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MULTIDIMENSIONAL SCALING
WITH REGIONAL RESTRICTIONS FOR
FACET THEORY: AN APPLICATION TO

LEVY'S POLITICAL PROTEST DATA

PATRICK J.F. GROENEN & IVO A. VAN DER LANS

Abstract: Multidimensional scaling (MDS) is often used for the analysis of correlation
matrices of items generated by a facet-theory design. The emphasis of the analysis is on
regional hypotheses on the location of the items in the MDS solution. An important re-
gional hypothesis is the axial constraint, where the items from different levels of a facet
are assumed to be located in different parallel slices. The simplest approach is to do an
MDS and draw the parallel lines separating the slices as good as possible by hand. Alter-
natively, Borg & Shye (1995) proposed to automate the second step. Borg & Groenen
(1997, 2005) proposed a simultaneous approach for ordered facets, when the number of
MDS dimensions equals the number of facets. In this paper, we propose a new algorithm
that estimates an MDS solution subject to axial constraints without the restriction that the
number of facets equals the number of dimensions. The algorithm is based on constrained
iterative majorization of De Leeuw & Heiser (1980) with special constraints. This algo-
rithm is applied to Levy’s (1983) data on political protests.

Introduction

Multidimensional scaling (MDS) has long been an important technique for analyzing data
obtained with facet theory (FT, see, for example, Borg & Shye 1995). Amongst other
areas, Ingwer Borg has been advocating these two methods as useful tools for theory
building and data analysis. A strong point of FT is the careful design by which items are
constructed. Often, correlations between these items are visualized by MDS. Consider
Table 1 that shows a dissimilarity matrix A and a facet design of three facets. In practical
facet-theory applications, the dissimilarities are often transformed correlations r; between

items: 50. =1 —r;. The facets can be viewed as categorical design variables on the items of
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the analysis. The first facet in Table 1 divides the items into three different categories, the
second facet into two categories and the third into three. Thus, every item j belongs to a
single category on each of the three facets. In facet theory, it is typically postulated that
the facets imply particular structures on the empirical intercorrelations, and that these
structures will be reflected by regional hypotheses in the MDS solution. Each facet is
assumed to partition the MDS space into regions in one of three manners (see Figure 1):
by an axial partitioning (division into slices along a line), a modular partitioning (division
into concentric bands) or a polar partitioning (division into pie pieces), see Guttman
(1959), Borg & Shye (1995), and Borg & Groenen (1997, 2005). Note that the lines in

Figure 1 are drawn by hand. In this paper, we limit ourselves to axial partitioning only.

Figure 1 Three ways of partitioning the MDS space for a three level facet
c ¢ c c
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Table 1 Example of a dissimilarity matrix A and a three facet design
Dissimilarity matrix A Facet design
Facet
I, I Lo L, 1 2 3
I, 0 I, a a c
A é, 0 A a b c
]3 él} 623 0 ]3 ¢
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Given some MDS solution, the construction of the regions is most often done subjectively
by the researcher and not through a standardized computational method. A first step towards
imposing regions automatically was proposed by Borg & Shye (1995) who provided a two
step procedure: first do an MDS followed by finding an optimal location of the lines separat-
ing the categories of a facet. In Borg & Groenen (1997, 2005), a simultaneous approach was
proposed that searched for an MDS solution that is constrained such that the levels of a facet
are linearly separated. The advantage of this approach is that only theory-consistent MDS
solutions are considered and that the program Proxscal in SPSS (Meulman, Heiser & SPSS
1999) can handle these constraints. However, the application of the simultaneous approach is
limited to situations in which the number of dimensions is the same as the number of facets.

Furthermore, Proxscal only works for ordered facets.

In this paper, we propose a Multiple Axial-wise Partitioning Constraints MDS model
(MAPC). The MAPC MDS model makes it possible to incorporate axial facet constraints
in the construction of the MDS map. An important characteristic of our MAPC MDS
model is that it is able to handle situations in which there are more constraining facets
than dimensions, so that the dimensionality and therefore the complexity of the interpreta-
tion of the MDS map can be kept at a minimum. In addition, MAPC MDS can handle

unordered facets as well.

This paper is organized as follows. First, we introduce the main ideas of regional constraints
in MDS using axial partitioning. Then, we derive the MAPC MDS algorithm and apply the

method to data of Levy on political protests. We end the paper with some conclusions.

