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1 Introduction

Grade retention is an intervention tool in education. It refers to the practice of

requiring a student to repeat the same grade which s/he has already completed be-

cause of her/his poor performance. In Jackson (1975), the aim of grade retention is

explained as an attempt at remedying inadequate academic progress and contribut-

ing to the development of students not ready for the next grade. The underlying

idea is that students who do not successfully complete a grade level will not be able

to digest the next higher grade’s material. These students are therefore, for their

own interest, required to repeat the grade. The most important question, however,

is whether grade retention really helps students to improve their grades or whether

it harms the students’ school success. This paper aims to address this question and

estimates the causal effect of this school intervention on several school outcomes.

The effects of grade retention have been a discussion topic for more than four

decades. Most studies concentrate on the effects of grade retention on performance

in later grades, on the likelihood of drooping out of high school, and on labor market

outcomes for late adolescence (see Guevremont, Roos, and Brownell (2007), McCoy

and Reynolds (1999a), Jimerson (1999), Jimerson (2001), and Eide and Showalter

(2001) among others.). The results are somewhat controversial: although the vast

majority of empirical work done with the data from the US and Canada points out

the negative effects of grade retention, there are also a number of papers indicating

gains.

Since being held in a grade is not a random assignment, simple mean comparisons of

outcome variables do not reveal the true causal effect of grade retention. We could

realize true causal effects over a whole population by using mean comparisons, if

we could randomly hold schoolchildren in the same grade for a second year. Since

such an experiment on schoolchildren is impossible and unethical, we should rely

on the econometric methods which enable identification of the true causal effects

in terms of potential outcomes. In the case of binary treatment, there are two po-

tential outcomes for treated and nontreated cases: one observed depending on the

realized treatment status, and the other one unobserved (i.e. counterfactual). Iden-

tification is achieved under some assumptions in potential outcome framework. The

crucial assumption I am using in this paper is Conditional Independence Assump-
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tion1. It means given a set of observable characteristics which are not affected by the

treatment, potential outcomes are independent of treatment assignment. There are

several methods proposed for estimating treatment effects under the assumption of

conditional independence (see Imbens (2004) for a review). The main methods can

be categorized into regression, propensity score weighting and matching methods.

Here, I estimate the effect of grade retention on different outcomes using regression,

propensity score weighting and a combination of regression and propensity score

weighting methods. The advantage of the combination over the single methods is

that the mixed method provides double protection against misspecification. That

is, the estimator is still consistent, even if either the propensity score or the mean

function is wrongly specified but not both (for further discussion of double robust-

ness see Robins, Rotnitzky, and Zhao (1995), Robins and Ritov (1997), Hirano and

Imbens (2001), Wooldridge (2007), and Bang and Robins (2005)).

In this paper I use a German dataset “Gymnasiastenstudie” (Central Archive for

Empirical Social Research (2007)) in order to estimate the causal effect of grade

retention on different school outcomes. This work distinguishes from the existing

literature in many ways. First of all, to my knowledge, there is no empirical study

published which analyzes the effects of grade retention using a Germany dataset.

The dataset I use here is restricted to students attending upper secondary school

(Gymnasium) in North Rhine-Westphalia. However, it is still representative for Ger-

many, since one fourth of the German population resides in North Rhine-Westphalia

and it is the biggest federal state in terms of population among the 16 federal states

in Germany. Furthermore, one forth of the students in Germany is attending school

in North Rhine-Westphalia. Besides that the upper secondary schools (Gymnasien)

in Germany serve almost for one half of the total students after primary education

(Grundschule)2. This paper is also one of the very few papers which rely on econo-

metric evaluation methods in order to analyze the effect of grade retention on school

outcomes. Another contribution of this paper is that it uses one of the least applied

econometric evaluation methods, namely Doubly Robust Method3.

1This assumption is called Ignorability of Treatment (given observed covariates X) by Rosen-
baum and Rubin (1983) and Unconfoundedness by Imbens (2004).

2The exact numbers can be found on the website of Federal Statistical Office:
http://www.destatis.de/.

3To my knowledge, there are only two applications of this method: Bang and Robins (2005)
and Hirano and Imbens (2001)
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The organization of the paper is as follows: Section 2 gives a short review of the

existing literature. Section 3 briefly explains identifying assumptions and the econo-

metric methods applied. Section 4 focuses on the sample and elaborates on the

empirical results. Finally, Section 5 summarizes the main results and concludes the

paper.

2 Literature Review

Grade retention has been an important topic in the last four decades especially for

educational researchers. This research is concentrated on characteristics of the stu-

dents who repeat a grade and the effect of grade retention on different outcomes, such

as academic achievement, socioemotional outcomes, behavioral outcomes and em-

ployment outcomes. The studies from educational research can be characterized as

more explorative data analysis rather than causal analysis. Nevertheless, economists

recently also show some interest on grade retention an its effects taking into account

possible causality issues (see for example Greene and Winters (2009),Corman (2003),

Eide and Showalter (2001),Jacob and Lefgren (2002), (2007) among others). Xia and

Kirby (2009) give a very comprehensive overview of research done on grade retention.

The large body of literature dealing with the characteristics of retained students

agree on many points. Most of the research show that boys are more likely to be

retained than girls (for example Byrd and Weitzman (1994), Dauber, Alexander,

and Entwisle (1993), El-Hassan (1998), Fine and Davis (2003), Guevremont, Roos,

and Brownell (2007), Hong and Yu (2007), McArthur and Bianchi (1993), Frederick

and Hauser (2008), Jimerson (1999)). Among others most of the above references

also point out that the retained children come from families with lower socioeco-

nomic characteristics such as low household income, lower educational attainment

and lower occupational position. Parents of the retained students show on average

less interest in their child’s school education. These studies indicate that the re-

tained students have lower cognitive skills (Blair (2001), Liddell and Rae (2001)),

and lower noncognitive skills, such as self conception, self confidence or social compe-

tence (Ferguson, Jimerson, and Dalton (2001), Jimerson et al. (1997), Robles-Pina,

Defrance, and Cox (2008)), compared to nonretained students.

The relation between grade retention and high school drop out has been investigated

in education research a lot. Several studies show that retained students are more
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likely to drop out from high school (Allensworth (2005), Goldschmidt and Wang

(1999), Guevremont, Roos, and Brownell (2007), Jimerson (1999), Jimerson, An-

derson, and Whipple. (2002), Jimerson, Ferguson, Whipple, Anderson, and Dalton

(2002), Roderick (1994)). Jacob and Lefgren (2007) use standard parametric re-

gression discontinuity design to investigate the relation between grade retention and

high school completion and they show that grade retention has a significant negative

effect on high school completion for older students but the effect is insignificant for

younger ones. Eide and Showalter (2001), however, show that the IV estimate of

the effect of grade retention on high school drop-out is insignificant.

