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1)

W.Balzer

ON THE COMPARISON OF CLASSICAL AND
SPECIAL RELATIVISTIC SPACE-TIME

One way of comparing two theories T,T" is to re-
duce T to T° in a formal sense.Much has been
written about different intuitions on reduction
and several meta-scientific concepts of reduction
have been proposed; but few examples have been
used by way of detailed examination in order tg
throw light on those meta-scientific concepts.
0f course, there are numerous examples of reduc-
tion in the ordinary (i.e."non-meta") scientific
literature.But usually meta-scientific concepts
of reduction cannot be directly applied to such
examples: the "ordinary" treatments may be too
vague,too sloppy,too incomplete,or they may use
special assumptions so that actually only very
small fragments of the theories are involved.
This problem of application is well known
from ordinary science,and usually part of its
solution consists in an interplay between reality
(as given by examples) and scientific concepts.
At the beginning there are usually a few examples
which an author uses as paradigms in order to in-
troduce his concepts.But once the concepts are
presented there are attempts to apply them to
other "new" cases as well.If difficulties arise
then either the concepts may be kept unchanged
and the new examples have to be "twisted",or the
new example can be taken as "experimentum crucis"
and the concepts have to be adjusted.

This interplay also takes place at the meta-
level of the philosophy of science,and I believe
that with respect to reduction we are still at
a rather early stage of it.Much attention will
have to be given to examples,and the present
volume 1s only a first attempt in that direction.
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332 W.BALZER

My aim in this paper 1s to present a formally
elaborated example of reduction in which the theory
of classical space and time (CT) is reduced to the
theory of special relativistic space-time (RT).
Since the reduction to be employed will be strict,
i.e.not approximative,the question of adequacy
arises very pressingly because "every physicist"”
will say that the appropriate reduction relation
of CT to RT has to be an approximative one.In the
presence of this considerable opposition I will
try to defend my example as a genuine case of
reduction by considering the various objections
that might be raised.In this way I hope to shed
some light on the general concept of reduction
without subscribing to any one of the existing
formal notions.Also,the discussion will contri-
bute to a clarification of the concept of classi-
cal space-time and its relation to Galilei-in-
variance.As far as I know,this is the first com-
parison of space-times on the axiomatic level (as
opposed to the "group theoretic" level).The sur-
prisingly easy way of defining a reduction rela-
tion p in this setting should be regarded as an
argument for paying more attention to axiomatic
analysis which in investigations of space-time at
the moment 1s completely suppresed in favour of
group theoretical methods.

I GENERAL NOTIONS

Today in physics space~time structures are charac-
terized with respect to their corresponding in-
variances.Roughly and generally, one starts with
some structure x=<D,R,,...,R > consisting of a set
D and relations Ri on D.Automorphisms of x are
those bijective functions ¢ :D > D which preserve
all Ri,i.e. va,...a e D( Ri(a1,..,an) <>
Rj(w(a1),...,w(an))),provided R, is n-~ary.The set
of all automorphisms of x together with the con-
catenation operation of functions is a group,
called the transformation group of x. If D= |R and
if the R. are specified (e.g. for n=1, R, =< ,R2=+
etc.) then the corresponding transformation groups
are well known and can be characterized easily.
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These characterizations are then "transferred" to
non-mathematical structures by means of group iso-
morphisms.A structure x 1s identified by means of
its transformation group being isomorphic to some
well known transformation group of a given mathe-
matical structure.For instance,some structure is

a Galileian space-time iff its transformation
group is isomorphic to the group formed by Galilei-
transformations on IR3 plus affine transformations
of |R.In order to demonstrate that some "direct"
characterization (as opposed to an indirect via
transformation groups) is adequate it is suffi-
cient to show that the transformation group of a
model thus characterized is isomorphic to the
corresponding mathematical group accepted by
physicists.

It turns out that such direct proofs are
complicated, and it is easier to show that any
structure x under consideration is isomorphic to
a given mathematical structure y which has the
known transformation group. For if this is so then
the two automorphism groups (of x and of y) are
isomorphic,too.

I will use a slightly more general set-up
which 1s a version of Bourbaki”s "species of
structures".3) What has just been outlined then
takes the following form.

A theory T consists of a class of potential
models Mp and a class of (proper) models M:

T=<M_ ,M> where Mg M
D p
A1l potential models have the form

<DyseeeyD AL, A 3R LR >
where k,1l,m ¢ IN are fixed, D_,..,D are sets,

called base sets y, .yA. are sets of mathe—
matical objects (calied aux111ary base sets) and

R,,...,R_are relations of given set-theoretic
types T,,...,T "over" D1""’Dk’A1""’Al'
For instance, A1 may be JR and R1:D1x D2+-fR a

function.The auxiliary base sets represent some
mathematical "part" of the model which always has
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the same (standard) interpretation.Let T and T  be
given so that the types of the potential models of
T and T° and the mathematical parts involved are
the same, and let x=<D1,..,Dk;A1,..,Al;R1,..,Rm>
M and x"=<D7, .., Dr AL, s A 3R, LRI > E M;}.We
say that x and x” are isomorphic iff there are
bijective functions . :D. D% (i< k) such that
. 1 i

for all appropriate arguments a1,. .,an and all
JSm:

Rj(a1s'°',an) HRJ‘((Di‘](31)3-"9®in<an))-

®=<¢ ,...,0 > is called an automorphism of x if
¢®is an isomdrphism from x to x.By Aut(x) we de-
note the group of automorphisms of x (with group
operation defined Dby ¢ o¢=<@1ow1,...,wkowk>. The

result indicated above holds in this more general
setting,too: if x and x” are isomorphic then so
are Aut(x) and Aut(x”).

