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Abstract 

This paper investigates the evolution of cooperation in iterated Prisoner's Dilemma (IPD) games 
with individually learning agents, subject to the structure of the interaction network. In particular, 
we study how Tit-for-Tat or All-Defection comes to dominate the population on Watts-Strogatz 
networks, under varying learning speeds and average network path lengths. We find that the 
presence of a cooperative regime (where almost the entire population plays Tit-for-Tat) is 
dependent on the quickness of information spreading across the network. More precisely, 
cooperation hinges on the relation between individual adaptation speed and average path length in 
the interaction topology. Our results are in good agreement with previous works both on discrete 
choice dynamics on networks and in the evolution of cooperation literature.  

 
 
 
1. Introduction 

Selfishness is a naturally expected and accepted evolutionary reaction to a harsh 
environment. The wide-spread assumption of rational human decision-making is thus in contrast 
with the empirically often observed altruistic human behavior.  
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The puzzle is how cooperation can emerge in a population of selfish, rational agents. 

Evolutionary game theory offers an effective framework to study puzzles of this kind. In 
evolutionary game theory agents play a game repeatedly, with a specific mechanism to update 
their strategies between successive rounds. (Weibull, 1995) (Gulyas and Platkowski, 2004). 

In the context of this paper, similarly to most fields of the social sciences, cooperation is 
understood strategically: i.e., as the (missing) tendency of the agent to take unilateral advantage 
over its partners. The classic framework to explore such situations is the (Iterated) Prisoner's 
Dilemma game (IPD).  

Following the series of works by Axlerod, this framework is now ubiquitous in many 
disciplines and forms the base of many models, studying a variety of problems. For example, see 
(Cederman, 1997) (Cohen, 1994) (Gowa and Mansfield, 1993) (Pruitt, 1998) (Szabo and Fath, 
2006) Within this framework, the success of altruistic cooperation is often understood as the 
presence of the tit-for-tat (TFT) strategy, that cooperates on the first round and then reciprocates 
the moves of its partner, against the all-defective (ALLD) strategy that exploits its opponents in all 
rounds (i.e., never cooperates). 

The role of interaction topology (i.e., network structure) was also studied in IPD settings. 
Axelrod, Riolo and Cohen (CAR) study how cooperation (c.f., trust) can evolve spontaneously in a 
population of selfish agents, using a networked IPD games framework with an evolutionary 
adaptation rule. (Axelrod, Riolo and Cohen, 2000) In the context of their evolutionary model, they 
found that context-preservation (i.e., a static network) and not network structure was the key for the 
survival (and domination) of cooperative behavior (i.e., agents playing TFT). (Cohen, Riolo and 
Axelrod, 2001) On the other hand, when network dynamics was allowed, ALLD agents took over 
the world. The independence of the emergence of cooperation result has a strong message in the 
context of cooperation and trust in society. However, it is in stark contrast with the growing body of 
results in information/behavior cascades, where discrete choice dynamics were found to be 
dependent on network topology, and especially on the l average path length in the network. 
(Gulyas and Dugundji, 2003) (Dugundji and Gulyas, 2006) (Herrero, 2002) (Nikoletopoulos et al, 
2004) (Watts, 2002) (Klüver and Schmidt, 1999) 

Therefore, in earlier works, we revisited the question of network dependence in IPD games 
with the aim to consolidate the previously discussed apparent contradiction. (Gulyas, forthcoming) 
Our hypothesis was that independence from the network topology was caused by the sharp, step-
like nature of adaptation in the evolutionary setting, when agents switched from ALLD to TFT after 
a single round of underperformance. In order to investigate this hypothesis, we departed from the 
classic IPD framework applied in the CAR-model and designed a model using an individually 
inductive adaptation rule that 'smoothens out' the strategy change. This framework assumes a 
discrete setting with individual learning, instead of evolutionary adaptation. Studying this altered 
model on static Watts-Strogatz networks, we found that context-preservation is not always 
sufficient for achieving a cooperative regime. In particular, our numerical results suggested that the 
performance of the TFT strategy may depend on the (static) network structure, eliminating the 
contradiction above.  

