Comparative analysis of public environmental decision-making processes: a variable-based analytical scheme
Newig, Jens; Adzersen, Ana; Challies, Edward; Fritsch, Oliver; Jager, Nicolas

Veröffentlichungsversion / Published Version
Arbeitspapier / working paper

Empfohlene Zitierung / Suggested Citation:

Nutzungsbedingungen:
Dieser Text wird unter einer CC BY-NC-SA Lizenz (Namensnennung-Nicht-kommerziell-Weitergabe unter gleichen Bedingungen) zur Verfügung gestellt. Nähere Auskünfte zu den CC-Lizenzen finden Sie hier:
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.de

Terms of use:
This document is made available under a CC BY-NC-SA Licence (Attribution-NonCommercial-ShareAlike). For more Information see:
https://creativecommons.org/licenses/by-nc-sa/4.0
Comparative analysis of public environmental decision-making processes – a variable-based analytical scheme
Jens Newig, Ana Adzersen, Edward Challies, Oliver Fritsch and Nicolas Jager:

Comparative analysis of public environmental decision-making processes – a variable-based analytical scheme

INFU Discussion Paper 37/13
INFU-Diskussionsbeiträge 37/13
ISSN 1436-4202
Edited by Gerd Michelsen, Marco Rieckmann and Maik Adomßent.
Available at http://www.leuphana.de/institute/infu/publikationen-vortraege/infu-reihe.html.

Jens Newig, Ana Adzersen, Edward Challies and Nicolas Jager are affiliated with Leuphana University Lüneburg. Oliver Fritsch is affiliated with the University of Exeter, UK.
Copyright remains with the author(s).
Cover photos courtesy of Jens Newig (left and middle), and Julia Pawlowska (right).

Please direct correspondance to Jens Newig, newig@uni.leuphana.de.

Published online on 20 February 2013.

INFU Discussion Papers aim to disseminate empirical and conceptual research outputs of work in progress in order to foster the early exchange of ideas and stimulate academic debate.
Contents

PART ONE: INTRODUCTION ... 4
Why an analytical scheme? .. 4
Scope and applicability of SCAPE .. 5
The specifics of SCAPE ... 6

PART TWO: THE ANALYTICAL SCHEME (CODE BOOK) .. 9
General coding guidelines ... 9
Glossary of key terms ... 10
Guidelines for specific groups of variables .. 12
Guidelines and information for specific sections .. 12
Key abbreviations and symbols .. 14
List of scales used / NIL and -99 peculiarities .. 15

A. GENERAL INFORMATION ... 16

B. CONTEXT .. 18
 B.I POLICY SPACE .. 18
 B.I.1 Policy environment .. 18
 B.I.2 Multi-level and spatial aspects ... 20
 B.I.3 Societal environment .. 21
 B.II ENVIRONMENTAL ISSUE .. 22
 B.III STAKEHOLDER CHARACTERISTICS .. 27

C. PROCESS ... 31
 C.I PROCESS DESIGN .. 31
 C.I.1 Rationales and goals of the process ... 31
 C.I.2 Process design characteristics .. 35
 C.II ACTUAL PROCESS ... 38
 C.II.1 Role of the competent authority ... 38
 C.II.2 Actor characteristics .. 39
 C.II.3 Process characteristics ... 43

D. RESULTS .. 46
 D.I SUBSTANTIVE OUTPUT ... 46
 D.I.1 Environmental and sustainability-related output ... 46
 D.I.2 Information and learning ... 50
 D.II SOCIAL OUTCOMES .. 51
 D.II.1 Acceptance of output .. 51
 D.II.2 Capacity building .. 52
 D.II.3 Other ... 53

E. CAUSAL HYPOTHESES ... 58
 E.I.1 Participation produces outputs with higher environmental standards .. 59
 E.I.2 Participation produces outputs with lower environmental standards .. 61
 E.II.1 Participation fosters implementation capacity and acceptance of decisions 61
 E.II.2 Participation fosters opposition to decisions .. 63

References .. 64
PART ONE: INTRODUCTION

Jens Newig, Edward Challies, Nicolas Jager

Why an analytical scheme?

Research on public environmental decision-making is proliferating. Yet, consolidated knowledge on how different forms of governance work, and what outcomes they produce in different contexts is still rare. There is certainly no consensus among researchers as to whether public participation, collaborative management, network governance or classical public management will do the best job in any given case. Instead, current knowledge rests largely on independent, scattered small-n case study analyses. Thousands of such case studies have been carried out and published in various forms, ranging from doctoral dissertations and conference proceedings to journal articles, book chapters, and whole volumes. Each of these is written from a different perspective, using different methods, gathering different kinds of data in order to respond to different research questions. How might this huge pool of knowledge be tapped to derive consolidated evidence on the mechanisms of public environmental decision-making?

At least three strategies lend themselves to this task: (1) multi-case comparative case, (2) meta-analyses, and (3) individual case studies carried out according to a standardised protocol.

(1) **Multi-case comparative studies** have a long tradition. Using a common analytical framework, they allow for a higher degree of generalisation than single case studies while at the same time providing for considerable analytical depth (Yin & Heald 1975; George & Bennett 2005). A few larger multi-case studies are available (e.g. Bingham 1986; Chess & Purcell 1999; Lauria & Wagner 2006). While clearly superior to single case studies in many respects, the efforts and resources needed to carry out multi-case studies increases roughly proportionally with the number of cases under study, which makes large comparisons feasible only in larger, well-resourced research projects.