II CLASSICAL THEORY OF SPACE AND TIME (CT)

D1 x is a potential model of CT (xe M_(CT)) iff
x=<8,T; R; < ,7,8> and p
1) S and T are non-empty sets,and disjoint
2) €€ TxT

S is the set of points of space,T the set of
instants.The intended meaning of <¢,T and 8 is this.
t <€t” means that t is earlier than t°, (t,t" )=a
means that the period of time between t and t~°
(as measured by some clock) has length a, and
8(t,a,b)=0o means that at time t the distance
between a and b is a.

If N is a set and d:N XN =~ IR then bet N

and EdEN are defined by

3

betd(a,b,c) iff d(a,b)+d(b,c)=d(a,c)

ab = da'b' iff d(a,b)=d(a”,b”" ).

Ifr 8§: 7T xS x8 >R and t ¢ T then 6(t):Sx8S > IR is
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defined by &(t)(a,b)=8(t,a,b).The meaning of
bet  (a,b,c) is that b is between a and c, and

ab =_.a”b” means that the pairs <a,b> and <a” ,b">
are congruent.

D2 x is a model of CT (xe M(CT)) iff
1) x=<8,T; R; €,17,6> eMp

2) for all t €T: <S, &t)> and <T,T> are metric
spaces,and & 1s a linear order
3) <T,bet., > 1is a 1-dimensional Euclidean
geometry
¢ < = > 4
4) for all t €T S’betd(t)’ = 5(4) 5;5 a

T

3-dimensional Euclidean geometry
5) for all t,t7 € T: &(t)=8(t")

We can best imagine a model as a "series" of
identical copies of 3-dimensional spaces where T
provides the indices. T can be visualized by a
straight line on which an ordering < and a distance
T 1s given.At each instant t the corresponding
space <S,Eg£6(t), Eé(t)> satisfies all the axioms

of Euclidean geometry.If we omit T from 6 then we
would Jjust have two metric spaces put together.
This couldn”t be called a "space-time" because in
such a structure we could not formulate expressions
of the form "at t the distance of a and b is a ".
By making & dependent on t we obtain the possibi-
lity of formulating such expressions.On the other
hand the time-dependence of § is immediately with-
drawn by means of D2-5) which requires & ,in fact,
not to depend on t properly. The effect 1is a
"rigid" space-time consisting essentially of the
cartesian product of "space'" and "time".

Some further comments may be helpful.First,in
a model the (relativistic) set E of events could
be explicitly defined by E=S X T. I have chosen
not to use E as a primitive in order to do justice
to the historical situation before Minkowski,
Second, I have not included any notions and re-
quirements concerning the orientation of space.So,
reflections are not excluded from the correspon-
ding transformation group.The system could be
easily adjusted to obtain the proper transfor-
mation groups. I have chosen not to exclude re-
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flections because this would make things more com-
plicated without adding new aspects to the reduction
relation.Third, if at t €T we choose coordinate
systems K for <8, 6(t)> and K° for <T,T> then the
content of D2) is represented equivalegtly by the
structure <8 x T, ¢y>, where ¢ :8XT x IR° » IR,
v(<b,t>)=< ¥ (b)), ¥, (t)> and w1(b), v, (t) ZI)‘S the

coordinates of b and t relative to K and K’.
I will next describe the corresponding trans-
formation group and only afterwards discuss the
question of adeguacy.Let ¥ be the "elementary
group"T/),i.e. § 1is defined as the direct product
§ = %S® § o where S 5 is the group of dilatations,

translations and rotations of IR3 and g T is the
affine group of R.Let ¥~ be obtained from ¥ by
including reflections in ¥ g and by omitting
dilatations from €T and é’s.
T1 If x€ M{(CT) then Aut(x) is isomorphic to ¥~
Proof: Let < be the usual "smaller than" relation
on IR,and let J*],l*ll be the Euclidean distance
functions on [R and IR3 ,respectively.Then the
structure y=<R3, [R; R;< ,!¢),8_> has the same
type as our models of CT if we define
st R x R x R > IR by 6 (o, ,4)=ll <-4l
(The second occurrence of in y indicates the
use of |JR as range of {*! and 6_ in the status of
an auxiliary base set). It is well known that
Aut(y) is isomorphic to § °, so by what was said
in Sec.I it 'is sufficient to show that any model
x € M(CT) 1is isomorphic to y. Let x=<8,T; IR; < ,T1,56>
€ M(CT). Then an isomorphism ¢ =< p,n > with
p:S >IR3 and n :T>IR is obtained by introducing
coordinate systems for S and T respectively in the
well known way®

The physical meaning of the differences bet-
ween § and § ° is clear.Spatial reflections cannot
be actively performed in reality, and the passive
possibility of looking at physical systems through
some mirror has played no role up to now.Dilatations
correspond to the freedom of choice of a unit. A
treatment including dilatations in the transforma-
tion group of CT would have to start at the

" ' "
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qualitative level of bet and Z . It is achievable,
but more complicated than the present formulations.
I think in spite of these small deviations one can
say that CT is "essentially" represented by £ ,
and thus is "essentially" Newtonian space-time.

The immediate objection now is that "classical
space-time" has to be Galilei-invariant so that the
full group of Galilei-transformations, and not its
sub-group § , is the appropriate transformation
group.The objection has three parts.First,as a
socliological statement,one simply observes that
most physicists today hold that classical space-
time is Galilei-invariant. Second, from an histo-
rical point of view, one may argue that in the
period leading to and including the introduction of
classical mechanics space-time was regarded as
Galilei-invariant. Third, from a systematic point
of view, a comparisocn of CT with RT (or other
theories) may suggest that we look for Galilei-
transformations as a counterpart to Lorentz-
transformations. I will consider the three items
in turn.

As to the first point, I agree that physicists
today require classical space-time to be Galilei-
invariant. But philosophy of science is not the
same as sociliology of science and what constitutes
an unshakable fact for the latter may be of less
importance for the former. I believe that this
first part of the objection is the least important
one, and is outweighed by the other two. I will
argue that with respect to the other parts classical
space-time should not be Galilei-invariant but only
be invariant under the elementary group.

