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Abstract

The goal of this paper is to provide all the technical details required to implement
Gibbs sampling for the estimation of simultaneous equation models with common latent
factors among their regressors, so-called ‘factor structure models.’ Linear, dichotomous
and censored response models, as well as ordered and unordered response models can be
accommodated in this framework. The latent factors can be either correlated or not, and
specified as normally distributed or as following a finite mixture of normal distributions
for more flexibility. All conditional distributions are derived and can be used to construct
the Gibbs sampler step by step.

JEL classification: C11; C31.
Keywords: Latent factor models; Simultaneous equation models; Markov Chain Monte
Carlo; Normal Mixture.

1. INTRODUCTION

Factor structure models have become a very popular tool in the social sciences, and especially
in economics. This appeal is mainly due to the fact that these models, by combining the
advantages of simultaneous equation models and factor analytic models, allow the econome-
trician to tackle some pervasive problems such as measurement error and endogeneity. For
instance, they make it possible to investigate the impact of latent abilities or personality traits
measured with error by some indicators on various economic and social outcomes (for recent
examples, see Hansen et al. 2004; Heckman et al. 2006).

Among all the statistical methods available for the estimation of this type of model,
Bayesian methods have been extensively used by some authors based on their convenience
(Carneiro et al. 2003). They appear to be particularly well suited to such models where the
number of equations and parameters can be very large. However, the features of the Gibbs
sampler have not been documented in a comprehensive way for this kind of problem. Empirical
researchers who are unfamiliar with Bayesian methods may therefore become discouraged and
give up using this estimation strategy, or even worse give up using factor structure models
altogether. This paper aims to fill this gap by presenting all the technical details required to
construct the Gibbs sampler step by step.
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1.1. Model specification

Throughout this article, we will try to remain as general as possible with respect to the
framework of the model, so that many different models can easily be accommodated. The
overall model consists of S submodels and can be expressed as a set of S equations of the
following form:

Ys,i = gs(Y
∗
s,i;σs), s = 1, ..., S,

Y ∗
s,i = Xs,iβs + αsΘi + εs,i, i = 1, ..., n,

where Ys,i is the observed outcome s for individual i which results from the transformation of
the corresponding latent outcome Y ∗

s,i by the link function gs. This function is parameterized
by some parameters σs and the observed outcome can be continuous, binary, categorical or
ordinal.

The vector Θi contains J single latent factors which influence the outcome Ys,i trough
factor loadings contained in the (1×J)-dimensional vector αs. Usually, the factors are assumed
to be independent of the covariates and of the error terms (Θ ⊥⊥ X, ε) for identification
purposes. The parameters defining the distribution of the latent factors are denoted ψΘ.
Specification of the latent factors is very flexible: they can be correlated or not, and normally
distributed or specified as following a mixture of normals for more flexibility.

The outcome is also affected by some covariates Xs through the slope parameters βs.
Covariates can be different in each submodel, but for the sake of convenience they will be
denoted by X without distinction in the following. If an intercept term is required, a vector
of 1’s has to be included among the regressors X.

The error term εs is an i.i.d. random variable associated with the outcome s which is
usually specified as normally distributed, or following a mixture of normals for more flexibility
in some cases. Error terms are independent across equations. Let ψε,s be the set of parameters
defining the distribution of εs.
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This paper will not explicitly deal with identification. Identification is a typical problem in
factor analysis and is now well-documented. For instance, Carneiro et al. (2003) and Hansen
et al. (2004) demonstrate and discuss the identification of factor structure models.

1.2. Likelihood and posterior

Let Y and Y ∗ be, respectively, the matrices of all observed and latent outcomes in the
overall model. Let δs = (βs, αs, ψε,s, σs) denote the parameters specific to model s, and
δ = (δ1, ..., δS , ψΘ) the parameters of the overall model. The likelihood can be written as:

L (δ|Y,X) =

∫∫
f(Y, Y ∗,Θ|X, δ)dY ∗dΘ,

=

∫∫
f(Y |Y ∗,Θ,X, δ)f(Y ∗|Θ,X, δ)f(Θ|δ)dY ∗dΘ.

Because of the common factors Θ across equations, the observed outcomes are not inde-
pendent and deriving a closed-form expression for the likelihood appears to be cumbersome
in most cases. To circumvent this problem, data augmentation procedures (Tanner and Wong

1Precision in the normal case; component weights, means and precisions in the mixture case.
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1987) can be implemented to make the sampling procedure easier.2 The latent variables—
latent outcomes and factors—are treated as unobservables and are explicitly introduced in
the likelihood function. Applying Bayes’ rule, the posterior is then derived as follows:

f(δ, Y ∗,Θ|Y,X) ∝ f(Y, Y ∗,Θ|X, δ)f(δ),

∝ f(Y |Y ∗, σ)f(Y ∗|Θ,X, δ)f(Θ|δ)f(δ),

∝
S∏

s=1

f(Ys|Y
∗
s , σs)f(Y

∗
s |Θ,X, δs)f(δs)f(Θ|δ).

The latent factors Θ are the only source of dependence across the S equations. From the
last equation, it appears that conditional on Θ, the different submodels are independent of
each other and can then be treated separately. This is one of the main advantages of data
augmentation in this context. Once the latent factors have been simulated, the whole problem
can be divided into as many distinct tasks as there are different submodels. The Gibbs sampler
is therefore particularly appropriate for this kind of problem (Casella and George 1992).

1.3. Set-up of the Gibbs sampler

The algorithm is initialized by choosing initial values for all parameters δ, all latent outcomes
Y ∗ and all latent factors Θ. Random values can be chosen, or parameter estimates from some
preliminary analysis.3 Once the initialization has been achieved, the Gibbs sampling scheme
is implemented sequentially. At each iteration (t):

1. For each submodel s, update the parameters δs and the latent outcomes given the latent
factors of the previous iteration:

(a) draw the slope parameters β
(t)
s from f(βs|Y

∗(t−1)
s ,X, α

(t−1)
s ,Θ(t−1), ψ

(t−1)
ε,s ),

(b) draw the factor loadings α
(t)
s from f(αs|Y

∗(t−1)
s ,X, β

(t)
s ,Θ(t−1), ψ

(t−1)
ε,s ),

(c) draw the latent outcomes Y
∗(t)
s,i from f(Y ∗

s,i|Xi, β
(t)
s , α

(t)
s ,Θ

(t−1)
i , ψ

(t−1)
ε,s ) for each

individual i,

(d) draw the model-specific parameters σ
(t)
s , if any, from f(σs|Ys, Y

∗(t)
s ).

(e) draw the error term parameters ψ
(t)
ε,s from f(ψε,s|Y

∗(t)
s ,X, β

(t)
s , α

(t)
s ,Θ(t−1)),

2. Update the factors. Draw Θ
(t)
i from f(Θi|Y

∗(t)
i ,Xi, β

(t), α(t), ψ
(t)
ε , ψ

(t−1)
Θ ) for each indi-

vidual i.

3. Draw the parameters of the distribution of the factors ψ
(t)
Θ from f(ψΘ|Θ

(t)).

4. Go to step 1 and repeat until practical convergence.

Step 1 is described in Sections 2–6 for each type of submodel—linear, dichotomous, cen-
sored, categorical and ordinal. Because of the data augmentation scheme, the procedure used
to sample the slope parameters, the factor loadings and the error term parameters is the
same for the submodels involving latent outcomes as found in the linear case. Once the latent

2See also van Dyk and Meng (2001) for a review.
3E.g., exploratory factor analysis for the starting values of the factor loadings.
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outcomes have been updated, they can actually be treated as given, and the linear model
can therefore be used as a baseline. For this reason, the linear case will first be thoroughly
developed and the demonstration will not be repeated for the subsequent submodels. Only
the conditional distributions of the latent outcomes and of the model-specific parameters such
as cut-points will then be provided. Section 7 describes how to sample the latent factors con-
ditional on all the other parameters in step 2, and Section 8 then explains how to sample the
parameters of the distribution of the factors conditional on the factors in step 3. Section 9
presents the procedure used to update the parameters of a mixture of normal distributions
implemented in the error terms and the latent factors in the mixed case. Section 10 finally
concludes.