(2) **Meta-analyses (e.g. case survey)** seek to integrate findings from a typically larger number of original studies to arrive at new insights beyond the scope and findings of the original studies. Taking the myriad of available case studies as an “intellectual goldmine awaiting discovery” (Jensen 2001), a highly structured and systematic integration of single case study data into a coherent analysis is undertaken via the case survey method (Yin & Heald 1975, Larsson 1993, Newig & Fritsch 2009). Like multi-case studies, a case survey requires a common analytical framework (code book). This is applied to a number of already published studies, producing consistent qualitative or quantitative data conducive to further analysis via established methods. The clear advantage is to grant structured access to a large body of research in order to answer a particular set of research questions with relatively few resources (as no primary research is conducted). However, a particular challenge lies in the heterogeneity of the original material. With the exception of Beierle & Cayford (2002) and Newig & Fritsch (2009), very few case surveys have been conducted so far in the field of public environmental decision making.
Individual case studies using a standardised, commonly accepted analytical scheme constitute a third option that has to date not been put into practice. Such an approach would allow for easy and coherent comparison of a multitude of case studies. It would foster the genuine cumulation of research as is common practice in (many of) the natural sciences, but still rare in the social sciences, let alone the complex field of public multi-actor decision-making processes. Depending on the specific focus of research, not every case study would need to apply the whole of a common research protocol. Rather, each study would focus on those variables most relevant to the case at hand. To our knowledge, no operable analytical scheme is publicly available today that could be used by different researchers embarking on new case studies.

All of the above options crucially rely on the existence of a coherent and empirically operable analytical scheme. In this discussion paper, we introduce and outline in detail an analytical scheme – SCAPE – that has been developed over several years, that has been tested and iteratively refined through application to dozens of case studies, and which is currently in use for a case survey of several hundred case studies of public environmental decision-making.

Scope and applicability of SCAPE

This is our initial contribution towards a standardised, common analytical framework to respond to the needs outlined above. Our ‘scheme for the comparative analysis of public environmental decision-making’ (SCAPE) facilitates the systematic comparison of cases of public decision-making and serves to identify causal relationships between the characteristics of a decision-making process and its outcomes. The framework is meant to be applicable to a wide range of public decision-making processes, focused on but not limited to environmental governance processes.

A number of conceptual frameworks are available to study (environmental) governance, the most common and widely recognised being the Institutional Analysis and Development framework, advanced by E. Ostrom and colleagues. Most of these, however, lack sufficient detail to be directly empirically applicable. Application then results in different research protocols that, while referring to the same conceptual framework, produce empirical data hardly suitable for comparative analysis. SCAPE, developed through the integration of existing conceptual and empirical literature, provides the detail required in an applicable research protocol. To our knowledge, no other comparable analytical scheme for application in the field of governance analysis is currently publicly available.

SCAPE is particularly suited to the analysis of processes in the realm of environmental governance that entail different forms of citizen and interest group involvement or environmental mediation. It develops a clear notion of the ‘decision-making process’ as its core unit of analysis, and provides a coherently structured set of more than 300 items covering:

- **contextual conditions** (section B) such as the societal and political environment, the pre-history of a decision-making process, elements of the issue at stake, characteristics of the relevant stakeholder field, and the level of pre-existing conflict;

- **process characteristics** (section C) such as who is involved in terms of governmental and non-governmental actors, the configuration of power relations, the role of scientific expertise, communication and information flows between actors, aspects of process facilitation, and process resources;
- **process outputs and outcomes** (section D) in terms of social, economic and environmental aspects (with an emphasis on the latter), social learning, trust-building, public acceptance, and conflict resolution, to name but a few.

The definition of these elements has been motivated and informed by the general notion that the process of decision-making – and different forms of participation in particular – make a difference for environmental and social outputs and outcomes. A wealth of individual hypotheses on how and why process features impact on outcomes can be found in the literature (see figure 1 for a simplified overview).

SCAPE integrates these claims, drawing, for example, on management theory and procedural justice (Lind & Tyler 1988); federalism and multi-level governance (Schmitter 2002; Newig & Fritsch 2009), social learning (Reed et al. 2010), democratic theory (Fung 2006; Dryzek 1995; Schmitter 2002; Smith 2003); deliberation (Weber & Tuler 2000), social capital (Putnam 1995; Fukuyama 1997); sociological systems theory (Bora 1994); legal studies (Coglianese 1997); public administration (Koontz 1999); political science (Dahl 1961; Tsebelis 1995); policy implementation (Pressman & Wildavsky 1973; deLeon & deLeon 2002) and consensus-making (Susskind & Cruikshank 1987; Susskind et al. 1999). Moreover, many propositions derive from numerous practitioner reports or handbooks (see the overview by Reed 2008).

![Figure 1: Simplified conceptual framework.](image)

The specifics of SCAPE

SCAPE has been rigorously tested on a variety of case studies and iteratively developed to a high level of consistency and applicability. High inter-coder reliabilities observed across multiple independent applications of the protocol to the same case studies demonstrate convincingly the protocol’s comprehensibility, despite its indispensable intricacy.

The key assumption underpinning SCAPE is the idea that the way public decision-making processes are designed and carried out matters for the quality of decisions, their implementation, and other (social) outcomes. This reflects a strong trend in the literature that asks how modes of governance (process designs) have impacts on, for example, environment and sustainability (Heinelt 2002; Smith 2003), or “how” to “best” do participation (Daniels et al. 1996). Process de-
sign is thus conceived as a deliberate *intervention*: Policy-makers have a choice among multiple possibilities for designing and running a process. This has been termed “choice of mechanism” by Beierle & Cayford (2002) or “instrument” or “technique” by (Webler & Tuler 2002). Such design choices are meant to make a difference, to “work” and achieve their aims.

