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W. BALZER AND E.-W. HAENDLER

ORDINARY LEAST SQUARES AS A METHOD
OF MEASUREMENT*

Statistical estimation plays a decisive role within the empirically
oriented branches of economics and various other social sciences.
Statistical methods are also applied in the natural sciences; the
empiricity of the natural sciences is, however, anchored in a more
direct mode in “repeatable”” measurement, which assigns statistical
estimation only a secondary status.

On a narrow conception, measurement consists in ‘“‘comparison with
a unit”, a conception which, together with the paradigm of fun-
damental measurement, has been widely accepted in psychology and
the social sciences, too. Yet typical examples of “measugement” in the
natural sciences can be subsumed under this concept only at the
expense of severe biasedness. Typically, what we encounter here are
situations in which theoretical equations, “theories”, are employed in
order to “calculate” the desired “measured” values. We will adopt
here without argument a broad conception of measurement according
to which even such theory-dependent methods of determination are
termed measurement: the structuralist view of measurement.’ Ac-
cording to this view the calculation of parameters from a set of
equations, for instance, constitutes a method of measurement for these
parameters, provided there is a unique solution.

The latter procedure is of course analogous to an estimation of
parameters in the social sciences. So, is estimation a method of
measurement (in the broad, structuralist sense)? This is not a mere
question of terminology. Rather, the attempt of answering this ques-
tion reveals precise distinctions between related procedures (which we
call measurement) in “statistical” social science on the one hand and
in the natural sciences on the other. Besides, our investigation will
shed light on some fundamental methodological differences between
the natural and the social sciences.

We will restrict our analysis to the simple case of applying the
method of ordinary least squares (OLS) in order to estimate the two
parameters of a linear demand function, a case typical for a wide
range of similar elementary applications of OLS. Qur aim is to
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subsume OLS under the general structuralist concept of a method of
measurement. By this we do not want to adopt once again the
imperalist strategy of recommending methodological ideas from phy-
sical science to the social scientist. It will turn out (in Section V) that
the notion of theory-dependent measurement which was developed to
cover the respective phenomena within physical science has to be
generalized to be applicable to OLS. We introduce the notion of a
regression method of measurement which covers methods like OLS as
well as “ordinary” theory-dependent measurement in the natural
sciences (and, of course, fundamental measurement as well). This
enables us to work out features common to both the natural and the
social sciences as well as to illustrate fundamental differences between
the natural and the social sciences.

Furthermore, we discuss the question of how to justify OLS as a
method of measurement (Section IV). In this context, again, we
encounter strong similarities but at the same time clear differences
between the natural and the social sciences,

I. MEASUREMENT

The structuralist view of measurement starts from considering actual
procedures of measurement and focuses on the structure of single,
isolated processes of measurement, in the course of which one value,
the measured value, is produced. Such procedures involve a real
system, the measuring apparatus, and.in most cases some theoretical
equations which come from one single or from several established
theories and which are used in order to calculate the measured value.
The real system thus is represented as a model or a chain of models of
one or several theories which govern the process of measurement.
Such models we call measuring models. A measuring model therefore
represents one single process of measurement (or even only a part of
it) as far as it can be subsumed under some given theory. As a
borderline case the theory may be a mere theory of measurement, like
in fundamental measurement the “theory” of extensive systems.”
Measuring models have at least four general features in common.
First, they are characterized by a law-like proposition (the laws of the
theory governing the process of measurement, see (D1-3) below).
Second, the measured value in each measuring model is uniquely
determined by other parts of the model, and by the law characterizing
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the model (D1-5). Third, the measured value is effectively comput-
able from other “parts” of the model (D1-6), and fourth, the
measured value is a continuous function of those other parts from
which it can be computed (D1-7).°

The law-like propositions may be of various kinds. They may be
proper axioms of established theories, or simpler equations “derived”
from more complicated such axioms. In fundamental measurement
they are the axioms put forward by measurement theorists. Continuity
is required in order to exclude contrived cases, like setting the
measured value equal to 1 by definition. In such cases there is no point
in measuring since the “measured value” is fixed purely conceptually.
Usually, the “same” measuring model will be used to measure not just
one value but a set of such values (by repeated application). Accord-
ingly, uniqueness may be required not just for one value but for a set
of values of the function F to be measured. For reasons of simplicity
we even require that F be uniquely determined for all of its
arguments.*