Multiple axial-wise partitioning constraints

We propose a multiple axial-wise partitioning constrained MDS for the analysis of data
obtained by facet-theory design that is able to deal with more (categorical) facets than
dimensions. The basic idea underlying the MAPC model is that we require the MDS
solution to be partitioned into successive slices for each facet. Items from different levels
of facets are required to lie in different slices, whereas items from the same level are
required to lie within the same slice. The hyperplanes separating the slices corresponding
to a single facet are parallel to each other, which implies that they are orthogonal to one

particular direction in the MDS space.
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Table 2 Example of a facet design H

h h, h;
I, 1 1 2
I, 1 2 2
I 2 1 3
I, 2 2 1
I 2 1 3
I 3 1 3
L 3 2 1

Consider the small example of m = 3 facets in the nxm matrix H in Table 2. Let us focus
on the first facet h; which has three levels. Assume for the moment that this facet is or-
dered, that is, the axial hypothesis implies that the items are located in subsequent parallel
regions that are ordered along a line according to the order of the levels. Because the
regions are parallel, two adjacent regions representing adjacent levels of the facet h; are
separated by parallel hyperplanes that form parallel lines in 2D. Orthogonal to these sepa-
ration hyperplanes, a line exists such that the orthogonal projection of the items onto that

line satisfy the set of inequalities

91, 92 = 43, 44, 45 = 6> 47- (D

Figure 2 shows an MDS solution that is consistent with facet h; treated ordinally. Any
MDS solution for which the projections of the items on some line in the MDS space

satisfy (1) yields an axial partitioning for the ordinal facet h;.
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Figure 2 Example of an axial partitioned MDS space where the items of
three levels are separated by an axial partitioning. The projec-
tions g; of the items on the line orthogonal to the dashed sepa-
ration lines satisfy the set of inequalities in (1)

What if the regions of the facet are not ordered, that is, if the levels of the facet are treated
ordinally? Then, any permutation of the labels of h, is equally good. Therefore, for a facet

h; with three levels there are six admissible projections on the line:

q1 92 <93, 94 qs <46 47
q1 92 < q¢ 47 <43, 94 95
96 97 <41, 92 <943, 91 95
96 97 <93, 94 45 <41, 92
q3: 44, s <41, 92 <46 97

g3, 44, 45 <qs q7 <41 9.

For such a nominal facet, we one can run MDS subject to all six orders and retain the best

solution.



46 ZUMA-Nachrichten Spezial Band 10, Beyond the Horizon of Measurement

In terms of matrix algebra, we can specify multiple axial constraints as follows. Let X be
the nxp matrix of coordinates of » items in p dimensions. For multiple facets, let Q be the

nxm matrix with the projections for each of the m facets. Then, the coordinates X are

restricted by
X=QC @

subject to rank of Q is p and C is an mxp matrix. The combination of the inequality re-
strictions such as (1) and the rank p restriction on Q ensures that the regional constraints
of all facets are simultaneously satisfied. Figure 3 shows an example of an MDS solution

where the items satisfy the restrictions of the multiple axial regions for the three facets in

Table 2.

Figure 3 A multiple axial partitioned MDS space satisfying the axial
partitioning restrictions imposed by the three facets in Table 2.
The dashed lines are the separation lines
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Note that not all combinations of the levels of the three facets are present in Table 1, as
there are seven items with different combinations of facet levels out of a possible number
of 3x2x3 = 18 different combinations. Yet Figure 3 allows us to reconstruct 14 different

regions, of which only 13 are visible in the figure, that correspond to 14 combinations of
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the three facet levels. The location of a level-separation line is uniquely determined only
when projections of at least two items from each of the levels onto the characteristic's
vector coincide. If that is not the case, then there is still some freedom left. Instead of
level-separation lines, we will have level-separation regions. As the number of levels
within a facet increases or the number of facets increase, then there is usually not much

freedom left to place the separation line.

The Stress function of MDS can be very flat near the (local) minimum, or can have vari-
ous similar local minima for completely different configurations (Borg & Lingoes 1980).
The idea behind constrained MDS methods in general is that constrained configurations
can be interpreted in terms of the external information (constraining attributes), with
possibly an only slightly lower fit than the unconstrained configurations. That is, we may
get a more easily to interpret configuration without having to offer too much precision in
the representation of preferences or dissimilarities. In practice, it is advisable to always

compare MAPC-constrained MDS configurations with their unconstrained counterparts.