The results of studies on the effect of grade retention on academic achievement

are somehow more controversial. Balitewicz (1998), Beebe-Frankenberger, Bocian,

MacMillan, and Gresham (2004), Frymier (1997), Guevremont, Roos, and Brownell

(2007), Hong and Yu (2007), Jimerson (1999), Jimerson (2001), McCoy and Reynolds

(1999b) show the negative effects of grade retention on academic achievement using

different methods. On the other hand, Greene and Winters (2004), (2007), (2009)

show some positive effects of grade retention on academic achievement.

3 Econometric Method

Consider N units which are drawn from a large population. For each individual i

in the sample, where i = 1, ..., N , we observe the triple (Yi, Di, Xi). Di shows the

binary treatment status for individual i:

Di =

{

1, if the ith individual is treated

0, otherwise

We observe also a vector of characteristics (covariates) for the ith individual denoted

by Xi. For each individual there are two potential outcomes (Yi0, Yi1). Yid denotes

the outcome for each individual i, for which Di = d where d ∈ {0, 1}. For each

individual only one of the potential outcomes is observed depending on the treatment

status. The observed outcome, denoted by Yi in the triple, can be written in terms

of treatment indicator (Di) and the potential outcomes:

Yi = DiYi1 + (1 − Di)Yi0
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Our primary interest lies in estimating the average causal effect of the repeating a

grade. This effect is called the average treatment effect (ATE). It gives the mean

effect of the treatment:

τ = E[Yi1 − Yi0] = E[Yi1] − E[Yi0]

Since only one of the potential outcomes is observed, ATE cannot be identified

without further assumptions. For the empirical study I assume that the following

assumptions hold:

Assumption 3.1 Conditional Independence Assumption (CIA)

Yi0, Yi1⊥Di|Xi, where ⊥ stands for independence.

It implies that after controlling for the effect of covariates, treatment and outcomes

are independent.

Assumption 3.2 Common Support

0 < Pr(Di = 1|Xi) < 1

Assumption 3.2 means that for all x there is a positive probability of either par-

ticipating (Di = 1) or not participating (Di = 0). In other words for each value

of covariates there are both treated and untreated cases. Thus, there is an overlap

between the treated and untreated subsamples. If the assumption fails, then we

could have individuals with x vectors who are all treated and those with a different

x vector who are all untreated.

Rosenbaum and Rubin (1983) show that under CIA identification can be achieved

by conditioning on a function of Xi, a balancing score4, instead of a high dimensional

Xi itself. The most commonly used balancing score in the evaluation literature is the

propensity score, the conditional probability of assignment to the treatment given

the covariates:

p(x) = Pr[Di = 1|Xi = x] = E[Di|Xi = x] (3.1)

4A balancing score is a function of observed covariates Xi such that the conditional distribution
of Xi given balancing score is the same for treated and control units (see Rosenbaum and Rubin
(1983)).
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Lemma 3.1 Unconfoundedness Given the Propensity Score

Given the CIA and Common Support assumptions, outcomes Yi0 and Yi1 are inde-

pendent of treatment given the propensity score.

Yi0, Yi1⊥Di|p(Xi)

Under these assumptions several methods can be used to estimate the average treat-

ment effect. This paper uses three different methods: regression method, inverse

propensity score weighting method and Doubly Robust Method which is the combi-

nation of the first two methods.

3.1 Regression

Under the CIA one can estimate the unconditional means E[Yid] = µd based on

the parametric estimation of conditional means E[Yid|Xi = x] for d ∈ 0, 1. Since

the arguments are symmetric, I concentrate on E[Yi1|Xi = x]. Assume that the

conditional mean function is correctly specified, E[Yi1|Xi = x] = m1(x, β1), where

m1(x, β1) is a function depending on a covariate vector and a k−dimensional true

parameter vector β1. Given a consistent estimator β̂1, a consistent estimator of the

unconditional mean, µ1, is:

µ̂1 =
1

N

∑

i

m1(Xi, β̂1) (3.2)

since µ1 = E[m1(x, β1)] by iterated expectations.

Thus, one can estimate the average treatment effect based on two parametric re-

gressions as follows:

τ̂reg =
1

N

∑

i

[m1(Xi, β̂1) − m0(Xi, β̂0)] (3.3)

From Wooldridge (2002) and Wooldridge (2009), the asymptotic variance can be
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written as follows:

AV
√

N(τ̂reg) = E[(m1(X, β1) − m0(X, β0) − τreg)
2] (3.4)

+E[
∂m1(X, β1)

∂β ′

1

]V1E[
∂m1(X, β1)

∂β ′

1

]′

+E[
∂m0(X, β0)

∂β ′

0

]V0E[
∂m0(X, β0)

∂β ′

0

]′

where V1 and V0 are the variances of β1 and β0. The variance can be estimated by

replacing the expectations with the sample means and true parameters with their

estimates.

3.2 Weighting by Propensity Score

Using Lemma 3.1, the mean outcomes for the treatment and control groups can be

identified by weighting the observations with the inverse of the propensity score:

E[Yi1] = E[DY/p(X)]

E[Yi0] = E[(1 − D)Y/(1 − p(X))]

Hence, we can write the ATE as follows:

τ = E[
DY

p(X)
− (1 − D)Y

(1 − p(X))
]

The estimator of ATE can be written as a sample counterpart of the population

expectation. Usually this estimator is referred as the propensity score weighting

estimator5:

τ̂ps =
1

n

∑

i=1

[DiYi/p(Xi; α̂) − (1 − Di)Yi/(1 − p(Xi; α̂))] (3.5)

=
1

n

∑

i=1

(Di − p(Xi; α̂))Yi

p(Xi; α̂)(1 − p(Xi; α̂))
≡ 1

n

∑

i=1

ĝi (3.6)

Since usually the true propensity score p(X) is not observable, one can use an es-

timated propensity score p(X; α̂), where α̂ is the maximum likelihood estimator

(MLE) (e.g., probit or logit) of the parameter vector of the propensity score speci-

5This estimator is identical to an estimator from Horvitz and Thompson (1952) for handling
nonrandom sampling.
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fication. τ̂ps is inconsistent, however, if the propensity score is misspecified (see for

further discussion Horvitz and Thompson (1952), Rosenbaum (1987), and Bang and

Robins (2005))6.

Following Wooldridge (2007), Wooldridge (2009) shows that the asymptotic variance

of τps is:

AV
√

N(τ̂ps − τ) = E[eie
′

i] (3.7)

where ei ≡ gi − E[gis
′

i]E[sis
′

i]
−1si, si is the score function of the MLE model of the

propensity score.

