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1. Introduction 

During the last 10 years credit portfolio models have improved significantly. This evolution 

has been enforced by the Basel Committee on Banking Supervision (BCBS) during the design 

process of the measure of credit risk in the International Convergence of Capital Measure-

ment and Capital Standards (Basel II).1 Whereas measuring the default probability of an indi-

vidual debtor has been well investigated before,2 most of research has been carried out in 

modelling and empirically investigating co-movements in the default frequency to determine 

the number of defaulted loans in a portfolio. Well known credit risk models that have been 

scientifically evaluated to a great extend are CreditPortfolioView, CreditRisk+, CreditPortfo-

lioManager, and CreditMetrics, which use different approaches for modelling the correlation 

between defaults, but lead to homogeneous results when parameterized.3 

 

However, not only the default rate of credits in a portfolio is of interest, but also the heaviness 

of loss in the event of default quoted as the loss rate of the amount outstanding (exposure). 

Most credit models take this so called Loss Given Default (LGD) or the corresponding Re-

covery (R, with LGD = 1 – R) of a credit exposure as an exogenously given constant parame-

ter or stochastic variable whose value depends on easily identifiable characteristics, like the 

existence of a security, the seniority of the liability, or the rating of the borrower. However, 

the LGD does not dependent on the actual default rate of the credit portfolio. There are mainly 

two caveats of this treatment of the LGD: on the one hand the LGD need not to be independ-

ent from the actual default rate - indeed there are many empirical studies disproving this as-

sumption. On the other hand the LGD cannot be analysed due to it components like recovery 

from a collateral and recovery from other firms assets. 

 

Furthermore, if banks implement the Internal Ratings Based (IRB) Approach for regulatory 

credit risk measurement own estimates for the LGD have to be made, which ought to consider 

                                                 
1 See Basel Committee on Banking Supervision (1999a, 2004). 
2 See Altmann and Saunders (1997) for a survey of research over the last 20 years. 
3 See Crosbie and Bohn (2003), Credit Suisse Financial Products (1997), Wilson (1997a,b) and Gupton, Finger 

and Bhatia (1997) for details about these models. Conceptual, empirical or numerical comparisons of these mod-

els are presented by Koyluoglu and Hickmann (1998a, b), Gordy (2000), Crouhy, Galai, and Mark (2000a) as 

well as Hamerle and Rösch (2004). 
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the relationship between the LGD, the collateral and the default rate. Concretely, it is speci-

fied that the bank4 

(1) “[…] must take into account the potential of the LGD […] to be higher […] during a pe-

riod when credit losses are substantially higher than average”, 

(2) “[…] must consider the extent of any dependence between the risk of the borrower and 

that of the collateral or collateral provider.” 

Additionally, the BCBS recently has concretized its standards for the quantification of the 

LGD parameter, that consists of the following components:5 

(3) “Identification of appropriate downturn conditions for each supervisory asset class within 

each jurisdiction.” 

(4) “Identification of adverse dependencies, if any, between default rates and recovery 

rates.” 

(5) “Incorporation of adverse dependencies, if identified, between default rates and recovery 

rates so as to produce LGD parameters for the bank’s exposures consistent with identified 

downturn conditions.” 

According to these requirements LGD-models should at least give answers to the potential 

existence of a link between default rates and recovery rates as well as appraise its impact on 

estimating an appropriate LGD. With respect to (2) this is essential for a collateral security in 

particular.6 

 

This paper makes contributions to the ongoing research on understanding and modelling LGD 

focussing on the recovery from collaterals under downturn conditions. Firstly, we present a 

model that enables us to examine correlations between the collateral value and the observed 

default rates. Basically, we use the “one-factor” approach of CreditMetrics that provides the 

basic principle for measuring the regulatory capital requirements in Basel II.7 Especially, we 

extend this model according to the approach of Frye (2000a, b), but we show, how recovery 

concerning the collateral can be separated from total recovery. For collaterals with a short 

workout-period, like financial collaterals, an analytical solution is given. Secondly, we dem-

onstrate how the relationship between the value of collaterals and the “downturn conditions”, 

                                                 
4 See Basel Committee on Banking Supervision (2004), paragraphs 468 and 469. 
5 See Basel Committee on Banking Supervision (2005), pp. 3-4. 
6 Precisely, significant negative correlation between the collateral value and the default rate serves as a sufficient 

constraint for the identification (4), see Committee on Banking Supervision (2005), p. 3. 
7 See e.g. Finger (2001) and Wilde (2001) for details of the models and the relation to Basel II. 
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here represented by the observed historical insolvency quotes, can be identified and quanti-

fied. Our analysis focuses on financial collaterals, like stocks, bonds, commodities, and cash 

in foreign currencies and examines the dependency on a systematic level by using merely 

indices. Finally, we show that our results lead to a similar reduction of regulatory credit risk 

like mentioned in the rules for financial collaterals specified in the IRB foundation approach 

of Basel II.8 However, we also may give reasons for a slightly higher reduction as well. 

 

The paper is organized as follows: The next section gives a brief overview on the LGD-

related literature.9 Section 3 describes the model that especially addresses the standards (4) 

and (5) when examine downturn effects with respect to (financial) collaterals. In Section 4 we 

present an empirical analysis to identify systematic risk between capital market and the cycle 

of insolvency quotes in Germany to meet standard (3). This Section ends with a discussion of 

the results about the consequences with respect to Basel II. Section 5 provides some ideas of 

potential future research topics. 

 

2. Literature Review 

During the recent five years there has been made main effort in ascertain the factors identify-

ing the LGD of loans and bonds through different empirical investigations. Especially there 

exist many analyses on default databases made available by Moody’s. The studies from 

Moody’s itself10 as well as from other authors like Frye (2003) or Hu and Perraudin (2002) 

suggest that the LGD depends on the seniority, the existence of a security, and on the yearly 

default rates. Studies by Acharya, Bharath, and Srinivasan (2004) as well as Düllmann and 

Trapp (2004) on datasets provided by Standard & Poor’s and Portfolio Management Data 

retrieve the same results. However, other aggregated time series data examined by Altman, 

Bradi, Resti, and Sironi (2004), or Carey and Gordy (2003) show that the relationship be-

tween yearly default rates and LGD might be less strong and depend on the decade investi-

                                                 
8 See Basel Committee on Banking Supervision (2004), paragraphs 154-161. Furthermore, according to Franks, 

Servigny and Davydenko (2004) as well as Davydenko and Franks (2004) financial collaterals can be classified 

as an important collateral, since it is the second most often posted collateral besides real estate and can be liqui-

dated by the bank itself shortly after default even in case of insolvency. 
9 A more detailed survey about empirical findings in LGD datasets and about modelling LGD is given by e.g. 

Schuermann (2004) and Altmann, Resti, and Sironi (2003). In this paper, we only highlight the recent results. 
10 See e.g. Hamilton, Cantor, and Ou (2002), Hamilton, Cantor, West, and Fowlie (2002), Keenan, Hamilton, and 

Berthault (2000), and Gupton, Gates, and Carty (2000). 
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gated. Although all studies approve the importance of collaterals, investigations on a periodic, 

e.g. yearly, dependency of collaterals are rather scare and controversial: The study of Araten, 

Jacobs, and Varshney (2003), which is based on default data of the JP Morgan Chase Whole-

sale Bank, finds no evidence that the LGD of a collateralized loan is linked to the economic 

cycle. In contrast Franks, Servigny, and Davydenko (2004) analyse default data of ten banks 

in the U.K., France, and Germany and point out that the realisation of collaterals is affected 

by the economic cycle. However, both studies use different measures for the “state of econ-

omy”: Araten, Jacobs, and Varshney refers to the yearly default rates, Franks, Servigny, and 

Davydenko to the gross domestic product. 

 

In comparison to the number of LGD studies there are only a few approaches concerning 

LGD modelling in credit risk models. They can be divided into two groups. The first category 

has its seeds in the framework presented by Frye (2000a, b). In such models the LGD is sto-

chastic and driven by a single systematic factor which also serves as a systematic factor for 

the default process. The models only differ in the distribution of the factors: Frye uses the 

normal distribution, Pykthin and Dev (2002) as well as Pykthin (2003) apply the log-normal 

distribution, and Schönbucher (2003) makes use of the logit distribution.11 The second cate-

gory is recently presented by Tasche (2004). His framework assumes the LGD to be stochas-

tic but co-monotonous with the probability of default. He also gives a numerical example in 

which the LGD is assumed to be beta distributed. In summary, both model categories agree in 

the assumption that the LGD is stochastically described by a single distribution function, i.e. 

the collateral is not evaluated separately. 

 

One can conclude that so far there are no empirical studies concerning the dependency be-

tween the performance of collaterals and the default rate. One reason of this fact is the non-

existence of an LGD-model, which distinguishes between recovery payments either taken 

from the collateral or received from other assets of the debtor. 

 

3. The Model 

In the following subsections we outline the framework of our model that builds the fundamen-

tal idea of the relationship between collateral value and default rate in a credit portfolio. The 

model is based on the two-state-one-factor return generating process from CreditMetrics that 
                                                 
11 All these models are implemented on empirical data by Düllmann and Trapp (2004). 
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has its origin in the seminal firm-value framework developed by Merton (1974) and was ex-

tended to a portfolio approach by Vasicek (1987, 1991, see also 2002) and Finger (1999). It 

has mainly influenced the risk weighting function of the IRB-Approach of Basel II.12 In the 

following subsection  3.1 we describe the framework to model default and loss rate of an indi-

vidual loan.13 Subsection  3.2 discusses the loss rate in a portfolio context. An analytical calcu-

lation formula of the VaR that especially fits with financial collaterals as a security is pre-

sented in subsection  3.3. 

3.1 Default and Loss Rate of an Individual Loan 

We assume a discrete-time model where the values of the collateral14 tC  and of the (other) 

firms asset tA  during each period t are functions of the normally distributed (standardized) 

returns tc  and ta  with mean zero and unit variance.15 We expect these “normalized” returns 

to be linked due to a correlation ( )t t ACcorr a ,c = ρ . Without loss of generality we can rewrite 

the return due to principal component analysis as 

t A t A A,t

t C t C C,t AC t C t C C,t AC

a x 1 ,

c x 1 if 0 or c x 1 if 0,

= ρ ⋅ + − ρ ⋅ε

= ρ ⋅ + − ρ ⋅ε ρ ≥ = − ρ ⋅ + − ρ ⋅ε ρ <
 (1) 

with tx ~ N(0,1) , A,t ~ N(0,1)ε , and C,t ~ N(0,1)ε  all being independently, identically, and 

normally distributed with mean zero and unit variance. Additionally, we assume the inde-

pendence of all 's•ε  between different points in time t and t + ∆t in which ∆t ≥ 0 is a con-

stant.16 The variable tx  is identified as the systematic factor, because it affects the value of 

                                                 
12 See e.g. Finger (1999, 2001) and Wilde (2001). 
13 Our approach is similar to Jokivuolle and Peura (2000), and Pykthin (2003), but in contrast to them we expect 

recovery in the case of default from the collateral as well as from the other firm assets. 
14 To keep track of the model, stochastic variables are marked with a tilde “~”. 
15 In literature it is often assumed that assets follow a geometric Brownian Motion and therefore are considered 

as log-normally distributed with mean µ and standard deviation σ of the logarithmic returns. See e.g. Merton 

(1974), Jokivuolle and Peura (2000), and Pykthin (2003). Then, the asset value tY  depends on its normalized 

return ty  according to tY = ( )t 1 tY exp y− ⋅ µ + σ ⋅ .  

16 Since default risks are often considered to be cyclical, see e.g. Basel Committee on Banking Supervision 

(2004), paragraphs 452, and Rösch (2003), the corresponding stochastic variables are auto correlated, and thus 

follow an auto regressive (AR) process. For the latter statement see Franke, Härdle, and Hafner (2004). Conse-

quentially, the assumption of a geometric Brownian Motion (see footnote 15) would not hold. With the more 
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the collateral as well as the other assets simultaneously. For interpretation, tx  builds up the 

common risk scenario for the collateral and the other firms assets. The 's•ε  are the collateral 

and asset specific (idiosyncratic) risk factors. If the common factor tx  is fixed the returns are 

independently distributed. Additionally, the two parameters ρA and ρC describe the fractions 

of risk expressed by the variance that can be explained by the systematic factor. For this rea-

son, the identity AC A Cρ = ρ ⋅ρ  is valid. 

 

Due to the one-factor approach of CreditMetrics the borrower defaults when his normalized 

return Ta  at time t = T falls short of a threshold ( )1
A Ab N PD−=  in which PDA is the expected 

default probability. Since bA (in literature often denoted as the default point)17 is exogenously 

given this model belongs to the category of so-called “ratings-based” approaches for quantify-

ing credit risk.18 Conditional on the systematic factor Tx  the expected default probability of 

the loan becomes 

( )
1

A A T
T A T A T

A

N (PD ) xP a b | x N : p (x )
1

−⎛ ⎞− ρ ⋅
< = =⎜ ⎟⎜ ⎟− ρ⎝ ⎠

.19 (2) 

 

In order to evaluate expectation of the uncertain loss rate (d)
C,T+ Tδ  of the secured loan in the 

event of default (signed with index “d”) we allow for a workout period δT which in turn im-

plies recovery to take place at t = T + δT. In addition, we make the following assumptions:20 

(A) In the event of default the total liabilities B hold by numerous creditors are payable, in-

cluding the exposure L of the loan of the bank. During the work-out period δT no addi-

tional claims will be added. 

                                                                                                                                                         
general approach of only normally distributed “normalized” returns in a discrete time context (with constant ∆t) 

the model still is valid even if auto correlation is present. 
17 See Crosbie and Bohn (2003), p. 7, Crouhy, Galai, and Mark (2000b), p. 373, or Ong (1999), p. 85. Addition-

ally, it has to be mentioned that due to Basel II default occurs before realising a collateral security, see Basel 

Committee on Banking Supervision (2004), paragraph 452. Therefore the collateral has to be neglected when 

modelling default. 
18 See e.g. Gordy (2003). 
19 See e.g. Vasicek (2002), p. 160. 
20 These assumptions are made with respect to the investigation of the collateral in the recovery process and are 

therefore kept strong for simplification. Less strong assumptions are possible. 
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(B) After liquidation of the collateral the bank receives a claim on a fraction of the firms as-

sets that is equal to the exposure of the loan after liquidation of the collateral with respect 

to the residual total liabilities of the borrower. 