In the present paper we further explore this dependence. Especially, we focus on 
cooperation's dependence on the speed of learning, relative to network structure. We find that 
cooperation is dependent on the quickness of information spreading across the network, which 
depends on the relation of adaptation speed and average path length in the interaction topology. 



 

 

Open Access at  https://sites.google.com/a/fspub.unibuc.ro/european-quarterly-of-political-attitudes-and-mentalities/ 
 

László Gulyás: “Cooperation in Networked Populations of Selfish Adaptive Agents: Sensitivity to Learning Speed” 
EQPAM Vol.2 No.1 January 2013  

ISSN 2285 – 4916 
ISSN-L 2285 - 4916  

 
Open Access at  https://sites.google.com/a/fspub.unibuc.ro/european-quarterly-of-political-attitudes-and-mentalities/ 

 

 
Page 57 

As a special case, these results yield the findings of (Axelrod, Riolo and Cohen, 2000) on 
cooperation’s independence from (static) network topologies with the evolutionary adaptation rule. 
Also they are in good agreement with earlier results on discrete choice dynamics.  

The paper is structured as follows. The next section introduces the classic evolutionary 
IPD framework, which is followed by the description of our modified, individually inductive IPD 
model. Section 4 discusses earlier results on the network dependence of these two families of 
models. Section 5 summarizes the main contributions of this paper: cooperation’s dependence on 
the adaptation speed in the individually inductive framework. This is followed by a discussion of 
related works, while the last section concludes the paper. 

 

1. The Classic Evolutionary IPD framework 

In the Prisoner's Dilemma (PD) game, two agents face the same binary choice: each has 
the option to either cooperate (C) or to defect (D) – without knowing the choice of the partner. The 
payoff matrix of this game is shown on Table 1, with the condition that T>R>P>S and 2R>S+T.3  
That is, choosing D always has a higher expected payoff than choosing C, yet the combined payoff 
of the two agents is best when both of them cooperate. The deficiency of defection becomes more 
pronounced when the partners play consecutive games, as the difference 2R-(S+T)>0 
accumulates. This makes the number of games (iterations, ni) important. Iterated Prisoner's 
Dilemma (IPD) games (ni>1) are interesting if the agents have a memory of the last nm < ni actions 
taken by their partner. (Schweitzer, Mach and Mühlenbein, 2005) 

 
Table 1. The payoff matrix of the Prisoner’s Dilemma game, T > R > P > S, 2R > S+T. 

 Player 2’s action 

Player 1’s action Cooperates Defects 

Cooperates R (reward) R (reward) S (sucker) T (temptation) 

Defects T (temptation) S (sucker) P (punishment) P (punishment) 

 Player 1’s Payoff Player 2’s Payoff Player 1’s Payoff Player 2’s Payoff 

 
In the following, we restrict our analysis to one-step memory (nm =1) strategies, in 

accordance with (Cohen, Riolo and Axelrod, 2001) and (Gulyas, forthcoming). In the deterministic 
case, such strategies can be described with a sequence of 3 actions: AI, AC, AD. That is, the action 
taken initially (when no information about the partner is available), in response to a cooperative and 
a defective action, respectively. Among the 8 possible strategies, we focus on the four studied in 
(Gulyas, forthcoming), as listed on Table 2.4 

 

Table 2. The 4 one-step memory strategies studied. 

Name (abbreviation) 
Action 
sequence 

Always cooperates (ALLC) CCC 

Tit-for-Tat (TFT) CCD 

Ant-Tit-for-Tat (ATFT) DDC 

Always defects (ALLD) DDD 
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2. Networked Evolutionary Iterated Prisoner's Dilemma Games 

The evolution of cooperation is studied in a 'society' A of more than 2 agents (N=|A|>2). In 
this context, agents playing IPD games have to be 'paired', i.e., the interaction topology of the 
society must be specified. The most general formulation of the topology is a graph (G=(A, E), 

where E  AA): the nodes are the agents and the links represent pairs playing IPD games. Each 
agent plays an IPD game with all of its E(a) neighbors independently, but simultaneously. (For 
simplicity, we assume an undirected network.) Agents are assigned a random initial strategy drawn 
from a uniform distribution.  