3.3 Doubly Robust Method

Both of the above mentioned estimation methods, regression and propensity score

weighting, can be easily implemented. There are no computational difficulties, or

curse of dimensionality problems as in nonparametric methods. As mentioned above,

consistency of the estimates hinges upon the true specification of the mean or the

propensity score, depending on which estimation method is used. Wooldridge (2007)

and Hirano and Imbens (2001) show, however, that combining weighting and regres-

sion methods gives a doubly robust estimate of the unconditional mean, providing

double protection against misspecification. As long as one of the functional form

specifications, either that for the conditional mean or the propensity score, is cor-

rectly specified, the resulting estimator for the unconditional mean will be consistent

provided that E[Yd] = E[md(x, β∗

d)] where β∗

d is the probability limit of an estimator

from the conditional mean function (Wooldridge (2007)). This property holds for

linear exponential family with a canonical link function (see for details Wooldridge

(2007), Scharfstein, Rotnitzky, and Robins (1999)). The three regression models I

use for this application, namely linear, logit and poisson regression, belong to this

family.

The main idea is weighting the objective function of the regression by the inverse of

the propensity score. Depending on the choice of the regression method, the coef-

ficient estimates of the mean function parameters come from weighted least square

or weighted MLE method. The score function of the chosen parametric model is

weighted by 1/p(Xi; α̂) and by 1/(1− p(Xi; α̂)) for treated and untreated subpopu-

6Hirano, Imbens, and Ridder (2003) examine the estimator in equation 3.5 where p(Xi; α̂) is
replaced by nonparametric estimates.
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lation respectively.

Depending on the nature of outcome variable the proper mean function is one of the

following:

• For a continuous outcome variable:

md(Xi, βdw) = X ′

iβdw (3.8)

• For a binary outcome variable:

md(Xi, βdw) = Λ(X ′

iβdw) =
exp(X ′

iβdw)

1 + exp(X ′

iβdw)
(3.9)

• For a count outcome variable:

md(Xi, βdw) = exp(X ′

iβdw) (3.10)

The estimated coefficient β̂dw from weighted regression method solves the weighted

score function

1

N

∑

i

wi(Yi − md(Xi, β̂dw))Xi = 0 (3.11)

where

wi =

{

1/p(Xi; α̂), if Di = 1

1/(1 − p(Xi; α̂)), if Di = 0

Thus, one can estimate the average treatment effect based on two weighted regression

coefficients as in regression methods:

τ̂dr =
1

N

∑

i

[m1(Xi, β̂1w) − m0(Xi, β̂0w)] (3.12)

The asymptotic variance of τ̂dr is same as Equation 3.4 with different V0 and V1
7.

When estimating V0 and V1, one has to take into account that the weights are

estimated in a first step. Wooldridge (2007) derives the asymptotic variance of β̂dw

7For the linear case the asymptotic variance of τ̂dr is equivalent to the variance derived by
Hirano and Imbens (2001) for linear mean function.
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as follows.

AV
√

N(β̂dw) = A−1
0 D0A

−1
0

where A0 ≡ E[H(X, βdw)] and D0 ≡ E[kik
′

i]. ki = k(Xi, βdw) = wi(Yi−m(Xi, β̂dw))Xi

is the weighted score function and H(X, βdw) is the Hessian. Wooldridge (2007) pro-

poses also the following consistent estimators for A0 and D0 :

Â =
1

N

∑

i

wiH(Xi, β̂dw)

D̂ =
1

N

∑

i

k(Xi, β̂dw)k(Xi, β̂dw)′

4 Data and Empirical Results

In the following, the causal effect of grade retention on several school outcomes is

investigated for the German school system. The data set consists of information

on family background and school related topics for about 3000 10th grade students

attending upper secondary school in North Rhine-Westphalia in the year 19708. The

students were sampled from 121 classes at 68 upper secondary schools. The data

contains information from student, parent and teacher questionnaires. About ten

years later, the students’ grades were collected from the schools.

The empirical study on the causal effect of grade retention is distinguished from

earlier studies by its investigation of the effect in a potential outcome framework

and its application of the above explained methods for estimating the ATE of grade

retention on school performance. Treatment is defined as repeating a class at least

once after 10th grade. The effects of grade retention on different outcome vari-

ables are investigated. The first one is the probability of graduating from upper

secondary school (having “Abitur” or not). The other three outcome variables are

only measured for those who have graduated from upper secondary school. One is

the average final grade in upper secondary school. In addition, the effect on math

and German “Abitur” grades is also considered. The aim of the empirical part is

twofold: (i) estimate the causal effect of grade retention on the school performance,

and (ii) investigate the differences of the causal effect for girls and boys. Outcomes

are assumed to be independent of treatment status conditional on the covariates.

All variables used in the study are listed in Table A1.

8The original data set consists of two more follow-ups in years 1984 and 1998.
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The variables are chosen in accordance with earlier findings concerning character-

istics associated with being retained as well as with being successful in school. It

is important to include variables related to both treatment status and potential

outcomes so that the CIA holds approximately. A female dummy is included be-

cause most studies show that males are more likely to be retained than females. A

measure of intelligence, IQ, is also included to control for the cognitive skills of the

students. The variable IQ in our study is the sum of correctly solved questions of

a standard psychometric Intelligence Structure Test (IST), which was administered

in the class-room in the 10th grade. Since noncognitive skills also appear to play an

important role in school performance, as shown in earlier studies, variables which

measure the attribution of success to diligence (DILIG) and ability (ABIL) are in-

cluded as conditioning covariates. The variable WISH is added as a control for the

child’s motivation. I also control for the age of the student. Former studies also

claim that the characteristics of parents, such as economic well being, education

and parental involvement with their child’s school performance, are also likely to af-

fect the probability of being retained. EDU MOT, EDU FAT, AGEMOT, HHINC,

INTERSCHOOL are variables which control for family background and parents in-

volvement. I can also identify whether the child has experienced any grade retention

before 10th grade (PR RET).

The variables which are used in this study are chosen from three different sources.

The outcome variables are taken from the administrative school data and the con-

trol variables are taken from parents and students questionnaires. Merging these

three different data sets decreases the sample size already by about 500 observa-

tions. Some questions are asked to both students and parents. Thus, I combine the

information sets to keep the decrease in the sample size moderate.

I created different samples. With the first sample I analyze the causal effect of grade

retention on high school graduation (ABI) (see Table A2 for descriptive statistics).

Thereafter, I restrict our sample for those who graduated from upper secondary

school in order to estimate the causal effect of grade retention on average final

grade (GPA) and final grades in math (MAT) and German (GER) (see Table A3

for descriptive statistics). Next I restrict the sample to the students who did not

experience any grade retention before the 10th grade (see Table A4) in order to see

the effect of late grade retention on those students. For this sample I also look at
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the upper secondary school graduates and the effect of grade retention on gradua-

tion grades (see Table A5). For all four samples the analysis is done for the entire

sample and for the subsamples by gender. The propensity score, the probability of

being retained after 10th grade is estimated by a logit regression for all subsamples.