From an historical point of view it seems to
me that Galilei was the first to point out that
mechanical (i.e.dynamical) events will be the same
if taking place in or being perceived from two
different frames of reference moving relative to
each other with constant velocity.During the deve-
lopment of Newtonian mechanics,too, Galilei-in-
variance in this special sense always turned up
with considerations of mechanical systems ("dyna-
mics"). In the course of such considerations space-
time was always presupposed,i.e. the properties of
space and time were assumed to be already known.
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Space was represented by Euclidean geometry and
time by a straight line (if at all), and there

was no idea of the relevance of the state of
motion of an observer for the properties of space
and time.The latter statement 1s compatible with
the fact that the discussion of inertial frames

of reference as a matter of dynamics preceded the
advent of special relativity. I am not in a posi-
tion to give a detailed historical account of this
topiec. But unless historical arguments to the
contrary are put forward I conclude that, histo-
rically, classical space-time is adequately repre-
sented by the elementary group.

Third,my formulation of RT in the next section
is especially suited to making clear why there is
a systematic drive for Galilei-invariance on the
classical side. Any model of RT "implicitly" con-
tains some frame of reference W. But W is not
uniquely determined by the other parts of the
model, and a change of W in general will not leave
unaffected the validity of the axioms. So in RT it
is natural to consider transformations of coordi-
nates relative to different frames of reference
which are possible in one model. This leads to
Lorentz-transformations. One is tempted to look
for a similar feature at the side of CT. Things
look differently from different frames of reference,
and one would like to know how the coordinates
transform under changes of the frame of reference.
In order to perform such investigations 1t 1is
necessary on the classical side to introcduce
different frames of reference. This can be done,
but only at the price of introducing a new basic
concept. In the models of CT only one frame of
reference can be defined in analogy to W in RT,
namely {{<a,t>/te T}l/ae S}. If we want to talk
about different classical frames we are forced
to use further concepts not available in CT. Thus
there 1s a formal distinction between RT and CT.
For a potential model of RT there are many
different possible frames of reference W which
make it into a model.For a potential model of CT
there 1s only one possible frame, namely the one
defined above, and this frame is not necessary for
stating the axioms. Intuitively, in RT the basic
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stuff the models are formed of (E and < ) has to
be enriched by further entities (W) if we want to
express the full complexity of the models. In CT
no such additional entities are needed. Again,
what was saild here is compatible with stating that
the status of Galilei-transformations in mechanics
is independent of relativistic theories.

One way of obtaining a Galilei-invariant theo-
ry from CT is to enrich CT by frames of reference.
Models then would have the form <8,T; R; <,1,8,F>
where F is a partition of S * T satisfying further
requirements to the effect that F is just a "bundle"
of parallel straight lines so that the lines are
not "orthogonal" to T. It is clear that different
F’s can make some given model of CT into a model
of the new theory, and all these F s can be ob-
tained from each other by Galilei-transformations.
It is not difficult to show that this theory in
fact is represented by the group of Galilei~trans-
formations in the sense of Sec.I. But it is also
clear that the new concept of a frame of reference
is not linked in any interesting way to the "old"
concepts; 1t is added ad hoc. There is no intrinsic
connection between F and the other concepts, in
contrast to the connection between W and E,< in
RT. The only systematic reason for Galilei-in-
variance of the classical theory comes from the
search for an analogue to relativistic frames of
reference. But any theory created by this analogy
is an artificial construct which has no standing
on its own -in contrast to CT.

As far as I can see all other arguments for
Galilei-invariance of classical space-time can be
traced back to the three just mentioned.For in-
stance, it may be said that space-time theory and
the full theory of classical mechanics form an in-
separable unit, so that the invariances of mechanics
are also relevant for the underlying space-time.
This is the same kind of reasoning by analogy from
RT as we just met before. Again, on closer in-
spection, this view imposes features on the
classical theory which seem to be added ad hoc
after the invention of RT.

To summarize,then,I would say that historical
and systematical considerations favour classical
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space-time as being represented by the elementary
group, that these two aspects are more important

than the sociological one, and that,therefore,CT

is an adequate reconstruction of classical space-
time.

IIT THE SPECIAL RELATIVISTIC THEORY OF SPACE-
TIME (RT)

D3

x is a potential model of RT (xe M (RT)) iff
x=<E; < > and p

1) E is a non-empty set

2) X € ExE

E is the set of events and < is the so called
"causal relation". e<e” means thgs a signal can
be sent from event e to event e’ . Some notation
needs to be fixed for the following.Let x=<E;< >

c A " "
aMp(RT)‘ If X€ E and e 58, E we write e14 e,

for "e1'<'e2 or e1=e2".We say that e is an upper

(lower) bound of X iff for all e, € X: e1< e (e< e1)

We write e=infyX (e=sup<X) iff e is a lower (upper)
bound of X and for all Jlower (upper) bounds e, of
X: e ~\<e (e{e ). X is called bounded iff X has an

uppefr and a lower bound.We write "e_ ~ e " for

1 2
"Je,ee E(ane<e” A ne" e aecFe A e1<e<e2/\

e<e’< e )" which means that a signal slower than

light can be sent from e, to e,

If x ¢eM (RT) we say that W is a frame for x
iff (1) W isPa partition of E, (2) for each weW
there are functions fw:E +w and gw:E >w so that

for all e ek:
£ (e)= e if eew
W inf¢ {e” ew/e{ e’} if e d w

(e)= e if e ew
Ey'e/= supg {e” e w/e"<e } ifed¢w
3 h

If W is a frame for x then betxgw and T €W
are defined by

bet (u,v,w) iff f o f of =f 0 f and
—x u v w u w
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uv = u'v” iff f ,of of of =f ,of ,of ,of
X u u v ou u v u

u
Intuitively, W can be 1magined as a bundle of
parallel straight lines running "time-like" (wrt.
<) through E. Each line w €W represents a possible
path of some free particle and is called a world
line. f (e) is the event of arrival of a flash of
light at world line w which is emitted at e.
Similarly, gw(e) is the event on w determined by
the condition that a flash of light omitted at
gw(e) would hit e. bet and = have the usual
meaning of relations oF betweefiness and congruence,
respectively: only that the objects they are de-
fined for are world lines.