To simplify the notation, no differences will be made between the different submodels
and henceforth the subscript s will be dropped. In the same way, the parameter superscripts
referring to the current and previous iterations will not be mentioned anymore. Obviously,
conditional distributions which depend on other parameters use the latest updated values of
these parameters.

2. LINEAR RESPONSE SUBMODELS

In the linear case, the link function g is the identity function and the model is:

Yi = Xiβ + αΘi + εi.

2.1. Updating the slope parameters

Applying Bayes’ rule, the conditional distribution of β is derived as:

f(β|Y,X,Θ, α, ψε) ∝ f(Y |X,Θ, β, α, ψε)f(β). (1)

A conjugate normal prior centered at µβ and with precision matrix Ψβ is assumed for the
slopes:

β ∼ N (µβ ; Ψβ) .

Using the auxiliary outcome Ỹ = Y − αΘ, Equation (1) implies that:

f(β|Y,X,Θ, α, ψε) = f(β|Ỹ ,X, ψε),

∝ f(Ỹ |X,β, τε)f(β),

∝ exp
{
−
τε

2
(Ỹ −Xβ)′(Ỹ −Xβ)

}
exp

{
−
1

2
(β − µβ)

′Ψβ(β − µβ)

}
,

∝ exp

{
−
1

2

(
β′
[
τεX

′X +Ψβ

]
β − 2β′

[
τεX

′Ỹ +Ψβµβ

])}
,

∝ exp

{
−
1

2

(
β −

[
τεX

′X +Ψβ

]−1
[
τεX

′Ỹ +Ψβµβ

])′ (
τεX

′X +Ψβ

)
(•)

}
,

where (•) represents the first factor of the corresponding sandwich matrix. Factors not in-
volving β have been omitted, and the resulting normal kernel has been produced using the
completion of the square. As a consequence, β has the following conditional distribution:

β ∼ N
(
[τεX

′X +Ψβ]
−1[τεX

′Ỹ +Ψβµβ] ; τεX
′X +Ψβ

)
.
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When noninformative priors are assumed (µβ = {0} and Ψβ = {0}), the conditional distribu-
tion of β reduces to:

β ∼ N
(
[X ′X]−1X ′Ỹ ; τεX

′X
)
.

2.2. Updating the factor loadings

Applying Bayes’ rule for α provides:

f(α|Y,X,Θ, β, ψε) ∝ f(Y |X,Θ, β, α, ψε)f(α).

Since the factors Θ are updated at each iteration of the Gibbs sampler, they can be
regarded as given when it comes to sampling the factor loadings. Using their current values,
the factor loadings are updated with exactly the same sampling scheme as for the slope
parameters.

2.2.1 Unconstrained factor loadings

Factor loadings are supposed to be a priori normally distributed:

α ∼ N (µα ; Ψα) .

In the same way as we did for the slope parameters, we can show that the conditional of
the loadings is the following normal distribution:

α ∼ N
(
[τεΘ

′Θ+Ψα]
−1[τεΘ

′Ỹ +Ψαµα] ; τεΘ
′Θ+Ψα

)
,

where Ỹ = Y −Xβ.
In many applications, a prior with mean zero and with a given precision τα is used, yielding

the following conditional distribution:

α ∼ N
(
[τεΘ

′Θ+ ταIJ ]
−1τεΘ

′Ỹ ; τεΘ
′Θ+ ταIJ

)
,

where IJ is the identity matrix of dimension J .

2.2.2 Constrained factor loadings

It might be desired—or required—to restrict some factor loadings in some submodels. In the
case where a factor loading has to be set to a given value, it is simply assigned this value at
each step of the Gibbs sampler.4 If sign constraints have to be implemented, the sampling
procedure is very similar to the unrestricted case, with the only difference that the conditional
is a truncated normal distribution:

α ∼ T N(0,+∞)

(
[τεΘ

′Θ+ ταId]
−1τεΘ

′Ỹ ; τεΘ
′Θ+ ταId

)
for positive factor loadings,

α ∼ T N(−∞,0]

(
[τεΘ

′Θ+ ταId]
−1τεΘ

′Ỹ ; τεΘ
′Θ+ ταId

)
for negative factor loadings,

where in this case Ỹ = Y −Xβ −Θfαf , with Θf the set of unrestricted factors and αf their
corresponding loadings.

4In factor analysis, it is often required that the scale of the latent factor be set by, for instance, fixing one
of the loadings to 1.
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2.3. Updating error term parameters

The application of Bayes’ rule for ψε implies that:

f(ψε|Y,X,Θ, β, α) ∝ f(Y |X,Θ, β, α, ψε)f(ψε).

Depending on the type of distribution assumed for the error term, two different cases have
to be distinguished.

2.3.1 Normal error term ε ∼ N (0 ; τε)

In the normal case, a single parameter defines the distribution of the error term (ψε = τε).
Because the precision has to be positive, a conjugate Gamma distribution prior is usually
used:

τε ∼ Ga(g1 ; g2) ,

and the conditional is proportional to:

f(τε|Y,X,Θ, β, α) ∝ f(Y |X,Θ, β, α, τε)f(τε),

∝ τn/2ε exp

{
−
τε

2

n∑

i=1

(Yi −Xiβ − αΘi)
2

}
τ g1−1
ε exp {−g2τε} ,

∝ τn/2+g1−1
ε exp

{
−τε

(
g2 +

1

2

n∑

i=1

(Yi −Xiβ − αΘi)
2

)}
.

The kernel of a Gamma distribution can be recognized in this last expression. Hence, τε has
the following conditional distribution:

τε ∼ Ga

(
g1 +

n

2
; g2 +

1

2

n∑

i=1

(Yi −Xiβ − αΘi)
2

)
.

2.3.2 Mixed error term

A finite mixture of normals can be assumed for the distribution of the error term, in order to
introduce more flexibility. This boils down to considering that individuals belong to different
subgroups with homogenous non-observable characteristics.

In this context, the error term is assumed to be generated by a mixture of K normals,
with mean constrained to zero for the purpose of identification:

ε ∼
K∑

k=1

pε,kN (µε,k ; τε,k) , E(ε) =

K∑

k=1

pε,kµε,k = 0,

where pε,k is the weight, µε,k is the mean and τε,k is the precision of mixture component k.
The complete procedure for updating the parameters of a mixture of normals with con-

strained mean is described in Section 9.
The introduction of a mixture of normals for the error term makes the initial problem

slightly more complicated, insofar as the conditional distribution of the outcome is also a
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mixture of normals under this assumption. However, a simple transformation of the variables
solves the problem. Once the mixture parameters have been updated, the dependent and
independent variables can be redefined as follows to take into account the heterogeneity of
the error term:

Y new
i ← τ

1/2
ε,k (Yi − µε,k),

Xnew
i ← τ

1/2
ε,k Xi,

Θnew
i ← τ

1/2
ε,k Θi,

where individual i belongs to mixture group k. After this transformation, the error term
appears to be standard normally distributed for all individuals. It is therefore enough to use
these transformed variables instead of the original ones, and to set the precision τε to unity
when deriving the conditional distributions of the other parameters.

3. DICHOTOMOUS RESPONSE SUBMODELS

In this type of submodel, the link function is the indicator function 1l [·] and the outcome is
a binary variable defined by the sign of its underlying latent outcome Y ∗:

Yi = 1l [Y ∗
i > 0] ,

Y ∗
i = Xiβ + αΘi + εi.