The regression results can be found in Table A6 and A7. Table A6 gives the logit

estimation results for the sample before restricting by previous retention status and

A7 gives the results only for students who did not experience retention before 10th

grade. From the logistic regression results, we can conclude that females are less

likely to be retained. IQ has a decreasing effect on probability of being retained

in general. Having a young mother increases the probability of being retained at

least for the main sample (Table A6 col. (a) and (c)). The variable PR RET is

highly significant and negative for the main sample (Table A6 col. (a), (b), (c)) .

However, when we constrain our sample to high school graduates it does not have a

significant effect on the probability of being hold in the same grade (Table A7 col.

(a), (b), (c)). The variables, DILIG and ABIL, are also most of the time signifi-

cantly negative. As in Rauber (2007), I also use these variables to measure to what

extent a student follows an internal attribution strategy by attributing success to

effort and ability. Relying on evidence that individuals with a high degree of self-

esteem frequently tend to attribute success as being internal (see Rauber (2007) and

its references), the interpretation of the negative coefficients might be that higher

self esteem decreases the probability of grade retention. The other variable which

is significantly negative for almost all samples is the willingness to pursue higher

education (WISH), however with different signs for different subsamples. The coef-

ficient (PARINT) which controls for parents interests on their child’s performance

at school is for most specifications significantly negative. It means that if parents

are more interested in school outcomes, the probability of being retained decreases.

For some specifications, the dummy variable for the highest education category of

the mother is significant and negative.

In order to evaluate the common support assumption the density of estimated

propensity scores by treatment status are drawn for all groups (see Figures from

B 1 to B 12). The propensity score graphs do not exhibit a significant common

support problem. Nevertheless, I estimate the ATEs twice for each sample. First,

I do not apply any common support correction and second I use minima-maxima

comparison (see Frölich (2004), Imbens (2004), Imbens and Wooldridge (2007), and

Caliendo and Kopeinig (2008)). Minima-maxima comparison is simply discarding
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the control observations with propensity scores below the minimum propensity score

of the treated group and discarding treated observations with propensity scores

above the maximum propensity score of the control group.

The estimation results are summarized in Table 1 and 2. Table 1 shows the results

for the sample without any restrictions and Table 2 shows the results for the sample

of students without previous retention. I estimate the ATE of grade retention for

the entire samples and for the subsamples by gender. The estimates of causal effect

on high school completion are summarized in the upper panel and the estimates of

causal effect on academic grades in the lower panel of Table 1 and 2. The effects

are estimated using Doubly Robust Method (DR) (Equation 3.12), weighting by

propensity score (PS) (Equation 3.5) and regression (REG) (Equation 3.3) which

are outlined in Section 3. For the regression and DR method, the mean functions of

the outcome variables are chosen properly according to the features of the outcome

variables. The mean function of the binary outcome variable ABI is specified as in

Equation 3.9. For the outcome variables MAT and GER, Equation 3.10 is chosen

as the mean function. The mean of the last outcome variable GPA is chosen as in

Equation 3.8. The control variables are the same as in the propensity score specifi-

cations. For each sample, there are two different sets of estimates; column (a) and

(b). Column (a) shows the estimation results without applying any common support

correction. For the estimates in column (b), I apply minima-maxima comparison

to determine the common support. The standard errors are calculated using the

asymptotic variance formulas and reported in parentheses.

From Table 1, we see that the effect of grade retention on the probability of com-

pletion of upper secondary school for the overall sample is negative according to

the DR and REG estimates. The negative effect is higher in magnitude for females

than for the entire sample, whereas the effect seems to be positive for males. For all

three samples, PS estimates are insignificant. Applying common support restriction

only slightly affects the estimates. For the other three outcomes, the estimates by

each method are significantly positive for each sample with two exceptions. The

PS estimates of the ATE on MAT for females is insignificant with and without

common support restriction. The PS estimates of the ATE on GPA for females

are insignificant without common support restriction. In the German educational

system, grades between 1 and 6 are assigned, where 1 is the best grade and 6 is

the worst grade. Therefore, positive estimates of ATE imply a worsening effect on

13



grades. We see that the estimates based on different methods are most of the time

very close to each other. The estimates based on DR and REG methods are almost

for each case highly significant whereas the PS estimates are sometimes insignificant.

It is known that the variance of PS estimates are affected largely by very high and

low propensity scores (see for example Khan and Tamer (2007)).
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Table 1: Estimated ATE’s for the main sample without restrictions according to

previous retention.

Outcome Method Full Sample Female Male

(a) (b) (a) (b) (a) (b)

ABI DR −0.010∗∗ −0.012∗∗ −0.043∗∗∗ −0.048∗∗∗ 0.017∗∗∗ 0.015∗∗

(0.006) (0.005) (0.013) (0.012) (0.007) (0.007)

PS 0.002 0.001 -0.026 -0.033 0.018 0.018

(0.024) (0.024) (0.040) (0.039) (0.029) (0.028)

REG −0.006 −0.007∗∗ −0.033∗∗∗ −0.044∗∗∗ 0.014∗∗∗ 0.011∗∗

(0.004) (0.004) (0.006) (0.007) (0.005) (0.005)

number of observations 2726 2711 1257 1200 1469 1436

number of treated 520 519 201 196 319 316

number of untreated 2206 2192 1056 1004 1150 1120

MAT DR 0.266∗∗∗ 0.262∗∗∗ 0.118∗∗∗ 0.123∗∗∗ 0.395∗∗∗ 0.377∗∗∗

(0.016) (0.016) (0.046) (0.045) (0.024) (0.024)

PS 0.255∗∗∗ 0.257∗∗∗ -0.025 0.009 0.405∗∗∗ 0.416∗∗∗

(0.067) (0.066) (0.105) (0.104) (0.083) (0.083)

REG 0.271∗∗∗ 0.273∗∗∗ 0.104∗∗∗ 0.109∗∗∗ 0.401∗∗∗ 0.383∗∗∗

(0.010) (0.010) (0.022) (0.023) (0.016) (0.016)

GER DR 0.296∗∗∗ 0.298∗∗∗ 0.356∗∗∗ 0.358∗∗∗ 0.314∗∗∗ 0.286∗∗∗

(0.014) (0.013) (0.050) (0.047) (0.018) (0.017)

PS 0.295∗∗∗ 0.301∗∗∗ 0.225∗∗ 0.264∗∗∗ 0.326∗∗∗ 0.341∗∗∗

(0.058) (0.057) (0.102) (0.100) (0.072) (0.069)

REG 0.301∗∗∗ 0.300∗∗∗ 0.363∗∗∗ 0.363∗∗∗ 0.308∗∗∗ 0.284∗∗∗

(0.008) (0.008) (0.022) (0.022) (0.013) (0.013)

GPA DR 0.220∗∗∗ 0.219∗∗∗ 0.177∗∗∗ 0.182∗∗∗ 0.256∗∗∗ 0.242∗∗∗

(0.009) (0.009) (0.028) (0.027) (0.010) (0.010)