(C) No other collaterals (of other lenders) have to be considered. 

(D) In the event of default the value of the collateral is small in comparison with the total li-

abilities B of the borrower. 

 

Conditional on the systematic factor T Tx +δ  at t = T + δT the value T TC +δ  of the collateral is 

independent from the other firms assets T TA +δ . Therefore, in the event of default the condi-

tional expected loss rate sec T TLGD (x )+δ  of the secured loan becomes21 

( ) ( )(d)
sec T T sec,T+ T T T eff T T unsec T T

1LGD (x ) : E | x E L (x ) LGD (x )
L+δ δ +δ +δ +δ= = ⋅ ⋅  (3) 

with ( )(d)
unsec T T unsec,T+ T T TLGD (x ) : E | x+δ δ +δ=  and ( )eff T T T T T TL (x ) : max L C | x ;0+δ +δ +δ= − , (4) 

where unsec T TLGD (x )+δ  stands for the expected loss rate of an unsecured loan and eff T TL (x )+δ  

labels the “effective” exposure that the bank claims from the other firms assets (d)
T TA +δ  (e.g. in 

the insolvency procedure), both conditional on T Tx +δ . Thus, the conditional expected loss rate 

sec T TLGD (x )+δ  can be calculated from the (conditional) expected loss rate unsec T TLGD (x )+δ  of 

an unsecured credit and the expected effective exposure eff T TL (x )+δ .22 Consequentially, the 

effect of a collateral on the expected (conditional) loss rate is quite simple in the sense that it 

just reduces the exposure of the loan from L to eff T TL (x )+δ . Thus, the collateral can be evalu-

ated separately in the credit context. 

 

From equations (1) and (2) we get that a low value of the systematic factor Tx  at t = T implies 

a low return of the firms asset which in turn leads to a high default probability of the bor-

rower. Due to equations (1), (3) and (4) in the case of a positive correlation AC 0ρ ≥  (between 

the return of the collateral and the return of the firm) the return of the collateral T Tc +δ  for low 

values of the systematic factor T Tx +δ . Thus, both − the default probability of the firm and the 

                                                 
21 See appendix  A.1 for details. 
22 This result is similar to the approach made within the framework of Basel II, see Basel Committee on Banking 

Supervision (2004), paragraph 291. 
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value of the collateral − are simultaneously affected negatively.23 Since this property is caused 

by the common systematic factor it can be named “systematic collateral credit risk”. How-

ever, it is worth mentioning that if there is a negative correlation AC 0ρ <  the expected value 

of the collateral rises if the default probability increases. In this case the collateral “hedges” 

the losses. 

 

3.2 Modelling Systematic Collateral Credit Risk 

After discussing the framework of an individual loan we will analyse how the “systematic 

collateral credit risk” affects the credit risk within a portfolio. Therefore, we again refer to the 

analytical solution of the model of CreditMetrics,24 based on the assumption that 

(E) there is only one systematic risk factor for all borrowers i in the portfolio i ∈ {1,…,n}, 

(F) the loan portfolio is “infinitely homogeneous”, i.e. it consists of an infinite number of 

credits, and the parameters (with respect to default) of each obligor in the portfolio are 

assumed to be the same.25 

With this simplifications the impact of an individual loan on the portfolio default rate TDR∞  

and the portfolio loss rate TLR∞  can be evaluated easily, because both depend on the sensitiv-

ity of the individual loan with respect to the systematic risk factor but not on the composition 

of the portfolio.26 

 

Precisely, in order to evaluate the default rate TDR∞  of the portfolio due to assumption (F) all 

borrowers i with i ∈ {1,…,n} are of the same type as described in section  3.1 and thus the 

default process is identical. Therefore, their normalized returns i, ta  are represented by the 

one-factor approach (see equation (1)) with equal parameters ρA, PDA, a joint systematic fac-

                                                 
23 Additionally, for this effect a positive autocorrelation between Tx  and T Tx +δ  has to be assumed. 
24 See Vasicek (1991, 2002), and Finger (1999). For a model extension on collaterals see Frye (2000a, b), Pyk-

thin and Dev (2002), Pykthin (2003), and also Düllmann and Trapp (2004). However, Frye does not distinguish 

between recovery payments from the collateral and from other assets. For an interpretation of this model see 

Altmann, Resti and Sironi (2004), p. 10. 
25 The more general case of an so-called “infinitely granular” portfolio is discussed by Gordy (2003) and could 

be implemented here as well. However, as in Gordy (2000) and Rösch (2003), for parameter estimation borrow-

ers are grouped in homogeneous risk buckets, e.g. industry sectors, which are treated as homogenous portfolios. 
26 This characteristic can be called “portfolio invariant”. For a detailed derivation of this issue see Gordy (2003), 

Bluhm, Overbeck, and Wagner (2003), pp. 83-85, or Schönbucher (2003), pp. 305-307. 
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tor tx  and independent idiosyncratic factors 's•ε . Default at t = T occurs if i,Ta  falls short of 

a threshold bA. Conditional on Tx  all normalized returns i,T Ta | x  are independently distrib-

uted. Since the portfolio is assumed to be “infinitely homogeneous” the idiosyncratic risk is 

diversified completely and the default rate T TDR (x )∞  of the portfolio in period T becomes 

(almost surely)27 

( ) ( )
n

T T j,T A T i,T A T A T T Tn j 1

1DR (x ) lim I a b | x E I a b | x p (x ) : N(DP | x )
n

∞ ∞
→∞

=

⎛ ⎞
⎡ ⎤= ⋅ < = < = =⎜ ⎟ ⎣ ⎦

⎝ ⎠
∑  (5) 

in which T TDP | x∞  denotes the default point of the portfolio with 

1
A A T

T T A T
A

N (PD ) x
DP | x b (x )

1

−
∞

− ρ ⋅
= =

− ρ
. (6) 

Because the periodic change of the systematic factor Tx  obviously controls the periodic 

change of the default rate T TDR (x )∞  of the portfolio (or an investigated risk bucket) it can be 

interpreted as a measure of the “state of the credit cycle”. 

 

Similarly, the idiosyncratic risk of each borrower i does not have any impact on the loss rate 

of the portfolio during the workout-period from T to T + δT which can be calculated as the 

exposure weighted sum of the expected conditional loss rates of each borrower i with expo-

sure Li conditional on the systematic factor T Tx +δ . Precisely, we get (almost surely)28 

n

T T T n i i T T
i 1

LR (x ) : lim LGD (x )∞
+δ →∞ +δ

=

⎛ ⎞= ω ⋅⎜ ⎟
⎝ ⎠
∑  (7) 

with 
n

i i k
k 1

L L
=

ω = ∑  and (d)
i T T i,T+ T T TLGD (x ) : E( | x )+δ δ +δ= . (8) 

Again, for the portfolio loss rate only the individual expected conditional loss rates 

i T TLGD (x )+δ  and the weight wi of the individual loan are of interest. 

 

From equation (2) and (5) as well as (3) and (8) we can conclude for the individual loan in-

vestigated in subsection  3.1 that the possible positive linkage between the normalized 

                                                 
27 See e.g. Gordy (2003) and Vasicek (2002) for details. For the following equation I(S) indicates the indicator 

function with I(S) = 1, if statement S is true, and I(S) = 0 otherwise. 
28 The following notation is similar to Bluhm, Overbeck, and Wagner (2003), p. 88. Precisely, 

( )
n n

(d) (d)
i i,T+ T T T i i,T+ T T Tn i 1 i 1

lim | x E | x 0δ +δ δ +δ
→∞

= =

⎛ ⎞
ω ⋅ − ω ⋅ =⎜ ⎟

⎝ ⎠
∑ ∑  is valid. 
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(lagged) return of its collateral T Tc +δ  and Tx  (because of AC 0ρ ≥  and positive autocorrelation 

between Tx  and T Tx +δ ) negatively affects the loss rate T T TLR (x )∞
+δ  and positively affects the 

default rate T TDR (x )∞  of the portfolio. Again, the “systematic collateral credit (cycle) risk” 

can be observed: simultaneously, due to the systematic risk factor, the number of defaults in 

the portfolio rises while the loss lowering effect of the collateral declines. Also, if there is a 

negative correlation between T Tc +δ  and Tx  the loss lowering impact of the collateral will 

strengthen when defaults increase. 

 

3.3 An Analytical Approach for Estimating the VaR 

For quantification of the impact of the “systematic collateral credit risk” on the evaluation of 

collaterals it is possible to derive an analytical formula for the risk measure Value at Risk 

(VaR). Therefore, we make the following additional assumptions:29 

(G) The collateral is re-evaluated permanently and therefore possible changes in the value 

only have to be considered over the work-out period.30 

(H) The collateral asset is log-normally distributed with drift parameter C, T 0δµ ≈  and vola-

tility C, T 1δσ .31 

(I) The work-out period δT for the collateral is short and no changes in the systematic fac-

tor have to be expected.  

 

With respect to assumptions (G) and (H) the value CT of the collateral at default is known and 

it becomes  

( )T T T C, T C, T T TC C exp c+δ δ δ +δ= ⋅ µ + σ ⋅  (9) 

at the end of the work-out period. Due to assumption (I) we get T T Tx x+δ ≈ , and Tx  serves for 

the default probability and for the loss rate in the event of default as the (only) systematic fac-

tor. We get for the “normalized” return of the collateral 

T T C T C C,T Tc x 1+δ +δ≈ ± ρ ⋅ + − ρ ⋅ ε . (10) 
                                                 
29 Especially financial collaterals due to the comprehensive approach of Basel II fulfil these assumptions. See 

Basel Committee on Banking Supervision (2004), paragraphs 145-181. 
30 Due to Basel II for financial collaterals a work-out period of only 20 days has to be considered if the financial 

asset is re-evaluated daily. See Basel Committee on Banking Supervision (2004), paragraph 167.  
31 This assumption directly follows from assumption (G) and is often used in VaR-approaches using Delta-

approximation. See Jorion (2001), p. 255. 
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Accordingly, we refer to a “true” one factor model like it is explained in Gordy (2003) or Va-

sicek (2002) as well as Finger (1999). The VaR contribution of each credit to the portfolio 

VaR can be calculated by using the expected loss rate conditional on the α-quantile Tq (x )α  of 

Tx , i.e. ( )T TP x q (x )α≤ = α .32 Resulting from this, the effective exposure VaR
effL  of the collat-

eralized loan under a VaR-measure can be written as33 

( )( )VaR
eff T senL max L C 1 H ;0≈ − ⋅ +  (11) 

with sen C C, T TH q (x )δ α= ρ ⋅ σ ⋅  if AC 0ρ ≥  and sen C C, T TH q (x )δ α= − ρ ⋅ σ ⋅  if AC 0ρ < . (12) 

Therefore, the effective exposure of the loan can be interfered from the exposure L minus the 

actual value of the collateral adjusted by a haircut Hsen. In the presented formula, the haircut 

especially relies on the correlation parameter ρC, meaning that only the standard deviation of 

the collateral value with respect to the systematic credit cycle is of interest. We therefore call 

this haircut the “(systematic) credit cycle sensitive haircut” because it only reflects the sys-

tematic risk of the collateral subject to the credit cycle. Consequentially, the haircut is nega-

tive if the value of the collateral is expected to decline with the default rate ( AC 0ρ ≥ ), i.e. if 

“systematic collateral credit risk” is present. However, if the collateral is likely to rise if the 

default rate declines ( AC 0ρ < ) it may be positive.34 

 

In contrast the effective exposure under a VaR-approach with assumption (G) and (H) using a 

haircut that accounts for systematic as well as idiosyncratic risk of the collateral would be 

( )( )VaR
eff T conL max L C 1 H ;0≈ − ⋅ +  with con C, T TH q (x )δ α= σ ⋅ .35 (13) 

With respect to our model we call this a “conservative haircut” since it reflects the worst case 

in which the return of the collateral is perfectly correlated with the returns of the other assets 

                                                 
32 In credit risk portfolio models, the VaR with confidence level (1-α) is defined as the (1-α)-Quantile (or α-

Fraktile) of the portfolio loss distribution. See Gordy (2003), p. 205. 
33 For details on the derivation see appendix  A.2. 
34 For both cases we imply that α < 0,5 and Tq (x ) 0α < . Additionally, from a conservative risk measurement 

prospective, positive haircuts should not be used, at most a haircut of zero would be appropriate. With respect to 

Basel II, positive haircuts are forbidden, since the LGD under downturn conditions shall not be lower than the 

expected (“long-run default-weighted”) LGD. See Basel Committee on Banking Supervision (2004), paragraph 

468, and Basel Committee on Banking Supervision (2005), p. 4. 
35 This formula for the haircut also results from the instructions of Basel II for estimating own haircuts for finan-

cial collaterals, since “a 99th percentile, one tailed confidence interval is to be used”. See Basel Committee on 

Banking Supervision (2004), paragraph 156. 
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and therefore with the default rate of the portfolio ( AC 1ρ = ). From a conservative point of 

view this approach might be most appropriate. 

 

4. Empirical Results 

It has been shown in the previous section that the impact of the collateral value (or its normal-

ized return tc ) on the “state of the credit cycle” denoted by tx  plays an important role for the 

evaluation of the collateral in the credit portfolio.36 The following subsections deal with the 

detection of “(systematic) collateral credit cycle risk” from empirical data. Concretely, we 

focus on the quantification of the positive correlation AC 0ρ ≥ . In our analysis we use insol-

vency rates from Federal Statistical Office of Germany (FSO) to determine credit cycles and 

German indexes of the capital market as systematic variables for financial collaterals.37 In the 

next subsection  4.1 the estimation framework is presented. The data series are described in 

subsection  4.2 and  4.3. The correlation analysis is carried out in subsection  4.4 and its impact 

on haircut measurement is shown in subsection  4.5. 