D4 a) x is a model of RT relative to W iff
1) x=<E3;<> ¢ M (RT) and W is a frame for x
2) £ is transitive and e<e” implies . e"< e
3} for all w eW and all X€w: if X is bounded

then there are e1,e2 so that e1=inf<X,

e2=sup<X, 616 w and e2€ W

4) for all w eW and all e,e” €eE: if ee w and
e” ¢ w then (e=e’v e e’ v e™¢)

5) for all w eW and e ¢ E there are e1,e2 SO

<Le
that e1 e e2 and e1,e2€ W

6) for all v,ueW: if u#v then fu/v and gv/u

are inverse to each other
) <W;betx, EX> is a 3-dimensional Euclidean
geometry
8) for all u,v,u” ,vi e W:
hil f f . - =
(fwo +° u)o(fwo v of‘u )/w
(fwofv,ofu,)o(fwofvofu)/W
and (fwofv ofu)/w=(fwofuofv)/w
9) for all w €W and e,e” ew: 1f e<e” then
there is v ¢ W so that v#w and fw(fv(e))<<¥

10) for all w €W there is a countable and
dense (wrt. < ) subset of w

11) for all u,v,w eW: if there is e€ w so that
fu(fv(e))= fu(e) then Egix(u,v,w)
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p) x is a model of RT (x eM(RT)) iff
there 1s some W so that x 1s a model of
RT relative to W

The present axiomatization is essentially due to
A.Kamlah who made precise Reichenbach”s original
version in {(Kamlah,1979 ),pp.436. Three deviations
from Kamlah”s system should be mentioned.First, I
require W to exhaust all of E, second I have added
DLh-a-3) which I cannot prove in Kamlah”s system.
Third, I have added DL-a-11) which is essential
for the proof of T2).

Axiom 3) is needed in order to prove that the
defining conditions for f and g in fact,
guarantee uniqueness, that" is, T and g, in fact,
are functions. L) requires eachwworld line to run
through the time-like sections of the light cones,
and 5) rules out absolute boundaries wrt. 4. T
in 6) denotes the restriction of f +to v.
Requirement 6) is of more technical character. The
functions fw are well defined (on the basis of the
previous axloms) and uniquely determined in x. So
the betweenness and congruence relations bet and
= in T7) are well defined,too. 8) expresses a
kifid of invariance. It makes no difference whether
a signal travels via world lines u” ,v’ ,w,u,v to w
or alternatively via u,v,w,u” ,v’: the event of
arrival at w will be the same in both cases.
Similarly, it makes no difference to go to w by way
of u and v or via v and u. These conditions also
guarantee that the world lines of W are "straight".
Condition 9) requires that the world lines are
dense in E (wrt.=<): in each neighbourhood of each
f  there is another f_. 10) guarantees that world
lines have the right cardinality (used for
mapping them on JR bijectively). Requirement 11),
finally, enforces that all world lines of W are
"parallel" to each other.

In models of RT we can introduce clocks,
simultaneity and a "space-like" metric as follows.

u/v

D5 Let x=<E;< >¢ M (RT), let W be a frame for x
and w €W.
a) Qw is a clock for x (relative to w) iff
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@W:w > IR is bijective and for all u €W and
e,e” ew: 1) ede” iff <I>w(e) <¢W(e')
_ 9 = , - -,
2) 8 (£ (£ (e)))-0 (e)= o (£ (£ (e")))-0 (e)

'9'(")

b) If ¢w is a clock for x relative to w then

vy T ; : . e
Q,W'W Pot(E) is defined by: e’ € snn(I> W(e)
£

-]
iff e=e” or there exist v € W and e »e w such

sim

that (1) e ev, (2) e1<e‘(62 , (3) e'=fv(e1)

s o} = o} [0}
and e, =f (e )y, (&) w(e) 1/2( w(e2)+ w(e1))

¢) If v#w,vE€ W then d is a metric for x
X,V W
relative to v,w iff 4 WXW >R is a
X,V W
metric such that for all Uyseee sy e W:
1) betx(u1,u2,u3) iff dx’v,w(u1,u2)+dx,v’w(u2,u3)
=dx,v,w(u1’u3)

2) ugu, S usuy iffe dx,v,w(u1’u2)=dx,v,w(u3’uh)
3) dx’v’w(v,W)=1

¢w(e) is intended to denote the time (as measured
on w) at which event e takes place. sim® w(e) is
the class of all events of E which are °
simul taneous to e (with respect to ®_ ),and is
called the Simultaneity class of e (w¥t 3 ).
(u,u”) 1s the spatial distance betwegn world

1¥14d2"y ana v’

With respect to RT the question of adequacy
is easier to settle. There is common agreement
that the causal Minkowski-structure

i . .
<R ; <c> with <Q1,..,Gh> <. <B1,.,,Bu> iff

a <Al (=85 P sen(p-a))
1s 3
is a model (indeed,the model) of RT. The auto-
morphism group of this structure is the group of
Lorentz-transformations,as was indicated already
by Weyl.9 Our scheme of Sec.Il, however, cannot be
directly applied to these structures. For th gets
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its standard meaning only through additional rela-
tions (like <,+,°*,0,1) which are not mentioned in
J4R*; < >, and these relations are kept fixed when
Lorentz-transformations are considered.So I[R* here
has the status of an auxiliary base set, and there-
fore no proper base set at all is involved. But
without a base set there are no automorphisms in
the sense of Sec.I.