PS 0.213∗∗∗ 0.219∗∗∗ 0.100 0.135∗ 0.256∗∗∗ 0.274∗∗∗

(0.041) (0.039) (0.077) (0.075) (0.047) (0.044)

REG 0.225∗∗∗ 0.224∗∗∗ 0.189∗∗∗ 0.192∗∗∗ 0.258∗∗∗ 0.245∗∗∗

(0.004) (0.005) (0.013) (0.013) (0.006) (0.006)

number of observations 1643 1620 686 672 957 922

number of treated 303 299 105 105 198 197

number of untreated 1340 1321 581 567 759 725

The standard errors are calculated as explained in Section 3 and reported in parentheses under the estimates. Column (a) and (b)

report the estimates without and with common support restriction respectively. *, **, ***: significant at 10 %, 5 %, 1%
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Table 2: Estimated ATE’s for the samples without previous retention

Outcome Method Full Sample Female Male

(a) (b) (a) (b) (a) (b)

ABI DR −0.072∗∗∗ −0.073∗∗∗ −0.065∗∗∗ −0.071∗∗∗ −0.088∗∗∗ −0.089∗∗∗

(0.006) (0.006) (0.013) (0.013) (0.008) (0.009)

PS −0.062∗∗ −0.059∗∗ −0.049 −0.055 −0.078∗∗ −0.075∗∗

(0.028) (0.028) (0.042) (0.041) (0.034) (0.033)

REG −0.075∗∗∗ −0.075∗∗∗ −0.064∗∗∗ −0.068∗∗∗ −0.090∗∗∗ −0.092∗∗∗

(0.004) (0.004) (0.009) (0.009) (0.006) (0.006)

number of observations 1748 1738 866 842 882 850

number of treated 377 377 160 158 217 212

number of untreated 1371 1361 706 684 665 638

MAT DR 0.351∗∗∗ 0.348∗∗∗ 0.143∗∗∗ 0.148∗∗∗ 0.549∗∗∗ 0.542∗∗∗

(0.023) (0.023) (0.050) (0.050) (0.032) (0.031)

PS 0.368∗∗∗ 0.363∗∗∗ 0.085 0.108 0.502∗∗∗ 0.541∗∗∗

(0.079) (0.078) (0.114) (0.113) (0.103) (0.103)

REG 0.365∗∗∗ 0.367∗∗∗ 0.140∗∗∗ 0.143∗∗∗ 0.546∗∗∗ 0.546∗∗∗

(0.012) (0.012) (0.027) (0.028) (0.018) (0.019)

GER DR 0.344∗∗∗ 0.342∗∗∗ 0.330∗∗∗ 0.331∗∗∗ 0.402∗∗∗ 0.359∗∗∗

(0.024) (0.024) (0.052) (0.051) (0.026) (0.024)

PS 0.385∗∗∗ 0.382∗∗∗ 0.323∗∗∗ 0.348∗∗∗ 0.367∗∗∗ 0.393∗∗∗

(0.069) (0.069) (0.118) (0.116) (0.084) (0.078)

REG 0.365∗∗∗ 0.365∗∗∗ 0.352∗∗∗ 0.351∗∗∗ 0.415∗∗∗ 0.371∗∗∗

(0.011) (0.011) (0.027) (0.027) (0.021) (0.020)

GPA DR 0.243∗∗∗ 0.241∗∗∗ 0.169∗∗∗ 0.170∗∗∗ 0.288∗∗∗ 0.273∗∗∗

(0.014) (0.013) (0.027) (0.026) (0.013) (0.013)

PS 0.270∗∗∗ 0.267∗∗∗ 0.199∗∗ 0.219∗∗∗ 0.248∗∗∗ 0.284∗∗∗

(0.047) (0.046) (0.083) (0.081) (0.052) (0.048)

REG 0.255∗∗∗ 0.256∗∗∗ 0.197∗∗∗ 0.195∗∗∗ 0.292∗∗∗ 0.278∗∗∗

(0.006) (0.006) (0.016) (0.016) (0.009) (0.009)

number of observations 1248 1242 546 536 702 662

number of treated 227 225 84 84 143 141

number of untreated 1021 1017 462 452 559 521

The standard errors are calculated as explained in Section 3 and reported in parentheses under the estimates. Column (a) and (b)

report the estimates without and with common support restriction respectively. *, **, ***: significant at 10 %, 5 %, 1%
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Table 2 shows the estimation results for the students who only experienced grade

retention after 10th grade. The results are very similar to the previous Table, ex-

cept that the effect of grade retention on the probability of graduating from high

school for male students is significantly negative. Moreover, the estimates are larger

in magnitude compared to the previous results. As in previous results, regardless

of which method is used the estimates are very close for the same outcome vari-

able. This result should give us some confidence about our model specifications.

The negative effect of grade retention on high school completion is higher for boys

than girls. Furthermore, the treatment effects on different school grades are also

higher for boys than girls. It seems like boys are more negatively affected by grade

retention than girls. All in all, our empirical results suggest that grade retention as

a school intervention tool does not provide any improvement on average, but has

rather worsening effects for students.

5 Conclusion

In this paper, I investigate the causal effect of grade retention on different school

outcomes, such as completion of upper secondary school, final grades in math and

German as well as the average final grade. The effect of grade retention is an impor-

tant research topic since at least four decades. The results from previous research

are somehow controversial. The literature provides evidence for both negative and

positive effects. The methods used for the analysis of the effects range from simple

group comparisons to sophisticated econometric modeling. Here, I estimate the ef-

fect using a potential outcome framework applying econometric evaluation methods

inverse propensity score weighting, regression adjustment and a combination of these

two methods. Inverse propensity score weighting estimates are inconsistent if the

propensity score is wrongly specified and regression adjustment estimates are incon-

sistent if the mean function is wrongly specified. Hence, a combination of these two

methods gives the researcher some protection against misspecification. The resulting

estimator of the ATE is consistent even if only one of the models is correctly speci-

fied. An important drawback is that the main underlying assumption, CIA, which

provides the identification of the average treatment effect is not testable. As most

researchers who uses identification under CIA, I also argue that the rich set of control

variables I am using should be enough to satisfy the CIA assumption approximately.
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The propensity score estimation results are consistent with much of the existing

empirical research on determinants of grade retention. The estimates of the ATE

on different outcomes are very close to each other regardless of which of the three

methods is chosen. The estimates show that grade retention has a worsening effect

on the students’ educational achievement. It increases drop-out rate from upper

secondary school significantly, and decreases the individual grades in math and Ger-

man as well as the average final grade. The worsening effect is larger for boys

than for girls. Given that grade retention is thought as an intervention tool to im-

prove the educational achievement, our result do not support that this intervention

achieves that goal. This result coincides with other empirical results from the US

and Canada (see for example Jimerson (1999) and Guevremont, Roos, and Brownell

(2007)) and implies the necessity of different approaches to improve the educational

achievement.
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Caliendo, M., and S. Kopeinig (2008): “Some Practical Guidance for the Implemen-
tation of Propensity Score Matching,” Journal of Economic Surveys, 22, 31–72.