SCAPE aims to provide a structured means to better understand which “mechanisms” work under which contexts, by allowing the systematic comparison of empirical evidence from a variety of different sources. Process design therefore is the focal starting point and key independent variable (or rather: set of independent variables) in the scheme. Context variables, then, seek to gauge how the setting in which a decision-making process takes place shapes the way in which process impacts on outputs and outcomes.

The key analytical unit of SCAPE is the public decision-making process (DMP). Together with its societal and environmental context and its outcomes, it forms a case study. A DMP is defined as a process with the aim of reaching a collectively binding decision on a given issue. This can be completely ‘top down’ (without any stakeholder involvement) or relatively participatory. A DMP can start, for instance, with an initial interaction or meeting of stakeholders or with a building application, and ends with a final decision or set of decisions (output). A DMP as such does not include subsequent implementation of the output. Nor does it include the events leading to a process. A DMP can be made up of several sub-processes and process types (such as hearings, task forces, etc.) and embraces all of them. It is typically delimited temporally and separated from its antecedents and consequents (Ragin & Becker 1992). Antecedents are captured by context variables, consequents are captured by output, outcome and impact variables. If the DMP is the focal unit of a case, then a case embraces a whole policy cycle from agenda-setting to policy-making (i.e. the DMP) and implementation. The variables in SCAPE provide clear definitions and help to identify and delimit empirical DMPs in complex environments of policy-making, and other processes playing out in the public realm.

Among the innovative elements that SCAPE introduces to the general field of assessing (environmental) policy processes, three are particularly noteworthy:

- **Structured stakeholder mapping (sections B.III and C.II.2):** Individual and organised actors with their stakes, interests, and power positions arguably play a key role in (participatory) public decisions. But just how can one compare the actors and stakeholders of importance to a decision-making process coherently across highly heterogeneous cases? One way would be to simply name these actors, but this makes cross-case comparison almost impossible. Another way would be to introduce aggregate variables for the (environment-related) interests of all relevant actors, but this would not capture any detail on the nature of these actors. SCAPE opts for a structured stakeholder mapping approach based on a typology of sectors and generic positions towards the environment. Distinguishing government, private and civic sector collective actors as well as individual actors on the sectoral dimension and pro-conservation, pro-human health, pro-natural resource protection and pro-exploitation interests on the environment-related dimension yields a total of 16 societal segments (pp. 26–18 and 39–41). These are applied to the stakes and power positions of stakeholders as well as their representation in a DMP and their influence on decisions, respectively. This allows for a structured, precise and consistent mapping of actor-related features across a great variety of different cases.

- **Definition of environmental and social outputs, outcomes and impacts (section D):** One of the greatest challenges in evaluating the ‘results’ of decision-making processes is to find common measures that apply across a great variety of cases. While for social outcomes
such as acceptance or learning, variables have been defined to compare across cases (Beierle & Cayford 2002), little effort has previously been made to compare the environmental results of decision-making. SCAPE introduces a threefold approach that draws on work by Mitchell (2008). Outputs, outcomes and impacts are assessed against three different evaluative yardsticks. Environmental outputs (i.e. the decisions produced by a decision-making process) are assessed (1) against the internally set goals of the process represented by the goals of the DMP initiator; (2) externally, against the goals of a given environmental regime reflected in any higher order policy of relevance to the issue (if applicable); (3) globally, against a hypothetical ‘business as usual’ scenario, and a hypothetical ‘optimal’ condition or worst case scenario. Similarly, environmental impacts (i.e. likely changes in the environment due to the implementation of the output of decisions) are assessed (1) against the goals of the environmental output, as well as against criteria (2) and (3) as applied to outputs above.

Assessing indications for causal hypotheses in a case (section E): SCAPE introduces a method for assessing whether and to what degree a given case study provides support for a number of causal hypotheses that link process characteristics with outputs and outcomes (as sketched above). This assessment relies on counterfactual reasoning based on the facts and arguments the case provides.

The technical details of SCAPE have been specifically developed to be applied in a case-study meta analysis (case survey), drawing on multiple coders per case. The analytical scheme (code book) presented in part two of this discussion paper corresponds to the second revision of 15 March 2012 plus a number of minor editorial changes. SCAPE may, however, be used for guiding and analysing original (comparative) case studies as well. Not every detail will be relevant for every application. However, we felt it would be most illustrative and inspiring to display all technical features of the analytical scheme, because any given application will have to deal with similar issues again.

We sincerely hope that SCAPE will prove as productive in other applications as it has proven in the current case survey of 200 cases of environmental decision-making processes worldwide. We invite fellow researchers to critique, test, apply, adapt or improve this analytical scheme and look forward to any criticism.

Acknowledgements

We thank Brigitte Geißel, Tomas M. Koontz, William D. Leach, Mark S. Reed, Ortwin Renn, Detlef Sprinz, Craig W. Thomas, Joris de Vente, Thomas Webler as well as our research assistants Mark Owe Heuer, Anna-Lena Bögeholz, Nikolas Lührs, Michelle Mallwitz, Timo Steinert, Sarah Velten, Ester Xicota, Anja Zirngibl and Sebastian Zösch for helpful comments on this analytical scheme in the various phases of its development.