An algorithm for imposing MAPC in MDS

The multiple axial partitioning constraints do not operate on each dimension separately.
Instead, coordinates on one dimension affect the feasible set of coordinates on other di-
mensions. As a consequence of the dependency of dimensions with respect to the con-
straints, MDS with multiple axial partitioning constraints can not be computed by simple
extensions of previously proposed algorithms for other constrained MDS methods, like
MDS with dimension-wise order constraints on the coordinates (see Heiser & Meulman
1983; Borg & Groenen 1997) and dimension-wise monotone-spline constraints as pro-
posed by Winsberg & De Soete (1997). Nor can MAPC MDS be implemented by existing
algorithms for MDS methods that do impose constraints simultaneously on all dimen-
sions, like MDS with constraints on interpoint distances (Skarabis 1978; Borg & Lingoes
1980), with “circle constraints” (Borg & Lingoes 1980; De Leeuw & Heiser 1980), more
general equality and inequality constraints (Lee 1984), configuration-size constraints

(Mathar 1990) or reduced-rank subspace constraints for subsets of objects (Borg 1977).
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For finding MDS solutions under multiple partitioning constraints, we use the iterative
majorization algorithm of De Leeuw & Heiser (1980), called SMACOF. Their iterative

majorization algorithm minimizes the following weighted least squares Stress function

FR= DD wy (G- dyX)Y 3)

j=l i=j+l

under any set of constraints, by finding a series of constraints-satisfying configurations
with monotonically decreasing Stress values. In (4), d;(X) is the Euclidean distance be-
tween objects i and j in a p-dimensional space, whose coordinates are given in rows i and j
of the nxp-configuration matrix X and wy; is a fixed (nonnegative) weight that weights the
contribution of the squared residual of object pair (i,j) to the overall Stress. Instead of
(X), we report 2(X) = O'Z(X)/ Z»’;ZIZLMWIJ-QJZ- , which has the same local minima and the

advantage that at a local minimum o2(X) values are always between 0 and 1 and are

equal to the square of Kruskal’s (1964) Stress-1 (see, Borg & Groenen 2005: 249-250).

In case of MDS for the analysis of intercorrelations between items from a facet design, the
n objects correspond to the n items and all wy's are larger than 0 (usually equal to 1),
unless the intercorrelations for some pairs (i,j) are missing, in which case their associated
weights become 0. The summation in (3) is across all lower-diagonal elements of the

matrix of dissimilarities A only, because this matrix is assumed to be symmetric.

In each step of the iterative majorization algorithm, a better constrained configuration is
found by constructing a function ¢(X,X") that majorizes ¢*(X), and by minimizing p(X,X")
over X. A function (p(X,X*) is said to majorize function A(X), when o*(X) < (p(X,X*) for all
X, and p(X,X") = 6XX) when X = X", Let X be the constrained X that minimizes p(X.X"

for some X', then we have the following set of (in)equalities:
A(X) < p(X X) < p(X' X) = (X
Clearly, choosing X" to be equal to the constrained configuration obtained in the previous

iteration and minimizing ¢(X,X") over X subject to the constraints, we obtain a con-

strained configuration with lower (or equal) Stress in each iteration. X is called a support-
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ing point of the majorizing function. Because the series of Stress values of successive
constrained configurations is monotonically decreasing and the Stress is bounded from
below by zero guarantees that the algorithm will converge to at least a local minimum.
For more information on iterative majorization, see, for example, De Leeuw (1994),
Heiser (1995) or, for an introduction, Borg & Groenen (2005).

Majorization is useful when a complicated function, like ¢*(X) can be majorized by a

simpler function. A relatively quadratic function in X that majorizes ¢*(X) is

p(XX") = D, Z(sziaijz' = 20 (X¥)(x; =X ;) + wyd; (X))
j=li=j+l

=+ X - VBX)X |,

where

X; is the p-vector containing elements from the i row of X,

bi(X") = w;dldy(X), if d(X') > 0, and

by(X") =0,ifdy(X) =0,

IZIy denotes the weighted squared Euclidean norm given by tr (Z'VZ),

\'% is an nxn-matrix, whose elements v; are equal to —(w;+w;) if i # j, and
whose elements v; are equal to Zj# Wi s

\'a is a generalized inverse of V,

B(X") is the n x n matrix with elements —b;; if i #j and Z#ib,j ifi=j,

¢l is a constant that depends on X".

The unconstrained X that minimizes ¢(X,X") which we will refer to by X, that is equal to
VB(X)X". The constrained X that minimizes ¢(X,X") can be found by projecting X

onto the multiple axial constraints in the metric defined by V.