 

4.1 Parameter Estimation 

In order to estimate the influence of the “systematic collateral credit risk” on financial collat-

erals we use a two-step procedure to determine the correlation between the systematic factor 

and the collateral return. The framework is similar to Düllmann and Trapp (2004), Pykthin 

(2003) and Frye (2000b), but we suggest slightly different formulas based on a point estima-

tor. 

 

                                                 
36 With respect to Basel II, a dependency between those two parameters is of special interest when identifying 

adverse relationships between recovery rates and default rates in order to estimate LGDs under economic down-

turn conditions. See Basel Committee on Banking Supervision (2005), p. 3, and also citation (4) in section  1. 
37 Therefore, our analysis only accounts for correlation between (financial) collaterals and the credit cycle using 

highly aggregated data. Thus, this analysis only detects a systematic dependency because we do not rely on spe-

cific loan portfolios with collaterals. However, banks often fail to present long data series to examine a system-

atic relationship between default rates and collateral values over a long horizon. Our approach uses a time hori-

zon of up to 40 years and therefore may serve as a secondary study for verification of a adverse dependency 

between LGD and default rates, that the BCBS claims to be investigated. See Basel Committee on Banking Su-

pervision (2005), p. 3. 
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We derive parameters using a Method of Moments38 framework. In this framework the corre-

lation ρA and the probability of default PDA can be calculated by the formulas39 

2 
DP

A 2 
DP

ˆˆ
ˆ1

σ
ρ =

+ σ
 and DP

A
2 
DP

ˆ
PD N

ˆ1

⎛ ⎞µ
= ⎜ ⎟⎜ ⎟+ σ⎝ ⎠

 (14) 

in which 2 
DPσ̂  is the estimated variance of the default point and DPµ̂  the estimated expectation 

of the default point. In this context we have to mention that we use default points TDP∞  in-

stead of default rates TDR∞  because due to equation (6) default points TDP
∞

 are normally dis-

tributed for all T: 

( )2T DP DPDP ~ N ;
∞

µ σ  with 1
DP A AN (PD ) / 1−µ = − ρ  and ( )2

DP A A/ 1σ = ρ − ρ . (15) 

To have reasonable estimators the default points TDP
∞

 are assumed to be independent. This 

assumption is of course critical since default rates (and therefore default points) are possibly 

cyclical.40 However, our procedure is in line with the well established estimation approach for 

Aρ̂  and APD .41 It can be justified by the fact that APD  represents the expected (long-run) 

default probability and deviations from this expectation value only stem from realisations of 

the systematic factor Tx̂ .42 Since Tx̂  is directly linked to the observed default rate TDR∞  (due 

                                                 
38 In contrast to the general application of the Method of Moments estimators, see e.g. Greene (2003), pp. 525-

557. We use the sample variance instead of the empirical variance for the second central moment. Our estimator 

is similar to the one of Bluhm and Overbeck (2003), but uses default points instead of default rates and thus can 

be derived analytically. 
39 See appendix  A.3 for details. 
40 See e.g. Löffler (2003), who assumes an autoregressive process of the order of two (AR(2)-process) for the 

default rates. The BCBS stresses, that parameter estimations for LGD have to be done over at least one complete 

economic cycle. See Basel Committee on Banking Supervision (2004), paragraph 472. 
41 See the Maximum Likelihood Estimator by Gordy and Heitfield (2002), p. 7, Rösch (2003), p. 312, Demey, 

Jouanin, Roget, and Roncalli (2004), p. 105, Düllmann and Trapp (2004), p. 8, Hamerle, Liebig, and Rösch 

(2003), p. 78 as well as the Method of Moments estimator by Gordy (2000), p. 133, and Bluhm and Overbeck 

(2003), p. 40. 
42 In the literature the underlying approach for this interpretation is called “point in time”, see Düllmann and 

Trapp (2004), p. 8, Footnote 9. A “point-in-time” approach for credit risk modelling does not take into account 

the actual state of the “business cycle”, i.e. it is assumed for the risk measure, that no information of the current 

“point in the credit cycle” is available. The model of Basel II follows such an approach. For further information 

see Basel Committee on Banking Supervision (1999b), p. 28. 
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to equation (5)), Tx̂  serves as a factor to identify “downturn” and “upturn” conditions of the 

portfolio like mentioned in citation (3) in section  1.43  

 

According to (14) we only have to determine the estimators DPµ̂  and 2 
DPσ̂ . Here we use the 

empirical estimators44 

DP T
T 1

1ˆ DP
τ

∞

=

µ = ⋅
τ ∑  and ( )22 

DP T DP
T 1

1ˆ ˆDP
1

τ
∞

=

σ = ⋅ − µ
τ − ∑  (16) 

with T ∈ {1,…,τ} an arbitrary point in time of a time series of defaults (with length τ). Fi-

nally, from equation (6) the estimated realisation of the systematic factor Tx̂  can be inferred 

from the estimates Aρ̂ , APD  (for ρA, PDA), and the observed default points TDP∞  for all 

points in time T ∈ {1, …, τ}.  

 

At the first glance the estimated values Tx̂  for the systematic factor (as well as Aρ̂ ) seem to 

depend on the default probability PDA (or its estimation APD ). In contrast, the default prob-

ability PDA in the model is not linked with the asset correlation ρA. Furthermore, ρA (> 0) is 

the only parameter that is responsible for a deviation between default rate and PDA (see equa-

tion (2)). However, the estimators (14) and (16) possess the relevant characteristic that the 

expectation of Tx̂  (and Aρ̂ ) does not depend on PDA.45 Therefore the parameters are unbi-

ased. 

 

In addition (see subsection  4.3), we estimate the parameters of the collateral for the lagged 

periods T + δT ∈ {1 + δT, …, τ + δT} since during T + δT − 1 and T + δT the collaterals of 

the defaulted loans are liquidated. We assume the value of the collateral to be log-normally 

distributed (see equation (9), here using a period of length T) with the parameter C,Tµ̂  for the 

                                                 
43 Precisely, we identify “downturn” and “upturn” conditions directly with the (historical) default rates like it is 

suggested by the BCBS, see Basel Committee on Banking Supervision (2005), p. 3. However, other sources, e.g. 

economic variables like the GDP growth and the unemployment rate, should be used further. Since this approach 

is already well known, see e.g. Altmann, Resti, and Sironi (2005), we here present a more “direct” approach. 
44 See appendix  A.3 for details and for the calculation of the asymptotic covariance matrix to compute the stan-

dard error of the estimation. 
45 See appendix  A.4 for a proof of this statement. 
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drift and C,Tσ̂  for the volatility. We use a similar estimation framework as in equations (14) 

and (16). 

 

Finally (see subsection  4.4), we calculate the normalized returns T Tc +δ  during the liquidation 

period, and analyse their correlations with the systematic (credit cycle) factor Tx . 

 

4.2 Credit Risk Cycles for Germany 

For the first step of the analysis as described in section  4.1 we use a broad database of yearly 

insolvency rates from 1962 until 2003 made available by the Federal Statistical Office of 

Germany (FSO). For a more detailed analysis it will be accounted for six major industry sec-

tors due to NACE-code: 

(1) Energy and Mining 

(2) Manufacturing 

(3) Construction 

(4) Wholesale and retail trade 

(5) Transport, storage and communication 

(6) Financial intermediation. 

This sectional data series are obtainable from 1965 to 2003. All rates are related to the terri-

tory of former West Germany.46 

 

It has to be stated that insolvency is only one of the default attributes defined in Basel II.47 For 

simplification we identify insolvency and default as it has also been done by Rösch (2003). 

Deviations between insolvency rates and Basel II default rates would not lead to different 

results as long as they are systematic since the long-term default probability PDA is not impor-

tant for estimating the “state of the credit cycle”. Only the deviation from this mean is essen-

tial for this state. Further, the data of the FSO might serve as an unbiased proxy for the credit 

cycle in Germany, especially for small and medium sized companies, because on average 

2,000,000 enterprises are included and more than two third are personal undertakings. As a 

result of this statement, the idiosyncratic risk is negligible and the data base can be treated as 

“infinitely homogeneous”. Additionally, resulting from the long time series a reliable analysis 

can be outlined. 

 

                                                 
46 A similar database for determining the credit cycle of Germany is used in Rösch (2003). See also Hamerle, 

Liebig, and Rösch (2003) and Bögelein, Hamerle, Rauhmeier, and Scheule (2002). 
47 See Basel Committee on Banking Supervision (2004), paragraph 452. 
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As a start, we check up on the insolvency rate, if it fits with the general assumptions of the 

default rate TDR∞  and default point TDP∞  in the Vasicek-model (see equation (5) and (6)). The 

data of Entire Germany is shown in Figure 1. 

 

Figure 1 Default Rates and Default Points for Entire Germany, 1962 – 2003 

 

From various statistical tests the default point TDP∞  of the insolvency rates can be character-

ized by 

(I) incorporating a positive time trend, 

(II) being strongly auto correlated but trend-stationary, 

(III) being normal distributed (after detrending). 

Assumption (I) can be verified by regressions of the TDP∞  and the time de-trended48 default 

point T,detrendedDP∞  using an Augmented Dickley Fuller (ADF) test with and without time trend 

as well as by an autoregressive regression of TDP∞  and T,detrendedDP∞ .49 In each of both cases the 

two compared regressions only slightly differ (except for the time trend), that serves as a 

strong hint, that a time trend is present. We receive assumption (II) from tests on auto correla-

tion by Ljung-Box-Pierce, Godfrey-Breusch (Lagrange Multiplier), and Durbin-Watson,50 

that are all significant on a 1 % level. The hypothesis of stationary could be maintained at 

least on a 10 % level using the test from Kwiatkowski, Phillips, Schmidt, and Shin (KPSS).51 

Assumption (III) might hold, since the hypothesis of T,detrendedDP∞  to be normal distributed can 

be maintained at least on a 1% level for the tests of Jarque-Bera, Kolmogorov-Smirnov-

                                                 
48 For detrending, the function ( )T,detrended TDP DP + т∞ ∞= β − α ⋅  with т ∈ {-21, …, 20} was used. Here α repre-

sents the time trend and ( )TDP +∞ β  the constant. The parameters α and β are fitted to the data using least 
squares. 
49 See appendix  A.5 for the results of the regressions. As can be seen from the regression analysis the trend vari-

able is highly significant. This might be sufficient for discovering a time trend due to a t-test. See e.g. Hamilton 

(1994), p. 461. 
50 See Greene (2003), pp. 268-271. The results are reported in appendix  A.6. 
51 See Franke, Härdle, and Hafner (2000), pp. 168-170. The results are reported in appendix  A.7. However, the 

hypothesis of non-stationary in the ADF-test could not be rejected on a 90 % level, see the result in appendix 

 A.5. Since the ADF-test may lead to loose results when testing highly auto regressive AR processes (see the 

discussion of unit root tests e.g. in Hamilton (1994), pp. 447-448, or Chatfield (2004), pp. 262-264, and since the 

stationary constraints of AR process are fulfilled in any case in the autoregressive regression (see appendix  A.5), 

we prefer the results of the KPSS test. 
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Lilliefors, Geary, Sharpiro-Wilk and D’Agostino-Person.52 Therefore, the assumption of 

CreditMetrics as well as within the Basel II framework holds that the normalized return Ta  

(and therefore the default point TDP
∞

) for discrete time observations T ∈ {1, …, τ} is normal 

distributed with cyclical patterns. 

 

TABLE 1 Estimations of Aρ̂  and APD  for Entire Germany and the Six Sectors 
 

However, when estimating the parameters Aρ̂  and APD  in order to calculate a time series for 

the systematic credit cycle factor Tx , the detrended default point T,detrendedDP∞  is to be used. 

This is necessary since the (normalized) systematic factor Tx  in the one-factor model of 

CreditMetrics (see equation (2)) does not reflect an increase of PDA but a fluctuation around 

PDA.53 The results for Aρ̂  and APD  are shown in Table 1 and are all highly significant. The 

asset correlations vary through the sector between 0.72 % for sector 5 (Transport, Storage, 

and Communication) and 1.83 % for sector 2 (Energy and Mining).54 

 

FIGURE 2 Detrended Default Rates and the Systematic Credit Cycle Factor 
for Entire Germany 

 

Finally, we calculate the estimated realisation of the systematic factor Tx̂  from the received 

parameters. As it is shown in Figure 2 for entire Germany the realisations of T,GERx̂  are nearly 

linear inversely linked to the default rate T,detrendedDR∞  since these default rates are rather low. 