This work was in parts funded by the German Research Foundation, DFG project “ECOPAG – Environmental Consequences of Participatory Governance. A comparative meta-analysis of case studies in environmental decision-making” (2009-2012) and by the European Research Council, ERC Starting Grant “EDGE – Evaluating the Delivery of Participatory Environmental Management using an Evidence-Based Research Design” (2011-2016).
PART TWO: THE ANALYTICAL SCHEME (CODE BOOK)

General coding guidelines

Number of coders: In principle, all variables must be coded by three coders. A few exceptions are made regarding some key variables the codes of which crucially determine a whole range of other variable codes. One coder will be assigned to these variables, which are marked with an asterisk (*).

Variable scales: For semi-quantitative variables (s-q), we typically use a 5-level scale from 0 to 4. This can be interpreted as:
- 0 corresponds to 0-20 per cent;
- 1 corresponds to 20-40 per cent;
- 2 corresponds to 40-60 per cent;
- 3 corresponds to 60-80 per cent;
- 4 corresponds to 80-100 per cent;

with 100 per cent corresponding to a theoretical maximum, to be expected under realistic optimal conditions. For details on additional scales, see the full ‘list of scales used’ below.

Coding is to be based on evidence from the text(s). As a second priority, substantiated judgments by the author(s) that provide good arguments can be drawn on (usually with lower reliability than coding based on evidence). Only as a third priority, coding can be based on informed guesses (e.g. aspects not mentioned in the text but which can reasonably be assumed given all other information). For selected variables only, information may be looked up in sources other than the specified text(s). These are marked with a (+) sign.

Coding is to follow as closely as possible the authors’ assessment rather than the interpretation of the coder. This does not imply following the authors’ terminology, as it may deviate from that of SCAPE. Authors’ terminology may need to be ‘translated’ into that of SCAPE.

Reliability field: For most variables, there is a separate field for the appraisal of the reliability of data on a scale from 0 to 3:
- 0 = insufficient information available. This means, the main variable is coded “NIL” (this is the default option in the web-based data-entry form); for technical reasons, NIL is not available in number and date fields; instead of NIL, enter -77 in number fields, and 00.00.0000 in date fields (each with a reliability of 0).
- 1 = sufficient information to make an informed guess on variable value;
- 2 = sufficient information to permit a reasonable evaluation;
- 3 = explicit, detailed and reliable information.

In situations where only very little information is available from the case text(s) for coding a specific variable or hypothesis, it is important to consider carefully the coding options. The choice in such situations will normally be between coding NIL with 0 reliability, or entering some other code with a low reliability. Generally, if there is clearly no information or insufficient information to make an informed guess, a variable or hypothesis should be coded NIL with 0 reliability. However, in some situations, the absence of information (an author’s not mentioning something) can be informative. For example, where the author does not mention a factor or occurrence (X) that would reasonably be expected given all that we know about the case, it may in some instances be sufficient evidence that X was not present or did not occur. Similarly, if the author describes a process as involving X and Y, and it can reasonably be assumed that this is an exhaustive description of the process, it may be safe to assume Z was not present. In such cases it may be better to enter the appropriate code with a low reliability score.

Several variables depend on earlier coded variables (for instance, implementation variables 304–306 depend on how the output in variables 259–261 is coded). Here, reliability values should not depend on those earlier coded variables but only on the availability of information for each variable.

The reliability field should not be used to reflect uncertainty about the meaning of a variable. This would have to be mentioned in the annotations field.

Logically uncodable variables: If a variable cannot be coded because this would make no sense logically, it receives the value -99 and a reliability value of “NIL”. Where a reason for coding -99 is specified for a given variable (e.g. “Code -99 when there was no output”), this is not exclusive, and -99 can still be coded for other reasons. This then would have to be mentioned in the annotations field. If [983] is specified in the variable description, the variable cannot be coded -99. For technical reasons, -99 is not available in date fields. Instead of -99, enter 13.13.1313 in date fields.

Annotations to variable codes: If the facts of the case appear to be in contradiction to the logic of SCAPE (i.e. a particular variable, a particular hypothesis or hypothesised counterfactual scenario, or some combination thereof) please provide an account of this in the annotations field 3. ANNOTATIONS.

Pre-coded variables: Before starting coding, coders should confirm that information on pre-coded variables - marked by asterisks (*) - is correct. This should be confirmed with the other two coders as soon as possible and before coding any other variables.

Priority variables: Variables for which the variable name appears in red should receive priority in coding discussions.
Glossary of key terms

The following key terms and definitions are adopted, and **underlined** throughout the Code Book.