Conditional on the latent factor Θ, this is the well-known probit model when ε ∼ N (0 ; 1).
The conditional of the parameters and of the latent outcome Y ∗ can be factorized as

follows:

f(β, α, Y ∗|Y,X,Θ) ∝ f(Y |Y ∗)f(Y ∗|X,Θ, β, α)f(β, α). (2)

3.1. Sampling the latent outcome

Assuming that ε ∼ N (0 ; 1), the conditional of the latent outcome can be derived from
Equation (2) as follows:

f(Y ∗|Y,X,Θ, β, α) ∝ f(Y |Y ∗)f(Y ∗|X,Θ, β, α),

∝
n∏

i=1

1l [Y ∗
i > 0]Yi 1l [Y ∗

i 6 0]1−Yi

n∏

i=1

exp

{
−
1

2
(Y ∗

i −Xiβ − αΘi)
2

}
,

∝
n∏

i=1

[
1l [Y ∗

i > 0] exp

{
−
1

2
(Y ∗

i −Xiβ − αΘi)
2

}]Yi

×

[
1l [Y ∗

i 6 0] exp

{
−
1

2
(Y ∗

i −Xiβ − αΘi)
2

}]1−Yi

.

Hence, the latent outcome will be sampled from a truncated normal distribution, dependent
on the outcome of the observed binary variable:

Y ∗
i ∼

{
T N(0,+∞)(Xiβ + αΘi ; 1) if Yi = 1,

T N(−∞,0](Xiβ + αΘi ; 1) if Yi = 0.
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In case the error term follows a mixture of normal distributions, the conditional of the
latent outcome is:

Y ∗
i ∼

{
T N(0,+∞)(Xiβ + αΘi + µε,k ; τε,k) if Yi = 1,

T N(−∞,0](Xiβ + αΘi + µε,k ; τε,k) if Yi = 0,

where µε,k and τε,k are, respectively, the mean and the precision of the error term component
corresponding to the mixture group k individual i belongs to.

3.2. Updating the error term parameters

This step is only necessary when the standard normal assumption on the error term is relaxed,
and a mixture of normals with zero mean is assumed instead—with same specification as in
the linear case (see Section 2). Geweke and Keane (1999) have proposed the use of mixture
of normals probit models as a flexible approach to dichotomous models. Because they re-
move the usual normality assumption, they are much closer to semiparametric models. Some
normalizations are however required for identification. This can be achieved in different ways:

• scale mixture of normals models: µε,k = 0 (k = 1, ...,K),

• mean mixture of normals models: τε,k = 1 (k = 1, ...,K),

• full mixture of normals models:

– τε,k > 0 ∀k,

– either µε,k−1 < µε,k or τε,k−1 < τε,k (k = 2, ...,K),

– τε,k = 1 for some k.

Further regularity assumptions are discussed in Geweke and Keane (1999). In this configura-
tion, the mixture parameters are updated according to the procedure described in Section 9,
using the latent outcomes Y ∗ as dependent variable. Like in the linear case, the latent
outcome, the factors and the explanatory variables have to be redefined once the mixture
parameters have been updated, to take into account the heterogeneity of the error term.

4. CENSORED RESPONSE SUBMODELS

The latent outcome of the censored submodel is observed only above a given threshold σ:5

Yi = Y ∗
i 1l [Y

∗
i > σ] ,

Y ∗
i = Xiβ + αΘi + εi.

When ε ∼ N (0 ; τε), this is the typical Tobit-I model, conditionally on Θ. Bayesian inference
in this type of model is detailed in Chib (1992).

5The model can also be censored from above. In this case, the latent outcome is observed only if it is below
the threshold σ and the modification of the following sampling procedure is straightforward.

8



4.1. Sampling the latent outcome

Only the case where the observed outcome is censored requires elaboration. For each in-
dividual i, the conditional density of the latent outcome given censoring can be expressed
as:

f(Y ∗
i |Yi = 0,Xi, σ,Θi, β, α, τε) ∝ f(Yi = 0|Y ∗

i , σ)f(Y
∗
i |Xi,Θ, β, α, τε),

∝ 1l [Y ∗
i 6 σ] exp

{
−
τε

2
(Y ∗

i −Xiβ − αΘi)
2
}
.

Hence, the latent outcome is sampled from the following truncated normal distribution:6

Y ∗
i ∼ T N(−∞,σ](Xiβ + αΘi ; τε) .

Similarly, in the case where the error term follows a mixture of normals with zero mean—
with same specification as in the dichotomous case—, the latent outcome is sampled from:

Y ∗
i ∼ T N(−∞,σ](Xiβ + αΘi + µε,k ; τε,k) ,

where µε,k and τε,k are, respectively, the mean and the precision of the error term component
corresponding to the mixture group k individual i belongs to.

In the next steps of the Gibbs sampler, the simulated latent outcome is used for the
individuals whose outcome is censored, while the observed outcome is used for the others.

5. UNORDERED RESPONSE SUBMODELS

Assume there are L different unordered choices and consider the following utility maximization
problem:

Yi = argmax
l=1,...,L

Y ∗
l,i,

Y ∗
l,i = Xl,iβl + αlΘi + εl,i, l = 1, ..., L.

Conditional on Θ, this is the standard multinomial probit model when εl is normally dis-
tributed.

A well-known problem of identification arises in this class of model (Bunch 1991). Al-
though this issue is not addressed here, appropriate restrictions or modifications of the base-
line model should be carefully implemented to secure identification (McCulloch and Rossi
2000; Keane 1992). Modification of the sampling procedure presented in the next section to
fit the identification requirements would be straightforward. In the following, the error terms
are assumed to be standard normally distributed.

5.1. Sampling the latent outcomes

Since there are L different choices and as many underlying equations, the easiest way to sample
the latent outcomes is to do so sequentially. For individual i, the conditional distribution of
her latent outcome Y ∗

m,i for choice m conditional on the other latent outcomes is:

f(Y ∗
m,i|Yi, Y

∗
−m,i,X,Θ, β, α) ∝ f(Yi|Y

∗
m,i, Y

∗
−m,i)f(Y

∗
m,i|X,Θ, β, α),

6When the outcome is censored from above, the truncation is on the interval (σ,+∞).
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where m = 1, ..., L and Y ∗
−m,i stands for the set of latent outcomes excluding the mth one.

If m is the actual choice (Yi = m), then the conditional is:

f(Y ∗
m,i|Yi = m,Y ∗

−m,i,X,Θ, β, α)

∝ 1l


Y ∗

m,i > max
l=1,...,L
l 6=m

{
Y ∗
l,i

}

 exp

(
−
1

2
(Y ∗

m,i −Xm,iβm − αmΘi)
2

)
, (3)

and otherwise, if Yi 6= m:

f(Y ∗
m,i|Yi 6= m,Y ∗

−m,i,X,Θ, β, α)

∝ 1l
[
Y ∗
m,i < Y ∗

Yi,i

]
exp

(
−
1

2
(Y ∗

m,i −Xm,iβm − αmΘi)
2

)
. (4)

From Equations (3) and (4), it can be deduced that each latent outcome Y ∗
m,i is sampled

sequentially from a truncated normal distribution, dependent on the other latent outcomes
and on the observed choice as follows:

Y ∗
m,i ∼




T N(maxl 6=m{Y ∗

l,i};+∞)(Xm,iβm + αmΘi ; 1) if Yi = m,

T N(−∞;Y ∗
Yi,i

)(Xm,iβm + αmΘi ; 1) otherwise,

for m = 1, ..., L.