The cyclicality of Tx̂  is readily identifiable in Figure 2 as it is expected from theory, and 

                                                 
52 See Zar (1999), Thode (2002), and Thadewald and Büning (2004) for details. The statistics is presented in 

appendix  A.7. 
53 Although the time trend is not relevant for the calculation of Aρ̂  and Tx̂  this trend is important when calculat-

ing PDA since the time trend influences the expectation of the default rate.  
54 The result for Aρ̂  is rather low compared to those of Basel II, that allows for asset correlations of 0.12 up to 

0.24. See Basel Committee on Banking Supervision (2004), paragraph 273. However, in the literature these 

distinctive low values are often reported when using insolvency rates. See Düllmann and Scheule (2003) or 

Rösch (2003) for Germany, Dietsch and Petey (2002) for France as well as Hamerle, Liebig, and Rösch (2003) 

for Germany and U.S. This might be caused by the large number of enterprises incorporated in insolvency stud-

ies leading to low one-factor dependencies. When determining credit cycles for correlation analysis, as in the 

present paper, this is not a problem since correlation is standardised by the variance anyway. 
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more distinctive than reported from other data (e.g. from Moody’s, see Bluhm, Overbeck, and 

Wagner (2003), p. 120). This may be a result of the large number of enterprises included in 

the data that reduces the influence of idiosyncratic factors. The cyclicality can be verified by 

tests of autocorrelation due to Ljung-Box-Pierce, Godfrey-Breusch, and Durbin-Watson.55 

 

4.3 Data Series for Financial collaterals 

To evaluate the systematic credit cycle risk of different types of financial collaterals we inves-

tigate stocks, bonds, commodities and foreign exchange rates. We merely use German in-

dexes since their performances seem to be good indicators for the market systematic risk of 

the considered collaterals. The following time series (performed by DataStream/DS from 

Thompson Financial Services) are included: 

• Stocks 
DAX, MDAX, SDAX (DS calculated) 
Prime Sectors (DS calculated): 
(1) Basic Resources 
(2) Industrial 
(3) Construction 

(4) Retail 
(5) Telecommunication
(6) Financial Services 

• Exchange Rates 
EUR to USD, GBP, JPY 

• Bonds 
Citigroup Bond Index Germany (CGBI) 
REX General Bond Price Index 
DB German Fully Taxed Bonds 
– Yield of all Bank Bonds Outstanding 
– Yield of all Corporate Bonds Outstanding 
• Commodities 
Goldman Sachs Commodity Index (GSCI) 
Gold Bullion in USD, EUR 

 

The data series nearly fits with the model assumption of normal distributed yearly geometric 

returns tc , that can be verified by tests of Jarque-Bera, Kolmogorov-Smirnov-Lilliefors, 

Geary, Shapiro-Wilk, and D’Agostino-Person with at least 1 % of significance. Additionally, 

the returns do not show autocorrelation due to tests of Ljung-Box-Pierce, Godfrey-Breusch 

(Lagrange Multiplier), and Durbin-Watson at 1 % level.56 

 

TABLE 2 Correlation Analysis of the Geometric Returns of Financial Indexes and Prices 
 

The correlations between the time series of the financial data is shown in Table 2. Especially 

the yearly geometric returns of stock indices (series (1) to (3)) as well as bond indices and 

                                                 
55 See appendix  A.8 for details. 
56 See appendix  A.9 for the results of the tests. Only the geometric returns of Gold prices may assumed to be 

normal distributed only to certain extend since seven out of ten test are not significant at 1 % level. 
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interest rates (series (4) to (7)) are correlated close to unit,57 whereas the time series of com-

modities (series (8) to (10)) and exchange rates (series (11) to (13)) show high significant cor-

relation but far from being unit. While analysing the correlations between the asset classes we 

found that the stock market seems to be modestly positively correlated with the bond market58 

but both are inversely correlated with commodity prices and exchange rates at low levels of 

significance. Additionally, the bond market may not be linked with commodities and ex-

change rates since the levels of significance are rather low (and except for the GBP it does not 

exceed the 35 % level), but prices for commodities are correlated with exchange rates up to a 

1 % level of significance. 

 

4.4 Collateral Credit Cycle Risk 

In order to evaluate the possibility of a dependency between the systematic credit cycle factor 

Tx̂  and the standardized “collateral performance” T Tc +δ  we investigated the correlation coef-

ficient due to Spearman ρSpear, Kendall τB, both based on the rank order of the variables, and 

Pearson-Bravais ρPear that examines the linear correlation between two parameters and di-

rectly leads to an estimate for the parameter C± ρ  in the case of δT = 0.59 However, the re-

sults reported here refer to a work-out period δT of one month that is well in line with the 20 

days suggested by Basel II for financial collaterals.60 The findings do not change significantly 

if we use different work-out periods from zero up to two month. This may be caused by the 

fact that autocorrelation of Tx̂  with a lag of one year is high, and presumably even higher for 

only a few months.61 

 
                                                 
57 Of course, the yield is inversely linked with the bonds indices since an increase of the interest rate would lead 

to a decrease of bond prices. See e.g. Jorion (2001), pp. 206-207, Crouhy, Galai and Mark (2000b), pp. 218-224, 

or Ilmanen, McGuire, and Warga (1994) for simple modelling of price changes of fixed income securities. 
58 Although our analysis on the relationship between asset classes is not very detailed since it is behind the scope 

of this paper, the stock-bond/interest-market relationship is in line with the literature. See e.g. Connoly, Striver, 

and Sun (2005), p. 161, or Andreou, Desiano, and Sensier (2001). 
59 It has do be added that with this analysis the correlation coefficients rather serve as indicators for a relation-

ship between the market of the collateral and yearly default rates (like it is mentioned in Basel II) than they are 

able to explain dynamics between financial markets and insolvency rates. For the latter, the auto correlation of 

the default points has to be handled in the analysis e.g. by removing it via auto regression. 
60 See Basel Committee on Banking Supervision (2004), paragraph 167. 
61 See appendix  A.5 for the autoregressive regression of the default points. 
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All three coefficients of correlation should not differ too much. Differences between ρSpear and 

τB could result from outliers in the rank order that lead to a lower value for ρSpear. Deviations 

of both parameters from ρPear could stem from metric outliers and should be investigated in 

detail since risk management should especially account for those. Additionally, it could be a 

hint for an asymmetric relationship. 

 

4.4.1 Stock Indices 

Firstly, we investigate the correlation between T,GERx̂  for entire Germany and the three main 

German indices DAX, MDAX, and SDAX between 1974 and 2003 (SDAX: only since 1990). 

We analysed the whole period, and also the three decades separately. The results are shown in 

Table 3. 

 

TABLE 3 Results of the Correlation-Analysis between the Systematic Factor and Returns of 
Stock Indices 

 

Obviously, over the period of 30 years the correlations are close to zero and not significant. 

Nevertheless, the values vary tremendously over time. During the first decade from 1974 to 

1983 the linear correlations between credit cycle and DAX as well as credit cycle and MDAX 

were negative (−0.67 for the DAX and −0.49 for the MDAX) with significance levels of 

0.9 % (DAX) and 14.9 % (MDAX). For the last two decades the negative relationship is less 

strong and not significant, since the p-value does not exceed 59,4 % (p-value for ρPear for the 

SDAX during 1994 and 2003). One may conclude, that there is a weak relationship between 

stock market and insolvency rates. 

 

FIGURE 3 Correlations between Sector Systematic Factors and Prime Indexes during 1994 
and 2003 

 

In order to get more distinct results we examine the relationship between the six sectors and 

corresponding Prime Sector Indices of the Deutsche Börse AG. The results for the linear cor-

relation ρPear over last decade (1994-2003) and their p-values are shown in Figure 3.62 All 

segments except sectors 3 (Constructions) and 4 (Wholesale and Retail Trade) show positive 

correlation with the systematic credit cycle factor. An explanation for sector 3 and 4 might be 
                                                 
62 We report only the last decade since stocks of small and medium enterprises in Germany have been traded not 

much longer than ten years. This might have strengthened the relationship. 
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that these two sectors incorporate most enterprises (more than 240,000 and 600,000 on aver-

age, respectively) including more than 60 % personal undertakings. Especially the credit cycle 

of those small enterprises might not be conform with the performance of their Prime Sectors 

only including big companies. However, all relationships are not very significant with levels 

varying from 42.2 % to 67.8 %. 

 

One can conclude that the relationship between the stock market and the German credit cycle 

in total is only slight and might be negative at a stretch. This might be due to the fact that 

most enterprises included in the study are rather small and are not directly linked to the capital 

market via equity. However, the dependence should be considered to be positive for some 

sectors, if only the last decade is accounted for. The highest correlation measured is 0.29 (be-

tween Prime Index Industrial and T,Manufacturingx̂  from 1994 to 2003). 

 

4.4.2 Bond Indices 

In this section we investigate the relationship between the credit cycle and the fixed income 

market. Therefore we analysed the time series of two bond indices for the German Bond Mar-

ket from the Deutsche Bundesbank (REX) and the Citigroup (CGBI) as well as changes in 

yields of Bank Bonds (yBank) and Corporate Bonds (yCorp.) as reported by the Deutsche 

Bundesbank (fully taxed, outstanding), because the yield is inversely linked with the value of 

bonds.63 The results for the whole period as well as for the available decades are reported in 

Table 4. 

 

TABLE 4 Results of the Correlation-Analysis between the Systematic Factor and Returns of 
Fixed Income Securities Indexes and Yields 

 

Consequentially, the bond market is inversely correlated with the systematic factor T,GERx̂  

because the corresponding correlations of both indices are negative and of both yields are 

positive. Furthermore, the correlations are low significant (for indices up to 7.6 %, for yields 

up to 2.8 %). All absolute values of the (Pearson-)correlations for the REX and the yields over 

the whole period do not vary much from 0.27 to 0.34. Concerning the decades, during 1974 

and 1983 the dependency seems to be stronger than during the other decades. On the other 

                                                 
63 For a simple modelling of price changes of fixed income securities please refer to footnote 57 and the litera-

ture cited there. 
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hand, the low values during the last decade for indices, especially the CGBI, suggest that 

there might be no negative dependency. 

 

FIGURE 4 Correlations between Sector Systematic Factors and Yield during the Entire Pe-
riod 

 

Additionally, we made an investigation concerning the six sectors and the yield on corporate 

bonds (yCorp., for sector 6 we used yBank). As can be seen from Figure 4 the correlations of 

sectors 2 to 5 are highly significant (up to 0.9 % for sector 5) with values varying from 0.31 

(Construction) to 0.41 (Transport, Storage and Communication). Only for sector 1 (Energy 

and Mining) the correlation is negative, i.e. the bond market tends to turn down when insol-

vency quotes are high. However, the level of significance for this sector as well as for sector 6 

(Financial Intermediation) is low compared to the other sectors. 

 

FIGURE 5 Correlations between Sector Systematic Factors and Maturity 
 

Finally, we analysed the relationship with respect to the bond maturity. Figure 5 displays the 

results for the considered sub-indexes of the REX (1 to 10 years) and for the yield yall (all 

bonds outstanding, 1-2 to 9-10 years). This figure shows the consistent result that the correla-

tion between systematic factor T,GERx̂  and REX and between systematic factor T,GERx̂  and yall, 

respectively, drops when shifting to higher maturity, i.e. the relationship between bond market 

and credit cycle is less strong for securities with longer maturity. 

 

To conclude, we have to point out that there seems to be a negative relationship between bond 

market and credit cycle and thus bonds appear to be capable to hedge losses in a credit portfo-

lio. The value of the negative correlation depends on the sector of the borrower as well as on 

the maturity of the bonds. The highest absolute value specified in the examination is –0.35 for 

ρPear between T,GERx̂  and the REX (maturity 1 year). This result might be in line with the gen-

eral observation that interest rates fall when the economy, here quantified by the credit cycle 

factor, deteriorates.64 Since the investigated bond indices only represent bonds from issues 

with highest degree of creditworthiness only the interest rates influence its value but not 

                                                 
64 Interest rates are generally assumed to move with the business cycle. For a discussion see DeStefano (2004), 

pp. 533-535. 
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changes in the default rate. However, during the last decade there is no strong evidence for a 

negative relationship. 

 

4.4.3 Commodities 

In order to investigate the dependency between commodities and the credit cycle we tested 

the Goldmann Sachs Commodity Index (GSCI) and the price of Gold Bullion (per once) in 

USD and EUR for correlation with the systematic factor T,GERx̂  during the period from 1970 

to 2003 (GSCI only from 1971 on). 

 

TABLE 5 Results of the Correlation-Analysis between the Systematic Factor and Returns of 
Commodities 

 

The results presented in Table 5 show that correlations between these types of collaterals are 

of low significance but positive. Over the whole period the GSCI has highest significance 

reaching a p-value of 14.6 % with a positive linear correlation of 0.25, and additionally it is 

positive for all decades separately. For the gold price the relationship is less strong and close 

to zero over the whole period. However, over the decades the values change both in value and 

significance. For Gold in USD the Pearson-correlations vary from 0.42 (p-value = 22.3 %) to 

−0.46 (p-value = 17.8 %). For Gold in EUR these correlations are positive during all decades 

but low significant since the lowest p-value is 20.9 % (from 1974 to 1983). 

 

Concerning the six sectors we briefly want to review the results for “Gold in USD”65 since 

gold is the only eligible commodity collateral within the Basel II framework and exchange 

rate risk is especially accounted for. Over the last thirty years the dependency between the 

systematic factor and the performance of gold was close to zero at low significance levels for 

all sectors except 1 (Energy and Mining) and 6 (Financial Intermediation). Especially for sec-

tor 1 the Pearson correlation coefficient was high (0.36) and significant (with a p-value of 4.2 

%), for sector 6 it was still reliable positive (0.14 with a p-value 41.8 %). If we only consider 

the decades separately, the dependency varies tremendously for all sectors. For the last decade 

(1994 to 2003) it was negative for all sectors with highest values for sector 1 (Energy and 

Mining, ρPear = −0.71 and p-value = 2.1 %) and sector 5 (Transport, Storage and Communica-

tion, ρPear = −0.62 and p-value = 5.5%). During 1974 to 1983 it was positive for all sectors 

                                                 
65 We do not present the results in detail here. 
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being most significant for sector 1 (Energy and Mining, ρPear = 0.53 and p-value = 11.3 %) 

and 2 (Manufacturing, ρPear = 0.46 and p-value = 14.8 %). 

 

However, obviously the dependency between commodities in general and the credit cycle is 

rather low but positive. Gold prices do not show any strong relationship over the whole pe-

riod, being reliable positive only for two sectors especially during 1974 to 1983. This result 

might fit with the common statement that gold is a stable asset especially when the economy 

deteriorates. 

 

4.4.4 Foreign Exchange Rates 

Finally, we examined the relationship between the credit cycle and the change of the United 

States Dollar (USD), British Pound (GBP) and the Japan Yen (JPY) to the Euro (EUR) from 

1974 to 2003. As it is presented in Table 6 the results differ tremendously between the cur-

rencies. 

 

TABLE 6 Results of the Correlation-Analysis between the Systematic Factor and Changes of 
Exchange rates 

 

Considering the whole period USD and GBP show nearly zero correlations with the EUR, 

whereas JPY indicates a negative dependency. The relationships have low significance for the 

JPY (the p-value is 38.7 %) and nearly no significance for the USD and GBP (the p-values are 

94.4 % and 54.3 %, respectively). The last two decades from 1984 to 2003 indicate a negative 

relationship for all currencies. In case of the USD it has been even significant (the p-value for 

ρPear is 7.6 %) for the last decade (1994-2003). In contrast, at least for the USD and the JPY 

from 1974 to 1983 the dependency is positive.  