<table>
<thead>
<tr>
<th>Term (abbreviation)</th>
<th>Definition/description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actor</td>
<td>Any stakeholder that engages to any degree in the decision-making process at hand, not necessarily as a participant. An actor group is a plurality of actors who share similar characteristics.</td>
</tr>
<tr>
<td>Business as usual</td>
<td>A projected scenario reflecting what is likely to happen assuming no interruption of current practices, trends and plans. A business as usual scenario can imply positive and/or negative environmental change.</td>
</tr>
<tr>
<td>Citizens</td>
<td>Non-organised individuals (e.g. consumers, residents, etc.), and ad-hoc, temporary and issue-related citizen initiatives.</td>
</tr>
<tr>
<td>Civic sector (non-profit)</td>
<td>A collection of entities and groups that are organised (institutionalised), non-governmental, non-profit, self-governing, and voluntary (e.g. NGOs, churches, unions) (adapted from Salamon & Anheier 1997: 33f).</td>
</tr>
<tr>
<td>Communication</td>
<td>One-way information flow from the process initiator/organiser to the public.</td>
</tr>
<tr>
<td>Competent authority (CA)</td>
<td>The authority that has legal responsibility for the issue and is therefore responsible for the DMP.</td>
</tr>
<tr>
<td>Compliance</td>
<td>Rule conformity (i.e. to do what a rule prescribes). This includes more or less simple tasks, including to refrain from doing something. Whereas implementation implies to actively (and creatively) design a solution, compliance simply means adherence to the rule (i.e. compliance is typically a single or repeated action, rather than a process).</td>
</tr>
<tr>
<td>Conservation</td>
<td>As an actor, actor group, or policy orientation: To preserve, protect or restore the natural environment and ecosystems (including the atmosphere, biodiversity, terrestrial and aquatic habitats, and flora and fauna) largely independently of their instrumental value to humankind.</td>
</tr>
<tr>
<td>Consultation</td>
<td>One-way information flow from the public to the process initiator/organiser.</td>
</tr>
<tr>
<td>Decision-making process (DMP)</td>
<td>A process with the aim of reaching a collectively binding decision on a given issue, which can be completely 'top down' (without any stakeholder involvement) or rather participatory. A DMP can start e.g. with an initial interaction or meeting of stakeholders or with a building application, and ends with a final decision or decisions (output) - but does not include subsequent implementation of the output. A DMP can be made up of several sub-processes (such as hearings, task forces, etc.) and embraces all of them.</td>
</tr>
<tr>
<td>Dialogue</td>
<td>Two-way information flow and direct interaction between the process initiator/organiser and participants, and among participants. Dialogue implies more than just extensive communication and/or consultation and requires responsive on-going interaction, and exchange of relevant information (i.e. assumes the possibility to ask questions and respond to comments).</td>
</tr>
<tr>
<td>Exploitation</td>
<td>As an actor or actor group: To cause or tolerate or accept harmful effects on the environment including pollution or general degradation of the quality of the environment and its ecosystems, the endangerment of human health as well as the unsustainable utilisation of natural resources and capacities.</td>
</tr>
<tr>
<td>Government sector</td>
<td>All governmental actors and organisations at various levels engaged in the formulation of policies and their execution (i.e. involved state agencies), including quasi non-governmental organisations fulfilling functions of government.</td>
</tr>
<tr>
<td>Higher order policy</td>
<td>A higher order policy is a legally binding rule (e.g. law, directive, decree), typically issued by a superordinate level of government that requires further decision making on subordinate levels as part of its implementation. Note that a governmental decision that is not a general rule but targeted at an individual case (e.g. a permit) is not a policy.</td>
</tr>
<tr>
<td>Human health</td>
<td>As an actor, actor group, or policy orientation: Concern for those environmental issues that are likely to affect human health. Protection of human health means to protect quality of (human) life through enhancing environmental factors beneficial to human health, and/or mitigating environmental impacts and remediating environmental problems detrimental to human health.</td>
</tr>
<tr>
<td>Impact</td>
<td>Actual (or very likely) changes in the environment (or, if applicable, unchanged conditions), typically as an effect of the outcome (which refers to the change in behaviour of the actors that are affected by the output). In certain cases, impacts may be observed although no decision (output) was made.</td>
</tr>
<tr>
<td>Implementation</td>
<td>The process of putting a plan or rule into operation, e.g. by developing specific measures (i.e. in contrast to compliance, implementation is a process). This is typically done by government sector actors.</td>
</tr>
<tr>
<td>Influence</td>
<td>The degree to which an actor or a group of actors develops or determines the output of a DMP.</td>
</tr>
<tr>
<td>Institution</td>
<td>Institutions are established rules or laws that govern (aspects of) society. Note that this definition is much broader than that of organisations.</td>
</tr>
<tr>
<td>Natural resource protection</td>
<td>As an actor, actor group, or policy orientation: To protect, preserve, enhance or restore stocks and flows of natural resources that are of instrumental value to humans, and provide for their sustainable use.</td>
</tr>
<tr>
<td>Non-state actor (NSA)</td>
<td>Civic sector (non-profit) and private sector (for-profit) actors, and individual citizens. Excludes government sector actors.</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Outcome</td>
<td>Changes in human perceptions or actions that directly result from an output. Change means departure from the scenario had there been no output. This refers mainly to the planned consequences of the output (such as compliance with a new rule). Unintended consequences are normally not included under outcome. As opposed to ‘impact’, ‘outcome’ does not refer to changes in the environment. In certain cases, outcomes following a DMP may be observed although no decision (output) was made.</td>
</tr>
<tr>
<td>Output</td>
<td>The decision made at the end of the decision-making process. This decision is typically set down in writing, in the form of a management plan, a permit, a law, etc. Over the course of a decision-making process several outputs may be produced, e.g. a draft plan, an official plan and a legal revision of the plan. For each case the ‘final decision’ discussed in the text(s) will be identified as the output (see variable 243 OUTP NAME). Final decision is defined as the most legally binding output described in the text(s), excluding subsequent changes through litigation. The caveat being that sufficient information must be available for coding this final decision; otherwise, a less binding output should be identified as the output.</td>
</tr>
<tr>
<td>Participant</td>
<td>Any actor taking part in the decision-making process due to a position granted by the DMP organiser. This can apply to certain interest groups or the general public, be restricted to specifically invited individuals, certain experts or even just the applicant for a permit, or certain state agencies; or apply to no one at all.</td>
</tr>
<tr>
<td>Participatory process (PP)</td>
<td>A decision-making process (or parts of it) involving an element of participation by non-state actors, who have some degree of input or are given some degree of process control and/or decision control. Participation may occur through one or more participatory sub-processes or elements within the DMP, but not through parallel processes external to or independent from the DMP.</td>
</tr>
<tr>
<td>Policy addressee</td>
<td>Any person or group potentially responsible for implementing the output (= policy). Policy addressees can be anyone from the stakeholder field.</td>
</tr>
<tr>
<td>Power resources</td>
<td>Power is the “probability that one actor within a social relationship will be in a position to carry out his own will despite resistance” (Weber 1947: 152). Power resources, as the measurable basis of power, refer to “anything that can be used to sway the specific choices or the strategies of another individual” (Dahl 1978: 226), and might include: access to time, money, information and human resources as well as social standing, charisma, legitimacy and legality.</td>
</tr>
<tr>
<td>Private sector (for profit)</td>
<td>All for-profit organisations that are owned or operated by private individuals, and companies engaged in the supply of goods and services (i.e. productive private enterprises, farmers, industry, etc.), including umbrella organisations representing industry, and state-owned enterprises that are mandated to return a profit from their commercial activity.</td>
</tr>
<tr>
<td>Process initiator</td>
<td>An organisation or group who (formally) initiated the decision-making process. A process initiator can be a governmental or a non-state actor (of the private or civic sector, or the citizenry). If multiple actors contributed to process initiation, process initiator is the one who had the formal responsibility to do so. The initiator’s goal is used as a proxy for the original orientation of the decision-making process.</td>
</tr>
<tr>
<td>Process organiser</td>
<td>The organisation or group responsible for organising, designing and managing the process. The process organiser can be a government sector actor or a non-state actor (of the private or civic sector, or the citizenry), and may even be contracted specifically to manage the process (e.g. facilitation consultants). The process organiser may be identical to the process initiator, but this is not necessarily the case.</td>
</tr>
<tr>
<td>Representation</td>
<td>The extent to which the composition of process participants mirrors the interest constellation in the public. Full representation is reached when there is a sufficient number of representatives for all relevant public groups and when these representatives are fully accepted as such by their constituencies.</td>
</tr>
<tr>
<td>Segment</td>
<td>Segments of the stakeholder field are defined as analytical categories by four types of societal sectors (government, private, civic, citizens) and four different positions towards the environment (pro-conservation, pro-human health, pro-natural resource protection, pro-exploitation). It is the aim of coding to describe the stakeholder field through the characteristics of its different segments.</td>
</tr>
<tr>
<td>Societal sector</td>
<td>In line with common usage, three societal sectors (government, private, civic) plus citizens as a type of non-organized actors are distinguished as analytical categories for actors and stakeholders.</td>
</tr>
<tr>
<td>Stake</td>
<td>“Stake [...] involves all those – regardless of where they live, what their nationality is or what their level of information/skills may be – that could be materially or even spiritually affected by a given measure” (Schmitter 2002: 63). Affectedness can derive from different factors, such as proximity, economic interest, usage, social concerns or values.</td>
</tr>
<tr>
<td>Stakeholder</td>
<td>Anyone potentially affected by the environmental problem and the consequences of possible solutions (e.g. redistribution effects, loss of access to resources, etc.). Stakeholders are defined independently of who actually participates in (or is invited to) a decision-making process. SCAPE distinguishes four stakeholder categories as defined above: government sector, private sector (for profit), civic sector (non-profit) and citizens.</td>
</tr>
<tr>
<td>Veto player</td>
<td>“A veto player is an individual or collective actor whose agreement is required for a policy decision” (Tsebelis 1995:293), or who may potentially obstruct the implementation of this decision.</td>
</tr>
</tbody>
</table>
Guidelines for specific groups of variables