These conditions may be integrated into a general definition of a
measuring model as follows,

(D1)  x is a measuring model for function F characterized by B, 3,
7 and = iff there exist Dy, ..., Dy, Af,..., Am, R1,..., Ra
such that
(1) » is a type and x=(Dy,...,Dx, A,...,Am

R;, ..., R,, F) is a set theoretic structure of type 7

(2) F is a function

(3) B is a law-like statement, and valid in x

(4) = is an equivalence relation on the class of all functions
of the type of F

(5) F is uniquely determined by B in x (up to =)

(6) each function value F(a) can be computed from a finite
substructure of (D,,..., R,) (up to =, and after ap-
propriate encoding)

(7) 2 =(Z,,2,) is a pair of topologies such that B defines a
function (Dy, ..., R,)— F which is piecewise continu-
ous w.r.t. 3; and 3,.

The values of F we call measured values. The special case in which an
explicit definition D for F in terms of the other components
Dy, ..., R, is “contained” in statement B will be of particular im-
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portance in the following. In this case we speak of measuring models
for the defined term F, by which label we refer to structures from
which F has been removed ((D2-2) below).

(D2)  x is a measuring model for the defined term F characterized

by B, %, 1, = and D iff there exist D,,..., Dy,

Ay, ..., Am, Ry, ..., R, such that

(1) (D1, ..., Ry, F) is a measuring model for function F
characterized by B, 3, 7 and =,

(2) X =<D17 L] RrI)’

(3) D is an explicit definition of F in,terms of x,

(4) there is a law-like statement B* such that
B(D,,..., R,, F) is equivalent with B*(x) A D(x, F).

The law-like proposition B (or B*) of course can be extracted only
from the investigation of a whole class of many similar measuring
models. Such a class we call a method of measurement. The con-
nection to the usual use of the word “method” is established by
observing that each method determines the class of all systems in
which it can be successfully applied, and conversely.

(D3) M, is a method of measurement for function {F} iff there
exist B, %, r and = such that M, is the class of all
measuring models for function F characterized by B, 3, 7
and ~, and M,,, # 0.

(D4) M, is a method of measurement for the defined term {F} iff
there exist B, X, 7, = and D such that M,, is the class of all
measuring models for the defined term F characterized by
B,3, 7, ~ and D, and M,, +0.

In the natural sciences there are many cases of measurement in the
course of which a given theory is used and presupposed in order to
calculate the measured values. Any method of measurement with this
feature we call theory-dependent.

(D5) If T is a theory® with class M of models then M,, is a
T-dependent method of measurement iff, for some {F}, M,,
is a method of measurement for {F} or M,, is a method of
measurement for the defined term {F}, and M,, < M.

As a paradigm for theory-dependent measurement let us consider the
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measurement of mass by collisions as governed by classical collision
mechanics (CCM). The models (M(CCM)) are defined as follows.
x€ M(CCM) iff x has the form (P,{b,a},R,v,m) and (1) P is a
non-empty, finite set (of “particles”), (2) {b, a} is a two-element set
(of “instants™: “before” and *‘after” the collision), (3) m: P—>R*
(“mass-function”), (4) v:Px{b, a}—>R> {“velocity-function™), (5)
2 ,er m(p)v(b, p) =32 ,cp m(p)v(a, p) (law of conservation of total
momentum).

The models are intended to describe collisions of two or more
particles. Let m denote the term “mass”. A method of measurement
M, (CCM) for m is defined as follows. x e M, (CCM) iff (1) x=
(P, {b, a},R, v, m) e M(CCM), (2) P is a two-element set (P = {p, p'}),
(3) v is such that all v(p*, ?), p*€ P, te{b, a} are on a straight line,
(4) for te{b,a}, v(p,t) and v(p',r) have opposite direction, (5)
v(p, b) # v(p’, a).