In the previous section, we stated that the multiple axial partitioning constraints can be

imposed by requiring X = QC such that q, satisfies the partitioning constraints of each
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facet k and Q being of rank p. To avoid the possibility that some q; = 0, we also impose
additionally the constraint ||q||* = n. These restrictions are equivalent to X = ZA'C sub-

ject to the constraints Zay € Cj and ||Zak|\2 = n. Here,

Z is an nxp-matrix of to be estimated parameters,

A is an mxp-matrix of to be estimated parameters,

aj is the m-vector containing the elements from the kth row of A,

C is an mxp-matrix of to be estimated parameters, and

Cr is the closed convex cone that denotes the inequality constraints that are implied
by the kth level.

So, the matrix A defines directions in the p-dimensional space given by Z. Writing X in
terms of ZA'C and imposing constraints on the columns of ZA' guarantees that the direc-
tions given by C'(CC')" in the p-dimensional space given by X satisfy the constraints. The
constraints ||Zay || = n are necessary to guarantee that the multiple axial constraints are all
satisfied. Without this explicit length constraint a solution can be found that satisties only
p axial constraints with nonzero aj, and the remaining m—p axial constraints being satis-
fied by choosing a; = 0. The inequality constraints defined by each C, are constraints
similar to (1) that typically correspond to a nominal or ordinal measurement level and the
primary approach to ties (Gifi 1990; Kruskal 1964; Young 1981). Note that ZA' is identi-
fied up to simultaneous linear transformations of both Z and A, that is, the combination Z
and A is equivalent to the combination ZL and A(LL')"'L for any nonsingular pxp-matrix L.
Therefore, without loss of generality, we impose Z'Z = nl and aj'aj = 1. Thus, minimiz-

ing p(X,X") over the regional restrictions is equivalent to minimizing

2(ZA,C) = | X~ ZA'C|Py

over Z, A, and C, subject to the constraints Zaj € Cy and || Zaj I =n.

To minimize function ¢,(Z,A,C) we use alternating least squares: that is, first we update C,
keeping A and Z fixed, then we update A, keeping Z and C fixed, and then we update Z,
keeping A and C fixed. These three steps are carried out iteratively. Minimizing ¢(Z,A,C)
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over C is a straightforward regression problem, for which C= (AZ'VZA')+AZ'V§ is an
optimal solution, where (AZ'VZA")" is the Moore-Penrose inverse, since AZ'VZA' is not
of full rank. The main difficulty lies in minimizing ¢,(Z,A,C) over Z and A for fixed C

over the constraint sets Cy and ag'Z'Zaj, = n.

While updating Z and A, we keep C fixed. Let the singular value decomposition of C be
given by P$Q!, so that the Moore-Penrose inverse of C is given by C* = Q¢'P".
01(Z,A,C) can then be written as

PI(ZAC)= || X~ ZA'C|Py = [C" X 'V~ AZV"|P e @)

The metric CC' makes it difficult to impose the constraints. Therefore, we use an addi-
tional majorization step (e.g. see De Leeuw 1994; Heiser 1995). Let Y be the matrix ZA'
obtained in the previous iteration, satisfying all constraints. We can then derive a function
majorizing ¢,(Z,A,C) by using the following inequality:

2

vy 12 7AZ'V1/2H <0
cCc—¢a1

which can be written as

HAZ'V1/2H2CC' < ¢12 HZA'”ZV _2tr AZ'VY*'(¢I2 | CC.) +H Y*.VI/Z ”2 ¢12[7CC' , (5)

where ¢12 is the largest eigenvalue of CC', that is, the square of the first diagonal element
of ¢. Combining (4) and (5) gives

P(ZAC) <2 |ZA Py 2t AZVY (121~ CC) ~ 2 tr AZVX C' + (6)

*y71/2)12 < 112
V'V o IR

To simplify notation, let ¢, denote the last two constant terms in (6), and let M denote
Y'(I- #2CC) + g2 X C'. Then (6) can be written as



52 ZUMA-Nachrichten Spezial Band 10, Beyond the Horizon of Measurement

P(ZAC) < g2 1ZA — M|y — g [MPy + cs. @)

The right hand side of (7) is a quadratic function in ZA'. In the case in which all w;’s are equal
to each other, as is typical in MDS of dissimilarities, V can be written as nJ'J, with J (the
centering operator) defined as T — n”'11' T the nxn identity matrix, and 1 the n-vector with all
elements equal to one. Therefore, the first term of the right hand side of (7) can, provided that
Z and M have zero column means which can be imposed without loss of generality, be writ-

ten as n42||ZA' - M7, which simplifies the majorizing function even further.