- Coding reliability for dates:
 0 = no discernible date;
 1 = the year is uncertain;
 2 = the year is known;
 3 = the year and month are known.

- For a small number of variables assigning a reliability value does not make sense and, hence, these will not be assigned a reliability code. Variables where this is the case are marked with a (sad) in the ‘scale’ column and do not provide the possibility of assigning a reliability code in the database.

- Some particular variables ask for general information which may be looked up in other sources. These variables are marked with a (+) before the variable description.

Guidelines and information for specific sections

<table>
<thead>
<tr>
<th>Name of the section</th>
<th>Variables</th>
<th>Guideline</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. CONTEXT</td>
<td>15 - 118</td>
<td>All context variables are coded independently of the decision-making process and represent the socio-political context before the decision-making process started. They ignore potential changes in that context that occurred during the decision-making process.</td>
</tr>
<tr>
<td>B. III STAKEHOLDER CHARACTERISTICS</td>
<td>81 - 118</td>
<td>The stakeholder field is understood as the multitude of actors that have a meaningful relation to the issue at stake. These ‘real’ actors are mapped onto a set of analytical categories defined by four actor types (government sector, private sector, civic sector, citizens) and four different positions towards the environment (pro-conservation, pro-human health, pro-natural resource protection, pro-exploitation). The complete guidelines for this section can be found in the coding table.</td>
</tr>
<tr>
<td>C. PROCESS</td>
<td></td>
<td>Process variables relate to the whole DMP, that is, to all possible process types that were employed during the DMP. The DMP may be more or less participatory. Participation may occur through one or more participatory sub-processes or elements within the DMP, but not through parallel processes external to or independent from the DMP.</td>
</tr>
<tr>
<td>C. I PROCESS DESIGN</td>
<td>121 - 176</td>
<td>Variables in this section assess the way in which the decision-making process (and its participation possibilities) was designed and set up. Process design relates to all basic decisions on process design (conscious or not) either before the DMP started or regarding modifications during the process. Process design can be very different from how the process actually developed. However, as process design is of course connected to the actual process, some of the variables in this section require consideration of features of the actual process.</td>
</tr>
<tr>
<td>C. I.2 Process design characteristics: Process type variables</td>
<td>140 - 176</td>
<td>Process design characteristics relate to the whole DMP, that is, all process types that were employed during the decision-making process. The table on process types (PT) serves as an overview of the most important process types constituting the DMP, capturing some details on these sub-processes. In coding, the whole DMP including all its possible sub-processes should be regarded as a unity, such that every variable should be coded considering the DMP as a whole</td>
</tr>
<tr>
<td>D. I SUBSTANTIVE OUTPUT</td>
<td>243 - 269</td>
<td>The output of a public decision-making process presents the developed ‘solution’ to the issue and usually consists of a single decision (e.g. not to build a coal power plant), or a plan (e.g. the designation of a natural park and specific steps for its management). This section of the Code Book is concerned with capturing information about the output. Therefore, the variables in D.I only refer to the characteristics of the output. For example, for coding the variable 267. OUTP INFO GAIN, only information that was used for formulating the output should be considered. That means that information that was disregarded in the output is not coded in the variables in D.I (such information would be coded in D.II). Code all variables in this section -99 if there was no output. For each case the ‘final decision’ discussed in the text(s) will be identified as the output. Final decision is defined as the most legally binding output described in the text(s), excluding subsequent changes through litigation. The caveat being that sufficient information must be available for coding this final decision.</td>
</tr>
</tbody>
</table>
D.I.1 Environmental and sustainability-related output: Environmental Output variables