The topologies required in (D1-7) are generated by neighbourhoods
defined as follows. For x=(P,{b,a},R,v), yeUs iff y=
(P,{b, a},R, v') and for all pe P and 1€ {b, a}, |v(p, ) — v'(p, t)| <e.
For m:P—>R*, m'eU; iff m:P—>R" and for all pe
P:|m(p)— m'(p){<e. = is given by: m~m' iff Dom(m) = Dom(m")
and there exists a€R™ such that for all peDom(m): m(p)=
a - m'(p). The value m(p’) in x € M,,(CCM) is computable from v up
to some a€R*, and, for given such a, it varies smoothly with
variation of v. It is not difficult to prove that M,,(CCM), in fact, is a
method of measurement for {m}.

As an example of a method of measurement for a defined term F
think of the method of determining the mean velocity of a uniformly
moving particle. If s,(¢) indicates the position of particle p at time ¢,
and if p moves uniformly, then its mean velocity v, (which incidentally
is also its actual velocity) is defined as

o = 5p(8) — (1)
(4 t— tl

where ¢, ¢' are different instants (which we treat as real numbers for
the sake of simplicity) and ¢’ <t. A corresponding measuring model
for v, has the form ({p}, T,R> s,) where T <R is an open interval,
sp: T—R? is such that its image is contained in a straight line and Ds,
is a constant function, and v, is defined as just indicated. It is easy to
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define the corresponding method of measurement for the defined term

{vp}.

II. OLS: A RECONSTRUCTION OF LINEAR STOCHASTIC
DEMAND SYSTEMS

We now turn to our example from applied econometrics. A linear
demand system is a system in which the purchases, d,, for a commodity
(expressed in quantitative, numerical form) are supposed to be a linear
function of the price, p,, of this commodity, where both prices and
purchases may change over time, .

It must be emphasized that the existence of a linear relationship
between observed purchases and observed prices does not provide
much justification for speaking of ‘“demands” and “demand sys-
tems”. Our focus in this paper is, however, not on the criteria of
identity for the function to be measured. We investigate parameter
estimation by means of the method of ordinary least squares on the
basis of the very elementary example of a linear relationship between
observed purchases and observed prices. The result of our inquiry
applies likewise to the more intricate demand theories which actually
represent the state of the art.

While theoretical as well as practical considerations may suggest a
linear relationship between prices and purchases, the observed time-
series (p;, d;), t=1,..., n usually will not satisfy a linear equation

dg = B] + sz, for all ts.n.

In order to accomodate for deviations, p, and d, are regarded as
values of random variables p,, d,, both defined on some suitable set W
of events (which ordinarily is not made explicit), and a disturbance
variable & is introduced which accounts for all those influences on the
purchases which are not allowed for by the prices (e.g., the influence
of the temperature on the purchases of sodas). These hypothetical
random variables are assumed to form the following linear relation-
ship:

1) d(w) = B, + Bop(w) + ii(w), for all t<n and we W.

(See (D7-3) below). p, and d; are taken as particular realizations of
bi, di: p(w,) = p, and dy(wo) = d; for some w,e W where w, is the
event which actually has occurred (D7-2).
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(D6) x is a potential linear stochastic demand system (xe€
M,(LSD)) iff there exist n, p, d, W, U, u, p, d, i such that
x={(n,p,d, W, U, u, p, d, i, B) and
(1) neN, n>0,

(2) p, deRY,

(3) (W, ¥, ) is a probability space,

(4) p, d, ai: W—R" are random variables,
(5) BeR2

For p, d, i and t < n we define functions p,: W — R by p(w) = (p(w)),
etc.

(D7) x is a linear stochastic demand system (x € M(LSD)) iff
there exist n, p, d, W, %, u, p, d, @, B such that
x=(n,p,d, W, U, u, p,d, a, B) and
(1) xe M,(LSD),

(2) there exist Ve and w,e V such that u(V)>0,
p(w,) = p and d(w,) = d,_

(3) for all we W and t=< n: d(w) = B, + B2p(w) + it (w),

(4) for all t=<n and all a € Rge(p): the conditional expec-
tation of & under condition a, E(& | a), is zero.

Some auxiliary definitions are needed for the following.