6. ORDERED RESPONSE SUBMODELS

As in the unordered case, there are L different choices. But in this configuration, they have
a natural ordering generated by a latent outcome Y ∗ which depends on some covariates and
on the factors:

Yi = l if cl−1 6 Y ∗
i < cl, l = 1, ..., L,

Y ∗
i = Xiβ + αΘi + εi,

where c0 = −∞, cL = +∞ and c = (c1, ..., cL−1)
′. When the error term is standard normally

distributed, this is the usual ordered probit model, conditionally on Θ.
The conditional distribution of the parameters can be factorized as follows:

f(β, α, c|Y, Y ∗,X,Θ) ∝ f(Y |Y ∗, c)f(Y ∗|X,Θ, β, α)f(β, α)f(c). (5)

Following Albert and Chib (1993), a data augmentation scheme is implemented to sample
this model and the latent outcome Y ∗ is simulated at each step of the algorithm.

6.1. Sampling the latent outcome

Conditional on the observed choices Yl, on the factor and on all parameters, the conditional
distribution of the latent outcome is, when εi ∼ N (0 ; 1):

f(Y ∗|Y,X,Θ, β, α, c) ∝ f(Y |Y ∗, c)f(Y ∗|X,Θ, β, α),
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∝
n∏

i=1

{
L∑

l=1

1l [Yi = l] 1l [cl−1 6 Y ∗
i < cl]

}
1l [c0 < ... < cL]

×
n∏

i=1

exp

(
−
1

2
(Y ∗

i −Xiβ − αΘi)
2

)
,

∝
n∏

i=1

{
L∑

l=1

1l [cl−1 6 Y ∗
i < cl] exp

(
−
1

2
(Y ∗

i −Xiβ − αΘi)
2

)}
.

Hence, Y ∗ is sampled from a truncated normal distribution:

Y ∗
i ∼ T N[cl−1,cl)(Xiβ + αΘi ; 1) whenever Yi = l.

Similarly, it can be shown that when the error is mixed distributed, the conditional dis-
tribution of Y ∗ is:

Y ∗
i ∼ T N[cl−1,cl)(Xiβ + αΘi + µε,k ; τε,k) whenever Yi = l,

where µε,k and τε,k are, respectively, the mean and the precision of the error term component
corresponding to the mixture group k individual i belongs to.7

6.2. Updating the cut-points

6.2.1 Standard Gibbs sampler

Albert and Chib (1993) have developed a simple procedure to sample the cut-points. Condi-
tional on β and α, the factorization of Equation (5) provides:

f(c|Y, Y ∗,X,Θ, β, α) ∝ f(Y |Y ∗, c)f(c),

∝
n∏

i=1

{
L∑

l=1

1l [Yi = l] 1l [cl−1 6 Y ∗
i < cl]

}
1l [c1 < ... < cL−1] f(c).

The cut-points can be sampled sequentially. The conditional distribution of cl is:

f(cl|c−l, Y, Y
∗,X,Θ, β, α) ∝

∏

i:Yi=l

1l [cl−1 6 Y ∗
i < cl]

∏

i:Yi=l+1

1l [cl 6 Y ∗
i < cl+1]

× 1l [cl−1 < cl < cl+1] f(cl),

(6)

where c−l is the set of cut-points other than cl. For each cut-point cl, a uniform prior on
the interval bounded by cl−1 and cl+1 is usually used, so as to fulfill the ordering condition.
From Equation (6), it can be deduced that the conditional of each cut-point is a uniform
distribution:

cl ∼ U(cl; cl),

with:

cl = max

{
max
i:Yi=l

{Y ∗
i } ; cl−1

}
and cl = min

{
min

i:Yi=l+1
{Y ∗

i } ; cl+1

}
.

7The specification of the mixture is the same as in the dichotomous case (see Section 3).
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The standard Gibbs sampler can exhibit low convergence rate, due to the high correlation
between the latent outcomes and the cut-points. To remedy this problem, two different
approaches can be implemented. The first one is based on the work by Cowles (1996), and
the second one was suggested by Liu and Sabatti (2000). Both methodologies will now be
introduced.8

6.2.2 Hastings-within-Gibbs step

In the standard Gibbs sampler, cut-points and latent outcomes are drawn individually from
their respective full conditionals, resulting in poor convergence. Instead, Cowles (1996) pro-
posed to sample them jointly through a Hastings-within-Gibbs step. To do so, a set of
candidate cut-points c̃ is drawn from a marginal distribution, and accepted with a given
probability:

1. Sample proposal cut-points. A normal prior with user-specified precision τc is assumed
for each cut-point. At each iteration (t) of the Gibbs sampler, each candidate cut-point

c̃l is drawn from N
(
c
(t−1)
l ; τc

)
truncated to the interval

[
c̃l−1; c

(t−1)
l+1

]
for l = 1, ..., L.

2. Compute acceptance probability R. With the set of candidate cut-points in hand, the
following acceptance probability is computed:9

R =

L−1∏

l=2

Φ
(
τ
1/2
c

[
c
(t−1)
l+1 − c

(t−1)
l

])
− Φ

(
τ
1/2
c

[
c̃l−1 − c

(t−1)
l

])

Φ
(
τ
1/2
c [c̃l+1 − c̃l]

)
− Φ

(
τ
1/2
c

[
c
(t−1)
l−1 − c̃l

])

×
n∏

i=1

Φ(c̃yi − µi)− Φ(c̃yi−1 − µi)

Φ
(
c
(t−1)
yi − µi

)
− Φ

(
c
(t−1)
yi−1 − µi

) ,

where µi = Xiβ +αΘi is the linear predictor of Y ∗
i for individual i, and Φ(·) represents

the cdf of the standard normal distribution.

3. Accept or reject candidate c̃. With probability R, set c(t) = c̃ and update the latent
outcome Y ∗ accordingly. Otherwise, the cut-points as well as the latent outcome of the
previous iteration are kept: c(t) ≡ c(t−1) and Y ∗(t) ≡ Y ∗(t−1).

To implement this procedure, a prior precision has to be chosen for the cut-points, thus
influencing the acceptance ratio. A rule of thumb consists of choosing τc such as the desirable
acceptance rate lies between 25% and 50%.

The Hastings step represents a significant improvement of the standard algorithm of Albert
and Chib (1993), however convergence might still not be optimal. Furthermore, calculating
the acceptance ratio is computationally demanding and slows down the procedure. Because
of these potential drawbacks, another method can be considered, namely the group transfor-
mation of parameters.

8See also Raach (2006); Fahrmeir and Raach (2007).
9If the first cut-point is not restricted to zero—when there is no intercept term for instance—, the first

product in the expression of R starts at l = 1.
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6.2.3 Group transformation

This method introduces an intermediate step in the Gibbs sampler which is far less demanding
than the Hastings step and demonstrates good convergence performance. It consists of finding
an appropriate group transformation of some parameters—possibly all of them—which does
not change their target distribution. Hence, the Gibbs sampler remains the same, but its
mixing behavior is likely to be greatly improved. Details and theoretical foundations of this
methodology are provided in the original paper by Liu and Sabatti (2000), and explained
in Raach (2006) and Fahrmeir and Raach (2007). Practically, the standard Gibbs sampler
described previously is used to sample the cut-points, and the transformation is then applied
to the parameters of interest.