Here, a threefold approach is adopted to coding environmental outputs (like that adopted for coding impacts below) in order to make them comparable across cases, building on concepts developed by Mitchell (2008). In variables 253 - 261, the output is assessed against: First, the goals of the process initiator; second, the goals of any higher order policy of relevance to the issue; third, implied change from the 'business as usual' scenario towards either a hypothetical 'optimal' condition or a worst case scenario.

<table>
<thead>
<tr>
<th>Output</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal attainment</td>
<td>Initiator goal</td>
</tr>
<tr>
<td>Higher order policy</td>
<td>Higher order policy goal</td>
</tr>
</tbody>
</table>
| Collective optimum | Planned improvement [or tolerated deterioration] of environmental conditions, moving from the 'business as usual' scenario (projected trend) towards a hypothetical 'optimal' condition [or towards a hypothetical 'worst case' condition] | a) actual impact can already be determined (because implementation is - almost - complete): actual improvement of environmental conditions, moving from the counterfactual 'business as usual' scenario towards a hypothetical 'optimal' condition
b) actual impact cannot yet be determined (because implementation is not sufficiently under way), but likely impact can be assessed from case data: likely improvement of environmental conditions, moving from the 'business as usual' scenario (projected trend) towards a hypothetical 'optimal' condition. |

Table: Normative standard (in Italics) against which output and impact are evaluated

D.III ENVIRONMENTAL OUTCOMES AND IMPACTS

Here, a threefold approach is adopted to assessing environmental impacts (like that adopted for assessing outputs above) in order to make them comparable across cases, building on concepts developed by Mitchell (2008). In variables 304 - 312, the impact is assessed against: First, the goals of the output; second, the goals of any higher order policy of relevance to the issue; third, actual or likely change in the environment from conditions under a 'business as usual' scenario towards either a hypothetical 'optimal' condition or a worst case scenario.

<table>
<thead>
<tr>
<th>Output</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal attainment</td>
<td>Initiator goal</td>
</tr>
<tr>
<td>Higher order policy</td>
<td>Higher order policy goal</td>
</tr>
</tbody>
</table>
| Collective optimum | Planned improvement [or tolerated deterioration] of environmental conditions, moving from the 'business as usual' scenario (projected trend) towards a hypothetical 'optimal' condition [or towards a hypothetical 'worst case' condition] | a) actual impact can already be determined (because implementation is - almost - complete): actual improvement of environmental conditions, moving from the counterfactual 'business as usual' scenario towards a hypothetical 'optimal' condition
b) actual impact cannot yet be determined (because implementation is not sufficiently under way), but likely impact can be assessed from case data: likely improvement of environmental conditions, moving from the 'business as usual' scenario (projected trend) towards a hypothetical 'optimal' condition. |

Table: Normative standard (in Italics) against which output and impact are evaluated
In this section, hypothesised causal mechanisms are coded. Coding assesses the extent to which attributes of the decision-making process (such as different levels of participation) are assumed to affect social or environmental outputs, outcomes or impacts under otherwise unchanged conditions. It is important to note that here not variables (in the strict sense) but the existence of causal chains (i.e. relations between variables according to case evidence and counterfactual considerations) are coded.

In the variable field, the observed strength of the hypothesised causal relation is coded (0 indicates the absence of a particular causal link; 4 indicates strong causal effect); in the reliability field, the strength of evidence or plausibility supporting this effect is coded. It is important to judge whether events were just coincidental or whether one actually brought about the other.

Full guidelines for this section can be found in the coding table.

Key abbreviations and symbols

- (*) Pre-coded by one designated coder only
- (+) External information sources may be consulted
- (rei) No reliability necessary
- (99) Variable cannot be coded ‘-99’
- (NIL) Variable cannot be coded ‘NIL’
- Bin. Binary scale
- CA Competent authority
- DMP Decision-making process
- Interv. Interval scale
- NGO Non-governmental organisation
- Nom. Nominal scale
- NRP Natural resource protection
- NSA Non-state actor(s)
- PO Process organiser(s)
- PP Participatory process
- Qual. Qualitative scale
- S-q Semi-quantitative scale
List of scales used / NIL and -99 peculiarities

In addition to the usual five-point scale outlined above, the following scales are also used. Due to technical reasons, NIL and -99 will be coded differently in some scales.