Fortunately, it is easy to modify the struc-
ture <R%*; < > in an equivalent way so that the
modified verSion will fit into the Bourbaki scheme.
Consider the structure x=<R; <g> where R 1s a set
and the axiom for <R is

3e Jo:R »WRh( © is bijective A Ya,b€e R
(a <gb <>rola) < o(b))).

Let me call x a Bourbakili model of RT. If L is the
group of automorphisms of <m”; <c>’ i.e. the
group of bijective mappings

©: |R +}Rh preserving <C,then L is isomorphic to

Aut(x). An isomorphism A@ :L > Aut(x) is given
by LIM > ¥ =0~ Tox o ¢ € Aut(x) where ® is as re-
quired in the definition of < _. For, by the de-

finition of L, < and ¥, we have e(a)< o(b)
iff (Aoo0)(a) < "(row )(b) iff (v "ok oo )(a)

< _( cp_1o Ao )(b) iff ¥(a) <  ¥(b). So by what
was said in Sec.I it is sufficient to show that
each model of RT is isomorphic to some Bourbaki
model <Rj < R >
T2 If x € M(RT) then x is isomorphic to some

"~ Bourbaki model <R; < g

Proof: If x=<E;< > let R:=E and <R:=<. From the
proof of TIV-9-b) of (Balzer,1982) (p.251) it
follows that there i1s some ¢ and some bijective

©:E > IR? so that for all e,e” € E: e< e’ <«

ole) < ¢ (e”). So by the definition of <_ and R,
y=<R; <. >1is a Bourbakili model of RT and, trivially,
x and y are isomorphicm

This shows that our axiomatization of RT is

adequate.
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IV REDUCTICON OF CT TO RT
We define a reduction relation P as follows.

D6 a) If x=<8,T; R;<<, T, 5>€Mp(CT),y=<E;<>£
MP(RT) and W is a frame for y then we set
X pyY 1ff there are v,w,«bW and dy,v,w so
that
1) v,weW and v#w
2}y & is a clock for y relative to w

3) dywv w is a metric for y relative to v,w
b ]

L) s=w
T= {sim e)/e ¢ E
5) { ¢,w( )/e g E}
6) for all t,t" € T: t<€t” iff
Je,e ew(t=31m¢ w(e)A t =sim W(e YA

e< e’ > >
7) for all t,t" ¢ T and a e IR: <(t,t")=a
iff Je,e ew(t=81m¢’w(e)/\t =s1m®’w(e )

Ao (e)- o (e’ ) =a

8) for all t €T and a,be S:

s (t,a,b)=a_ (a,b)

b) A relation p &M (CT) xM (RT) is defined by
xpy 1iff P p
there is a frame W for y such that x pwy

Note that, once v,w, ® and 4 in D6-a) are
w YsV,W

given, requirements 4)-8) have the form of expli-
cit definitions of 8,7,<, 7t and 6§, Intuitively,

S is identified with the set W of world lines, and
T with the set of simultaneity classes.That is,
classical points of space are identified with
world lines (paths of free particles) and classical
instants with classes of simultaneous events. The
ordering of classical instants in x is given by
the ordering induced in simultaneity classes by

< (D6-a-6). Classical time-—-distance is defined
by the time-distance read off from the relativistic
clock on w (D6-a~7), and classical spatial distance
is defined by the distance function induced on W
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. R - . .
in ¥y oughly, or gilven V,w @W and dy,v,w’ X 18
defined in terms of the components of y. We obtain

the following theorems.

T3 If y is a model of RT relative to W and xop wY
then x is a model of CT.

T4  For all ye M(RT) there is x so that xp y and
xe M(CT).

T5 For all x eM(CT) there is ye M(RT) so that
Xp Y.

T6 Not: for all x,y, if ye& M(RT) and xp y then
x eM(CT).

T7 Not (vx,x ,y(<x,y>e 0 ~ <x ,y> € p > x=x"))
and not ( vx,¥y,y (<x,¥y>e p a <x,¥ > p >y=y")).

For the proofs let y,W,v,w, & ,d be given as

WYLV ,W
in D6) and let y be a model of RT relative to W.

Lemma 1 For each w e W there is a clock ¢ for y
relative to w,and ¢ _1s uniquely determined up
to linear transformat ions.

Proof: See (Kamlah,1979 ),pp.448 in a slightly

different notationm

Lemma 2 {sim@ w(e)/eg E} is a partition of E. For

b
all e €eE and v e W: sim<D w(e) Nv is a singleton,
b

¢’w(e)ﬂ w={el}.

Proof: (1) It is easy to show that the relation

defined by e=e” iff Je. (e,e” g sim (e.)) is an

1 &, ,w 1

equivalence relation on E. (2) e~ esim(I> v
2

because the events re-

and in particular sim

(e1) and
e 681m¢,w(62) imply e, =e,,
quired to exist in D5-b) are uniquely determined
and because ¢ is bijective. (3) We show that

there is an e’ such that sim¢ w(e) Nv={e” }.
b

Case 1) v=w. From e's:sim(I> w(e) and e#e” it follows
3

that there 1s an e, such that e'=e1-<e, and 1n the

same way, that there 1s an e, such that e-(eg= e’

From these two statements we obtain e'=e14 e-<e2=e'

which 1is impossible. So e=e” and sim® w(e)(1w={e}
3
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which proves the special case,too.Case 2): v#w.