At the end of each round (i.e., after each agent has played with all of its neighbors), the 
agents have the option to change their strategies. In the evolutionary family of models, this is done 
by observing the profitability of the strategies applied by the agent's neighbors. (Axelrod, Riolo and 
Cohen, 2000) (Cohen, Riolo, Axelrod, 2001) Profitability is expressed as the average payoff per 
game achieved in the current round by the neighbor in question. Let POa

t denote the payoff 
collected, and na

t the number of IPD games played by agent a in round t. Then the profitability of 
agent a at time t is expressed as  

 

t

a

t

at

a
n

PO
       (1)  

 
The evolutionary adaptation rule assumes that at the end of the round the agents copy the 

strategy of their most profitable neighbor. If a
t stands for the strategy played by agent a in round t, 

then this adaptation rule can be expressed as 
 

t

i

tt

a aEi


)(maxarg

1


       (2)  

 
If different strategies scored the same maximum value, the agent applies a random choice. 

Notice that this adaptation rule assumes that the agents have the means to ex post discover the 
strategies played by their opponents. However, this does not mean that they would have the same 
capability during the IPD game. 
 

3. Individually Inductive IPD Framework 

The individually inductive framework introduced in (Gulyas, forthcoming) is based on the 
classical approach of the previous section. However, for the sake of a new adaptation rule, basic 
model elements need to be altered. The agents of our model will continue to play one of the four 1-
step memory (nm=1) strategies as above in each round. (See Table 2.) However, they will 
probabilistically pick one of these strategies at the beginning of each round and play this fixed 

strategy against all of their opponents.5  Let pa
t() denote the probability that agent a plays strategy 

{ALLC, TFT, ATFT, ALLD} at time t. Naturally,  
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 
 

1
,,,


 ALLDATFTTFTALLC

t

ap


      (3) 

for all aA and t0. 
In order to approximate the random initial strategy configuration of the evolutionary 

adaptation model, agents are assigned a special initial strategy probability distribution. In this 

distribution, one strategy has a definite advantage (p0.25, set to 0.3 in our experiments) and the 
complementing probability is distributed equally among the 3 remaining strategies (see Table 3). 
The random initial configuration is created in such a way that an approximately equal number of 
agents will have a bias for each strategy.  

 
Table 3. Initial distribution of strategy probabilities for the four strategy classes of the evolutionary adaptation model 

(p is a model parameter). 
 pa0(ALLC) pa0(TFT) pa0(ATFT) pa0(ALLD) 

Former ALLC p (1-p)/3 (1-p)/3 (1-p)/3 

Former TFT (1-p)/3 p (1-p)/3 (1-p)/3 

Former ATFT (1-p)/3 (1-p)/3 p (1-p)/3 

Former ALLD (1-p)/3 (1-p)/3 (1-p)/3 P 

 
At the end of the round agents have the option to adapt to their more successful 

neighbors, just like in the evolutionary case. However, instead of copying their opponents directly, 
the agents only change their probabilities for the four strategies. They will increase the weight of 
the strategy of their best performing neighbor with a constant cA value. Then the weights of the 
strategies are renormalized, in order to create a probability distribution again. 

That is, if tt

M t
iaEi 


)(maxarg 

 stands for the best strategy in the neighborhood, then the 

new strategy probability distribution of agent a will be the following6: 
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4. Cooperation’s Sensitivity to Network Structure 

