w)</td>
<td>7,882</td>
<td>0.562</td>
<td>1.448</td>
<td>0.562</td>
<td>1.448</td>
</tr>
<tr>
<td>Bildungsgewicht mit Transformationsgewicht (Tag)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(w_bil1t)</td>
<td>7,882</td>
<td>0.036</td>
<td>5.000</td>
<td>0.119</td>
<td>3.305</td>
</tr>
<tr>
<td>Bildungsgewicht ohne Transformationsgewicht (Tag)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(w_bil2t)</td>
<td>7,882</td>
<td>0.479</td>
<td>1.760</td>
<td>0.481</td>
<td>1.728</td>
</tr>
<tr>
<td>Soziodemographisches Gewicht mit Transformationsgewicht (gesamt)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(w_soz1g)</td>
<td>7,882</td>
<td>0.031</td>
<td>5.000</td>
<td>0.129</td>
<td>3.607</td>
</tr>
<tr>
<td>Soziodemographisches Gewicht ohne Transformationsgewicht (gesamt)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(w_soz2g)</td>
<td>7,882</td>
<td>0.436</td>
<td>1.675</td>
<td>0.436</td>
<td>1.675</td>
</tr>
<tr>
<td>Soziodemographisches Gewicht mit Transformationsgewicht (Woche)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(w_soz1w)</td>
<td>7,882</td>
<td>0.029</td>
<td>5.000</td>
<td>0.121</td>
<td>3.610</td>
</tr>
<tr>
<td>Soziodemographisches Gewicht ohne Transformationsgewicht (Woche)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(w_soz2w)</td>
<td>7,882</td>
<td>0.386</td>
<td>1.860</td>
<td>0.407</td>
<td>1.860</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht mit Transformationsgewicht</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(gesamt) (w_ipf1g)</td>
<td>7,882</td>
<td>0.024</td>
<td>5.000</td>
<td>0.094</td>
<td>4.727</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht ohne Transformationsgewicht</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(gesamt) (w_ipf2g)</td>
<td>7,882</td>
<td>0.348</td>
<td>5.000</td>
<td>0.348</td>
<td>3.676</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht mit Transformationsgewicht</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Woche) (w_ipf1w)</td>
<td>7,882</td>
<td>0.023</td>
<td>5.000</td>
<td>0.093</td>
<td>4.799</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht ohne Transformationsgewicht</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Woche) (w_ipf2w)</td>
<td>7,882</td>
<td>0.267</td>
<td>5.000</td>
<td>0.297</td>
<td>3.948</td>
</tr>
<tr>
<td>Panelgewicht mit Transformationsgewicht (gesamt)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(w_panel1)</td>
<td>5,353</td>
<td>0.763</td>
<td>4.868</td>
<td>0.787</td>
<td>1.819</td>
</tr>
<tr>
<td>Panelgewicht ohne Transformationsgewicht (gesamt)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(w_panel2)</td>
<td>5,353</td>
<td>0.760</td>
<td>5.303</td>
<td>0.783</td>
<td>1.835</td>
</tr>
</tbody>
</table>
Table A.44: Weighting Factors in Short-Term Campaign Panel 2013 (ZA5704)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sozial- und regionalstrukturliches Querschnittsgewicht (Anpassung MZ2012) (wei_mz)</td>
<td>5,256</td>
<td>0.605</td>
<td>3.649</td>
<td>0.605</td>
<td>3.504</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturliches Querschnittsgewicht (Anpassung Onliner) (wei_on)</td>
<td>5,256</td>
<td>0.710</td>
<td>1.671</td>
<td>0.710</td>
<td>1.671</td>
</tr>
<tr>
<td>Panelgewicht (Welle 2) (wei_w2)</td>
<td>4,598</td>
<td>0.884</td>
<td>2.897</td>
<td>0.894</td>
<td>1.513</td>
</tr>
<tr>
<td>Panelgewicht (Welle 3) (wei_w3)</td>
<td>4,432</td>
<td>0.931</td>
<td>1.645</td>
<td>0.935</td>
<td>1.168</td>
</tr>
<tr>
<td>Panelgewicht (Welle 4) (wei_w4)</td>
<td>4,355</td>
<td>0.949</td>
<td>2.188</td>
<td>0.964</td>
<td>1.322</td>
</tr>
<tr>
<td>Panelgewicht (Welle 5) (wei_w5)</td>
<td>4,257</td>
<td>0.944</td>
<td>4.125</td>
<td>0.951</td>
<td>1.310</td>
</tr>
<tr>
<td>Panelgewicht (Welle 6) (wei_w6)</td>
<td>4,112</td>
<td>0.944</td>
<td>3.136</td>
<td>0.950</td>
<td>1.398</td>
</tr>
<tr>
<td>Panelgewicht (Welle 7) (wei_w7)</td>
<td>4,231</td>
<td>0.969</td>
<td>2.781</td>
<td>0.972</td>
<td>1.219</td>
</tr>
</tbody>
</table>