+ o+ + +
There are €965 €W such that e1< e--(e2 and

2

+ + + +
Je ¢ v(fv(e1)=e AT (e )=e2). Choose e ,e, eW SO
that e, < e Lle )— ® (e )=¢ (e.)- o (e*) ana
1 2° 2 W 2 W 1
¢w(62)—¢’w(e)= ¢ (e)- ( 1)=1/2( ®w(62)— ®w(e1))-
The definition of 0 1mplies e . =f (f (e,)) and
W 2 W v

1
therefore (with e’=f (e.)): e ¢ sim (e), that
v O, w

is, simg w(e)r1v#¢. Suppose e” ,e” " ¢ Sim(I> w(e) nv.

k)

Then e'=fu(eT) and e2=fw(e'), so e € ul v, and,

because W is a partition, u=v. Thus we obtain
‘= ) = ) i
e fv(e1) A w(e) 1/2( W(e2)+© w(e1)), and in the
same way: e =fv(e1 ) A D W(e)=1/2(® w(e

, o

2
<I>w(e1 )). Suppose < e”” ., Then fv(e1)-<fv(e1 )
S0 e2<(eé’ Ae1-<e}', from which we obtain

@w(e2) < q>w(e2 ) oA @W(e1) < @W(e1 ). But this
together with ®w(e2) < @w(e2 } and @W(e1)<
¢w(e") is impossible, so not e’< e In the
same way we obtain not e’ < e’ from which it

, o,

follows,finally, that e“=e”" @

Y+

, .

Lemma 3 There is precisely one metric 4 for

y relative to v,w. VLW
Proof: This is the well known Representation
Theorem for FEuclidean geometrya

Proof of T3: By lemma 2) v Nsimg w(e)={e'} and by
DL-5) v#simyg w(e). If SNT were Aot empty then for
some b € SNT > we would obtain b=v=sim (e) which
yields a contradiction.Again by lemma > 2), if

31m®’w(e1)=t=s1m <I)’w(eg) and e, ,e € W then e =e,.

So in D6-a-6), e and e’ are uniquely determined
by t and t°. Hence T,as defined in D6-a-6) is a
function.Also, by lemma 3), 4d is uniquely
y,v5w
determined, which proves D1-3). D2-1) is trivial.
That T 1s a metric is checked with the help of
lemma 2) and the triangle inequality in [R. That
8(t) is a metric follows from the fact that
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Vv is a metric, and that Dé-a-7) does not
H >

depend on t. < is a linear order because<On v is a
linear order and because of lemma 2). We prove
D2-3): <Ti;bet ,=, > is a 1-dimensional Euclidean

geometry. From lemma 2) and by direct calculation

! ; €

we obtain (1) betT(t1,t2,t3) iff 381,62,63 W
(ti=slm®’w(ei)Afﬁ]$e2 463) and (2) t1t2 :TtSth
iff de,...e) ew(ti=31m®’w(ei) A |0 (e1)— ®w(eg)|=

m s

i@w(eB)—® w(eh)]). Now let bet and on w be de-

fined by: bet(e1,e2,e3) iff e1<e%?$e3 and

e e, = e e iff ‘@W(e1)—® w(e2)|=|®w(e3)— ®w(eh)|'
From (1) and (2) it follows that if <w;bet, = >

is a 1-dimensional Euclidean geometry then so 1is
<T;betT , > . Thus 1t is sufficient to show that
<w;bet, > is a 1-dimensional Euclidean geometry,
and this is proved directly by using lemma 1).
D2-4) follows immediately from the definitions of
beta(t)’ bet etc. and from D6-a-7).D2-5)

d
also follows from D6-a~7) directlym

YsV,W

Proof of Th: Let y=<E; <> ¢ M(RT),i.e. there is a
frame W for y so that y 1s a model for RT relative
to W. Let v,w €¢W. By lemma 1) there is a clock

¢ for y relative to w and by lemma 3) there is

a fmetric d for y relative to v,w. Define
y,v,w

x=<S,T; R; &,7,6> by conditions L)-8) of D6-a). By
lemma 2) {e}=wflsim® w(e). So simg w(e1)=t=

. . . - A o
51m®,w(e2)A e -6, € W implies e ,me ,1.e. in

D6-a-6) is uniquely determined and therefore 1 is
a function. By lemma 3) d is uniquely deter-

YsV,W
mined, so 8§ is a function,too, i.e. x €M (CT). By
the definition of x: x RS and so by
T3): x e M(CT) =&

Proof of T5: Let x=<§,T; R;<€,T,8> ¢ M(CT). Define
<E;< > as follows: E=8 X T and <a,t”< <b,t” > iff
t<¢t” A 1a,b)s §(t,t7). Define WC Pot(E) by w eW
iff 3JaesS(w={<a,t>teT}). It is then easily
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checked that <E3;< > is a model of RT relative to
W (compare (Balzer,1982),pp.222,TIV-5-b) in a
slightly different set-up)®

Proof of T6 and TT7: By construction of mathematical
counter examplesnm

Qur claim about p is that p constitutes a reduction
of CT to RT, and therefore p is a "reduction re-
lation". Such a claim can be attacked on various
lines, and I will consider several objections in
turn.

A first objection against p as a reduction re-
lation is that it is strict -as opposed to
"approximative". In one way this objection may be
seen as another version of the objection of Sec.
ITI against CT not being Galilei-invariant. The
reasoning seems to be this. If classical space-
time 1s Galilel-invariant then it can only be
approximatively reduced to RT.So Galilei-in-
variance on the classical side seems to be suffi-
cient for approximative features of reduction.
This is, T think, the intuitive basis of the ob-
jection though I do not know how to substantiate
it in the absense of generally accepted conditions
on all possible forms of reduction. But it is
clear why the reasoning has so much credit: be-
cause of the approximative relation between the
corresponding groups of Galilei- and Lorentz-trans-
formations.

This kind of objection is Just a corollary to
the one in Sec.II, and if it is conceded that CT
is adequate (without being Galilei-invariant as
I have argued in Sec.II) then the present objection
becomes pointless. To put 1t differently: if there
is a strict reduction relation ¢ between CT and RT
(as the one just presented) then its strictness
need not count as an inadequacy of p but can be
seen as an inadequacy of CT to represent classical
space-time (being not Galilei-invariant). The same
point is reinforced by observing that the Galilei-
invariant extension of CT mentioned in Sec.II can
be reduced to RT in an approximative way. (it is
tempting to add "and only in an approximative way"
but, again, such a statement seems difficult to
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substantiate.) Anyway, this possibility again
shows that approximation of reduction goes to-
gether with Galilei-invariance on the classical
side.