Corman, H. (2003): “The Effects of State Policies, Individual Characteristics, Family
Characteristics, and Neighbourhood Characteristics on Grade Repetition in the United
States,” Economics of Education Review, 22, 409420.

Dauber, S. L., K. L. Alexander, and D. R. Entwisle (1993): “Characteristics of
Retainees and Early Precursors of Retention in Grade: Who Is Held Back?,” Merrill-

Palmer Quarterly, 39, 326343.

Eide, E. R., and M. H. Showalter (2001): “The Effect of Grade Retention on Edu-
cation and Labor Market Outcomes,” Economics of Education Review, 20, 563–576.

El-Hassan, K. (1998): “Relation of Academic History and Demographic Variables to
Grade Retention in Lebanon,” Journal of Educational Research, 91, 279288.

Ferguson, P., S. R. Jimerson, and M. J. Dalton (2001): “Sorting Out Successful
Failures: Exploratory Analyses of Factors Associated with Academic and Behavioral
Outcomes of Retained Students,” Psychology in the Schools, 38, 327341.

Fine, J. G., and J. M. Davis (2003): “Grade Retention and Enrollment in Post-
Secondary Education,” Journal of School Psychology, 41, 401411.

19



Frederick, C. B., and R. M. Hauser (2008): “Have We Put an End to Social Promo-
tion? Changes in School Progress Among Children Aged 6 to 17 from 1972 to 2005,”
Demography, 45, 719740.
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A Tables

Table A1: Definition of Variables

Variable Definition
ABI Dummy, 1 if upper secondary school degree held (Abitur)
MAT Grade in math in the last year of upper secondary school

between 1-6, 1 is the best grade
GER Grade in German in the last year of upper secondary school

between 1-6, 1 is the best grade
RET Dummy, 1 if a grade is repeated at least once in the school year 1970/71 or later
SHNR School number
FEMALE Dummy, 1 if female
AGE Age in years
IQ Number of correctly solved questions in the Intelligence Structure Test

(IST; Amthauer (1953)). The test was carried out in 1969.
EDU MOT Categorical variable for educational attainment of the mother from 1-4
EDU MOTj Dummy, 1 if EDU MOT=j for j = 1, 2, 3, 4
EDU FAT Categorical variable for educational attainment of the father from 1-4
EDU FATj Dummy, 1 if EDU FAT=j for j = 1, 2, 3, 4
HHINC Categorical variable for net household income in 1970 from 1-9

=1 up to 750 DM, =2 751 up to 1000 DM, =3 1001 up to 1250 DM,
=4 1251 up to 1500 DM, =5 1501 up to 2000 DM,=6 2001 up to 2500 DM,
=7 2501 up to 3000 DM, =8 3001 up to 4000 DM,=9 more than 4000 DM

EMP MOT Categorical variable for mother’s employment status from 1-3
EMP MOT1 Dummy, 1 if the mother is employed during the survey (EMP MOT=1)
EMP MOT2 Dummy, 1 if the mother is unemployed, but was employed before

the survey (EMP MOT=2)
EMP MOT3 Dummy, 1 if the mother is out of labour force (EMP MOT=3)
PARINT1 Dummy, 1 if parents are interested in promotion on to the next grade level
PARINT2 Dummy, 1 if parents are interested in final grades
PARINT3 Dummy, 1 if parents are interested in test grades
INTSCHOOL Average value of PARINT1, PARINT2 and PARINT3
AGEMOT Categorical variable for mother’s age from 1-9

=1 if 30-34, =2 if 35-39, =3 if 40-44, =4 if 45-49, =5 if 50-54,
=6 if 55-59, =7 if 60-64, =8 if 65-70, =9 if she died

AGEMOTj Dummy, 1 if AGEMOT=j

WISH Do you want to continue studying after upper secondary school?
=1 if the answer is yes, =2 if maybe, =3 if no,
=4 if do not know yet, =5 if no upper secondary school degree is planned

WISHj Dummy, =1 if WISH=j

PR RET Dummy, 1 if a grade is repeated at least once before the school year 1969/70
DILIG Measure of attributing success to diligence

on a scale from 0 (weaker) to 5 (stronger)
ABIL Measure of attributing success to ability

on a scale from 0 (weaker) to 5 (stronger)

Source: Dataset Gymnasiastenstudie, own definitions
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Table A2: Summary Statistics of Unrestricted Sample (Sample 1)

Variable Mean Std Dev Minimum Maximum
ABI 0.64 0.48 0 1
RET 0.19 0.39 0 1

FEMALE 0.46 0.50 0 1
AGE 15.41 0.90 13 19

IQ 40.72 8.94 12 70
EDU MOT 4.19 3.50 1 13
EDU VAT 5.86 4.26 1 13

HHINC 4.50 2.06 1 9
EMP MOT 2.02 0.70 1 3
PARINT1 0.64 0.48 0 1
PARINT2 0.61 0.49 0 1
PARINT3 0.75 0.43 0 1

INTSCHOOL 0.67 0.30 0 1
AGE MOT 3.61 1.18 1 9

PR RET 0.36 0.48 0 1
WISH 2.62 1.56 1 5
DILIG 4.12 1.04 0 5
ABIL 3.51 1.08 0 5

Number of Observations 2726

Sample: Sample without restrictions on previous grade retention

Table A3: Summary Statistics of Sample 2

Variable Mean Std Minimum Maximum
GPA 2.97 0.54 1.08 4.10
MAT 3.48 1.08 1 6
GER 3.33 0.85 1 5
RET 0.18 0.39 0 1

FEMALE 0.42 0.49 0 1
AGE 15.19 0.82 13 19

IQ 41.78 9.12 15 70
EDU MOT 4.36 3.60 1 13
EDU VAT 6.10 4.31 1 13

HHINC 4.57 2.06 1 9
EMP MOT 2.03 0.69 1 3
PARINT1 0.64 0.48 0 1
PARINT2 0.64 0.48 0 1
PARINT3 0.78 0.41 0 1

INTSCHOOL 0.69 0.30 0 1
AGE MOT 3.62 1.18 1 9

PR RET 0.24 0.43 0 1
WISH 2.15 1.32 1 5
DILIG 4.09 1.05 0 5
ABIL 3.51 1.09 0 5

Number of Observations 1643

Sample: Graduates from upper secondary school. Sample 1 restricted by ABI=1
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Table A4: Summary Statistics of Sample 3