(D8) (@) If a=(as,...,a,) and b=(by,...,b,)eR", and f=
(fi,....f> and g=(g,...,g) are functions,
f, g W—R", then

a=1Y @ S@=1 % (@-ap

j=n n j<n

covia, b) = 1 > (a;— a@)(b;— b).
n j<n
f, s%(f), cov(f, g): W—R" are defined by f(w) = f(w),

s*()(w) = s*(f(w)), cov(f, g)(w) = cov(f(w), g(w))
(b) If x=(n,p,d, W, U, u, p, d, i, B) € M,(LSD) we write

cov(p, d)

sz(p) 3 ﬁl(p’ d) = J_ BAZ(pi d) ‘ ﬁ

B‘Z(p, d) =
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and, for we W:

cov(p, d)(w)
s((p)w)
The method of measurement we want to consider is the following.

By minimizing the squared deviations of the observed data from a
hypothctical straight line, OLS recommends the values ﬁ,(p, d),
B2(p, d) as defined in (D8-b) above as estimations for the unknown
parameters f3;, B, which occur in the models (see (D7~3)). It is
common to call these unknown, hypothetical parameters B;, B, the
true parameters. “True parameter” is thus defined as ‘“parameter
which occur(s) in (one of) the model(s) which (are) is assumed to
capture the real system under study.” We adopt this usage without
inquiring into its possible philosophical interpretatjons.

The choice of §; as candidates for the true values Bi is justified by
the fact that the suggested values B; are instances of estimators f; as
defined in (D8-b) above, which exhibit some desirable statistical
properties. In the first place B; are unbiased. This means that Bi(p, d)
are realizations of B; (for some w,ec W, Bi(w,) = B,(p, d)), and the
mean value of B, i.e., the integral of §; over W with respect to u, is
identical with 8;, i.e., w1th the “true” but unknown value hypothesized
to make equations (1) true.

Unbiasedness cannot, of course, be proved right away. Further
idealizing mathematical assumptions have to be postulated. A classical
set of idealizing assumptions is given in the following definition.®

Baw) = Bi(w) = d(w) — Ba(w) - B(w).

(D9)  «xis a classical linear stochastic demand system (x € CLSD)
iff there exist n, p, d, W, A, u, p, d,a, B such that
x=(n,p,d, W,¥, u, p, d, i, B) and

(1) xe M(LSD),
(2) forall t,¢'<n, t# ¢ and all a € Range (p):

(2.1) the conditional expectation of uu, under the con-
dition that p takes value a is zero, i.e.,
E(ad,|a)=0,

(2.2) the conditional variance of # under the condition
that p takes value a exxsts and does not vary with
t, i.e., there exists o such that V(i | a)=

(2.3) i, is normally distributed,

(2.4) V*:={we W/s*(p)}(w)>0}e % and u(V*)=1.
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(T1) X x=(n,p,d,...,B)isa CLSD then ;
(a) for i =1,2: B; equals the expectation of B;, i.e.,

B:i= E(B-i) = J'W B; dp,

(b) for each w, e W such that p(w,)=p and d(w,)=d,
and for i=1,2:

éi(wo) = B\i(p’ d)v

Proof. For (a) see: e.g., Schneewei8 (1971) p. 59. (b) follows
rectly from (D8).

the following we will concentrate on the property of unbiasedness

id leave other desirable properties for statistical estimators like
nsistency or sufficiency out of consideration. Our investigation
iplies to these statistical properties as well, but at the cost of formal
mplication. We only note that the generalization expressed in (D12)
low may be strengthened (and thereby specialized again) such that
rther criteria for estimators can be taken into account.

I11. CLASSICAL LINEAR STOCHASTIC DEMAND SYSTEMS
AS A METHOD OF MEASUREMENT

ie actual procedure for the estimation of the parameters of linear
chastic demand systems is this. Observe time-series {p,, d,) and
Iculate ﬁ,( p, d), ﬁz(p, d). These are the best values for 8,, 8, you
n obtain. Full stop.

The rest of the story is justification. If for a moment we do not care
out the justification this procedure gives rise to a method of
:asurement as defined in Section I.

(D10) x is a measuring model for the defined term B by regression
(x€ Mn(CLSD)) iff x has the form (n,p,d, W, 9,
p,p,d, i, B) where (n,...,B)eCLSD and f=
(Bl(p’ d), Bz(P: d))

ie measured values in such measuring models are the parameters
(p,d), and a corresponding method of measurement is easily
fined.