Now opponents might concede that CT is an
adequate reconstruction and still insist that my
P 1s not a reduction relation. This amounts to
saying that the p employed does not have the pro-
perties which an adequate relation should have.
Since there 1s a considerable variety of different
concepts of reduction, i1t will not suffice to
show that p can be subsumed under one of them: the
objection might be sustained by using a different
concept of reduction. Given this situation I will
go through some of the different requirements
proposed by different authors and comment on their
bearing on the present example.

First, there 1s the traditional condition of
derivability of the laws of the reduced theory
from those of the reducing theory "after trans-
lation" which by Adams“)l3 was expressed as
follows:

(1) Vv, y(y eM a xpy > xe M)

where p reduces T to T",p < M_x M. . T3) above
attempts to establish this cohdit¥on for the
present example but 1t does not succeed comple-
tely. Strictly, (1) fails, for the frame W em-
ployed in establishing the relation x 0 _y may be
different from the one which makes y a model of
RT (see T6) above). If W is chosen perversely
enough then "x €M(CT)" does not follow any
longer.!1) This is a puzzling result, and it
would be helpful to see whether the difference
between (1) and T3) has to do -and if so,in
which way precisely- with the difference between
"strict" and "approximative" reduction. For some-
one taking condition (1) as necessary for reduc-
tion, my ¢ cannot be a reduction relation.

Second, there is Sneed”s condition of unique-
ness:123

(2) Vv x,x .,y (xp yax" py > x=x").
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T7) above says that (2) is not satisfied in the
present example. But I doubt whether this condi-
tion can be imposed generally. Intuitively, Sneed
Justifies the requirement as expressing that the
reducing theory gives a more detailed pilcture of
reality. But this property 1s not equivalently
expressed by (2). Condition (2) may be sufficient
for T° giving a more detailed picture than T but
(2) certainly is not necessary for this property
to hold. The "finer" picture of T may be
"coarsened" in different ways so that the out-
comes still are of the same structure (as shown
by the present example). In general, I see no
argument for condition (2) to be satisfied for all
reduction relations, and I would hesitate to ex-
clude non-unigue relations on apriori grounds.

Third, there is the condition that to each
model of the reduced theory there corresponds

-via p - a model of the reducing theory:

(3) Vvx{ xeM »3y(ye M axpy)).

Requirement (3) is essential for Mayr”s account
and can be traced back to Suppes.13 T5) above
shows that this condition is satisfied.

Fourth, there is a kind of "converse" of (3),
namely

(L) vy( yeM » 3x(xeMaxpy)),

i.e. each model of the reducing theory via p
gives rise to a model of the reduced theory. The
spirit of condition (L) is this. Given a model y
of the reducing theory T° we can construct or
define in y a structure which is a model of the
reduced theory T. This is the basic idea of
Bourbaki”’s "procedure of deduction of a structure
of species 0O from a structure of species I ".Ths
Th) above shows that condition (L) is satisfied.
It should be noted that (L) also can be regarded
as expressing a "derivability requirement'" as
mentioned in connection with (1).

A fifth formal condition is that each model
of the reduced theory can be embedded into a model
of the reducing theory:



352 W.BALZER

(5) vx (xeM > 3y(yeM A xcy))

where "xz y" means "x 1s a substructure of y".(5)
represents She kernel of Ludwig’s notion of "Ein-
bettung".1?) It is obvious that this condition
does not apply to the case at hand, but I doubt
whether it should. Intuitively, I would interpret
(5) as saying that T is a specialization of T7,
and specialization and reduction are two different
intertheoret%s relations which can and should be
kept apart.1

Sixth,there is the condition of p "preserving
invariances".'T) A weak version of this condition
is the following:

(6) Y, v( xpy > [x)1ply]")

where [x] and [y]” denote the equivalence classes
of x and y given by the corresponding invariances
of T and T°, and Xp Y is a shorthand for

vx eX 3y e¥(xp y) A ¥VyeY Ixe X(xp y). In
(Pearce & Rantala,1983a) a condition similar to
(6) is considered as an aspect of continuity in
scientific change. In my view (6) is a "special
law" of the "theory of reduction" which will be
satisfied only in special cases. It 1s possible
to construct a pair of models <x,y > M(CT)x M(RT)
for which [ ] and [ ]” are given by elementary
transformations and Lorentz-transformations,re-
spectively, and for which (6) is false. My hypo-
thesis is that typically (6) will be false for
pairs of theories which are incommensurable but
are nonetheless connected by some reduction rela-
tion.

Last but not least there is the condition of
translatability of the language of the reduced
theory into the language of the reducing theory,
inherent in the recei¥§% view and recently sub-
stantiated by Pearce. Without going into tech-
nical details this requirement can be nicely
illustrated with my example. Consider the atomic
expressions "t <t’", " t(t,t")=a " and "&(t,a,b)=
a" of CT. In D6-a) these are "defined" in terms
of the primitives of RT "up to the choice of v,w
and the units for the clock”. But this "up to"



CLASSICAL AND SPECIAL RELATIVISTIC SPACE-TIME 353

prevents us from finding proper translations of
these expressions in the language of RT. Also,the
relations among pairs of the form <a,t> in CT
"is simultaneous with" and "occupies the same
point of space as" can be easily defined in CT
but cannot be translated into expressions of RT
(this is why RT is called "relativistie"). It is
clear therefore,that translatability in the usual
sense does not obtain in my example. This might
be regarded as an argument against the adequacy
of p. But it might as well be regarded as an argu-
ment against requiring translatability as a con-
dition necessary for all reduction relations.
What was said in the last paragraph applies here,
too.Translatability characterizes only a special
subclass of the class of all reduction-pairs
~though a very interesting one. Typically,trans-
latability will not obtain in cases of incommen-
surable theories, the two theories considered
here constituting a commonly accepted example of
incommensurability.