For a description of the updates of matrices A and Z, the reader is referred to the appendix.
There are several convergence criteria to be specified for the different loops in the algorithm.
First of all, convergence criteria have to be specified for the outer iterations where a con-
strained configuration with a better Stress value is obtained. Second, a convergence criterion

has to chosen for the iterations that minimize 7 42 [ ZA' - M7 over Z and A. Finally, a con-

vergence criterion has to be chosen for the iterations of Dijkstra’s cyclic projection algo-

rithm that is used for obtaining the updates of A and Z described in the appendix.

Regionally constrained MDS for Levy’s political protest acts

Levy (1983) studied the attitudes of respondents from different countries towards different
protest behaviors. The items Levy considered varied on three facets: (1) the modality of the
attitude (evaluation, approval or likelihood of own overt action), (2) the strength of execu-
tion (demanding, obstructive or physically damaging), and (3) the way to carry out the
protest (omission or commission) and were constructed as follows. First, 10 protest acts
were formulated based on combinations of the levels of facets 2 and 3. These 10 protest
acts were then combined with all levels of facet 1. This procedure yields the 30 items in
Table 3. These items were rated by respondents on a Likert scale ranging from very posi-
tive to very negative. The data that we have available are correlation matrices of the items
gathered in five countries (1973-1974): Great Britain (n = 1482), Austria (n = 1584), West
Germany (n =2307), The Netherlands (n = 1201), and the United States (n = 1719).
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Borg & Groenen (1997, 2005) analyzed these data by ordinal MDS followed by eyeing to
trace back the facet structure. Here, we apply metric MACP MDS with nominal facets.
Table 4 shows the unconstrained and the MAPC Stress values. For all five countries, there
is some extra Stress due to the multiple axial constraints, but not too much. Therefore, we

conclude that imposing the regional constraints still fits the data well.

The MAPC solutions for the countries are given in Figures 4 to 6. The maps for Great
Britain, the Netherlands, and the United States are pretty much the same in the sense that
the levels for Modality and Strength appear in the same order in the MDS solutions.
Therefore, only the map for the Netherlands is shown here. It can be seen that items at the
Doing level of the Modality facet correlate more with items at the Approve level than with
items at the Effective level. Furthermore, items at the Physically damaging level of the
Strength facet correlate higher with those at the Demanding level than with those at the
Destructive level. It can also be seen that correlations between some protest acts follow
more or less the same pattern at different levels of Modality. For instance, Damage and
Violence are more correlated with each other than with Slogans on walls, regardless of the
level of Modality. For other groups of protest acts, like Block traffic, Lawful demonstra-
tions, and Petitions, this does not hold. It can be seen that the Carrying out facet only
makes a further distinction among the protest acts at the Destructive level of the Strength
facet. This is a direct consequence of the facet design in which all protest acts at the
Physically damaging and the Demanding levels are acts of commission (logically). On
closer look, one can see that the line that separates the Omission from the Commission
protest acts is not unique. As a matter of fact, the line can be slightly rotated (counter-

clockwise) without violating the constraints that are implied by the Carrying out facet.
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Table 3 Facet design
Facet A: Facet B: Facet C:
Item Modality Strength Carrying Out
1. Petitions 1 Approve 1 Demanding 2 Commission
2. Boycotts 1 Approve 2 Obstructive 1 Omission
3. Lawful demonstrations 1 Approve 1 Demanding 2 Commission
4.  Refusing rent 1 Approve 2 Obstructive 1 Omission
5. Wildcat strikes 1 Approve 2 Obstructive 1 Omission
6.  Slogans on walls 1 Approve 3 Physically damaging 2 Commission
7. Occ. buildings 1 Approve 2 Obstructive 2 Commission
8. Block traffic 1 Approve 2 Obstructive 2 Commission
9.  Damage 1 Approve 3 Physically damaging 2 Commission
10.  Violence 1 Approve 3 Physically damaging 2 Commission
11. Petitions 2 Effective 1 Demanding 2 Commission
12.  Boycotts 2 Effective 2 Obstructive 1 Omission
13.  Lawful demonstrations 2 Effective 1 Demanding 2 Commission
14. Refusing rent 2 Effective 2 Obstructive 1 Omission
15.  Wildcat strikes 2 Effective 2 Obstructive 1 Omission
16. Slogans on walls 2 Effective 3 Physically damaging 2 Commission
17.  Occ. buildings 2 Effective 2 Obstructive 2 Commission
18.  Block traffic 2 Effective 2 Obstructive 2 Commission
19. Damage 2 Effective 3 Physically damaging 2 Commission
20. Violence 2 Effective 3 Physically damaging 2 Commission
21. Petitions 3 Doing 1 Demanding 2 Commission
22. Boycotts 3 Doing 2 Obstructive 1 Omission
23. Lawful demonstrations 3 Doing 1 Demanding 2 Commission
24. Refusing rent 3 Doing 2 Obstructive 1 Omission
25.  Wildcat strikes 3 Doing 2 Obstructive 1 Omission
26. Slogans on walls 3 Doing 3 Physically damaging 2 Commission
27.  Occ. buildings 3 Doing 2 Obstructive 2 Commission
28. Block traffic 3 Doing 2 Obstructive 2 Commission
29. Damage 3 Doing 3 Physically damaging 2 Commission
30. Violence 3 Doing 3 Physically damaging 2 Commission
Table 4 Stress values per country of unconstrained metric MDS and