Table A.45: Weighting Factors in Candidate Campaign Survey 2013 (ZA5716)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundgewicht (Kandidaten) (wei_kandi)</td>
<td>1,137</td>
<td>0.659</td>
<td>1.895</td>
<td>0.661</td>
<td>1.591</td>
</tr>
<tr>
<td>Grundgewicht (Mandatsträger) (wei_mdb)</td>
<td>232</td>
<td>0.520</td>
<td>1.714</td>
<td>0.631</td>
<td>1.648</td>
</tr>
</tbody>
</table>

Table A.46: Weighting Factors in Long-Term Panel 2005-2009-2013 (ZA5321)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewicht: Ost/West (wei_ow)</td>
<td>2,540</td>
<td>0.625</td>
<td>1.198</td>
<td>0.625</td>
<td>1.198</td>
</tr>
<tr>
<td>Sozial-/regionalsstrukulares Gewicht (wei_ipp)</td>
<td>2,540</td>
<td>0.338</td>
<td>4.728</td>
<td>0.338</td>
<td>3.984</td>
</tr>
<tr>
<td>Transformationsgewicht (wei_tran)</td>
<td>2,540</td>
<td>0.425</td>
<td>4.141</td>
<td>0.425</td>
<td>2.553</td>
</tr>
<tr>
<td>Panelgewicht, mit Transformationsgewicht (fwei_panel1)</td>
<td>686</td>
<td>0.442</td>
<td>12.298</td>
<td>0.478</td>
<td>4.675</td>
</tr>
<tr>
<td>Panelgewicht, ohne Transformationsgewicht (fwei_panel2)</td>
<td>686</td>
<td>0.451</td>
<td>7.543</td>
<td>0.485</td>
<td>3.951</td>
</tr>
<tr>
<td>Panelgewicht, mit Transformationsgewicht (fwei_panel1)</td>
<td>491</td>
<td>0.632</td>
<td>5.048</td>
<td>0.662</td>
<td>3.085</td>
</tr>
<tr>
<td>Panelgewicht, ohne Transformationsgewicht (fwei_panel2)</td>
<td>491</td>
<td>0.649</td>
<td>5.051</td>
<td>0.680</td>
<td>3.010</td>
</tr>
</tbody>
</table>