(T2) M, (CLSD) is a method of measurement for the defined
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term B characterized by B, 3, 7, = and D where

(1) D is the definition of 8 (compare (D8-b)),

(2) B is the conjunction of the axioms (D6-1) to (D6-5),
(D7-2) to (D7-4), (D9-2), and (D),

(3) 2 =(31,2;) where X,,3, are generated by neighbour-
hoods of the form U;, Uf; defined by z'e U; iff
z=(n,p,d, W, U, u,p,d, i, B), z'=(np,d, W1,
p,p,d @B), lp-pl<e and |d - d'|<e, and BeUj
iff B (B, B2), B' = (B, B}) and B-B'<e,

(4) 7 is the type of linear stochastic demand systems
extended by B,

(5) = is identity.

Proof. B,-(p, d) is a continuous function up to one singularity for
p =0. The remaining requirements are trivially satisfied.

Note that the measuring models refer to two sets of parameters:
(B1, B2) which are purely hypothetical and occur in the linear equation
(1), the “law” of the theory, and (B,(p, d), B2(p, d)) which are defined
in terms of the data given by p and d. <I31, B,) are the values one
would like to determine (to measure) while (B (p, d), ﬁz( p, d)) are the
values actually obtained. Usually, B,( p, d) differs from B;. So in what
sense can we say that the method of measurement described is a
method of measurement for B (and not only for B, which holds
trivially)?

In answering this question we refer to the statistical justification
already mentioned. M,, € (CLSD) is a method of measurement for 8
inasfar as (1) the values actually measured, B,, are realizations of
estimators §;, and (2) integration over each §; yields the value B8, i.e.,
the “true” value one wants to find out.

It must be emphasized that the provable identity of § 8; du and B
does not help to determine the desired values B;. For of all the values
of B; the only one we know is B;(w,), where w, is the event for which
p(w,)=p and d(w,)=d. These are the only data at hand. For all
other we W, w# w,, B:(w) is unknown, and therefore the value of
the integral cannot be calculated.

Also it has to be noted that neither the theoretical assumption of
linearity nor the true parameters B; occurring in it are used or play any
direct role in the determination of the measured values ﬁ,( p, d).
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IV. JUSTIFICATION

In order to discuss the justification of M,,(CLSD) and its differences
to methods of measurement in the natural sciences, let us use the
phrase:

measuring model x for function F is intended to measure
function G.

The reason for using this phrase is the following. Usually, if we want
to measure some function G we already have at hand some, perhaps
rather weak, criteria of identity for G, conditions that G has to satisfy
independently of the result of the measurement process. In most cases
the function we want to measure already has a name, like “mass”,
“utility”, or “price”. In these cases we do not simply perform some
process of measurement and accept the result as that value we
intended to measure. Rather, we have to justify why some measuring
model measures price, and not, say, utility. On the other hand the
measuring model actually produces some value, independently of
whether we accept this value as adequate or not. We call these values,
the function values of the function F, measured values.

Consider two typical cases from the natural sciences.

Case A. The function G one intends to measure is a primitive of
the theory T which governs the process of measurement. In this case
the criteria of identity for G are given by theory T. The function one
intends to measure is the function G as determined by its role in
theory T. In order to guarantee that these criteria are met in the
course of measurement it is assumed that the measuring model is a
proper model of theory T. If the measuring model is a model of T
then the values of F actually measured satisfy rather strong conditions
as given by the axioms of T: they are in this sense consistent with T.
Since the criteria for G consist of these same requirements, both F
and G satisfy the same criteria. In many concrete cases this entails
identity of F and G.

This is the situation of theory-dependent measurement introduced
in Section I. The criteria for G are given by the axioms of T, these
same axioms are used and presupposed in the course of the measure-
ment which yields values of F, and therefore the values of F are
acceptable, they “are” (i.e., may be accepted as) values of the function
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G one intends to measure. The situation may be depicted as in Figure
1. In this case the justification for the assertion that the method of
measurement really produces the values one intends to measure is this.
Because the process of measurement is assumed to be a model of the
theory, the measured values of F satisfy the criteria of identity for G,
the function one intends to measure. Therefore, values of F are
acceptable as values for G.