To summarize these considerations: It seems
to me that condition (4) is the most central one
for reduction. It combines the intuition of a
derivation of the laws of the reduced theory from
those of the reducing theory with the formal
achievements of Bourbaki”s work.'9’) All the other
conditions will be satisfied only in special
cases but not in general. If this view 1s not com-
pletely misled then it is difficult to see how and
why my p-relation should be inadequate,i.e.no
reduction relation proper.

A last line of attack against o 1s to say
that it does not satisfy the informal requirement
that all intended applications of the reduced
theory correspond via p to intended applications
of the reducing theory:20

(7) Vx eI3y el (xp v)

where I and I are the sets of intended appli-
cations of T and T , respectively. In the present
case, A.Kamlah has pointed out that probably
among the intended applications of CT there are
systems which are considered from accelerated
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frames of reference which are ruled out by RT and
therefore do not belong to I(RT). Then (7) would
fail, provided we accept that the y required there
is given by "the same" accelerated system which
gave rise to the classical x we start with. The
crucial point in this argument is, I think, that
reference is made to some systematic concept not
available in both theories: "acceleration". And
this, in turn, leads to the question of how the
intended applications of a theory are determined in
general. Is it the case that scientists in the
course of achieving agreement on whether some
system is an intended application for T use concepts
from theories systematically dependent on T? A
clear cut "no" would be dogmatic. Scientific prac-
tice as far as it 1s documented by historians
will perhaps yield the answer "in most cases not".
At least this is the answer one would expect from
systematic reflections on the determination o§ I
of I.21) According to Sneed and Stegmueller2?) I
is determined "paradigmatically",i.e. one gives a
list of "paradigms" forming a set I _¢ I, and
systems not in I _will belong to I °if they are
sufficiently similar to those of I . If "suffi-
cient similarity" cannot be decid on easily then
the theory itself will be used as a criterion.Some
new system x will be regarded as an intended appli-
cation 1ff 1t can be successfully subsumed under T.

The paradigmatic method, if applied to CT,
yields as intended applications systems which are
elither in direct contact with the earth or con-
sist of stars or planets as seen from the earth.
It is hard to come across space-time systems (as
distinct from mechanical systems) described from
frames of reference which are accelerated relative
to the earth. The question certainly deserves a
more detailed analysis but for the moment the
above remarks will have to suffice. At least they
make plausible the claim that (7) need not con-
stitute a definite refutation of CT being reducible
to RT.

In total, then, it seems to me that the pre-
sent example should be regarded as a proper case
of reduction. Both theories involved are physically
adequate and based on operationally accessible
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notions. The reduction relation, too, makes physi-
cal sense and has formal properties which fit some

of

the general definitions of reduction already

avalilable.

NOTES

1)

2)

= w
—

8)

9)
10)
11)

I am indebted to A.Kamlah,D.Pearce and H.-J.
Schmidt for many remarks and suugestions on an
earlier draft.
Compare the examples enlisted in Moulines” con-
tribution to this volume. Recent notions of re-
duction can be found in (Ludwig,1978), Mayr,
1976 ),(Pearce, 1979 ), (Pearce & Rantala,1983a)
(Sneed,1971), and {(Balzer & Sneed,1977/78).
See (Bourbaki,1968) ,pp.259.
For further explanations compare my set-theo-
retic (as opposed to Bourbaki”s rather idio-
syncratic "syntactic") treatment of species of
structures in (Balzer,198L4).
See (Tarski,1959). I assume here that Tarski’s
A13) is always replaced by the corresponding
second-order version, namely the formula on
p.18 loc.cit. By an appropriate change of the
axioms of dimensionality we easily obtain the
axioms for 1-dimensional Euclidean geometry
used in D2-3). More precisely,we have to omit
A11) and A12) and add (in Tarski”s notation):
vxyz [ B(xyz) v Blyxz) v Bxzy)]l.
Compare (Balzer,1982),Chap.III.
Terminology is taken from (Weyl,1923),p.1k2.
According to (Ehlers,1973) this group is charac-—
teristic for Newtonian spacetime.
For intuitive explanations of the following
formalism see (Balzer,1982),Chap.IV.
An exact proof is found in (Zeeman,196k4).
See (Adams,1959).
It is possible to modify RT so that each model
contains a frame W explicitly (compare (Balzer,
1982),Chap.IV). By using such a modified RT,
condition (1) for reduction can be proved for
some Pp° modified along the same lines. The re-
sulting version of RT, however, is open to
criticism concerning its adequacy for the
automorphism groups of 1its models are not pre-
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cisely isomorphic to the Lorentz-group.

12) See (Sneed,1971),p.221,D51-2).

13) See (Mayr,1976 ),p.289,Definition (2.12-ii)
and (Suppes,1957),p.271.

14) See (Bourbaki,1968),p.267.

15) See (Ludwig,1978),p.88.

16) Compare ( Balzer & Sneed,1977/78).

17) This condition was first suggested to me by
H.-J.Schmidt at an informal meeting.

18) See (Pearce & Rantala,1983a)and ( Pearce,1979).

19) The treatment of reduction given in (Balzer &
Sneed,1977/78) as essentially covered by (1)

-though expressing the first intuition- falls
short of exhibiting all the formal advantages
of (L}). o

20) See (Sneed,1971),p.229,D5L-A-2).
21) Compare ( Balzer,1982 ),pp.28.
22) (Stegmueller,1973),pp.198.

W.Balzer

Seminar fuer Philosophie,Logik und Wissenschafts-
theorie,Universitaet Muenchen

Ludwigstr.31
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