Table A.47: Weighting Factors in Long-Term Panel 2009-2013-2017 (ZA5322)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewicht: Ost/West (wei_ow)</td>
<td>4,974</td>
<td>0.608</td>
<td>1.217</td>
<td>0.608</td>
<td>1.217</td>
</tr>
<tr>
<td>Transformationsgewicht (wei_tran)</td>
<td>4,974</td>
<td>0.544</td>
<td>3.263</td>
<td>0.544</td>
<td>2.236</td>
</tr>
<tr>
<td>Sozial- & regional.Gewicht. Gesamt (mit Transformationsgewicht) (wei_ippges_1)</td>
<td>4,974</td>
<td>0.205</td>
<td>4.827</td>
<td>0.24</td>
<td>2.967</td>
</tr>
<tr>
<td>Sozial- & regional.Gewicht. Gesamt (ohne Transformationsgewicht) (wei_ippges_2)</td>
<td>4,974</td>
<td>0.387</td>
<td>1.713</td>
<td>0.411</td>
<td>1.713</td>
</tr>
<tr>
<td>Panelgewicht, mit Transformationsgewicht (fwei_panel1)</td>
<td>1,162</td>
<td>0.382</td>
<td>11.923</td>
<td>0.420</td>
<td>3.617</td>
</tr>
<tr>
<td>Panelgewicht, ohne Transformationsgewicht (fwei_panel2)</td>
<td>1,162</td>
<td>0.393</td>
<td>11.636</td>
<td>0.429</td>
<td>3.573</td>
</tr>
</tbody>
</table>
Table A.48: Weighting Factors in Long-Term Online Tracking T22 (ZA5722)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (MZ2012. mit Zeitunterschreiten) (wei_mzz)</td>
<td>1,049</td>
<td>0.316</td>
<td>4.999</td>
<td>0.316</td>
<td>3.490</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (MZ2012. ohne Zeitunterschreiter) (wei_mzoz)</td>
<td>944</td>
<td>0.323</td>
<td>4.999</td>
<td>0.323</td>
<td>3.148</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (Onliner. mit Zeitunterschreitern) (wei.onz)</td>
<td>1,049</td>
<td>0.268</td>
<td>2.248</td>
<td>0.268</td>
<td>1.861</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (Onliner. ohne Zeitunterschreiter) (wei.onoz)</td>
<td>944</td>
<td>0.265</td>
<td>2.281</td>
<td>0.265</td>
<td>1.923</td>
</tr>
</tbody>
</table>

Table A.49: Weighting Factors in Long-Term Online Tracking T23 (ZA5723)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (MZ2012. mit Zeitunterschreiten) (wei_mzz)</td>
<td>1,023</td>
<td>0.367</td>
<td>3.729</td>
<td>0.367</td>
<td>3.181</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (MZ2012. ohne Zeitunterschreiter) (wei_mzoz)</td>
<td>920</td>
<td>0.362</td>
<td>3.533</td>
<td>0.378</td>
<td>2.963</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (Onliner. mit Zeitunterschreitern) (wei.onz)</td>
<td>1,023</td>
<td>0.498</td>
<td>2.012</td>
<td>0.498</td>
<td>1.924</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (Onliner. ohne Zeitunterschreiter) (wei.onoz)</td>
<td>920</td>
<td>0.493</td>
<td>1.998</td>
<td>0.507</td>
<td>1.791</td>
</tr>
</tbody>
</table>

Table A.50: Weighting Factors in Long-Term Online Tracking T24 (ZA5724)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (MZ2012. mit Zeitunterschreiten) (wei_mzz)</td>
<td>1,044</td>
<td>0.427</td>
<td>4.407</td>
<td>0.431</td>
<td>2.954</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (MZ2012. ohne Zeitunterschreiter) (wei_mzoz)</td>
<td>939</td>
<td>0.446</td>
<td>3.866</td>
<td>0.453</td>
<td>2.890</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (Onliner. mit Zeitunterschreitern) (wei.onz)</td>
<td>1,044</td>
<td>0.552</td>
<td>1.904</td>
<td>0.580</td>
<td>1.759</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (Onliner. ohne Zeitunterschreiter) (wei.onoz)</td>
<td>939</td>
<td>0.577</td>
<td>1.725</td>
<td>0.605</td>
<td>1.660</td>
</tr>
</tbody>
</table>