In the following we focus on Watts-Strogatz networks, which start from a regular D-
dimensional lattice with periodic boundary conditions and k-neighborhood (i.e., the agents are 
connected to their neighbors at most k-steps away on the lattice).  Then with a certain pRew 
probability, each connection is 'rewired': i.e., it is replaced by a random link subject to the following 
constraints: neither self-loops nor multiple links between the same two nodes are allowed. (Watts, 
1999) In particular, we study two-dimensional Watts-Strogatz networks (D=2) with 1-neighborhood 
(k=1). (Watts and Strogatz, 1998) The motivation for the latter is to keep the average number of 
neighbors (z=4) consistent with the interaction network topologies studied in the (Axelrod, Riolo 
and Cohen, 2000) and (Cohen, Riolo, Axelrod, 2001) papers. Furthermore, in accordance with the 
CAR studies, we fix the number of iterations at ni=4. 
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Table 4. Virtual Experiment #1 varied the pRew rewiring parameter of Watts-Strogatz networks between 0 and 1 and 

the size of the network (N) between 100 and 104, creating 10 different (random) network instances for each value. The 
behavior of the evolutionary IPD framework was explored on each of these instances with 10 replications for T=5, R=3, 
P=1 and S=0. 
  pRew 

  0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

N
 

100 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

256 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

400 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

625 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

900 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

2500 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

3600 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

10000 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

 

 
Figure 1.  

Evolutionary adaptation's independence of network structure on Watts-Strogatz networks after 103 rounds. (Results 
from Virtual Experiment #1.) The points are averages for 10 network instances and 10 different runs for each network, 

given each combination of pRew and N. The values for the N=100 case show an averaging effect: all individual 
simulations converge to either 0 or 1.0. 

 
 

5. Evolutionary Adaptation 

In order to assess the cooperation’s dependence on the structure of Watts-Strogatz 
networks, we performed a virtual computational experiment, as summarized on Table 4. Figure 1 
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demonstrates that the evolution of cooperation outcome is independent of the network structure on 
Watts-Strogatz graphs, using the evolutionary adaptation method. On the horizontal axis pRew is 
varied from 0 to 1. For each value 10 different random instances of the appropriate Watts-Strogatz 
network class is created and each of them is tested with 10 different random initial configurations. 
After 103 iterations, we count the number of agents playing the non-cooperative ALLD strategy and 
normalize the result with the system size.  

The vertical axis of Figure 1 shows the average of the values obtained from the 1010 
simulations, defined as 

 

 

N

ALLD

Q Aa

a






1000

     (5) 

 

 where () yields 1 for true statements and 0 otherwise.  
 
 
Table 5. Virtual Experiment #2 varied the pRew rewiring parameter of Watts-Strogatz networks between 0 and 1 and 

the size of the network (N) between 100 and 104, creating 10 different (random) network instances for each value. The 
behavior of the individually inductive IPD framework was explored on each of these instances with 10 replications for 
p=0.3, cA=0.1, T=5, R=3, P=1 and S=0. 

  pRew 

  0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

N
 

100 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

256 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

400 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

625 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

900 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

2500 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

3600 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

10000 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

 
 

6. Individually Inductive Adaptation 

Following Virtual Experiment #1, we performed a similar experiment with the individually 
inductive adaptation model, summarized on Table 5. We found that, in contrast to the case of the 
evolutionary adaptation rule, the aggregate outcome is highly dependent on network structure, in 
much the same way as with other discrete choices on networks.  Cooperation (i.e. TFT) is 
successful when agents in the network are 'far apart', while on small worlds (i.e., when the average 
agent-to-agent distance l scales with log N) ALLD takes over.  

On Figure 2 we observe a phase shift from the TFT dominated large worlds to the ALLD 
dominated small-worlds as the pRew probability of rewiring in the Watts-Strogatz network increases. 

The Q ratio of ALLD domination scales as a f(N)=N +  linear function of the system size. Figure 
2b illustrates the collapse of l as a function of pRew. 
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(a) 

 
 
 

 
 

(b) 

 
Figure 2. 

(a) Sensitivity to network structure with the individually inductive adaptation rule (p=0.3, cA=0.1). (Results from 
Virtual Experiment #2.) Numerical results showing the Q dominance of ALLD outcomes after 103 rounds, scaling 

as a polinomial function of N, with =510-4, =7.8 (see text). (b): Average path length (l) versus pRew in Watts-
Strogatz networks. (Created by measuring the networks generated during Virtual Experiment #2. The points are 

averages of the 10 network instances for each combination of N and pRew.) 