For our purposes, we consider the partial scale group transformation:

Γv = {γ > 0 : γ(ω) = (γω1, ..., γωv , ωv+1, ..., ωW )},

where only the first v elements of the (W × 1)-vector of parameters ω are transformed, the
others remain unchanged. Applying the first theorem of Liu and Sabatti (2000), the goal
is to sample a suitable parameter γ from a density proportional to γv−1π(γ(ω)), where π(·)
represents the density of the parameters to be transformed. In our case, a transformation will
be applied on the group:

ω = {Y ∗
1 , ..., Y

∗
n , β1, ...βb, α1, ...αJ , c1, ..., cL−1},

which contains n+ b+ J + L− 1 parameters, where b is the number of covariates in X.
The conditional distribution of this group of parameters is proportional to:

n∏

i=1

[
f(Y ∗

i |Θ,Xi, β, α)

L∑

l=1

1l [Yi = l] 1l [cl−1 6 Y ∗
i < cl]

]
f(β, α)f(c), (7)

and the target density of the scale parameter can thus be derived as:10

γv−1π(γ(ω)) ∝ γv−1 exp

{
−
1

2

n∑

i=1

(γY ∗
i −Xiγβ − γαΘi)

2

}
exp

{
−
1

2
τα(γα)

′(γα)

}
,

∝ (γ2)
v+1

2
−1 exp

{
−
1

2
γ2

[
n∑

i=1

(Y ∗
i −Xiβ − αΘi)

2 + ταα
′α

]}
. (8)

Note that the sum in the expression in brackets in Equation (7) vanishes because it remains
constant after the transformation:

L∑

l=1

1l [Yi = l] 1l [γcl−1 6 γY ∗
i < γcl] =

L∑

l=1

1l [Yi = l] 1l [cl−1 6 Y ∗
i < cl] .

10To simplify the exposition, noninformative priors are assumed for the slope parameters β and the cut-points
c, and therefore their priors are just normalizing constants which disappear from the conditional distribution
of γ2. The factor loadings α are assumed to be a priori normally distributed with mean zero and non-zero
precision τα, and the kernel of their prior therefore remains. Note that Raach (2006) and Fahrmeir and Raach
(2007) implicitly assume noninformative priors also for α since the kernel of its prior distribution vanishes in
their formula. The more general case with informative priors would be straightforward to derive.
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From Equation (8), it can be seen that γ2 has to be sampled from a Gamma distribution
with parameters:

a =
v + 1

2
=
n+ b+ J + L

2
and b =

∑n
i=1(Y

∗
i −Xiβ − αΘi)

2 + ταα
′α

2
.

The transformation of interest is then carried out by multiplying each element of the group
ω by the square root of the sampled γ2.11

In the special case where at least one factor loading is restricted to a constant term, the
target density cannot be factorized into Equation (8) as previously, and as a consequence γ2

cannot be sampled from the same Gamma distribution. We do not consider the case where
a factor loading is set to zero as a restriction, because in this case the factor simply vanishes
from the distribution and the general case described before can be applied. To solve this
problem, the group transformation has to be changed in such a way that the restricted factor
loadings are not scaled by γ.

6.3. Mixed error term

Although the use of a mixture of normals for the error term would be straightforward and easy
to implement in the framework of our model, there is to the best of our knowledge no prior
work on the identification of this type of model. Kottas et al. (2005) have suggested the use of
mixtures to extend the traditional ordered response model, introducing more flexibility. But
there is no guarantee that this framework would provide reliable results when one or several
regressors are latent factors, which can themselves be distributed as mixtures of normals. We
therefore leave this for further research, and recommend that the reader be cautious if she
wants to deal with a mixed error term in this submodel.

7. CONDITIONAL DISTRIBUTION OF THE FACTORS

Since the latent factors are independently distributed across individuals, the conditional dis-
tribution for Θ can be factorized into n conditionals for Θ1,...,Θn. To derive them, note that
all the contributions of Θi originate from linear regression models:

Y ∗
1,i −Xiβ1 = α1Θi + ε1,i,

...

Y ∗
S,i −XiβS = αSΘi + εS,i.

When the S submodels are stacked, the equation system is of the form:

Ỹ ∗
i = α̃Θi + ε̃i, (9)

where Ỹ ∗
i is of dimension (S × 1), α̃ is a (S × J)-dimensional matrix and Θ is the vector of

dimension (J × 1) containing the factors to be updated. To complete the specification, we
have ε̃i ∼ N (0 ; Σ). The precision matrix Σ is of dimension (S × S) and is diagonal since the
error terms are independent across equations.12

11Remember that γ has to be positive in the chosen transformation group Γ.
12If the error term is mixed distributed in submodel s, the change of variable explained in Section 2 can be

applied, resulting in εs,i ∼ N (0 ; 1).
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The conditional distribution for Θi is then:

f(Θi|Ỹ
∗
i , α̃,Σ, ψΘ) ∝ f(Ỹ

∗
i |Θi, α̃,Σ)f(Θi|ψΘ), (10)

and will depend on the type of distribution assumed for the latent factors—normal or mixed
normal.

7.1. Normal case

7.1.1 Multivariate case

If the factors are correlated, they have to be updated simultaneously. Assume they are
normally distributed as:

Θi ∼ N (0 ; ΨΘ) ,

where the precision matrix ΨΘ can be considered known since it has been updated in the
previous iteration of the Gibbs sampler. The conditional distribution can thus be derived
from Equation (10) as:

f(Θi|Ỹ
∗
i , α̃,Σ) ∝ exp

{
−
1

2
(Ỹ ∗

i − α̃Θi)
′Σ(Ỹ ∗

i − α̃Θi)

}
exp

{
−
1

2
Θ′

iΨΘΘi

}
,

∝ exp

{
−
1

2

(
Θ′

i

[
α̃′Σα̃+ΨΘ

]
Θi − 2Θ′

iα̃
′ΣỸ ∗

i

)}
.

Like for the slope parameters of the linear submodel described in Section 2, this last expression
provides, after rearranging, the kernel of the following normal distribution:

Θi ∼ N
([
α̃′Σα̃+ΨΘ

]−1
α̃′ΣỸ ∗

i ; α̃′Σα̃+ΨΘ

)
.

7.1.2 Univariate case

The univariate case is not only of interest when the overall model just has a single latent
factor, but also when some of the factors are uncorrelated. The uncorrelated factors can
actually be updated one at a time conditional on the other factors. In the system (9), the
factors other than the current one being updated just have to be put on the left-hand side of
the equation.

A normal distribution with zero mean and precision τθ is assumed for the factor, and
similarly to the multivariate case, it can be shown that the conditional distribution of θi is:

θi ∼ N

(
α̃′ΣỸ ∗

i

α̃′Σα̃+ τθ
; α̃′Σα̃+ τθ

)
.

7.2. Mixture of normals case

7.2.1 Multivariate case

The factors are assumed to follow a mixture of K multivariate normal distributions:

Θi ∼
K∑

k=1

pkN (µk ; Ψk) ,
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where µk, Ψk and pk represent, respectively, the mean vector, the precision matrix and the
weight of the kth mixture component. As in the normal case, their updated values from the
previous iteration of the Gibbs sampler are used in the following.

From Equation (10), the conditional is derived as:

f(Θi|Ỹ
∗
i , α̃,Σ) ∝ f(Ỹ

∗
i |Θi, α̃,Σ)f(Θi),

∝ exp

{
−
1

2
(Ỹ ∗

i − α̃Θi)
′Σ(Ỹ ∗

i − α̃Θi)

} K∑

k=1

pk|Ψk|
1/2 exp

{
−
1

2
(Θi − µk)

′Ψk(Θi − µk)

}
,

∝
K∑

k=1

pk|Ψk|
1/2 exp

{
−
1

2

(
Θ′

iα̃
′Σα̃Θi − 2Θ′

iα̃
′ΣỸ ∗

i +Θ′
iΨkΘi − 2Θ′

iΨkµk + µ′kΨkµk

)}
,

∝
K∑

k=1

pk|Ψk|
1/2 exp

{
−
1

2

(
Θ′

i

[
α̃′Σα̃+Ψk

]
Θi − 2Θ′

i

[
α̃′ΣỸ ∗

i +Ψkµk

]
+ µ′kΨkµk

)}
,

∝
K∑

k=1

pk|Ψk|
1/2 exp

{
−
1

2

(
µ′kΨkµk −

[
α̃′ΣỸ ∗

i +Ψkµk

]′ [
α̃′Σα̃+Ψk

]−1
[•]