Variable Mean Std. Dev. Minimum Maximum
ABI 0.75 0.43 0 1
RET 0.22 0.41 0 1

FEMALE 0.50 0.50 0 1
AGE 15.03 0.71 13 19

IQ 40.85 9.08 13 70
EDU MOT 4.15 3.55 1 13
EDU VAT 5.76 4.27 1 13

HHINC 4.41 2.07 1 9
EMP MOT 2.03 0.69 1 3
PARINT1 0.64 0.48 0 1
PARINT2 0.63 0.48 0 1
PARINT3 0.77 0.42 0 1

INTSCHOOL 0.68 0.30 0 1
AGE MOT 3.53 1.16 1 9

WISH 2.45 1.50 1 5
DILIG 4.11 1.03 0 5
ABIL 3.57 1.05 0 5

Number of Observations 1748

Sample: Students without previous grade retention. Sample 1 restricted by PR RET=0

Table A5: Summary Statistics of Sample 4

Variable Mean Std. Dev. Minimum Maximum
GPA 2.92 0.54 1.08 4.00
MAT 3.36 1.09 1 6
GER 3.26 0.87 1 5
RET 0.18 0.39 0 1

FEMALE 0.44 0.50 0 1
AGE 14.96 0.69 13 19

IQ 41.79 9.22 15 70
EDU MOT 4.26 3.62 1 13
EDU VAT 5.92 4.29 1 13

HHINC 4.46 2.06 1 9
EMP MOT 2.03 0.68 1 3
PARINT1 0.65 0.48 0 1
PARINT2 0.79 0.41 0 1
PARINT3 2.12 1.30 1 5

INTSCHOOL 0.69 0.30 0 1
AGE MOT 3.56 1.17 1 9

WISH 2.12 1.30 1 5
DILIG 4.10 1.04 0 5
ABIL 3.56 1.06 0 5

Number of Observations 1248

Sample: Graduates from upper secondary school without previous grade retention. Sample 3

restricted by ABI=1
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Table A6: Propensity Score Estimation Results for Sample 1 and Sample 2

DATA 1 DATA 2
(a) (b) (c) (d) (e) (f)

Variable Full sample Female Male Full sample Female Male
Constant 3.060∗∗∗ 3.067 2.506∗ 3.750∗∗ 2.870 3.575∗

1.242 2.091 1.555 1.680 3.101 2.073
SHNR −0.006∗∗ −0.009∗∗ -0.004 −0.009∗∗∗ −0.015∗∗∗ -0.006

0.003 0.004 0.003 0.003 0.006 0.004
FEMALE −0.534∗∗∗ – – −0.604∗∗∗ – –

0.110 0.146
AGE -0.093 -0.103 -0.070 0.013 0.079 0.013

0.070 0.122 0.087 0.093 0.179 0.111
IQ −0.034∗∗∗ −0.039∗∗∗ −0.031∗∗∗ −0.039∗∗∗ −0.063∗∗∗ −0.027∗∗∗

0.006 0.010 0.008 0.008 0.014 0.010
EDU MOT2 -0.060 -0.039 -0.046 -0.127 -0.020 -0.206

0.141 0.218 0.188 0.188 0.312 0.241
EDU MOT3 -0.105 -0.136 -0.140 -0.272 -0.455 -0.309

0.207 0.325 0.274 0.278 0.482 0.354
EDU MOT4 -0.308 0.262 −0.777∗∗ -0.453 0.370 -1.045

0.243 0.358 0.337 0.319 0.474 0.445
EDU VAT2 0.257∗ 0.385∗ 0.122 0.161 0.091 0.158

0.155 0.230 0.216 0.214 0.343 0.279
EDU VAT3 0.102 0.202 0.052 0.203 0.308 0.170

0.164 0.258 0.216 0.210 0.361 0.264
EDU VAT4 0.217 0.074 0.348 0.324 0.261 0.472

0.190 0.302 0.249 0.249 0.403 0.322
HHINC -0.036 −0.088∗ 0.000 -0.064 −0.132∗ -0.028

0.031 0.050 0.041 0.042 0.072 0.053
EMP MOT1 0.315∗∗ 0.254 0.326∗ 0.305 0.141 0.318

0.144 0.244 0.183 0.190 0.344 0.235
EMP MOT2 0.069 0.158 0.035 -0.036 -0.020 -0.017

0.125 0.204 0.161 0.161 0.274 0.204
INTSCHOOL −0.384∗∗ −0.852∗∗∗ -0.070 -0.247 -0.586 -0.066

0.169 0.277 0.219 0.219 0.379 0.275
AGEMOT2 -0.451 -0.557 -0.386 -0.590 -0.325 -0.632

0.420 0.714 0.527 0.538 1.147 0.638
AGEMOT3 −0.671∗ -0.538 -0.805 -0.570 -0.115 -0.734

0.410 0.700 0.514 0.519 1.118 0.614
AGEMOT4 −0.735∗ -0.696 -0.825 -0.733 -0.155 -0.993

0.412 0.706 0.516 0.522 1.122 0.619
AGEMOT5 −0.741∗ -0.650 -0.833 -0.874 -0.433 -1.019

0.432 0.733 0.543 0.550 1.170 0.650
AGEMOT6 −1.225∗∗∗ -0.840 −1.509∗∗ −1.132∗ -0.401 −1.385∗

0.492 0.805 0.635 0.612 1.232 0.741
AGEMOT7 −1.458∗ -0.801 -1.794 -1.540 (omitted) -1.483

0.865 1.284 1.188 1.228 1.272
AGEMOT8 −1.612∗ (omitted) -1.424 -2.035 (omitted) -1.775

0.871 0.959 1.185 1.256
PR RET −0.414∗∗∗ −0.439∗ −0.414∗∗∗ -0.037 -0.200 -0.002

0.133 0.230 0.167 0.179 0.329 0.219
WISH1 0.422∗∗ 0.684∗∗∗ 0.176 −1.509∗∗∗ −1.276∗∗ −1.876∗∗∗

0.190 0.267 0.277 0.391 0.538 0.636
WISH2 0.537∗∗∗ 0.932∗∗∗ 0.191 −1.308∗∗∗ -0.844 −1.768∗∗∗

0.204 0.285 0.301 0.402 0.553 0.653
WISH3 0.644∗∗∗ 0.482 0.664∗ −1.272∗∗∗ −1.368∗ −1.336∗

0.256 0.426 0.347 0.465 0.737 0.706
WISH4 0.788∗∗∗ 0.829∗∗∗ 0.691∗∗∗ −1.105∗∗∗ −1.045∗∗ −1.383∗∗

0.187 0.265 0.275 0.390 0.538 0.637
DILIG −0.076∗ -0.086 -0.071 -0.129 -0.098 −0.145∗∗

0.047 0.081 0.059 0.061 0.115 0.073
ABIL −0.104∗∗ -0.059 −0.138∗∗ −0.111∗ -0.085 −0.153∗∗

0.046 0.077 0.058 0.059 0.103 0.074
No. of Obs. 2726 1249 1469 1643 680 957

Log-likelihood -1258.31 -515.10 -729.95 -740.46 -267.99 -461.91
LR chi2(k) 140.22 71.92 77.50 89.89 49.20 51.97