7. Cooperation’s Sensitivity to Adaptation Speed 

Figure 2 demonstrated cooperation’s sensitivity to network structure, in the individually 
inductive adaptation framework, with the adaptation speed parameter (cA) kept constant. In 
particular, the results show that the emergence of cooperation is dependent on the average path 
length in the interaction network. This suggests that cooperation is sensitive to the quickness at 
which information (strategy adaptation) can spread in the network, which is clearly also dependent 
on adaptation speed.  

Virtual Experiment #3 was designed to confirm this hypothesis. (See Table 6.) As it is 
shown on Figure 3 (left column), the phase shift observed earlier (see Figure 2) appears for 

relatively low adaptation speeds only (i.e., cA0.4). In particular, when the quickness of adaptation 
approximates that of the evolutionary adaptation rule (e.g., when cA>1-p) the model reproduces the 
strong network-independence result of the evolutionary adaptation rule. (Axelrod, Riolo and Cohen, 
2000). 

 
Table 6.  
Virtual Experiment #3 varied the pRew rewiring parameter of Watts-Strogatz networks between 0 and 1; the speed of 
adaptation (cA) parameter between 0.1 and 1.0; and the size of the network (N) over 400, 625 and 900. We created 10 
different (random) network instances for each combination of N and pRew. The behavior of the individually inductive IPD 
framework was explored on each of these instances with all values of cA with 10 replications for p=0.3, T=5, R=3, P=1 
and S=0. 

N=400, 
625, 900 

cA 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

p R
ew

 0 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

0.1 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 
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0.2 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

0.3 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

0.4 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

0.5 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

0.6 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

0.7 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

0.8 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

0.9 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

1.0 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

 
 
Table 7.  
Virtual Experiment #4 varied the pRew rewiring parameter of Watts-Strogatz networks between 0 and 1; the initial 
strategy probability bias (p) parameter between 0.25 and 0.35 and between 0.4 and 1.0; and the size of the network 
(N) over 400, 625 and 900. We created 10 different (random) network instances for each combination of N and pRew. 
The behavior of the individually inductive IPD framework was explored on each of these instances with all values of p 
with 10 replications for cA=0.3, T=5, R=3, P=1 and S=0. 

N=400, 
625, 900 

p 

0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33 

p R
ew

 

0 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

0.1 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

0.2 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

0.3 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

0.4 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

0.5 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

0.6 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

0.7 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

0.8 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

0.9 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

1.0 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

N=400, 
625, 900 

p 

0.34 0.35 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

p R
ew

 

0 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

0.1 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

0.2 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

0.3 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

0.4 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

0.5 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

0.6 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

0.7 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

0.8 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

0.9 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

1.0 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 
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Figure 3. 
Sensitivity to learning speed with the individually inductive adaptation rule. Results from Virtual Experiment #3 (left 
column) and Virtual Experiment #4 (right column), showing the Q dominance of ALLD outcomes after 103 rounds for 
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combinations of N, pRew and cA or p.  Each data point is an average over 10 replications per each of the 10 network 
instances per combinations of N and pRew. 

 
Virtual Experiment #4 tested how these findings depend on the initial strategy probability bias (p) 
parameter, as summarized on Table 7. (The minimum p value tested was 0.2 as any value below 
0.25 actually represents a negative bias for the ‘initial strategy’.) The results of this virtual 
experiment are shown on Figure 3 (right panel) and they confirm the findings of Virtual Experiment 
#3. It is worth noting, however, that in case of both Virtual Experiment #3 and #4, the results have 
a pronounced dependence on system size (N). 
 