)}

× exp

{
−
1

2

(
Θi −

[
α̃′Σα̃+Ψk

]−1
[
α̃′ΣỸ ∗

i +Ψkµk

])′ (
α̃′Σα̃+Ψk

)
(•)

}
,

(11)

where (•) represents the first factor of the corresponding sandwich matrix. The kernel of a
mixture of multivariate normal distributions emerges from Equation (11). To further simplify
its expression, the first exponential can be factorized with respect to µk, and after some matrix
algebra, it can be shown to be proportional to:13

exp

{
−
1

2

(
µ′kΨkµk −

[
α̃′ΣỸ ∗

i +Ψkµk

]′ [
α̃′Σα̃+Ψk

]−1
[•]

)}
(12)

∝ exp

{
−
1

2

(
µk −

[
α̃′Σα̃

]−1
α̃′ΣỸ ∗

i

)′ (
Ψk

[
α̃′Σα̃+Ψk

]−1
α̃′Σα̃

)
(•)

}
. (13)

Using this result and writing A ≡ α̃′Σα̃ and B ≡ α̃′ΣỸ ∗
i to make the notation clearer,

Equation (11) can be re-expressed as:

K∑

k=1

pk|Ψk|
1/2 exp

{
−
1

2

(
µk −A

−1B
)′ (

Ψk (A+Ψk)
−1A

)
(•)

}

× exp

{
−
1

2

(
Θi − [A+Ψk]

−1[B +Ψkµk]
)′
(A+Ψk)(•)

}
,

∝
K∑

k=1

pk
∣∣Ψk(A+Ψk)

−1A
∣∣1/2 exp

{
−
1

2

(
µk −A

−1B
)′ (

Ψk [A+Ψk]
−1A

)
(•)

}

× |A+Ψk|
1/2 exp

{
−
1

2

(
Θi − [A+Ψk]

−1[B +Ψkµk]
)′
(A+Ψk)(•)

}
.

Hence, the conditional of the factors Θi is a mixture of multivariate normal distributions with
the following means, precisions and weights:

µ
post
k =

[
α̃′Σα̃+Ψk

]−1
[
α̃′ΣỸ ∗

i +Ψkµk

]
,

13See Appendix A for details.
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Ψpost
k = α̃′Σα̃+Ψk,

p
post
k ∝ pk φ

(
µk ;

[
α̃′Σα̃

]−1
α̃′ΣỸ ∗

i , Ψk

[
α̃′Σα̃+Ψk

]−1
α̃′Σα̃

)
,

where φ(·) is the pdf of the multivariate normal distribution with given mean and precision
evaluated at µk.

7.2.2 Univariate case

As in the normal case, the univariate result follows from the multivariate derivation in the
previous section. Assuming that the factor follows a mixture of K univariate normals:

θi ∼
K∑

k=1

pkN (µk ; τk) ,

where µk, τk and pk are, respectively, the mean, the precision and the weight of mixture
component k, the conditional distribution can be shown to be a mixture of univariate normal
distributions with the following parameters:

µ
post
k =

α̃′ΣỸ ∗
i + τkµk

α̃′Σα̃+ τk
,

τ
post
k = α̃′Σα̃+ τk,

p
post
k ∝ pk φ

(
µk ;

α̃′ΣỸ ∗
i

α̃′Σα̃
,

τkα̃
′Σα̃

α̃′Σα̃+ τk

)
.

8. UPDATING FACTOR DISTRIBUTION PARAMETERS

Once the latent factors have been sampled, they can be regarded as known and the parameters
of their distribution can be updated.

8.1. Normal case

The latent factors are assumed to be centered at zero and thus only their precisions have to
be updated.

8.1.1 Univariate case

When θ ∼ N (0 ; τθ), the precision τθ is sampled exactly in the same way as the precision
of the error term in the linear submodel (see Section 2). A conjugate Gamma distribution
Ga(g1 ; g2) is assumed, and the conditional of the precision can be shown to be:

τθ ∼ Ga

(
g1 +

n

2
; g2 +

1

2

∑

i

θ2i

)
.
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8.1.2 Multivariate case

In the multivariate case, we specify Θ ∼ N (0 ; ΨΘ). The precision matrix is assumed to be a
priori Wishart distributed with v degrees of freedom and scale matrix Γ:

ΨΘ ∼ W(v ; Γ),

and applying Bayes’ rule, the conditional distribution is derived as:14

f(ΨΘ|Θ) ∝ f(Θ|ΨΘ)f(ΨΘ),

∝ |ΨΘ|
n/2 exp

{
−
1

2

∑

i

Θ′
iΨΘΘi

}
|ΨΘ|

(v−J−1)/2 exp

{
−
1

2
tr
(
Γ−1ΨΘ

)}
,

∝ |ΨΘ|
(n+v−J−1)/2 exp

{
−
1

2

[
∑

i

Θ′
iΨΘΘi + tr

(
Γ−1ΨΘ

)
]}

,

∝ |ΨΘ|
(n+v−J−1)/2 exp

{
−
1

2

[
tr

([
∑

i

ΘiΘ
′
i + Γ−1

]
ΨΘ

)]}
.

Hence, the conditional of the precision matrix is a Wishart distribution:

ΨΘ ∼ W


n+ v ;

[
∑

i

ΘiΘ
′
i + Γ−1

]−1

 .

8.2. Mixture of normals case

When the distribution of the latent factors is specified to be a mixture of normals, the sampling
procedure is slightly more complicated since different sets of parameters—group indicators,
components’ means, precisions and weights—have to be sequentially updated. The sampling
scheme is the same as the one used to update the parameters of the error term distribution
of the submodels in the mixed case, and is presented in Section 9.

9. UPDATING THE PARAMETERS OF A NORMAL MIXTURE

DISTRIBUTION

This section describes how to update the parameters of a normal mixture distribution under
zero-mean restriction. This procedure is used to sample the parameters of the error term in
the mixed case, but also to sample the parameters of the factor distribution in the mixed case.

9.1. Multivariate case

Let Zi be a random vector of dimension (J × 1) distributed as a mixture of K multivariate
normal distributions:

Zi ∼
K∑

k=1

pkN (µk ; Ψk) ,

14The result is obtained using a basic property of the trace operator: tr (ABC) = tr (CAB), where A, B
and C are matrices of appropriate sizes.
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where µk is the vector of means of dimension (J × 1), Ψk is the (J × J)-dimensional precision
matrix, and pk is the weight of mixture component k.

We adopt the group-indicator approach (Diebolt and Robert 1994), and first update the
group membership of each individual i. Once we know to which group each individual belongs,
the different sets of mixture parameters are sampled component-wise. For this purpose, let
gk,i be the group indicator which is equal to one if individual i belongs to group k, and to
zero otherwise.

9.1.1 Updating group indicators

Since each individual can belong to only one mixture group, the probability mass of each
gk,i is simply the corresponding weight pk. As a consequence, the vector of indicators gi =
(g1,i, ..., gK,i)

′ follows a multinomial distribution with the mixture weights as parameters.
Conditional on group membership, Zi is normally distributed, and the posterior of the group
indicators is, for individual i and for all k = 1, ...,K:

f(gk,i = 1|Zi) ∝ f(Zi|gk,i = 1)f(gk,i = 1),

∝ φ(Zi;µk,Ψk)pk,

where φ(Zi;µk,Ψk) denotes the pdf of the multivariate normal distribution with mean µk and
precision matrix Ψk evaluated at Zi.

Thus, group membership probabilities are computed as follows in order to ensure normal-
ization:

Pr(gk,i = 1) =
pkφ(Zi;µk,Ψk)∑K
l=1 plφ(Zi;µl,Ψl)

, (14)

and the conditional of group indicators is therefore the following multinomial distribution:

gi ∼M

(
1 ;

p1φ(Zi;µ1,Ψ1)∑K
l=1 plφ(Zi;µl,Ψl)

, ...,
pKφ(Zi;µK ,ΨK)
∑K

l=1 plφ(Zi;µl,Ψl)

)
.