 

Moreover, we examined the six sector for each currency separately:66 For the USD, the corre-

lation is close to zero over the whole period. The highest level of significance is 64.0 % (sec-

tor 2, Manufacturing). Again, we get different results from the decades. Especially from 1994 

to 2003 it is negative for all sectors incorporating highest absolute Pearson correlations for 

sector 6 (Financial Intermediation, ρPear −0.70 and p-value = 2.5 %) and sector 4 (Wholesale 

and Retail Trade, ρPear = −0.65 and p-value = 4.2 %). However, from 1973 to 1983 it is posi-

                                                 
66 We do not display the results in detail here. 
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tive being most significant for sector 6 (Financial Intermediation, ρPear = 0.67 and p-value = 

3.5 %) and for sector 5 (Transport, Storage and Communication, ρPear = −0.66 and p-value = 

3.8 %). Similar, the return of the exchange rate of the GBP (to the EUR) does seemingly not 

depend on the credit cycle except for sector 1 (Energy and Mining) that has a positive linear 

correlation of 0.33 at a level of significance of 7.0 %. On the other hand, for the other sectors 

significance levels ranging from 50.0 % (sector 4, Wholesale and Retail Trade) to 98.0 % 

(sector 6, Financial Intermediation) are low. If we only investigate the decade 1994 to 2003 it 

is negative even for sector 1 (Energy and Mining, ρPear = −0.20 and p-value = 58.0 %) incor-

porating highest (negative) Pearson correlation for sector 6 (Financial Intermediation, ρPear = 

−0.69 and p-value = 2.5 %) and sector 4 (Wholesale and Retail Trade, ρPear = −0.65 and p-

value = 4.2 %). The JPY has a high positive linear correlation especially with sector 1 (En-

ergy and Mining, ρPear = 0.29 and p-value = 11.0 %) and sector 6 (Financial Intermediation, 

ρPear = 0.36 and p-value = 4.2 %). Worth mentioning, that during 1994 to 2003 the relation-

ship was merely negative (except for sector 1, Energy and Mining) being most significant for 

sector 5 (Transport, Storage and Communication) at a level of 3.9 % (ρPear = −0.66) and sector 

2 (Manufacturing) at a level of 10.7 % (ρPear = −0.54). 

 

Obviously, there is no strong relationship between the credit cycle and the change in ex-

change rates. Indeed, the dependency varies not only in values but also in the sign when ex-

amining different decades. A sector analysis shows for sector 1 (Energy and Mining) positive 

correlations for the GBP and JPY. In total, this result could be explained by the fact that the 

exchange rate might only be of high importance for enterprises with an international focus. 

Caused by the numerous databases (especially for sectors 2 to 6) this attribute is more likely 

to be idiosyncratic than systematic. 

 

4.5 Implications for Credit Risk Measurement concerning Basel II 

In the last subsection we made a comprehensive analysis of a possible linkage between the 

performance of financial collaterals as it can be observed at the capital market, and the sys-

tematic credit cycle factor Tx  denoted by the insolvency quotes in Germany. From the results 

one can conclude that on the one hand there is no intense positive link between those two pa-
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rameters,67 at best for the Bond market there is some evidence that the two parameters are 

inversely related. On the other hand these findings should be handled with care since they 

vary across the periods under consideration. This is in line with an analysis of Carey and 

Gordy (2003) on recovery rates who pointed out that investigations of short periods often add 

up to high negative correlations between default rates and recovery. 

 

From the portfolio-perspective one could conclude that financial collaterals serve as stable 

assets for the bank to protect the portfolio against high losses, because 

(1) their market value can be observed permanently and they can be liquidated easily,  

(2) their systematic credit cycle risk is low, i.e. if the credit cycle deteriorates and the number 

of defaults in the portfolio rises a downturn of the collaterals needs not to be expected. 

 

In order to evaluate the second characteristic specifically, we calculate the haircuts for each 

assets classes under consideration as announced in equation (12) and (13). We use the one-

month standard deviation σC,1 Month of the logarithmic return during the last five years of the 

analysis (1999-2003). For the credit cycle sensitive haircut (see equation (12)) we provide two 

estimates: Firstly, we determine a risk-adjusted value (reas)
senH  that might be most reasonable 

for risk management assessing that the coefficients vary tremendously over time. It is based 

on (reas)
Pearρ  that is the highest positive (Pearson) correlation within a 95th percentile interval con-

sidering each decade separately. Secondly, a neutral haircut (neutr )
senH  is calculated by using 

(neutr )
Pearρ  (if its level of significance is lower than 15 %) or is identified with zero (if the level of 

significance is not lower than 15 %). The parameter (neutr )
Pearρ  stands for the linear correlation 

over the whole period. Additionally, we estimate conservative haircuts Hcon on the basis of the 

99th percentile of the standard normal distribution (see equation (13)). The results and stan-

dard supervisory haircuts HBII of Basel II (if available) are shown in Table 7. 

 

TABLE 7 Haircuts of Financial Collaterals 
 

Obviously, our results for the haircut Hcon do not differ very much from the supervisory hair-

cuts HBII although we used indices and not individual stocks and bonds. However, as expected 

from theory the haircuts decline if only the standard deviation with respect to the credit cycle 

                                                 
67 This result is not very surprising since in Germany small and medium sized companies mostly are not traded 

on the capital markets. 
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is taken into consideration for calculating haircuts (reas)
senH  and (neutr )

senH . For the risk adjusted, 

reasonable haircut (reas)
senH  the discounts drop merely by half whereas for the neutral estimate 

(neutr )
senH  in most cases a haircut of zero seems to be appropriate. Especially this statement 

stresses that the link between the capital market and insolvency rates can not be identified 

confidently. 

 

We can conclude that existing valuation procedures of financial collaterals do not account for 

the independency of capital markets and credit cycle of individual or small enterprises. We 

showed how the results from the empirical investigation in section  4.4 can be integrated in the 

valuation procedure of financial collaterals. Lately, without sticking to the presented study 

one could raise the striking argument for lower haircuts than proposed by Basel II because a 

systematic linkage between the performance of national and international capital markets and 

the performance of individual or small enterprises (acting more locally) is doubtful. The 

evaluation of financial collaterals should account for that. 

 

5. Conclusion  

Correlations are the main drivers for financial risk that arise from credit portfolios. In the pre-

sent paper we investigate the systematic relationship between financial collaterals and default 

rates that we call “(systematic) credit cycle risk” of collaterals and that specially has to be 

considered when own LGD-estimates according to Basel II are determined. To our knowledge 

such an investigation is carried out for the first time, and therefore was partitioned into three 

parts: modelling, empirical analysis, and its implications for haircut calculations. Firstly, we 

present a simple model that distinguishes between recovery from the collateral and from other 

firms assets. Because we were mainly interested in the relationship between the collateral and 

the cyclicality of defaults within a credit portfolio we give an estimation procedure for evalu-

ating the correlation between a systematic factor for the credit cycle and the performance of 

collaterals. We claim that our model is capable to build a theoretic framework in order to 

identify dependencies between recovery rates, especially those of collateralized loans, and 

default rates, like they are mentioned by the BCBS. 

 

In order to show how an investigation can be carried out for loan portfolios we empirically 

implement our model to analyse a large database of German corporate insolvencies containing 

mostly individual or small enterprises, and financial collaterals. We find out that correlations 



28
 

 

are far from being strong or at a stretch being unit: especially the bond market seems to be 

inversely correlated to the credit cycle. Using an analytical approximation of the model, we 

suggest haircuts for financial collaterals that account for the less strong linkage between capi-

tal market and insolvency rates. 
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A. Appendix 

A.1 Derivation of Equations (3) and (4) 

Firstly, in the event of default the bank receives payments (d)
T TC +δ  from the liquidation of the 

collateral. The loss rate (d)
C,T+ Tδ  of the exposure L after the liquidation at t = T + δT is 

(d)
T T eff(d)

C,T+ T
C Lmax 1 ;0

L L
+δ

δ
⎛ ⎞

= − =⎜ ⎟
⎝ ⎠

, with ( )(d)
eff T TL : max L C ;0+δ= − . (A1) 

Secondly, the bank acquires a title on a fraction eff effL B∆ =  of the firms assets (d)
T TA +δ  de-

pending on the remaining exposure effL  and on the remaining total liabilities (after the liqui-

dation of the collateral) ( )
(D)

(d)
eff T TB max B C ;0 B+δ= − ≈ . We can calculate the loss rate 

(d)
un sec,T+ Tδ  from the unsecured exposure effL  of the credit after emergence of the collateral as 

(d) (d) (d)
T T T T T T(d)

unsec,T+ T
eff eff

A A Amax 1 ;0 max 1 ;0 max 1 ;0 .
L B B

+δ +δ +δ
δ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∆ ⋅
= − = − ≈ −⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
68 (A2) 

Resulting from assumption (D), the proportional loss from the unsecured part of the credit 

with collateral and from an unsecured credit is identical.  

 

Conditional on the systematic factor T Tx +δ  at t = T + δT (d)
T TC +δ  and (d)

t tA +δ  are independent 

(and therefore the collateral does not depend on the default state anymore). The expected loss 

rate of the secured loan in the event of default conditional on T Tx +δ  becomes 

( ) ( ) ( ) ( )(d) (d) (d) (d)
sec,T+ T T T C,T+ T unsec,T+ T T T eff T T unsec,T+ T T T

1E | x E | x E L   x E | x
Lδ +δ δ δ +δ +δ δ +δ= ⋅ = ⋅ ⋅  (A3) 

where (d)
sec,T+ Tδ  ( (d)

unsec,T+ Tδ ) stand for the loss rate of the secured (unsecured) loan in the event 

of default. 

 

                                                 
68 This formulation of the loss rate is a stylized, simplified notation of common loss assumptions in credit deriva-

tives pricing models, see e.g. Briys and Varenne (1997) or Klein (1996). A literature review can be found in 

Uhrig-Homburg (2002). A similar approach with log-normally distributed assets (d)
T TA +δ  is used by Pykthin and 

Dev (2002). 
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A.2 Derivation of Equation (11) 

Let Tq (x )α  denote the α-quantile of Tx , i.e. ( )T TP x q (x )α≤ = α . Provided that69 the assump-

tions  

(1) the portfolio is “infinitely homogeneous”, and 

(2) 
n

(n)
i i,T+ T T

i 1

E w | xδ
=

⎛ ⎞⋅⎜ ⎟
⎝ ⎠
∑  is decreasing in Tx  

are fulfilled the VaR of the portfolio default rate TDR∞  and the portfolio loss rate TLR∞  can be 

determined by using equations (5) and (8) with T Tx q (x )α= . Since assumption (1) is already 

stated (see assumption (F) in subsection  3.2), only assumption (2) has to be revised carefully. 

 

In our context by using equations (2) and (3) the expected loss at T + δT of an individual 

credit conditional on Tx  is 

( ) ( ) ( )(d)
sec,T+ T T sec,T+ T T A T eff T unsec T A T

1E | x E | x p (x ) E L   x LGD | x p (x )
Lδ δ= ⋅ = ⋅ ⋅ ⋅  (A4) 

whereas A Tp (x )  is specified by equation (2) and unsec TLGD | x  (the loss rate of an unsecured 

part of the loan) may be determined by the models of Frye (2000a), Pykthin and Dev (2002), 

Pykthin (2003), or Tasche (2004). Both terms A Tp (x )  and unsec TLGD | x  are decreasing in Tx , 

and thus, assumption (2) is valid. 

 

The effect of the collateral can be determined (see equation (4) in subsection  3.1) as 

( ) ( )( )eff T T T TE L   x E max L C   x ;0+δ= − . (A5) 

Since the value of the collateral at time T+δT can be calculated by equation (9) and (10) we 

get for equation (A5)70 

( ) ( ) ( )T T T
eff T T T C, T C

E C   x
E L   x N(d | x ) N d   x 1

L
+δ

δ= − ⋅ − σ ⋅ − ρ  with (A6) 

( )
2
C, T C

T T T T C, T C, T C T
1

E C   x C exp x
2

δ
+δ δ δ

⎛ ⎞σ ⋅ − ρ
= ⋅ µ ± σ ⋅ ρ ⋅ +⎜ ⎟⎜ ⎟

⎝ ⎠
, (A7) 

( )T C, T C, T C T
T

C, T C

ln C ln(L) x
d   x

1
δ δ

δ

− − µ ± σ ⋅ ρ ⋅
=

σ ⋅ − ρ
. (A8) 

                                                 
69 See e. g. Gordy (2003), especially p. 205, assumptions (A-2), and p. 207, assumptions (A-3) and (A-4). 
70 See e.g. Hull (2003), pp. 268-270. 
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With the well established approximation C, T 0δµ ≈  and C, T 1δσ  we may use the following 

simplifications71 

( ) ( )MT T T T C,t C TE C   x C 1 x+δ ≈ ⋅ ± σ ⋅ ρ ⋅ , (A9) 

TN(d   x ) 0≈  and ( )T C, T CN d   x 1 0δ− σ ⋅ − ρ ≈  if ( )MT C,t C TC 1 x L⋅ ± σ ⋅ ρ ⋅ ≥ , (A10) 

TN(d   x ) 1≈  and ( )T C, T CN d   x 1 1δ− σ ⋅ − ρ ≈  if ( )MT C,t C TC 1 x L⋅ ± σ ⋅ ρ ⋅ < . (A11) 

Concluding from this we are able to write 

( ) ( )( )eff T TE L   x max L C 1 H ;0≈ − ⋅ +  with 
MC C,t TH x= ± ρ ⋅ σ ⋅ . (A12) 

Under a VaR approach, the effective exposure VaR
effL  of the credit can be calculated as the ex-

pected effective exposure conditional on T Tx q (x )α= : 

( ) ( )( )VaR
eff eff T T senL : E L   q (x ) max L C 1 H ;0α= ≈ − ⋅ +  with C C, T T TH x q (x )δ α= ± ρ ⋅ σ ⋅ = .(A13) 

As long as H < 0 the assumption (2) is valid anyway since ( )eff TE L x  is decreasing in Tx . If 

H > 0, assumption (2) may still hold, since it has to be valid on a portfolio basis. In this case, 

further proofs on the portfolio expected loss has to be carried out.72 

 

A.3 Equations for the Estimation Procedure 

Since the default point is normal distributed, i.e.  