regionally constrained MAPC MDS with p =2

. Regionally
Country Unconstrained Stress Constrained Stress
Great Britain .086 .107
Austria .084 .107
West Germany .078 .106
The Netherlands .087 .104

United States .076 .107




55

Groenen/Van der Lans: MDS with Regional Restrictions for Facet Theory ...

l 80 90 0 ¢0 0 AV °0- 90- 8°0- L-
, , , Py , , , T T
R0
@
~ jual Beisnjoy N
9090

- SOML}S4BOPIIA on0)ddv
oljeIpyR0lg _—5npeld

I \_ _jueu BwsrjaR Od |

L Siland
S P [N Mey]
 sumgpoeri -
| P 59113
5o QN33
fweP _——pwod
\ﬁ: Beisnyay
r oljeJ)SUcRUSp |N) MEY —— |
suoundy \\nE spoefog
HoepoN i
wep suoneljsucaiap |nyme ] sBuipjeq 900
suonnad s|le m umsue \00
L mnm Qﬂw _
o &
i) | ebesueg O,

elysny 1oy ejep AAaT ayj Jo uonn|os SAIN OdVIN ¥ 24nbiy

9°0-

[A%

o

¢0

0

90



ZUMA-Nachrichten Spezial Band 10, Beyond the Horizon of Measurement

56

80

Ol}jeipyo0|g

90Ue[OI A

sj|e m ¢ wcmmm&m_v__tn 920

SOY11S4BIP|IL

S“. eng“'\
Sir ength

Jupl Beisnjoy |

Aueuwwian) 3sap 4oy ejep Aaa ayj} Jo uonnjos SAIN OdVIN G ainbi4

¥'0-

¢'0

70



57

Groenen/Van der Lans: MDS with Regional Restrictions for Facet Theory ...

3 80 90 0 Al 0 0 ¥'0- 9°0- 8°0- b-
T T T =4 T T 3 T T T
[ C\- (@] .
E 3 \uu..
g 3/2
© %.\um.
- < P Inj me m!\ i
/
/
/
wmv__zw\kmou__\s
obeueq oljjeimyoo0|g - o\>om_ oA1081IT
/ o il
. —jualbBeis
—-Y ¥ c PN w@%@\o&@\ ey anoiddy
Ayepo \ i
\ SHOA0g. nseeopy
sBupimg 000 SOSYEOPIM
L \ |
oyemyoolg |
B —_— s|le m umsuebolg \ Jual Beisnjoy onoiddy
C ——————fsnoefk —————_ buod]
o —ooueox / o8 lod]
Kyrepoy R w990
/ Jual Beisnjoy
i mw\_am%_ﬂ.ﬁ;m%__; a
90US|OI A
obaue, o\/S
- , 1q] | s &Mn: ,\

spuelIayjaN ayl 10} ejep AAaT ayj jo uonn|os SAN OdVIN 9 2nbi4

8'0-

9°0-

(A4

¥'0

90



58 ZUMA-Nachrichten Spezial Band 10, Beyond the Horizon of Measurement

In the map for Austria, we see an interchange in the order of the Approve and the Effec-
tive levels of the Modality facet, and an interchange in the order of the Physically damag-
ing and Demanding levels of the Strength facet. Despite these interchanges, whose inter-

pretation is outside the scope of this paper, the facet structure is very clear.

West Germany shows how things can go wrong. Although the Stress did not increase too
much by imposing multiple axial partitioning constraints, it turns out that in the final
MDS solution a large number of the constraints imposed by the Modality and the Carry-
ing out facets are active. As such, many items are located on the boundary of their corre-
sponding slices. In fact, the constraints even lead to a situation in which there are no
locations in the map that uniquely correspond to the Doing level of the Modality facet.
The whole slice coincides with the boundaries of both the Approve and the Effective
level. This leads to such a clutter of items in the map that the map becomes virtually
uninterpretable. One might argue that it appears that the facet structure apparently is not
so dominant in the data. The fact that the Stress increased only slightly seems to be an
indication of the flatness of the Stress function near the (perhaps locally) optimal solution.
Unlike the other countries, Germany has the Doing and the Obstructive levels of the

corresponding facets as middlemost levels.