9.1.2 Updating mixture precisions

Once the group membership of each individual has been sampled, the precision matrices of
the mixture components can be updated exactly in the same manner as in the normal case
described in Section 8. Assuming a Wishart prior distribution with v degrees of freedom and
with scale matrix Γ for mixture precision Ψk:

Ψk ∼ W(v ; Γ),

the conditional can be shown to be the following Wishart distribution:

Ψk ∼ W


v + nk ;



∑

i:gk,i=1

(Zi − µk)(Zi − µk)
′ + Γ−1



−1
 ,

where the sum in the scale parameter is over the individuals belonging to mixture group k,
and nk stands for the number of individuals in this group.
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9.1.3 Updating mixture weights

Let p = (p1, ..., pK)′ and g = (g1, ..., gn)
′. A Dirichlet distribution is assumed for the prior of

the weights:

p ∼ D(a, ..., a) .

Conditional on gi, Zi appears to be normally distributed in each mixture group and we can
write f(Zi|gi, p) =

∏K
k=1[pkφ(Zi;µk,Ψk)]

gk,i . With this expression in hand, the conditional of
the weights can be derived as:

f(p|Z, g) ∝ f(Z|g, p)f(p|g),

∝
n∏

i=1

K∏

k=1

p
gk,i
k

K∏

k=1

pa−1
k ,

∝
K∏

k=1

p
nk+a−1
k ,

providing the kernel of a Dirichlet distribution. Hence, p ∼ D(n1 + a, ..., nK + a).

9.1.4 Updating mixture means

Each mean vector is assumed to be a priori normally distributed:

µk ∼ N
(
µ0k ; Ω

0
k

)
,

where µk and µ0k are of dimension (J × 1), and Ω0
k is a (J × J)-dimensional matrix.

The mean of the mixture is restricted to zero as follows:

K∑

k=1

pkµk = 0 ⇔ µK = −
K−1∑

k=1

pk

pK
µk. (15)

Because of this restriction, only K − 1 mixture means actually have to be updated, and the
last one can then be computed given the other component means and the mixture weights.
The idea is thus to first update the first K − 1 mean vectors using Bayes’ rule, imposing
the restriction on both the likelihood and prior of the means, and finally computing the
last mean vector so as to fulfill the zero-mean constraint. Two different approaches can be
implemented: the mean vectors can be either drawn sequentially across mixture components,
or simultaneously.

Drawing the means sequentially. Mean vectors are drawn component-wise, holding con-
stant the means other than the one being updated. To do so, the conditional of the lth mean
vector has to be derived conditional on the means of the other components. Let µ−l be the
set of mixture mean vectors excluding the lth one. Then, replacing µK with its expression
given by Equation (15), the conditional distribution is, for l = 1, ...,K − 1:

f(µl|Z, µ−l,Ψ, p) ∝ f(Z|µl, µ−l,Ψ, p)f(µl, µ−l),
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∝
K−1∏

k=1

exp



−

1

2

∑

i:gk,i=1

(Zi − µk)
′Ψk(Zi − µk)



 exp

{
−
1

2
(µk − µ

0
k)

′Ω0
k(µk − µ

0
k)

}

× exp



−

1

2

∑

i:gK,i=1

(
Zi +

K−1∑

k=1

pk

pK
µk

)′

ΨK

(
Zi +

K−1∑

k=1

pk

pK
µk

)


× exp



−

1

2

(
−

K−1∑

k=1

pk

pK
µk − µ

0
K

)′

Ω0
K

(
−

K−1∑

k=1

pk

pK
µk − µ

0
K

)
 ,

∝ exp



−

1

2

∑

i:gl,i=1

(Zi − µl)
′Ψl(Zi − µl)



 exp

{
−
1

2
(µl − µ

0
l )

′Ω0
l (µl − µ

0
l )

}

× exp




−
1

2

(
pl

pK

)2 ∑

i:gK,i=1


µl +



K−1∑

k=1
k 6=l

pk

pl
µk +

pK

pl
Zi







′

ΨK (•)





× exp




−
1

2

(
pl

pK

)2


µl +



K−1∑

k=1
k 6=l

pk

pl
µk +

pK

pl
µ0K







′

Ω0
K (•)




,

∝ exp



−

1

2


nlµ′lΨlµl − 2µ′lΨl

∑

i:gl,i=1

Zi






 exp

{
−
1

2

(
µ′lΩ

0
l µl − 2µ′lΩ

0
l µ

0
l

)}

× exp




−
1

2

(
pl

pK

)2


nKµ

′
lΨKµl + 2µ′lΨK


nK

K−1∑

k=1
k 6=l

pk

pl
µk +

pK

pl

∑

i:gK,i=1

Zi











× exp




−
1

2

(
pl

pK

)2


µ

′
lΩ

0
Kµl + 2µ′lΩ

0
K




K−1∑

k=1
k 6=l

pk

pl
µk +

pK

pl
µ0K










,

∝ exp

{
−
1

2

(
µ′l

[
nlΨl +Ω0

l +

(
pl

pK

)2 (
nKΨK +Ω0

K

)
]
µl

− 2µ′l


Ψl

∑

i:gl,i=1

Zi +Ω0
l µ

0
l −

(
pl

pK

)2 (
nKΨK +Ω0

K

)K−1∑

k=1
k 6=l

pk

pl
µk

−
pl

pK


ΨK

∑

i:gK,i=1

Zi +Ω0
Kµ

0
K










 ,

where nl (l = 1, ...,K) is the number of observations in mixture group l.
This last expression can be factorized to provide the kernel of a multivariate normal
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distribution with the following precision and mean, for l = 1, ...,K − 1:

Ωpost
µl

= nlΨl +Ω0
l +

(
pl

pK

)2 (
nKΨK +Ω0

K

)
,

µpostµl
=
[
Ωpost
µl

]−1


Ψl

∑

i:gl,i=1

Zi +Ω0
l µ

0
l −

(
pl

pK

)2

(nKΨK +Ω0
K)

K−1∑

k=1
k 6=l

pk

pl
µk

−
pl

pK


ΨK

∑

i:gK,i=1

Zi +Ω0
Kµ

0
K




 .

Once the first K − 1 mean vectors have been sampled, the last mean µK is computed to
fulfill the zero-mean restriction of the mixture given by Equation (15).

Drawing the means simultaneously. To make the calculations easier to follow, compact
form matrices will be used henceforth. For this purpose, some notational conventions have to
be introduced before going any further. We define the following stacked vectors and block-
matrices:

p−K = (p1, ..., pK−1)
′, p̃ = p−K ⊗ IJ ,

µ̃ = (µ′1, ..., µ
′
K−1)

′, µ̃0 = (µ01
′, ..., µ0K−1

′)′,

Ψ̃ = diagK−1
k=1 (Ψk) , Ω̃0 = diagK−1

k=1

(
Ω0
k

)
,

g̃i = (g1,i, ..., gK−1,i)
′, Z̃i = ιK−1 ⊗ Zi,

where ⊗ denotes the Kronecker product, IJ is the identity matrix of dimension (J×J), ιK−1 is
the (K−1)-dimensional vector of 1’s, and diag (·) is the matrix operator stacking the specified
elements to create a block-diagonal matrix.

Using this notation, the zero-mean restriction of Equation (15) can be rewritten as:

µK = −
1

pK
p̃ ′µ̃. (16)

Since the conditional distribution will be derived given group membership, the following
selection matrix will be useful for picking up the parameters corresponding to the mixture
group individual i belongs to:

Gi = (g̃i g̃i
′)⊗ IJ .