Case B. The function F, whose values are the actual result of the
process of measurement, is a defined term. Usually the function G, the
function one intends to measure, is given by the same definition as F.
Take measurement of mean velocity as an example. Mean velocity is
defined in terms of positions, the measured values are calculated by
using this definition, and the function one intends to measure is
velocity as given by the same definition. The criteria for G will reduce

function G one intends to
measure by means of x

function F actually measured

measuring model x .
Fig. 1.
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to criteria for those functions in terms of which G is defined. This
leads to the situation of case A just discussed: the criteria of identity
are given by the axioms of the theory governing the process of
measurement. The situation is depicted in Figure 2. The important
point is the following: in the natural sciences measurement of a
defined term means that the function G one wants to measure by
means of producing measured values of function F practically never is
a primitive of the theory which is used in the respective measuring
model.

What is the justification for the assertion that measurement of a
defined term really produces the value one intends to measure? M,, is

“primitive” functions of
x(F# R, forall i<n)

measuring model x

function F actually measured in x. F is defined from
the functions R; occurring in x

Fig. 2.
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accepted as a method of measurement for G because the process of
measurement is assumed to be a model of the theory, and because the
definitions of F and G are identical. These assumptions entail that the
definiens of F satisfies the criteria of identity for the definiens of G as
given by the axioms of the theory. Therefore the definiens for F is
acceptable as a definiens for G, and, since the definitions of F and G
are the same, the values of F are acceptable as values for G.

We now are prepared to turn to the present example of measure-
ment by OLS. In this case the term F actually measured, namely 8, is
explicitly defined, so we are in the situation of case B just discussed.
But there is a decisive difference between measurement by OLS and
measurement of a defined term in the natural sciences. Now the
function G one intends to measure is a primitive of the theory which
governs the measuring model. In this case our terminology yields the
following. We have measuring models for the defined term F which
are intended to measure a primitive function G (“primitive” with
respect to the theory governing the measuring models). The picture is
as in Figure 3. In the natural sciences the measuring model is a model
of some theory T, the function F actually measured is explicitly
defined, and the function G one intends to measure is not a primitive
of T. In the case of OLS the function G one intends to measure is a
primitive of the theory.,

The criteria for identity of G, i.e., for B in the case of OLS, are
given by the theory from which G(B) comes from: the “theory” of
linear stochastic demand systems. These criteria will, however, usually
not be met by the measured values . The justification for taking OLS
as a method of measurement for G was worked out in the previous
section: OLS is accepted because B is a realization of the random
variable 8 whose mean value is identical with B, at least under the
restrictions of classical LSD’s. This may be formalized one step
further.

(D11) We say that y is the mean value of x € M,,(CLSD) (y =
E(x)) iff x has the form (n,p, d, W, U, u, p, d, it, B) and
Y = <n’ py d7 W, ?’I, “‘a ﬁ’ d7 l:, E(B))

(T3) If x € M,,,(CLSD) then E(x) e M(LSD)
Proof. Trivial by (T1).

Prima facie we could omit completely the theoretical apparatus
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‘“primitive” functions of

X(R|=G)

measuring model x

_function measured in x is intended
to measure G

Fig. 3.

together with the probability space in the measuring models which
would leave us with structures of the form {n, p, d, B( (P, d)). But then
the statistical justification for the particular choice of 8 could not even
be stated for then we lack of the true value B, and the theoretical
condition of linearity which is essential for making B “true”.

These considerations directly lead us to a central difference between
the natural and the social sciences: in the social sciences the models of
the respective theories exhibit some distance to observational or
experimental results. In order to account for OLS as a method of
measurement the criteria for acceptance known from the natural
sciences have to be generalized and weakened.

The acceptance and justification of methods like OLS implicitly
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refers to some counterfactual argument:

2) If we could collect further data for different, and many
events w e W the mean-values of the corresponding S;(w)
in the long run would converge (with probability 1) towards

B:.

In the natural sciences the same argument is not counterfactual.
There, it simply describes what actually happens. In the natural
sciences we are in fact able to repeat experiments with the “same”
system (philosophical objections notwithstanding), and in this way to
realize the antecedent of (2). This difference between the phenomena
dealt with by natural and social sciences is of course well known, but it
is only in connection with concepts of measurement that it may be
formulated sharply.