Table 8.  
Virtual Experiment #5 varied the initial strategy probability bias (p) parameter between 0.2 and 1.0; the speed of 
adaptation (cA) parameter between 0.1 and 1.0; the size of the network (N) over 400, 625, 900 and 2500; while the pRew 
rewiring parameter of Watts-Strogatz networks took two different values: 0.2 and 0.9. We created 10 different (random) 
network instances for each combination of N and pRew. The behavior of the individually inductive IPD framework was 
explored on each of these instances with all combinations of p and cA, with 10 replications for T=5, R=3, P=1 and S=0. 

pRew=0.2, 
0.9 

cA 

N=400, 
625, 900, 
2500 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

p 

0.2 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

0.3 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

0.4 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

0.5 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

0.6 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

0.7 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

0.8 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

0.9 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

1.0 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 10x10 

 
In order to scrutinize our results so far, and to further explore the dependence of 

cooperation’s success on adaptation speed, we designed Virtual Experiment #5 to vary both 
adaptation speed (cA) and initial strategy probability bias (p) for various combinations of N and 
pRew. The values for pRew were selected to generate networks with the ‘small-world’ property, i.e., 
with low average path lengths (l). (See Table 8.)  The results shown on Figure 4 confirm our earlier 
findings. In addition, they demonstrate that a sufficiently high initial bias (p) may also contribute to 
the emergence of cooperation. Notice that this is independent of the biased strategy in question, as 
the initial population consists of a roughly equal number of agents inclined for all the 4 studied 
strategies. 
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Figure 4. 
Sensitivity to learning speed. Results from Virtual Experiment #5, showing the Q dominance of ALLD outcomes after 
103 rounds.  Each data point is an average over 10 replications per each of the 10 network instances per combinations 
of N and pRew. 

 
The results of Virtual Experiments #3-#5 demonstrate that the emergence of cooperation 

does not only depend on the network structure as seen on Figure 2 (and in (Gulyas, forthcoming)), 
but also on adaptation speed. In particular, it depends both on the cA and the p parameter of the 
individually inductive adaptation framework. These two parameters control, in essence, the number 

of reinforcement steps a strategy () needs before its selection probability pa
t() approaches 1. On 

the other hand, parameter pRew of Watts-Strogatz networks control the number of rewirings and 
consequently, the l average path length in the network. (Watts and Strogatz, 1998) (Newman, 
2000) (Newman, 2003) These two observations imply that the emergence of cooperation may 
ultimately depend on how fast TFT can ‘communicate’ its success. That is, whether information 
travels fast enough via repeated adaptations of the agents to make the presence of fellow 
cooperators felt before agents facing defeat from ALLD partners ‘freeze’ into a non-cooperative 
strategy themselves. 

Having a look at the time-evolution of single runs with long and short average path lengths, 
respectively, backs this intuition. As demonstrated by Figure 5, both runs start out in the same way: 
ALLD gaining ground. However, in a network with short path lengths, we observe a sudden come-
back of cooperators.  
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Figure 5. 
Trajectories of two example runs from Virtual Experiment #2. The charts plot the time-evolution of the distribution of 
strategies played by the agents for pRew =0 (left) and pRew=1 (right). The other parameters were N=900, cA=0.1 and 
p=0.3. 
 

A rough analysis can further back our interpretation of the results. Initial cooperators 

(agents that are most likely to play TFT in the first round) have an initial pa
0()=p. In order to 

become a stable cooperator, this value needs to approximate 1. This is done via the observation of 
the success of TFT in the neighborhood (played either by one of the neighbors or by the agent 

itself).  Each time this happens, pa
t() is increased by cA and then renormalized (divided by 1+cA). 

That is, omitting the normalization, an initial cooperator needs roughly (1-p)/cA reinforcements to 
become a stable cooperator. On the other hand, we know that in a network with the small-world 
property (i.e., when we observe a cooperative outcome on Figure 2 and Figure 3), the l average 
path length scales with the logarithm of network size. That is, the average number of hops that it 
takes to reach one agent from another via the links of IPD games (and observations of success 
performed during the adaptation phase) is around ln(N). Therefore, our earlier intuition can be 
reformulated as the hypothesis that cooperation emerges when  

)ln(
1

N
c

p

A




      (6) 

Figure 6 shows the difference ln(N) – (1-p)/ cA in charts similar to that of Figure 4, for 
N=400, 625, 900 and 2500. We believe that the panels of Figure 6 are in good agreement with 
those on Figure 4. The match is not perfect, obviously, but that is to be expected, given the 
simplifications made during our analysis. 
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Figure 6. 