( )2T DP DPDP ~ N ;µ σ  (A14) 

with 1
DP A A A AN (PD ) / 1 : (PD , )−µ = − ρ = µ ρ  and ( )2 2

DP A A A/ 1 : ( )σ = ρ − ρ = σ ρ  (A15) 

that can also be written as 

1
A A

T T
AA

N (PD )DP x
11

− ρ
= + ⋅

− ρ− ρ
 with Tx ~ N(0,1) , (A16) 

we get from a simple point estimation the sample mean and sample variance73 

DP T
T 1

1ˆ DP
τ

=

µ = ⋅
τ ∑  and ( )22 

DP T DP
T 1

1ˆ ˆDP
1

τ

=

σ = ⋅ − µ
τ − ∑  (A17) 

                                                 
71 For the following expressions we used the approximations y 1exp(y) 1 y⎯⎯⎯→ + , a 0,y 1N(a / y) 1>⎯⎯⎯⎯→  and 

a 0,y 1N(a / y) 0<⎯⎯⎯⎯→ . 
72 See also Gordy (2003), p. 207 assumption (A-4), especially number (ii) and number (iii) and the discussion 

there. 
73 See e.g. Jorion (2001), p. 123, or Greene (2003), pp. 886-888. 
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and the estimated asymptotic covariance matrix 
2 
DP

11

N 4 
DP 22

ˆ
0 0

:
ˆ2 00

1

σ⎛ ⎞
⎜ ⎟ Σ⎛ ⎞τΣ = =⎜ ⎟ ⎜ ⎟⋅σ Σ⎜ ⎟ ⎝ ⎠⎜ ⎟τ −⎝ ⎠

, (A18) 

i.e. ( )
2 
DP

DP
ˆˆVar σ

µ =
τ

 and ( )
4 
DP2 

DP
ˆ2ˆVar

1
⋅σ

σ =
τ −

. (A19) 

For the calculation of the estimated parameters Aρ̂  and APD  and their estimated asymptotic 

covariance matrix it has to be accounted for the nonlinear functions PDA(µ, σ2) and ρA(µ, 

σ2).74 From (A15) we can conclude 
2 

A DP2 
DP A 2 

A DP

ˆ ˆˆˆ
ˆ ˆ1 1

ρ σ
σ = ⇔ ρ =

− ρ + σ
 (A20) 

and 

1 A DP
ADP 2 

A DP

ˆN (PD )ˆ PD N
ˆ ˆ1 1

− ⎛ ⎞µ
µ = ⇔ = ⎜ ⎟⎜ ⎟− ρ + σ⎝ ⎠

. (A21) 

We use Delta-Method to calculate the asymptotic covariance matrix and therefore derive the 

Jacobian Matrix of ρA and PDA 

( )

( )

A A
2 

DP DP

A A
2 

DP DP

DP DP
32 2 2 

2 DP DP DP2 11 12DP

22

22 
DP

PD PD

J

1 1n n
1 1 1 J J1 : .

0 J10
1

∂ ∂⎛ ⎞
∂µ ∂σ⎜ ⎟

= ⎜ ⎟∂ρ ∂ρ⎜ ⎟∂µ ∂σ⎝ ⎠
⎛ ⎞⎛ ⎞ ⎛ ⎞µ µ

⋅ − ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ σ + σ + σ⎜ ⎟ ⎛ ⎞⎝ ⎠ ⎝ ⎠+ σ= =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎜ ⎟

⎜ ⎟⎜ ⎟+ σ⎝ ⎠

 (A22) 

In order to calculate the asymptotic covariance matrix 
2 2

11 12 11 11 11 11 12 22 12 22 22T
DP N 2

22 22 12 22 12 22 22 22 22

J J 0 J 0 J J J J
J J .

0 J 0 J J J J J
Σ Σ + Σ Σ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞

Σ = Σ = =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟Σ Σ Σ⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠
 (A23) 

From that we can conclude 

( )
( )

4 
DP2

A 22 22 42 
DP

ˆ2ˆVar J
1 ˆ1

σ
ρ = Σ = ⋅

τ − + σ
 (A24) 

and 

                                                 
74 See e.g. Greene (2003), p. 70 and p. 870, for a brief overview about the following proceeding. 
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( ) ( ) ( )
( ) ( )

2 22 2 
DP DPDP2 2 2 A 11 11 12 22 DP 32 2 

DP DP

ˆ ˆ-1 1 +ˆ ˆVar PD J J n
ˆ1 ˆ1 -1

⎛ ⎞⎡ ⎤⎛ ⎞ τ ⋅ + σ τ ⋅ σµ
⎜ ⎟= Σ + Σ = ⋅ σ ⋅⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟+ σ + σ ⋅ τ ⋅ τ⎢ ⎥⎝ ⎠⎣ ⎦ ⎝ ⎠

. (A25) 

 

A.4 Unbiasedness of the Estimators 

It has to be shown, that the estimated expectation of the asset correlation Aρ̂  as well as the 

estimated expectation of the realization Tx̂  of systematic factor do not depend on PDA but on 

the fluctuation of the default rate around PDA. 

According to our model, the default point can be re-written as 

T DP DP TDP x
∞

= µ + σ ⋅  with 
1

A
DP

A

N (PD )
1

−

µ =
− ρ

 and A
DP

A1
ρ

σ =
− ρ

. (A26) 

The variance of the default point 

( ) ( ) ( )2 TDP DP DP T A AVar DP Var x 1
∞

σ = = µ + σ ⋅ = ρ − ρ  (A27) 

does obviously not depend on PDA. 

The estimator ( )2 2 
A DP DPˆ ˆ ˆ1ρ = σ + σ  for ρA relies only on the empirical variance 2 

DPσ̂ . Since its 

expectation is equal to ( )2 2 
DP DPˆE σ = σ , the expectation of Aρ̂  also do not depend on PDA. Ad-

ditionally, the estimation Tx̂  of a realization Tx  of the systematic factor at time T is related to 

the observed realization TDP∞  using Aρ̂  and APD  due to 

1 A AT DP
T T(A26)

DP A A

ˆˆ 1DP N (PD )x̂ DP
ˆ ˆ ˆ

∞ −
∞

− ρ− µ
= = − ⋅

σ ρ ρ
. (A28) 

Thus, the observed default point is normalized by DPµ̂ . Since the expectation of estimated 

value DPµ̂  is equal to the expected value of TDP
∞

, ( ) TDP DPˆE E(DP )
∞

µ = µ = , Tx̂  also does not 

depend on DPµ  and therefore not on APD . 
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A.5 ADF-Regression and Autoregressive Regression of the De-

fault Point and Detrended Default Point 

TABLE 8 Statistics of the ADF-Regression of the Default Point 
 and Detrended Default Point 

 

TABLE 9 Statistics of the Autoregressive Regression of the Default Point and Detrended 
Default Point 

 

 

A.6 Tests of Autocorrelation and Stationary (KPSS) of the Default 

Point and Detrended Default Point 

TABLE 10 Test of Autocorrelation of the Default Point and Detrended Default Point 
 

TABLE 11 KPSS-Test of Stationary of the Default Point and Detrended Default Point 
 

 

A.7 Tests of Normality of the Detrended Default Point 

TABLE 12 Statistics of the Tests of Normality of the Detrended Default Point 
 

 

A.8 Tests of Autocorrelation of the Systematic Credit Cycle Factor 

TABLE 13 Tests of Autocorrelation of the Systematic Credit Cycle Factor 
 

 

A.9 Tests of Normality and Autocorrelation of the Logarithmic re-

turns of Financial Collaterals 

TABLE 14 Tests of Normality of the Logarithmic returns of Financial Collaterals 
 

TABLE 15 Tests of Autocorrelation of the Logarithmic returns of Financial Collaterals 
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Figures and Tables 

 

Figure 1 Default Rates and Default Points for Entire Germany, 1962 – 2003 
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Figure 2 Detrended Default Rates and the Systematic Credit Cycle Factor 
for Entire Germany 
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Figure 3 Correlations between Sector Systematic Factors and Prime Indexes 

The linear correlation coefficients due to Pearson-Bravais (ρPear) are shown. For the hypothesis of correlation 
coefficients being zero (no correlation) using t-statistics the p-values are reported. Only the period from 1994to 
2003 is considered. 
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Figure 4 Correlations between Sector Systematic Factors and Yield 

The linear correlation coefficients due to Pearson-Bravais (ρPear) are shown. For the hypothesis of correlation 
coefficients being zero (no correlation) using t-statistics the p-values are reported. The period from 1965 to 2003 
is considered. 
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Figure 5 Correlations between Sector Systematic Factors and Maturity 

The linear correlation coefficients due to Pearson-Bravais (ρPear) between the systematic factor (entire Germany) 
and the return of the REX and the yield on German Bonds outstanding are shown. For the hypothesis of correla-
tion coefficients being zero (no correlation) using t-statistics the p-values are reported. The period from 1962 to 
2003 is considered. 
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Table 1 Estimations of Aρ̂  and APD  for Entire Germany and the Six Sectors 

Sector  Aρ̂  APD  

 Entire Germany 0.0087††† 

(0.0019) 
0.0013 … 0.0113††† 

(0.0058) 

1 Energy and Mining 0.0183††† 

(0.0043) 0.0003 … 0.0011††† 

2 Manufacturing 0.0104††† 

(0.0023) 
0.0013 … 0.0113††† 

(0.0091) 

3 Construction 0.0129††† 

(0.0028) 
0.0026 … 0.0250††† 

(0.0070) 

4 Wholesale and Retail Trade 0.0049††† 

(0.0011) 
0.0011 … 0.0096††† 

(0.0043) 

5 Transport, Storage and Commu-
nication 

0.0072††† 

(0.0036) 
0.0010 … 0.0207††† 

(0.0058) 

6 Financial Intermediation 0.0162††† 

(0.0016) 
0.0014 … 0.0160††† 

(0.0054) 
Standard Errors for APD  and Aρ̂  are in parentheses, for APD  they refer to a standardized level of PDA = 0.5. 
All parameters are significant at 1%(†††) level. Since the expected default probability APD  varies due to the 
time trend, we report the lowest and highest value here.  
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Table 2 Correlation Analysis of the Geometric Returns of Financial Indexes and Prices 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 

(1) 

DAX 

1 

1 

1             

(2) 

MDAX 

 0.87††† 

 0.69††† 

 0.88††† 

1 

1 

1            

(3) 

SDAX 

 0.8††† 

 0.71 

 0.87††† 

 0.89††† 

 0.73††† 

 0.88††† 

1 

1 

1           

(4) 

REX 

 0.05*** 

 0.08*** 

 0.12*** 

 0.03*** 

 0.03*** 

 0.07*** 

- 0.24*** 

- 0.24*** 

- 0.33*** 

1 

1 

1          

(5) 

CGBI 

- 0.03 

- 0.02 

- 0.08 

- 0.08 

- 0.1 

- 0.13 

- 0.29* 

- 0.22** 

- 0.31** 

 0.96††† 

 0.85††† 

 0.96††† 

1 

1 

1         

(6) 

yBank 

 0.03 

- 0.06 

- 0.07 

 0.04 

 0.00 

- 0.03 

 0.27** 

 0.3** 

 0.43** 

- 0.96††† 

- 0.87††† 

- 0.97††† 

- 0.92†††

- 0.77†††

- 0.91 

1 

1 

1        

(7) 

yCorp. 

- 0.2 

- 0.18 

- 0.27 

- 0.19 

- 0.15 

- 0.23 

- 0.11* 

 0.03*** 

 0.04*** 

- 0.88††† 

- 0.77††† 

- 0.9††† 

- 0.75†††

- 0.66†††

- 0.77†††

 0.89†††

 0.78†††

 0.91 

1 

1 

1       

(8) 

GSCI 

- 0.24** 

- 0.2** 

- 0.28*** 

- 0.14* 

- 0.17** 

- 0.21** 

- 0.14 

- 0.24 

- 0.31 

- 0.07*** 

- 0.1*** 

- 0.15*** 

- 0.04***

- 0.1***

- 0.1*** 

 0.02***

 0.08***

 0.11***

 0.04***

 0.13***

 0.17***

1 

1 

1      

(9) 

Gold 

(USD) 

- 0.2** 

- 0.14*** 

- 0.2*** 

- 0.18* 

- 0.13** 

- 0.18** 

 0.02 

- 0.03** 

- 0.03** 

 0.02 

- 0.02* 

- 0.01* 

 0.09 

 0.06 

 0.06 

- 0.05 

 0.01 

 0,00 

- 0.05 

- 0.00**

- 0.01* 

 0.55†††

 0.35†††

 0.55†††

1 

1 

1     

(10) 

Gold 

(EUR) 

- 0.14** 

- 0.14** 

- 0.25** 

- 0.12* 

- 0.17* 

- 0.26* 

- 0.16 

- 0.26 

- 0.32 

 0.25 

 0.14 

 0.22 

 0.25 

 0.16 

 0.25 

- 0.24 

- 0.18 

- 0.27 

- 0.29 

- 0.16 

- 0.25 

 0.47†††

 0.27††

 0.37†† 

 0.4†† 

 0.21† 

 0.28***

1 

1 

1    

(11) 

JPY 

- 0.3* 

- 0.18** 

- 0.28** 

- 0.25 

- 0.15** 

- 0.22** 

- 0.07 

- 0.05** 

- 0.05** 

- 0.11** 

 0.06** 

 0.05** 

 0.24**

 0.16* 

 0.23* 

 0.05**

- 0.03***

- 0.05***

 0.11***

- 0.03**

- 0.04** 

 0.41††

 0.15***

 0.23***

 0.42††

 0.41 

 0.57†††

 0.11*** 

 0.15*** 

 0.21*** 

1 

1 

1   

(12) 