Table A.51: Weighting Factors in Long-Term Online Tracking T25 (ZA5725)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (MZ2012. mit Zeitunterschreiten) (wei_mzz)</td>
<td>1,011</td>
<td>0.406</td>
<td>4.646</td>
<td>0.406</td>
<td>2.914</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (MZ2012. ohne Zeitunterschreiter) (wei_mzoz)</td>
<td>909</td>
<td>0.438</td>
<td>4.292</td>
<td>0.438</td>
<td>2.734</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (Onliner. mit Zeitunterschreitern) (wei.onz)</td>
<td>1,011</td>
<td>0.552</td>
<td>2.083</td>
<td>0.620</td>
<td>1.801</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (Onliner. ohne Zeitunterschreiter) (wei.onoz)</td>
<td>909</td>
<td>0.571</td>
<td>2.227</td>
<td>0.593</td>
<td>1.760</td>
</tr>
</tbody>
</table>
Table A.52: Weighting Factors in Long-Term Online Tracking T26 (ZA5726)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sozial- und regionalstrukturrelles Gewicht (MZ2012. mit Zeıtunterschretern) (wei_mzz)</td>
<td>1,019</td>
<td>0.409</td>
<td>4.718</td>
<td>0.409</td>
<td>3.611</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturrelles Gewicht (MZ2012. ohne Zeitunterschretern) (wei_mzoz)</td>
<td>917</td>
<td>0.428</td>
<td>4.701</td>
<td>0.428</td>
<td>3.552</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturrelles Gewicht (Onliner. mit Zeitunterschretern) (wei_onz)</td>
<td>1,019</td>
<td>0.637</td>
<td>1.965</td>
<td>0.637</td>
<td>1.813</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturrelles Gewicht (Onliner. ohne Zeitunterschretern) (wei_onoz)</td>
<td>917</td>
<td>0.687</td>
<td>1.958</td>
<td>0.687</td>
<td>1.872</td>
</tr>
</tbody>
</table>

Table A.53: Weighting Factors in Long-Term Online Tracking T27 (ZA5727)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sozial- und regionalstrukturrelles Gewicht (MZ2012. mit Zeıtunterschretern) (wei_mzz)</td>
<td>1,029</td>
<td>0.404</td>
<td>3.635</td>
<td>0.404</td>
<td>2.919</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturrelles Gewicht (MZ2012. ohne Zeitunterschretern) (wei_mzoz)</td>
<td>926</td>
<td>0.431</td>
<td>3.468</td>
<td>0.431</td>
<td>2.701</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturrelles Gewicht (Onliner. mit Zeitunterschretern) (wei_onz)</td>
<td>1,029</td>
<td>0.591</td>
<td>1.909</td>
<td>0.606</td>
<td>1.708</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturrelles Gewicht (Onliner. ohne Zeitunterschretern) (wei_onoz)</td>
<td>926</td>
<td>0.641</td>
<td>1.730</td>
<td>0.649</td>
<td>1.580</td>
</tr>
</tbody>
</table>

Table A.54: Weighting Factors in Long-Term Online Tracking T28 (ZA5728)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sozial- und regionalstrukturrelles Gewicht (MZ2012. mit Zeıtunterschretern) (wei_mzz)</td>
<td>1,019</td>
<td>0.456</td>
<td>4.410</td>
<td>0.456</td>
<td>3.153</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturrelles Gewicht (MZ2012. ohne Zeitunterschretern) (wei_mzoz)</td>
<td>917</td>
<td>0.416</td>
<td>4.260</td>
<td>0.416</td>
<td>2.926</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturrelles Gewicht (Onliner. mit Zeitunterschretern) (wei_onz)</td>
<td>1,019</td>
<td>0.784</td>
<td>1.674</td>
<td>0.784</td>
<td>1.537</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturrelles Gewicht (Onliner. ohne Zeitunterschretern) (wei_onoz)</td>
<td>917</td>
<td>0.689</td>
<td>1.981</td>
<td>0.689</td>
<td>1.716</td>
</tr>
</tbody>
</table>