Analytic results for the difference ln(N) – (1-p)/ cA, in case of =0.8 and =0.65, for N=400, 625, 900 and 
2500; cA values between 0.1 and 1.0 and values of p between 0.2 and 1.0. 

Our approximate analysis offers two additional insights as well. First that the size of the 
non-cooperative regime (i.e., when ALLD comes to dominate) is indeed dependent on the N size of 
the population, because the l average path length also depends on it, albeit logarithmically. The 
second insight is that apparently, even for large networks, there are always combinations of cA and 
p, where cooperation disappears. This is because  
 





A

c c

p

A

1
lim

0
      (7) 

 
Therefore, for any fixed N and p, there is always a critical cA

*, below which ALLD 
dominates the landscape. However, this also implies that the question of adaptation speed is only 
relevant in populations of moderate size, given that the interaction topology network has the small-
world property. If the interaction topology is a ‘large-world’, that implies that the l average path 
length is greater than ln(N). Therefore, cooperation is even more common or, in other words, the 
critical adaptation speed below which ALLD wins is even lower than for small-worlds.  
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8. Related Works 

The puzzle of altruism in a selfish, rational society is decades old. One of the first 
publications to discuss it in detail full of insight was (Axelrod, 1984). Since then many versions of 
the basic question have appeared together with many answers to address them. Axlerod’s original 
answer was that altruism is due to the ‘shadow of future’, i.e., the rationally foreseen repetition of 
encounters, where selfish behavior dictates to measure immediate gains against future losses. Yet, 
many times this reciprocity argument fails to work due to various reasons, among which one 
obvious is that it assumes repeated encounters with the same partner. (Axelrod, Riolo and Cohen, 
2000). This led to the development of theories on indirect reciprocity and the options for its 
spontaneous emergence. In such cases, agent A helps agent B and gets  help from agent C. This 
framework naturally leads to models of reputation building, morality judgment and complex social 
interactions. (Nowak and Sigmund, 2005) However, at a more general level, explanations 
operating with indirect reciprocity exchange the assumption of fixed partners for the assumption of 
identifiable partners. That is because none of the above concepts can work without being able to 
tell cooperators apart from defectors. A generalization of this idea is today a busy and fruitful area 
of research: that of tag-based systems. (Holland 1993) (Hales and Edmonds, 2003). Tags are 
arbitrary, but recognizable labels assigned to agents that may serve to identify desirable and 
undesirable partners. Tags are therefore a means to establish patterns of interactions among 
agents. (Axelrod, Riolo and Cohen, 2000) (Riolo, 1997) And interaction patterns are of extreme 
importance, as noted by (Holland, 1995), because they “can have a strong effect not only on the 
success of individual agents, but also on the performance of the system as a whole”. (Axelrod, 
Riolo and Cohen, 2000). 

In this paper, we have refrained from allowing the agents to define interaction patterns by 
and for themselves. Instead, we focused on externally specified interaction topologies. Also, 
despite recent interest in dynamic networks, we limited our study to static interaction graphs, in 
order to focus on the context dependency issue emphasized by (Cohen, Riolo and Axelrod, 2001), 
who found that, as discussed earlier, the emergence of a cooperative regime is not dependent on 
the exact network structure, but on the stability of it. These results are also in good agreement with 
(Schweitzer and Mach, in preparation) and (Schweitzer, Mach, and Mühlenbein, 2005).  

In another line of research (Santos, Pacheco and Lenaerts, 2006) found that heterogeneity 
in the number of connections the agents have may play a significant role in promoting of 
cooperation. (Szabo and Fath, 2006) further specified this finding by pointing out that it is subject to 
the additivity of the utility model (i.e., whether the payoffs are averaged over the number of games 

an agent plays). Similar results were discussed by Watts, in relation to his - and -graphs. 
(Watts, 1999). Even though the models discussed in this paper use non-additive utilities, we took 
the conservative approach and studied networks with near-homogenous degree distributions and 
with similar values of z average node degrees. 