Replacing the last mean vector µK with its expression from Equation (16) in the likelihood
and in the prior, the conditional distribution of the first K − 1 means is:

f(µ̃|Z, p,Ψ) ∝ f(Z|µ̃, p,Ψ)f(µ̃),

∝ exp

{
−
1

2

n∑

i=1

[
(Z̃i − µ̃)

′GiΨ̃(Z̃i − µ̃) + gK,i

(
Zi +

1

pK
p̃ ′µ̃

)′

ΨK

(
Zi +

1

pK
p̃ ′µ̃

)]}

× exp

{
−
1

2

[
(µ̃− µ̃0)′Ω̃0(µ̃ − µ̃0) +

(
−

1

pK
p̃ ′µ̃− µ0K

)′

Ω0
K

(
−

1

pK
p̃ ′µ̃− µ0K

)]}
,
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∝ exp

{
−
1

2

n∑

i=1

[
µ̃′GiΨ̃µ̃− 2µ̃′GiΨ̃Z̃i +

gK,i

p2K
µ̃′p̃ΨK p̃

′µ̃+ 2
gK,i

pK
µ̃′p̃ΨKZi

]}

× exp

{
−
1

2

[
µ̃′Ω̃0µ̃− 2µ̃′Ω̃0µ̃0 +

1

p2K
µ̃′p̃Ω0

K p̃
′µ̃+ 2

1

pK
µ̃′p̃Ω0

Kµ
0
K

]}
,

∝ exp

{
−
1

2

[
µ̃′

(
n∑

i=1

[
GiΨ̃ +

gK,i

p2K
p̃ΨK p̃

′

]
+ Ω̃0 +

1

p2K
p̃Ω0

K p̃
′

)
µ̃

−2µ̃′

(
n∑

i=1

[
GiΨ̃Z̃i −

gK,i

pK
p̃ΨKZi

]
+ Ω̃0µ̃0 −

1

pK
p̃Ω0

Kµ
0
K

)]}
.

This last expression can be factorized into the kernel of a multivariate normal distribution.
Its precision matrix is:

Ω̃post =

n∑

i=1

[
GiΨ̃ +

gK,i

p2K
p̃ΨK p̃

′

]
+ Ω̃0 +

1

p2K
p̃Ω0

K p̃
′,

= diagK−1
k=1

(
nkΨk +Ω0

k

)
+

1

p2K
p̃ (nKΨK +Ω0

K)p̃ ′,

where nk (k = 1, ...,K) is the number of observations in mixture group k. Hence, the precision
of the conditional is a block matrix defined as follows, for all k, l = 1, ...,K − 1 and k 6= l:

Ω̃post
[k,k] = nkΨk +Ω0

k +

(
pk

pK

)2

(nKΨK +Ω0
K) for diagonal block elements,

Ω̃post
[k,l] =

pkpl

p2K
(nKΨK +Ω0

K) for off-diagonal block elements.

As for the mean of the conditional, it is equal to:

µ̃post =
[
Ω̃post

]−1
(

n∑

i=1

[
GiΨ̃Z̃i −

gK,i

pK
p̃ΨKZi

]
+ Ω̃0µ̃0 −

1

pK
p̃Ω0

Kµ
0
K

)
,

=
[
Ω̃post

]−1
vecK−1

k=1


Ψk

∑

i:gk,i=1

Zi +Ω0
kµ

0
k −

pk

pK


ΨK

∑

i:gK,i=1

Zi +Ω0
Kµ

0
K




 ,

where vec (·) is the operator vertically stacking the specified elements to create a vector.
As in the previous case, the last mean vector µK is computed to fulfill the zero-mean

restriction of the mixture given by Equation (15).

9.2. Univariate case

The following results are directly derived from the multivariate case. The same notation is
used here. Assume that zi is univariate and mixed distributed:

zi ∼
K∑

k=1

pkN (µk ; τk) ,
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where µk and τk are both scalars representing the mean and the precision of mixture compo-
nent k, and pk is the corresponding weight.

As in the multivariate case, group indicators are drawn from a multinomial distribution:

gi ∼M

(
1 ;

p1φ(zi;µ1, τ1)∑K
l=1 plφ(zi;µl, τl)

, ...,
pKφ(zi;µK , τK)
∑K

l=1 plφ(zi;µl, τl)

)
.

Given that zi is normally distributed in each mixture group, a conjugate Gamma prior
Ga(g1 ; g2) can be assumed for the precision τk, and like in the normal case (Section 8) the
conditional is derived as:

τk ∼ Ga


g1 +

nk

2
; g2 +

1

2

∑

i:gk,i=1

z2i


 .

For the means, the same procedure as in the multivariate case is implemented to achieve
the zero-mean restriction. Assuming that each mean is a priori normally distributed (µk ∼
N
(
µ0k ; ω

0
k

)
, k = 1, ...K), the first K − 1 means are simultaneously drawn from their condi-

tional, which is a multivariate normal distribution with precision and mean:

τ̃post = diagK−1
k=1

(
nkτk + ω0

k

)
+
nKτK + ω0

K

p2K
p−Kp

′
−K ,

µ̃post =
[
τ̃post

]−1
vecK−1

k=1


τk

∑

i:gk,i=1

zi + ω0
kµ

0
k −

pk

pK


τK

∑

i:gK,i=1

zi + ω0
Kµ

0
K




 ,

and the last mean µK is finally computed according to Equation (15).

10. CONCLUSION

The purpose of this article was to provide all the technical details required to construct the
Gibbs sampler for the estimation of factor structure models. Within the proposed framework,
a wide range of submodels including linear, dichotomous and censored response submodels,
as well as unordered response and ordered response submodels can be easily accommodated.
We derived all the conditional distributions of interest. Having the conditionals in hand, it is
straightforward to construct the Gibbs sampler step by step.
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APPENDIX A: Some matrix algebra

Let E and F be two invertible square matrices of same dimension. The following results hold:

E − E(F + E)−1E = E(F +E)−1(F + E)− E(F + E)−1E,

= E(F +E)−1(F + E −E),

= E(F +E)−1F.

Given that (EF )−1 = F−1E−1, it can be shown that:

(E + F )−1F [F (E + F )−1E]−1F (E + F )−1 + (E + F )−1

= (E + F )−1FE−1 + (E + F )−1,

= (E + F )−1(FE−1 + I),

= (E + F )−1(F + E)E−1,

= E−1.

Using these identities, Equation (12) can be simplified as follows:

exp

{
−
1

2

[
µ′kΨkµk − (B +Ψkµk)

′ (A+Ψk)
−1 (•)

]}

= exp

{
−
1

2

[
µ′k

(
Ψk −Ψ′

k (A+Ψk)
−1Ψk

)
µk − 2µ′kΨ

′
k (A+Ψk)

−1B −B′ (A+Ψk)
−1B

]}
,

= exp

{
−
1

2

[
µ′k

(
Ψk (A+Ψk)

−1A
)
µk − 2µ′kΨ

′
k (A+Ψk)

−1B −B′ (A+Ψk)
−1B

]}
,

= exp

{
−
1

2

([
µk −

(
Ψk (A+Ψk)

−1A
)−1

Ψ′
k (A+Ψk)

−1B

]′ [
Ψk (A+Ψk)

−1A
]
[•]

−B′

[
(A+Ψk)

−1 Ψk

(
Ψk (A+Ψk)

−1A
)−1

Ψ′
k (A+Ψk)

−1 + (A+Ψk)
−1

]
B

)}
,

= exp

{
−
1

2

[
µk −A

−1B
]′ [

Ψk (A+Ψk)
−1A

]
[•]

}
exp

{
1

2
B′A−1B

}
,

where A ≡ α̃′Σα̃ and B ≡ α̃′ΣỸ ∗
i . Since the second exponential does not depend on Θi,

nor on k, it can be absorbed into the factor of proportionality. This is why it vanishes in
Equation (13).
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