It is tempting here to introduce the notation of a repeated experi-
ment given by a sequence w;, wo,... in W and corresponding data
d(w;), p(w;), and to refer to corresponding convergent sequences of
mean-values. But this account would introduce an element which, in
fact, is not operationally accessible and has no real referent in many
situations in the social sciences. Such convergent sequences are typi-
cal for natural science but in the social sciences they often simply are
not feasible. The only way to obtain such sequences in the social
sciences is to increase the length of the time-series (n in (D6)). But
social systems change quickly over time, and there is no warrant for
regarding such a sequence as a repetition of the “‘same” situation. In
the natural sciences, by contrast, the systems are stable enough to
regard a “time series” of observations as “‘repetitions of observations
of the same system”. And this is of course the basic justification for
applying probabilities and statistics.

V. REGRESSION METHODS OF MEASUREMENT

The kind of measurement studied here may easily be generalized. We
do not attempt to give the most general formulation. Sticking to cases
in which the determination of real parameters is at stake our definition
still covers a wide range of examples in which OLS is applied.
Roughly, the generalized measuring models which we call regression
measuring models are measuring models in the sense of Section I for
some parameters B which are added to the models of a given theory
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((D12-a) below). é is required to be definable in terms of the other
components of the measuring model (D12-a-1). Furthermore, the
model should contain a probability space (W, %, u) (D12-a-4), and
for some estimators 3, also definable in terms of the components of the
measuring model (D12-a-5), the value B actually measured should be
a realization of the estimator (D12-a-5.3). A final, central condition is
that the mean value of 8 when replaced for the “true” parameters 8 in
the original model x[B] should yield a model of the theory (D12-a-
5.4). This condition, which we call model replacement condition, is
satisfied, for instance, whenever E(f) = B.

(D12) Let T be a theory with classes M, and M of potential
models and models, respectively.

(@) x is a regression measuring model for B in T relative to
B, 3 1, W,s B, Diff
(1) x is a measuring model for the defined term é

characterized by B, 3, 7, = and D,

(2) seN, and B, BeR®,

(3) x has the form x{ 8] and x{Ble M,

(4) W is a component of x and among the components
of x there are A, w such that (W, U, u) is a prob-
ability space

(5) there is some B: W— R® such that
(5.1) B is definable in terms of the components of
(5.2) B is integrable with respect to u, X
(5.3) there is some w, € W such that B(w,) = B
(5.4) x[E(B)]e M.

(b) M,, is a regression method of measurement for {B} iff
there exist B, X, 7, s and D such that for all x:x e M,,
there are W and 8 such that x is a regression measur-
ing model for B in T relative to B, X, 7, W, s, ﬁ and
D.

(T4)  If M, is a regression method of measurement for B then
M,. is a method of measurement for the defined term 8

Proof. Obvious.

NOTES

* We are indebted to M. Kuettner and M. Kuokkanen for helpful remarks on an earlier
draft.
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! Compare (Balzer, 1985) and (Balzer, 1988) for more detailed accounts of this view.
2 A standard reference on fundamental measurement is (Krantz et al., 1971). There,
also various kinds of extensive systems are studied.

3 Compare (Balzer, 1988) for further details.

* Cases in which only “parts” of F are uniquely determined can be treated simply by
restricting the process of measurement to those arguments of F for which uniqueness
obtains. Note the difference between requiring that F be uniquely determined in terms
of B and the components of x different from x, and requiring that the function values of
F are uniquely determined by F’s arguments and by F. The former requirement
amounts to *

VFYF(B(D,,...,R,,F)AB(D,,...,R,,F)—>F=F")
while the latter means
VbVb'(F(a)=ba F(a)=b"— b="b).

5 Compare (Balzer-Moulines-Sneed, 1987) for a detailed account of empirical theories.
¢ Note the close analogy to cases of theory-dependent measurement in the natural
sciences. There, the basic laws of a theory usually also are not sufficient to guarantee
uniqueness of the function to be measured. Further ad hoc assumptions, which can be
drawn from a large stock of possibilities, have to be added in order to obtain measuring
models. Compare (Balzer, 1985).
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