USD 

- 0.23*** 

- 0.15** 

- 0.23*** 

- 0.19** 

- 0.07** 

- 0.14** 

- 0.09 

- 0.09 

- 0.1 

- 0.13 

 0.07 

 0.08 

 0.16* 

 0.17* 

 0.22* 

 0.08 

- 0.05 

- 0.06 

 0.15 

- 0.02 

- 0.05 

 0.19***

- 0.02**

- 0.01** 

- 0.01***

 0.02***

 0.03***

- 0.06 

 0.03** 

 0.06** 

 0.91 

 0.62††† 

 0.79††† 

1 

1 

1  

(13) 

GBP 

- 0.22** 

- 0.08** 

- 0.11** 

- 0.14** 

 0.01 

 0.00* 

 0.11 

 0.14 

 0.23 

- 0.43†† 

- 0.27†† 

- 0.4†† 

- 0.3 

- 0.15* 

- 0.22* 

 0.4†† 

 0.25††

 0.38†† 

 0.32† 

 0.17 

 0.26 

 0.08**

 0.07 

 0.11 

 0.14 

 0.10 

 0.15 

- 0.05 

- 0.01 

- 0.05 

 0.48††† 

 0.25†† 

 0.37†† 

 0.47††† 

 0.27†† 

 0.37†† 

1 

1 

1 

The indication of the columns is carried out only in terms of the specification of the numbers that are dedicated 
to the variables in the first column. The correlation coefficients are those due to Pearson-Bravais (linear correla-
tion), Kendall (rank correlation) and Spearmann (linear rank correlation). For the hypothesis of correlation coef-
ficients being zero (no correlation) significance is reported at level of 1%(†††) / 5% (††) / 10% (†) / 15% (***) / 
30% (**) / 50% (*). 
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Table 3 Results of the Correlation-Analysis between the Systematic Factor and Returns of 
Stock Indices 

T,GERx̂  whole 
period 

1974-1983 1984-1993 1994-2003 

DAX 
ρSpear = - 0.1346* 
τB =  - 0.1225* 
ρPear =  - 0.1496* 

ρSpear = - 0.7697†† 
τB =  - 0.6444†††

ρPear =  - 0.6707†† 

ρSpear = - 0.1757 
τB =  - 0.1555 
ρPear =  - 0.1497 

ρSpear = - 0.1757 
τB =  - 0.1111 
ρPear =   0.0977 

MDAX 
ρSpear = - 0.1209 
τB =  - 0.0838 
ρPear =  - 0.0911 

ρSpear = - 0.4787** 
τB =  - 0.3333**

 

ρPear =  - 0.4917***
 

ρSpear = - 0.1393 
τB =  - 0.1555 
ρPear =  - 0.1393 

ρSpear = - 0.2242 
τB =  - 0.1555 
ρPear =  - 0.0427 

SDAX 
ρSpear = - 0.0642 
τB =  - 0.0476 
ρPear =  - 0.1987* 

  
ρSpear = - 0.0666 
τB =  - 0.0222 
ρPear =  - 0.1925 

 

The correlation coefficients are those due to Spearmann (ρSpear), Kendall (τB), and Pearson-Bravais (ρPear). For 
the hypothesis of correlation coefficients being zero (no correlation) significance is reported at level of 1%(†††) 
/ 5% (††) / 10% (†) / 15% (***) / 30% (**) / 50% (*). 
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Table 4 Results of the Correlation-Analysis between the Systematic Factor and Returns of 
Fixed Income Securities Indexes and Yields 

T,GERx̂  whole 
periode 

1964-1973 1974-1983 1984-1993 1994-2003 

REX 
ρSpear= - 0.2743*** 
τB=  - 0.1952† 
ρPear=  - 0.2945† 

 
ρSpear= - 0.7818†† 
τB=  - 0.600†† 
ρPear=  - 0.7818†† 

ρSpear= - 0.1515 
τB=  - 0.1555 
ρPear= - 0.1988 

ρSpear=- 0.0909 
τB=  - 0.1111 
ρPear=  - 0.2631* 

CGBI 
ρSpear=  0.0421 
τB=  - 0.0058 
ρPear=  - 0.0557 

   
ρSpear=- 0.0787 
τB=  - 0.0666 
ρPear=  - 0.1834 

yBank 
ρSpear=  0.2887† 
τB=   0.1848† 
ρPear=   0.2782† 

ρSpear=  0.4303**

τB=   0.3333**

ρPear=   0.2622* 

ρSpear=  0.7818†† 
τB=   0.6000†† 
ρPear=   0.7568† 

ρSpear=  0.2606* 
τB=   0.2000* 
ρPear=   0.2294 

ρSpear=  0.2000 
τB=   0.1111 
ρPear=   0.3450* 

yCorp. 
ρSpear=  0.3373†† 
τB=   0.2218†† 
ρPear=   0.3393†† 

ρSpear=  0.5636† 
τB=   0.422*** 
ρPear=   0.4372**

ρSpear=  0.7818†† 
τB=   0.6000†† 
ρPear=   0.7964†††

ρSpear=  0.2121 
τB=   0.2000* 
ρPear=   0.2047 

ρSpear=  0.4545* 
τB=   0.3777**

ρPear=   0.5758† 
 

The correlation coefficients are those due to Spearmann (ρSpear), Kendall (τB), and Pearson-Bravais (ρPear). For 
the hypothesis of correlation coefficients being zero (no correlation) significance is reported at level of 1%(†††) 
/ 5% (††) / 10% (†) / 15% (***) / 30% (**) / 50% (*). 
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Table 5 Results of the Correlation-Analysis between the Systematic Factor and Returns of 
Commodities 

T,GERx̂  whole 
period 

1974-1983 1984-1993 1994-2003 

GSCI 
ρSpear =  0.2965† 
τB =   0.1871*** 
ρPear =   0.2542*** 

ρSpear =  0.3939** 
τB =   0.2444* 
ρPear =   0.6216† 

ρSpear =  0.3212* 
τB =   0.2000* 
ρPear =   0.4345*** 

ρSpear =  0.1636 
τB =   0.1111 
ρPear =  - 0.0245 

Gold 
(USD) 

ρSpear = - 0.0857 
τB =  - 0.0571 
ρPear =   0.0019 

ρSpear =  0.2121 
τB =   0.1555 
ρPear =   0.4231** 

ρSpear = - 0.2363 
τB =  - 0.2000* 
ρPear =  - 0.2733* 

ρSpear = - 0.2848* 
τB =  - 0.2000* 
ρPear =  - 0.4620** 

Gold 
(EUR) 

ρSpear = - 0.0054 
τB =   0.0222 
ρPear =  - 0.0128 

ρSpear =  0.2727* 
τB =   0.2000* 
ρPear =   0.4078** 

ρSpear =  0.3818** 
τB =   0.3777** 
ρPear =   0.1731 

ρSpear =  0.0424 
τB =  - 0.0222 
ρPear =   0.1335 

 

The correlation coefficients are those due to Spearmann (ρSpear), Kendall (τB), and Pearson-Bravais (ρPear). For 
the hypothesis of correlation coefficients being zero (no correlation) significance is reported at level of 1%(†††) 
/ 5% (††) / 10% (†) / 15% (***) / 30% (**) / 50% (*). 
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Table 6 Results of the Correlation-Analysis between the Systematic Factor and Changes of 
Exchange rates 

T,GERx̂  whole 
period 

1974-1983 1984-1993 1994-2003 

USD 
ρSpear =  0.0744 
τB =   0.0443 
ρPear =  - 0.0130 

ρSpear =  0.2242 
τB =   0.2000* 
ρPear =   0.3190* 

ρSpear = - 0.2121 
τB =  - 0.1555 
ρPear =  - 0.4275** 

ρSpear = - 0.3454* 
τB =  - 0.1555 
ρPear =  - 0.5851† 

GBP 
ρSpear = - 0.1114 
τB =  - 0.0725 
ρPear =  - 0.1115 

ρSpear = - 0.4181** 
τB =  - 0.3333** 
ρPear =  - 0.4500** 

ρSpear = - 0.1393 
τB =  - 0.1111 
ρPear =  - 0.1569 

ρSpear =  0.0667* 
τB =   0.0667 
ρPear =  - 0.1449 

JPY 
ρSpear =  0.1928** 
τB =   0.1491** 
ρPear =   0.1581* 

ρSpear =  0.2363 
τB =   0.1555 
ρPear =   0.1848 

ρSpear = - 0.1515 
τB =  - 0.1111 
ρPear =  - 0.0480 

ρSpear = - 0.2484* 
τB =  - 0.1555 
ρPear =  - 0.4104** 

 

The correlation coefficients are those due to Spearmann (ρSpear), Kendall (τB), and Pearson-Bravais (ρPear). For 
the hypothesis of correlation coefficients being zero (no correlation) significance is reported at level of 1%(†††) 
/ 5% (††) / 10% (†) / 15% (***) / 30% (**) / 50% (*). 
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Table 7 Haircuts of Financial Collaterals 
 σC,1 Month (reas)

Pearρ  (neutr )
Pearρ  HBII Hcon (reas)

senH  (neutr )
senH

Stocks 
DAX 0.0836 0.6852 0 15% 19.45% 13.33% 0%
MDAX 0.0519 0.6031 0 15% 12.07% 7.28% 0%
Bonds 
CGBI (1-3 years) 0.0041 0.7966 0 0,5-2% 0.95% 0.76% 0%
CGBI (3-5 years) 0.0086 0.6770 0 2% 2.00% 1.35% 0%
REX (1 year) 0.0021 0.4727 -0.3475 0.5% 0.49% 0.23% -0.17%
REX(5 years) 0.0102 0.5025 -0.2938 2% 2.37% 1.19% -0.70%
REX(10 years) 0.0153 0.5073 0 4% 3.56% 1.81% 0%
Commodities 
GSCI 0.0632 0.8993 0.2543 14.70% 13.22% 3.74%
Gold [EUR] 0.0426 0.8255 0 15% 9.91% 8.18% 0%
Exchange Rates 
USD 0.0299 0.7900 0 8% 6.96% 5.50% 0%
GBP 0.0203 0.5333 0 8% 4.72% 2.52% 0%
JPY 0.0321 0.7296 0 8% 7.47% 5.45% 0%

 

The standard deviations σC,1 Month are based on the monthly geometric returns during the period 1999 to 2003. For 
the reasonable linear correlation (reas)

Pearρ  the highest upper 95%-quantil of all decades is taken. The neutral linear 
correlation (neutr)

Pearρ  represents the value, that is measured over the whole period. It is zero, if the level of signifi-
cance is less than 15 %. The four haircuts are those due to Basel II (HBII), own estimates using a 99%-quantil 
without reduction of the standard deviation (Hcon) , with reduction resulting from (reas)

Pearρ  ( (reas)
senH ) and from 

(neutr)
Pearρ   ( (neutr)

senH ). 
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Table 8 Statistics of the ADF-Regression of the Default Point 
 and Detrended Default Point 

 γ β Φ1 Φ2 Φ3 Φ4 Φ5 DW 
Entire Germany 

TDP∞∆  -0.17‡‡‡ 0.0035†† 0.65†† -0.26** 0.13*   1.94‡ 
( ,detrended)
TDP ∞∆  -0.20‡‡‡  0.69††† -0.26*** 0.13*   1.98‡‡‡ 

Energy and Mining 
TDP∞∆  -0.90‡‡‡ 0.0073† 0.18‡ -0.29** 0.58† 0.37** 0.67††† 1.85 

( ,detrended)
TDP ∞∆  -0.69‡‡‡  -0.08 0.25*** 0.39††   1.81 

Manufacturing 
TDP∞∆  -0.20‡‡‡ 0.0042†† 0.58††† -0.17*    1.99‡‡‡ 

( ,detrended)
TDP ∞∆  -0.27††  0.57††† -0.14*    1.86 

Construction 
TDP∞∆  -0.25† 0.0052††† 0.52†††     1.95‡‡ 

( ,detrended)
TDP ∞∆  -0.26†  0.50†††     1.96‡‡‡ 

Wholesale and Retail Trade 

TDP∞∆  -0.26†† 0.0044††† 0.53†††     1.93‡‡‡ 
( ,detrended)
TDP ∞∆  -0.26††  0.53†††     1.98‡‡‡ 

Transport, Storage and Communication 
TDP∞∆  -0.37†† 0.0077††† 0.36††     2.00‡‡‡ 

( ,detrended)
TDP ∞∆  -0.36††  0.38††     1.92 

Financial Intermediation 

TDP∞∆  -0.37† 0.0102††      2.00††† 
( ,detrended)
TDP ∞∆  -0.38†       2.00††† 

We used the following ADF-Regression: 
n

T T 1 j T- j T
j 1

DP m DP T DP∞ ∞
−

=

∆ = + γ ⋅ + β ⋅ + Φ ⋅ ∆ + ε∑  with 

T T T 1DP DP DP∞ ∞ ∞
−∆ = −  for TDP∞∆ . For ( ,detrended)

TDP ∞∆  β is set to zero. For the hypothesis of non-stationary (unit 
root, γ = 0) using Philips-Perron statistics, of regression coefficients being zero (β, Φ1,…, Φ5=0) using t-statistics 
and the hypothesis of no autocorrelation of the residuals (DW = 2) using Durban h statistics are reported at 
1%(†††) / 5% (††) / 10% (†) / 15% (***) / 30% (**) / 50% (*) / 80% (‡) / 85% (‡‡) / 90% (‡‡‡) level of sig-
nificance. 
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Table 9 Statistics of the Autoregressive Regression of the Default Point and Detrended De-
fault Point 

 m β Φ1 Φ2 DW F-value 2R  
Entire Germany 

TDP∞  -0.54 0.0037†† 1.37††† -0.57††† 1.76 382.47††† 0.97 
( ,detrended)
TDP ∞  -0.00  1.37††† -0.57††† 1.76 90.96††† 0.82 