Conclusion and Discussion

We proposed the MAPC MDS model that allows for the inclusion of multiple axial re-
gional constraints. In MAPC MDS it is possible to specify more constraining facets than
dimensions. The facets are incorporated in the MDS map in such a way that each individ-
ual level can readily be identified, and there is a unique one-to-one mapping between

locations in the map and levels of each of the facets.

The proposed algorithm for MAPC MDS is very flexible in the sense that the Stress func-
tion that is being minimized incorporates weights that can be used to control the impact of
the misfit of the individual dissimilarities on the overall Stress. Amongst others this makes
sure that the algorithm can both be used for MDS of dissimilarities and for the unfolding
of preferences. The latter may have strong applications in the area of marketing and new

product development.
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It must be recognized that the expand-and-shrink operation, rewriting X as ZA'C, does
not completely cover all possible solutions that satisfy the multiple axial-wise partitioning
constraints. Actually, it may happen that it is advantageous for the minimization of Stress
to confine the constraining directions to a lower-than-p-dimensional subspace of the map.
For instance, the advantage of confining the directions to a (p—1)-dimensional subspace
will be that the remaining dimension will be completely unrestricted. Actually, our defini-
tion of the constraints does not prohibit us to let all directions coincide, to let all items
share the same coordinate on that dimension, and to actually fit the dissimilarities in (p—1)
unconstrained dimensions! Obviously, such a solution would destroy the whole rationale
behind the imposition of multiple axial-wise partitioning constraints. As a matter of fact,
the attractiveness (from a Stress minimization point of view) of such uninformative solu-
tions in the illustration shown can be checked by comparing Stress values for uncon-
strained and MAPC MDS for different dimensionalities.

A two-dimensional perceptual map gives a nice trade-off between an optimal representa-
tion of the data and parsimony of the map. The choice of two dimensions made it simple
to visualize the level-separating hyperplanes, which are lines in this case, and inspect the
MDS maps. Visualization of the level-separating hyperplanes and visual inspection of the
maps become much more difficult in higher dimensionality. So, one line of further re-
search could investigate ways in which more-than-two-dimensional perceptual maps with
multiple axial partitioning constraints can best be visualized (cf. Buja & Swayne 2002).
Preferably one would carry out some empirical studies to see which ways of visualization
are most easy to use and most appreciated by the people that will have to deal with the
results of MAPC MDS in practice. Of course, results may amongst others depend on the

particular type of product and the kind of constraining characteristics involved.

A disadvantage of our multiple axial constraints, dividing the MDS map into slices, is that
not every possible level combination of the constraining attributes can be represented by a
separate region. Two facets with two levels each yield a region for every combination of
levels in two dimensions. However, three facets of two levels each give three separation
lines yielding at most seven regions out of eight possible combinations of levels. As the
number of facets increase with respect to the number of dimensions, or the number of levels

per facet increase, there will be a larger proportion of level combinations that can not be
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represented by separate regions. As a consequence, more and more level combinations will
coincide at level-separation lines and more and more items will be located on these bounda-
ries, making the interpretation increasingly more difficult and the map less useful. Therefore,
another line of research may aim at the specification of a different type of constraints that
divide the map into mutually exclusive regions in such a way that all (or almost all) level
combinations can be represented by a separate region. To keep the interpretation of the map
easy, each category combination should preferably correspond to one region and not to two
or more disconnected regions. Borrowing ideas from facet theory again, one could think

amongst others of radial and polar constraints (e.g. see Borg & Groenen 1997, Chapter 4).

In addition, varieties of MAPC for three-way MDS, such as the weighted Euclidean mo-
del (also used in INDSCAL) could be developed. The multiple axial constraints can also
be readily implemented in other techniques, like PCA, generalized canonical correlation

analysis, correspondence analysis, etc.

We need some procedure that exactly determines whether we have one unique hyperplane
or an infinite number of hyperplanes within some ‘hyper region’, separating the subse-
quent regions that correspond to the levels of a particular facet. To create unique hyper-
planes, an extra penalty term could be used much in the same way as in support-vector

machines.
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Appendix
Updating A

There are several ways to update A. First, we can bring the problem back to a standard

nonnegative least squares problem. Minimizing (7) over A is equivalent to minimizing

(ay) = | Za, — my[, (A1)

for each row, a,, of A. For orthonormal Z, the normalization constraints [Ja ] = 1 and
|Za,|* = n are equivalent. Because nominal and ordinal partitioning characteristics define
cones, 7(a;) may be minimized without the length constraint followed by proper normali-
zation (De Leeuw 1977; Gifi 1990).