Table A.55: Weighting Factors in Long-Term Online Tracking T29 (ZA5729)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sozial- und regionalstrukturrelles Gewicht (MZ2012. mit Zeıtunterschretern) (wei_mzz)</td>
<td>1,027</td>
<td>0.528</td>
<td>3.362</td>
<td>0.528</td>
<td>2.875</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturrelles Gewicht (MZ2012. ohne Zeitunterschretern) (wei_mzoz)</td>
<td>924</td>
<td>0.506</td>
<td>3.080</td>
<td>0.506</td>
<td>2.737</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturrelles Gewicht (Onliner. mit Zeıtunterschretern) (wei_onz)</td>
<td>1,027</td>
<td>0.796</td>
<td>1.529</td>
<td>0.796</td>
<td>1.443</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturrelles Gewicht (Onliner. ohne Zeitunterschretern) (wei_onoz)</td>
<td>924</td>
<td>0.699</td>
<td>1.648</td>
<td>0.699</td>
<td>1.552</td>
</tr>
</tbody>
</table>
Table A.56: Long-Term Online Tracking of State Election Saxony 2014 (ZA5738)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (MZ2012. mit Zeitunterschreitern) (wei_mzz)</td>
<td>503</td>
<td>0.195</td>
<td>5.000</td>
<td>0.195</td>
<td>5.000</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (MZ2012. ohne Zeitunterschreiter) (wei_mzz)</td>
<td>452</td>
<td>0.174</td>
<td>5.000</td>
<td>0.174</td>
<td>5.000</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (Onliner. mit Zeitunterschreitern) (wei_onz)</td>
<td>503</td>
<td>0.563</td>
<td>1.762</td>
<td>0.684</td>
<td>1.729</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (Onliner. ohne Zeitunterschreiter) (wei_onoz)</td>
<td>452</td>
<td>0.573</td>
<td>1.766</td>
<td>0.660</td>
<td>1.761</td>
</tr>
</tbody>
</table>

Table A.57: Long-Term Online Tracking of State Election Brandenburg 2014 (ZA5739)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (MZ2012. mit Zeitunterschreitern) (wei_mzz)</td>
<td>507</td>
<td>0.146</td>
<td>5.000</td>
<td>0.146</td>
<td>5.000</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (MZ2012. ohne Zeitunterschreiter) (wei_mzz)</td>
<td>456</td>
<td>0.110</td>
<td>5.000</td>
<td>0.11</td>
<td>5.000</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (Onliner. mit Zeitunterschreitern) (wei_onz)</td>
<td>507</td>
<td>0.606</td>
<td>1.561</td>
<td>0.606</td>
<td>1.541</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (Onliner. ohne Zeitunterschreiter) (wei_onoz)</td>
<td>456</td>
<td>0.577</td>
<td>2.067</td>
<td>0.577</td>
<td>1.644</td>
</tr>
</tbody>
</table>

Table A.58: Long-Term Online Tracking of State Election Thuringia 2014 (ZA5740)

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>1% Percentile</th>
<th>99% Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (MZ2012. mit Zeitunterschreitern) (wei_mzz)</td>
<td>504</td>
<td>0.115</td>
<td>5.001</td>
<td>0.115</td>
<td>5.001</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (MZ2012. ohne Zeitunterschreiter) (wei_mzz)</td>
<td>453</td>
<td>0.125</td>
<td>5.000</td>
<td>0.125</td>
<td>5.000</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (Onliner. mit Zeitunterschreitern) (wei_onz)</td>
<td>504</td>
<td>0.495</td>
<td>1.772</td>
<td>0.495</td>
<td>1.634</td>
</tr>
<tr>
<td>Sozial- und regionalstrukturelles Gewicht (Onliner. ohne Zeitunterschreiter) (wei_onoz)</td>
<td>453</td>
<td>0.515</td>
<td>1.853</td>
<td>0.515</td>
<td>1.656</td>
</tr>
</tbody>
</table>