The focus of the present paper was to explore how the speed of adaptation contributes to 
the emergence of cooperation on Watts-Strogatz networks. While studying various methods of 
learning and adaptation is far from new in evolutionary game theory, these studies, to our 
knowledge, have not been linked to works exploring the effect of the interaction topology. 
(Fudenberg and Levine, 1998) (Axelrod, Riolo and Cohen, 2000) Interestingly, however, the issue 
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of adaptation speed was recently raised in the context of changing one’s tag in tag systems. Hales 
argued that the quickness of tag change facilitates cooperation, and even went as far as arguing 
that perhaps this is a necessary condition for tag systems to produce high levels of cooperation 
(Hales, 2005). 

 
 

9. Conclusions 

The rationality of human decision-making is a wide-spread and natural assumption. 
However, it is in apparent contrast with the richness of altruistic behavior often observed at various 
levels of society. The puzzle of how cooperation may spontaneously emerge in a population of 
selfish, rational agents is old and yet, it continues to raise novel answers to novel questions. 
(Axelrod,1984) (Nowak and Sigmund, 2005) In this paper we have joined these series of works by 
studying an individually inductive version of an evolutionary IPD games framework. Our work was 
originally motivated by an apparent contradiction between the emergence of cooperation literature 
and results on discrete choice dynamics on social influence networks. In an earlier publication we 
resolved this issue by ‘smoothing’ the sharpness of strategy adaptation. (Gulyas, forthcoming) That 
result, however, prompted the question of how, in detail, the cooperative outcome depends on 
adaptation speed. This is what we have explored in this paper in the case of ‘small-world’ social 
network topologies introduced by Watts and Strogatz (Watts and Strogatz, 1998). 

We have found that the presence of a cooperative regime (where almost the entire 
population plays Tit-for-Tat) is dependent on the quickness of information spreading across the 
network. More precisely, cooperation hinges on the relation between individual adaptation speed 
and average path length in the interaction topology. Our results are in good agreement with 
previous works both on discrete choice dynamics on networks and in the evolution of cooperation 
literature.  

Our results suggest that there are two essential roads to cooperation on static networks: 
one is a ‘large world’ (when the average pair-to-pair distance is long), the other is quick adaptation. 
And since real social networks are known to be small-worlds, the common occurrence of altruism 
points to the effectiveness of human learning (Milgram, 1967; Watts, 1999; Newman, 2003). 

In interpreting their results, Axelrod, Riolo and Cohen quote Putnam’s definition of social 
capital that is defined in terms of the “connections among individuals – social networks and the 
norms of reciprocity and trustworthiness that arise from them.” (Axelrod, Riolo and Cohen, 2000) 
(Putnam, 2000) They then argue that their finding on cooperation’s independence of network 
structure should calm skeptics, as it suggests that social relationships may survive, even in the era 
of Internet and fast electronic communication. Following this line of thought, our results bring more 
ambiguous news. Shorter distances may indeed eliminate cooperation if adaptation is not quick 
enough. However, in the particular model studied here, ‘quick enough’ is not very demanding. At 
least, not in networks of realistic size. 
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Footnotes 
1 Department of History and Philosophy of Sicence, Loránd Eötvös University, 1117 Budapest, Pázmány Péter 

sétány 1/c, Hungary} 

2 AITIA International Inc., 1039 Budapest, Czetz János utca 48-50, Hungary 

3 Henceforth, we adopt the following standard values: T=5, R=3, P=1, S=0. 

4 This is a discretized version of the model discussed by Cohen et al. Their results apply to a wider set of 
strategies than discussed here. 

5 Therefore, the proposed scheme is not a mixed strategy. 

6 Notice that this adaptation rule has a nice convergence property when subjected to repeated reinforcement. 

 

 
 