The minization of (A1) can be transformed into a nonnegative least-squares problem as
follows. The ordinal partioning constraints are given by t;, = S;Za, > 0, so that S’ 't, = Za,.

Thus, minimizing z(a,) is equivalent to minimizing

| S¢ 't — my ||? subject to t,> 0, (A2)

a standard nonnegative least squares problem that can be solved by the analytic method of
Lawson & Hanson (1974) or the iterative metthod of Groenen, Van Os & Meulman (2000).

An alternative approach to updating A is by using Dykstra's (1983) cyclic projection algo-
rithm. By iterative projections onto the hyperplane defined by Z and onto the cones C;, and
subsequent proper normalization one obtains the normalized projection, say, M, of M onto
the intersection of the hyperplane and the cones. The update for A is then obtained as
n'M'Z, as Z is orthonormal. For the projections onto the hyperplane defined by Z, no
increment has to be subtracted before projections (see Gaffke & Mathar 1989; von Neumann
1950). The advantage of using the cyclic projection algorithm lies in the fact that projections
onto the cones C; can be carried out very efficiently by Kruskal's (1964) up-and-down
blocks algorithm, whereas on the other hand the S;'s in (A2) will tend to have a large number
of rows due to the primary approach to ties. A disadvantage of the cyclic projection algo-

rithm as compared to the analytic method of Lawson & Hanson (1974) is that it is iterative.
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Updating Z

To update Z we first drop the orthonormality constraints on Z, and impose them again
afterwards. This procedure works fine, as long as the update without orthonormality
constraints is of full rank. We do not expect Z to be of reduced rank, because that would
be contradictory to minimization of the loss unless the dissimilarities can indeed be fitted

in a p-dimensional space with p <m.

There are again two ways to find an update. First, the problem can be transformed into a
standard nonnegative least squares problem. Let z = vec(Z) denote the vector of all col-
umns of Z stacked under each other, and m = vec(M) denote the vector of all columns of
Z stacked under each other. Also, let S denote the partitioned block matrix with blocks
equal to a;,Sy, and G a partitioned block matrix with blocks a;I, with I the nxn identity

matrix. Then, minimization of || ZA' — M|? over Z subject to S,Za, > 0 can be written as

|Gz — m||2 subject to Sz > 0.

Substituting t = Sz gives the standard nonnegative least-square problem of minimizing

IGS™'t — m||2 subject to t > 0.

Alternatively Dykstra's (1983) cyclic projection algorithm can be used again. This time,
M is projected onto the intersection of the hyperplane defined by A and the cones C;.

Assuming that the solution M is of full rank with singular value decomposition KAL'

Then choosing
Z =n"K

A = ;L, and
C=n"(A)'LK'MA'C
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yields an orthonormal update for Z, while keeping |ja,|> =1. Here, 7 , A , and é are the
updates for matrices Z, A, and C, and A and 6 are the matrices A and C that were kept
fixed while updating Z.

For nominal axial-wise partitioning constraints we have to check all /2xI1 Z’:l Ji combina-

tions of orders along the partition axes, where J; is the number of levels for facet £. If the
Ji or K gets larger, the number of combinations to be checked explodes, so that the algo-
rithm becomes slow. When Dykstra's algorithm is used, a branch and bound strategy can
be applied to speed up computations. This branch and bound strategy is based on the fact
that, for instance when updating A, Dykstra's algorithm yields a series of vectors that are:
i) successively getting closer to the projection of m, onto the intersection of the closed
convex cones Cj and the space spanned by Z, and i7) decreasing in length, whereas this
length is a direct measure of the Euclidean norm of the difference between the vector and
my. So, for any permutation the iterations of Dykstra's algorithm can be stopped, as soon
as the length of the vector becomes smaller than the length of the projection obtained for
some other permutation. As the overall program approaches convergence it becomes ever
more likely that the ‘best’ permutation from the previous iteration updating A will also be
the ‘best’ permutation in the current iteration. Therefore, it is efficient to start with the
‘best’ permutation from the previous iteration, so that the change of being able to stop
Dykstra's algorithm for all other permutations after a relatively small number of iterations
is relatively high. While updating A, we can apply the branch and bound strategy for the
orders from each characteristic, so for each row of A, separately. While updating Z, we

have to apply the strategy for all combinations of orders simultaneously.
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