The standard errors are reported in parentheses under the estimates. *, **, ***: significant at

10 %, 5 %, 1%
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Table A7: Propensity Score Estimation Results for Different Samples data2

DATA 3 DATA 4
(a) (b) (c) (d) (e) (f)

Variable Full sample Female Male Full sample Female Male
Constant 1.049∗∗ -1.096 2.550 2.290 -1.913 4.209

1.545 2.383 2.117 2.061 3.578 2.730
SHNR −0.006∗∗ -0.006 -0.006 −0.009∗∗ -0.012 -0.008

0.003 0.005 0.004 0.004 0.006 0.005
FEMALE −0.561∗∗∗ – – −0.624∗∗∗ – –

0.131 0.168
AGE 0.062 0.154 -0.004 0.111 0.362∗ 0.025

0.087 0.140 0.116 0.113 0.208 0.139
IQ −0.034∗∗∗ −0.030∗∗∗ −0.037∗∗∗ −0.035∗∗∗ −0.055∗∗∗ −0.027∗∗

0.007 0.011 0.010 0.009 0.015 0.011
EDU MOT2 -0.026 0.010 -0.051 -0.118 -0.028 -0.186

0.172 0.251 0.243 0.223 0.355 0.295
EDU MOT3 -0.061 -0.099 -0.071 -0.255 -0.488 -0.156

0.256 0.368 0.370 0.329 0.529 0.446
EDU MOT4 -0.435 -0.033 −0.817∗ -0.634 0.123 −1.151∗∗

0.302 0.431 0.431 0.391 0.566 0.568
EDU VAT2 0.395∗∗ 0.492∗ 0.271 0.360 0.263 0.375

0.185 0.260 0.274 0.246 0.388 0.327
EDU VAT3 0.088 0.230 0.040 0.359 0.465 0.352

0.200 0.297 0.278 0.246 0.409 0.317
EDU VAT4 0.272 0.171 0.356 0.444 0.518 0.443

0.238 0.351 0.337 0.305 0.458 0.424
HHINC -0.013 -0.069 0.040 -0.017 -0.077 0.024

0.037 0.057 0.051 0.048 0.083 0.062
EMP MOT1 0.544∗∗∗ 0.487∗ 0.570 0.479∗∗ 0.450 0.466∗

0.175 0.280 0.232 0.221 0.396 0.276
EMP MOT2 0.173 0.259 0.157 0.040 0.241 -0.038

0.153 0.236 0.205 0.191 0.320 0.244
INTSCHOOL −0.525∗∗∗ −0.904∗∗∗ -0.277 -0.391 −0.761∗ -0.183

0.201 0.314 0.273 0.253 0.427 0.326
AGEMOT2 -0.291 -0.834 0.160 -0.293 -0.517 -0.271

0.534 0.739 0.786 0.715 1.163 0.934
AGEMOT3 -0.525 -0.791 -0.346 -0.317 -0.458 -0.373

0.526 0.724 0.775 0.701 1.137 0.918
AGEMOT4 -0.658 -1.096 -0.368 -0.476 -0.600 -0.559

0.529 0.735 0.778 0.704 1.146 0.922
AGEMOT5 -0.555 -1.001 -0.215 -0.382 -0.644 -0.370

0.552 0.769 0.808 0.733 1.201 0.952
AGEMOT6 -0.661 -0.914 -0.469 -0.441 -0.637 -0.241

0.605 0.831 0.892 0.784 1.258 1.032
AGEMOT7 -1.702 (omitted) -0.989 -1.194 (omitted) -0.967

1.208 1.374 1.344 1.462
AGEMOT8 -1.028 (omitted) -0.688 -1.197 (omitted) -1.070

0.973 1.168 1.304 1.460
WISH1 -0.166 0.279 −0.874∗∗ −2.618∗∗∗ −2.125∗∗∗ −3.517∗∗∗

0.232 0.301 0.399 0.527 0.670 1.120
WISH2 0.182 0.625∗∗ -0.537 −2.271∗∗∗ −1.790∗∗∗ −3.117∗∗∗

0.242 0.317 0.415 0.535 0.683 1.128
WISH3 0.342 0.193 0.018 −2.206∗∗∗ −2.161∗∗∗ −2.760∗∗

0.313 0.516 0.474 0.598 0.879 1.171
WISH4 0.309 0.562∗ -0.230 −2.065∗∗∗ −1.760∗∗∗ −2.866∗∗∗

0.226 0.293 0.396 0.523 0.665 1.118
DILIG −0.104∗ -0.084 -0.118 -0.073 -0.013 -0.096

0.057 0.091 0.075 0.073 0.135 0.089
ABIL −0.123∗∗ 0.004 −0.219∗∗∗ -0.088 0.044 −0.188∗∗

0.056 0.088 0.076 0.071 0.117 0.091
No. of Obs. 1748 860 882 1248 543 702

Log-likelihood -863.10 -393.98 -457.55 -551.42 -214.12 -329.11
LR chi2(k) 96.54 38.40 69.10 80.88 39.57 51.50

The standard errors are reported in parentheses under the estimates. *, **, ***: significant at

10 %, 5 %, 1%
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Figure B1: Density of Estimated Probability of Grade Retention for

Sample 1. Estimation is based on specification given in Table A6, Col. (a)
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Figure B2: Density of Estimated Probability of Grade Retention for

females of Sample 1. Estimation is based on specification given in Table

A6, Col. (b)
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Figure B3: Density of Estimated Probability of Grade Retention for

males of Sample 1. Estimation is based on specification given in Table A6,

Col. (c)
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Figure B4: Density of Estimated Probability of Grade Retention for

Sample 2. Estimation is based on specification given in Table A6, Col. (d)
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Figure B5: Density of Estimated Probability of Grade Retention for

females of Sample 2. Estimation is based on specification given in Table

A6, Col. (e)
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Figure B6: Density of Estimated Probability of Grade Retention for

males of Sample 2. Estimation is based on specification given in Table A6,

Col. (f)
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Figure B7: Density of Estimated Probability of Grade Retention for

Sample 3. Estimation is based on specification given in Table A7, Col. (a)
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Figure B8: Density of Estimated Probability of Grade Retention for

females of Sample 3. Estimation is based on specification given in Table

A7, Col. (b)
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Figure B9: Density of Estimated Probability of Grade Retention for

females of Sample 3. Estimation is based on specification given in Table

A7, Col. (c)
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Figure B10: Density of Estimated Probability of Grade Retention for

Sample 4. Estimation is based on specification given in Table A7, Col. (d)
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Figure B11: Density of Estimated Probability of Grade Retention for

females of Sample 4. Estimation is based on specification given in Table

A7, Col. (e)
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Figure B12: Density of Estimated Probability of Grade Retention for

males of Sample 4. Estimation is based on specification given in Table A7,

Col. (f)
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