Energy and Mining 

TDP∞  -1.71 0.0027* 0.16* 0.32** 2.09 6.65††† 0.34 
( ,detrended)
TDP ∞  -0.00  0.15* 0.26* 1.95 1.43* 0.03 

Manufacturing 

TDP∞  -0.66 0.0049††† 1.29††† -0.54††† 1.77 276.93††† 0.96 
( ,detrended)
TDP ∞  -0.00  1.30††† -0.55††† 1.77 65.03††† 0.77 

Construction 

TDP∞  -0.60 0.0052††† 1.28††† 0.53††† 1.96 263.48††† 0.95 
( ,detrended)
TDP ∞  -0.00  1.28††† -0.53††† 1.96 64.22††† 0.76 

Wholesale and Retail Trade 

TDP∞  -0.71 0.0044††† 1.26††† -0.53††† 1.93 446.6††† 0.97 
( ,detrended)
TDP ∞  -0.00  1.27††† -0.53††† 1.93 63.52††† 0.76 

Transport, Storage and Communication 

TDP∞  -0.97 0.0077††† 0.99††† -0.35†† 2.00 225.31 0.95 
( ,detrended)
TDP ∞  -0.00  1.00††† -0.37†† 2.00 24.86††† 0.57 

Financial Intermediation 

TDP∞  -0.97 0.0099†† 0.61††† 0.02 1.91 96.62††† 0.89 
( ,detrended)
TDP ∞  -0.01  0.62††† 0.02 1.91 10.685††† 0.35 

We used the following autoregressive regression: T 1 T-1 2 T-2 TDP m T DP DP∞ = + β ⋅ + Φ ⋅ + Φ ⋅ + ε  for TDP∞ . For 
( ,detrended)
TDP ∞  β is set to zero. For the hypothesis of regression coefficients being zero (β,Φ1,Φ2=0) using t-

statistics and of all regression coefficients (β=Φ1=Φ2=0) jointly being zero using F statistics significance is re-
ported at 1%(†††) / 5% (††) / 10% (†) / 15% (***) / 30% (**) / 50% (*) level. 
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Table 10 Test of Autocorrelation of the Default Point and Detrended Default Point 
Sector   Q LM DW 

 Entire Germany TDP∞  35.77 (0.00) 39.20 (0.00) 0.00 (< 0.01) 

  ( ,detrended)
TDP ∞  32.53 (0.00) 30.85 (0.00) 0.26 (< 0.01) 

1 Energy and Mining TDP∞  10.75 (0.00) 10.49 (0.00) 0.00 (< 0.01) 

  ( ,detrended)
TDP ∞  1.36 (0.24) 1.42 (0.23) 1.48 (> 0.05) 

2 Manufacturing TDP∞  35.16 (0.00) 38.62 (0.00) 0.00 (< 0.01) 

  ( ,detrended)
TDP ∞  29.28 (0.00) 28.30 (0.00) 0.33 (< 0.01) 

3 Construction TDP∞  35.47 (0.00) 38.54 (0.00) 0.00 (< 0.01) 

  ( ,detrended)
TDP ∞  29.97 (0.00) 28.49 (0.00) 0.33 (< 0.01) 

4 Wholesale and Retail 
Trade TDP∞  37.01 (0.00) 39.50 (0.00) 0.00 (< 0.01) 

  ( ,detrended)
TDP ∞  30.54 (0.00) 28.14 (0.00) 0.34 (< 0.01) 

5 Transport, Storage 
and Communication TDP∞  33.80 (0.00) 35.95 (0.00) 0.00 (< 0.01) 

  ( ,detrended)
TDP ∞  21.77 (0.00) 20.71 (0.00) 0.51 (< 0.01) 

6 Financial Intermedia-
tion TDP∞  30.01 (0.00) 33.78 (0.00) 0.00 (< 0.01) 

  ( ,detrended)
TDP ∞  15.50 (0.00) 14.86 (0.00) 0.73 (< 0.01) 

The tests used are the Ljung-Box-Pierce test (Q), Lagrange Multiplier test by Godfrey-Breusch (LM), and 
Durbin-Watson test (DB) for 1 lag. Tested is the hypothesis of no autocorrelation, in parentheses are the corre-
sponding p-values (“>” or “<” if the p-value is not specified exactly). 
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Table 11 KPSS-Test of Stationary of the Default Point and Detrended Default Point 
Sector   ω = 4 ω= 8 ω= 12 

 Entire Germany TDP∞  0.1546††† 0.1260†† 0.1191†† 

  ( ,detrended)
TDP ∞  0.1546† 0.1260† 0.1191† 

1 Energy and Mining TDP∞  0.0835††† 0.0956††† 0.1723† 

  ( ,detrended)
TDP ∞  0.0838††† 0.0964††† 0.1749††† 

2 Manufacturing TDP∞  0.1676† 0.1421†† 0.1272†† 

  ( ,detrended)
TDP ∞  0.1676††† 0.1421††† 0.1272††† 

3 Construction TDP∞  0.1362†† 0.1231†† 0.1186††† 

  ( ,detrended)
TDP ∞  0.1362††† 0.1231††† 0.1186††† 

4 Wholesale and Retail 
Trade TDP∞  0.1145††† 0.1090††† 0.1153††† 

  ( ,detrended)
TDP ∞  0.1145††† 0.1090††† 0.1153††† 

5 Transport, Storage 
and Communication TDP∞  0.0749††† 0.0823††† 0.1032††† 

  ( ,detrended)
TDP ∞  0.0749††† 0.0823††† 0.1032††† 

6 Financial Intermedia-
tion TDP∞  0.1746† 0.1287†† 0.1251†† 

  ( ,detrended)
TDP ∞  0.1746††† 0.1287††† 0.1251††† 

For the KPSS test the regression: 
T

T i T
i 1

DP m T k∞

=

= + β ⋅ + ⋅ ε + η∑  for TDP∞  is used. For ( ,detrended)
TDP ∞  β is set to 

zero. For the hypothesis of stationary (k = 0) with the reference point ω using KPSS statistics significance are 
reported at 1%(†††) / 5% (††) / 10% (†) level. 
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Table 12 Statistics of the Tests of Normality of the Detrended Default Point 

Sector  KSL JB G DP SWR 

 Entire Germany 0.1315 
(0.07) 

3.3419 
(0.18) 

1.4398 
(0.15) 

3.6273 
(0.16) 

2.171 
(0.02) 

1 Energy and Mining 0.1204 
(> 0.2) 

2.1755 
(0.34) 

1.900 
(0.06) 

2.1809 
(0.33) 

1.3887 
(0.08) 

2 Manufacturing 0.0903 
(> 0.2) 

2.1253 
(0.35) 

0.6546 
(0.52) 

2.202 
(0.33) 

1.0808 
(0.14) 

3 Construction 0.1505 
(0.03) 

2.5343 
(0.28) 

0.2918 
(0.77) 

2.5493 
(0.28) 

1.7818 
(0.04) 

4 Wholesale and Retail Trade 0.1787 
(< 0.01) 

3.5778 
(0.17) 

0.3462 
(0.7292)

4.4721 
(0.11) 

2.3510 
(0.01) 

5 Transport, Storage and 
Communication 

0.0775 
(> 0.2) 

1.1480 
(0.56) 

0.3757 
(0.71) 

1.0884 
(0.58) 

-0.02 
(0.49) 

6 Financial Intermediation 0.1415 
(0.05) 

2.3700 
(0.31) 

2.7738 
(0.01) 

2.0296 
(0.36) 

1.7354 
(0.04) 

The tests used are the Kolmogorov-Smirnov-Lilliefors (KSL), Jarque-Bera (JB), Geary (G) and D’Agostino-
Pearson (DP) and Sharpiro-Wilk-Royston (SWR). We tested the hypothesis, that the data is normal distributed.. 
In parentheses are the corresponding p-values (“>” or “<” if the p-value is not specified exactly). 
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Table 13 Tests of Autocorrelation of the Systematic Credit Cycle Factor 

Sector  Q LM DW 

 Entire Germany 32.5339 
(0.00) 

30.8478 
(0.00) 

0.2617 
(< 0.01) 

1 Energy and Mining 1.3570 
(0.24) 

1.4119 
(0.23) 

1.4780 
(> 0.05) 

2 Manufacturing 29.2754 
(0.00) 

28.2957 
(0.00) 

0.3308 
(< 0.01) 

3 Construction 29.9652 
(0.00) 

28.4902 
(0.00) 

0.3271 
(< 0.01) 

4 Wholesale and Retail Trade 30.5381 
(0.00) 

28.1433 
(0.00) 

0.3413 
(< 0.01) 

5 Transport, Storage and Commu-
nication 

21.7719 
(0.00) 

20.7121 
(0.00) 

0.50984 
(< 0.01) 

6 Financial Intermediation 15.5046 
(0.00) 

14.8602 
(0.00) 

0.73107 
(< 0.01) 

The tests used are the Ljung-Box-Pierce test (Q), Lagrange Multiplier test by Godfrey-Breusch (LM), and 
Durbin-Watson test (DB) for 1 lag. Tested is the hypothesis of no autocorrelation, in parentheses are the corre-
sponding p-values (“>” or “<” if the p-value is not specified exactly). 
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Table 14 Tests of Normality of the Logarithmic returns of Financial Collaterals 

Type Data Series KSL JB G DP SWR 

DAX 0.04315
(>0.2) 

0.7224 
(0.70) 

0.0487 
(0.96) 

1.3853 
(0.50) 

-1.0191 
(0.15) 

MDAX 0.0877 
(>0.2) 

0.5849 
(0.75) 

0.3915 
(0.70) 

1.3192 
(0.52) 

-0.2400 
(0.41) Stocks 

SDAX 0.1501 
(>0.2) 

0.4137 
(0.8131)

0.2540 
(0.80) 

0.3402 
(0.84) 

-0.7302 
(0.23) 

REX 0.1062 
(>0.2) 

1.7168 
(0.43) 

1.5450 
(0.1223)

1.6252 
(0.44) 

0.4365 
(0.33) 

CGBI 0.0906 
(>0.2) 

0.8097 
(0.66) 

1.2816 
(0.41) 

0.9019 
(0.64) 

-1.5623 
(0.06) 

yBank 
0.0734 
(>0.2) 

0.0900 
(0.96) 

0.6854 
(0.49) 

0.5912 
(0.74) 

-1.7315 
(0.04) 

Bonds 

yCorp. 
0.0589 
(>0.2) 

0.4895 
(0.7829)

0.1446 
(0.89) 

0.4982 
(0.78) 

-1.1972 
(0.37) 

GSCI 0.1417 
(0.09) 

2.1078 
(0.35) 

1.3685 
(0.17) 

3.5608 
(0.17) 

1.2326 
(0.11) 

Gold (USD) 0.1047 
(>0.2) 

23.2864
(0.00) 

2.2427 
(0.025) 

18.7839 
(0.00) 

2.7481 
(0.00) Commodities 

Gold (EUR) 0.1623 
(0.03) 

35.7018
(0.00) 

2.6382 
(0.01) 

24.262 
(0.00) 

3.575 
(0.00) 

JPY to EUR 0.0849 
(>0.2) 

0.0704 
(0.97) 

0.0849 
(0.43) 

0.9922 
(0.61) 

-1.4283 
(0.08) 

USD to EUR 0.1827 
(<0.01) 

42.1253
(0.35) 

1.6762 
(0.09) 

4.6052 
(0.4127) 

1.3416 
(0.09) 

Exchange 
Rates 

GBP to EUR 0.1978 
(<0.01)

2.5827 
(0.27) 

2.1134 
(0.03) 

3.0967 
(0.21) 

2.1763 
(0.01) 

The tests used are the Kolmogorov-Smirnov-Lilliefors (KSL), Jarque-Bera (JB), Geary (G) and D’Agostino-
Pearson (DP) and Sharpiro-Wilk-Royston (SWR). We tested the hypothesis, that the data is normal distributed.. 
In parentheses are the corresponding p-values (“>” or “<” if the p-value is not specified exactly). 
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Table 15 Tests of Autocorrelation of the Logarithmic returns of Financial Collaterals 

Type Data Series Q LM DW 

DAX 0.9516 
(0.76) 

0.0870 
(0.77) 

1.9263 
(> 0.05) 

MDAX 1.8325 
(0.18) 

1.7665 
(0.18) 

2.2733 
(> 0.05) Stocks 

SDAX 0.5906 
(0.44) 

0.8877 
(0.35) 

1.9219 
(> 0.05) 

REX 0.1868 
(0.67) 

0.1700 
(0.68) 

2.1077 
(> 0.05) 

CGBI 0.6117 
(0.43) 

0.5261 
(0.47) 

0.6928 
(< 0.01) 

yBank 
0.5806 
(0.45) 

0.5286 
(0.46) 

2.2143 
(> 0.05) 

Bonds 

yCorp. 
0.0008 
(0.97) 

0.0010 
(0.97) 

1.8671 
(> 0.05 

GSCI 0.02340 
(0.88) 

0.0213 
(0.88) 

1.8998 
(> 0.05) 

Gold (USD) 0.3231 
(0.57) 

0.2908 
(0.59) 

1.7106 
(> 0.05) 

Commodities 

Gold (EUR) 0.1623 
(0.69) 

0.1487 
(0.70) 

1.7257 
(> 0.05) 

JPY to EUR 0.1579 
(0.69) 

0.1405 
(0.71) 

1.9024 
(> 0.05) 

USD to EUR 3.0667 
(0.08) 

2.8609 
(0.09) 

1.3504 
(> 0.05) 

Exchange 

Rates 

GBP to EUR 1.6278 
(0.20) 

1.4845 
(0.22) 

2.4013 
(> 0.05) 

The tests used are the Ljung-Box-Pierce test (Q), Lagrange Multiplier test by Godfrey-Breusch (LM), and 
Durbin-Watson test (DB) for 1 lag. Tested is the hypothesis of no autocorrelation, in parentheses are the corre-
sponding p-values (“>” or “<” if the p-value is not specified exactly). 

 