<table>
<thead>
<tr>
<th>Scale</th>
<th>Coding possibilities</th>
<th>NIL</th>
<th>-99</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0/1]</td>
<td>0, 1</td>
<td>NIL</td>
<td>-99</td>
</tr>
<tr>
<td>[-1/0/1]</td>
<td>-1, 0, 1</td>
<td>NIL</td>
<td>-99</td>
</tr>
<tr>
<td>[0..2]</td>
<td>0, 1, 2</td>
<td>NIL</td>
<td>-99</td>
</tr>
<tr>
<td>[0..3]</td>
<td>0, 1, 2, 3</td>
<td>NIL</td>
<td>-99</td>
</tr>
<tr>
<td>[0..4]</td>
<td>0, 1, 2, 3, 4</td>
<td>NIL</td>
<td>-99</td>
</tr>
<tr>
<td>[-4..4]</td>
<td>-4, -3, -2, -1, 0, 1, 2, 3, 4</td>
<td>NIL</td>
<td>-99</td>
</tr>
<tr>
<td>[0..6]</td>
<td>0, 1, 2, 3, 4, 5, 6</td>
<td>NIL</td>
<td>-99</td>
</tr>
<tr>
<td>[0..8]</td>
<td>0, 1, 2, 3, 4, 5, 6, 7, 8</td>
<td>NIL</td>
<td>-99</td>
</tr>
<tr>
<td>Text</td>
<td>Enter text</td>
<td>NIL</td>
<td>-99</td>
</tr>
<tr>
<td>Text area</td>
<td>Enter text</td>
<td>NIL</td>
<td>-99</td>
</tr>
<tr>
<td>Number</td>
<td>Enter numbers</td>
<td>-77</td>
<td>-99</td>
</tr>
<tr>
<td>Date</td>
<td>Enter date</td>
<td>00.00.0000</td>
<td>13.13.1313</td>
</tr>
<tr>
<td></td>
<td>DD.MM.YYYY</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A. GENERAL INFORMATION

CASE ID
- **variable short name**: CASE ID
- **variable scale**: qual.
- **variable range of values**: Text
- **variable full name: explanation**: (*) Case identification: Unique case name.

CODER
- **variable short name**: CODER
- **variable scale**: qual.
- **variable range of values**: Text
- **variable full name: explanation**: Coder: Initials of coder.

REFERENCES
- **variable short name**: REFERENCES
- **variable scale**: qual.
- **variable range of values**: Text area
- **variable full name: explanation**: (*) References: Full bibliographic references to all literature used, including page numbers with specific case information; internet URLs with access dates.

PUBL DATE
- **variable short name**: PUBL DATE
- **variable scale**: date
- **variable range of values**: Date
- **variable full name: explanation**: (*) Publication date: Date of publication or production of the latest text considered. Provide year and month. Format: DD.MM.YYYY. If only the year is available, code 30.06.YYYY (mid-year).

PUBL WORD
- **variable short name**: PUBL WORD
- **variable scale**: date
- **variable range of values**: Number
- **variable full name: explanation**: (*) Publication word length: As an estimate of the amount of information available on the case. Estimate the number of words by counting pages dealing with the case, and number of words per page. Count illustrations as though the space they occupy was occupied by words. Count all pages (in all publications) that are used for coding this particular case.

SOURCE GREY
- **variable short name**: SOURCE GREY
- **variable scale**: bin.
- **variable range of values**: [0/1]
- **variable full name: explanation**: (*) Source grey: Is the source classified as grey literature, including scientific or non-scientific literature without ISBN or ISSN (e.g. conference contribution or academic report, not published in citable proceedings; Bachelor or Master thesis)?

SOURCE PUBL
- **variable short name**: SOURCE PUBL
- **variable scale**: bin.
- **variable range of values**: [0/1]
- **variable full name: explanation**: (*) Source published: Is the source classified as a citable, commercially published (but not necessarily peer-reviewed as in SOURCE PEER) book or journal publication not listed in Scopus? (if yes, it must have ISBN or ISSN).

SOURCE PEER
- **variable short name**: SOURCE PEER
- **variable scale**: bin.
- **variable range of values**: [0/1]
- **variable full name: explanation**: (*) Source peer reviewed: Is the source classified as a peer-reviewed journal publication listed in Scopus?

1. **CODING DATE**
- **variable short name**: CODING DATE
- **variable scale**: date
- **variable range of values**: Date
- **variable full name: explanation**: Coding date: Date of completion of coding. Format: DD.MM.YYYY.

2. **SUMMARY**
- **variable short name**: SUMMARY
- **variable scale**: qual.
- **variable range of values**: Text area
- **variable full name: explanation**: Summary: Brief description of the case (ideally between 150 and 300 words). Provide a concise account including a brief description of the environmental issue at hand and the situation leading to the DMP, a characterisation of the DMP itself, and a short account of the process output and possible outcomes and impacts. Use short sentences and include any special characteristics of the case that are not captured by the variables.

3. **ANNOTATIONS**
- **variable short name**: ANNOTATIONS
- **variable scale**: qual.
- **variable range of values**: Text area
- **variable full name: explanation**: Annotations: Problems with variables and/or codes noted during the coding process or at a later time (with dates). Each annotation should start on a new line, beginning with the relevant variable number. Note any variables for which external information informed the coding.

4. **AUTH ORG**
- **variable short name**: AUTH ORG
- **variable scale**: bin.
- **variable range of values**: [0/1]
- **variable full name: explanation**: Author organiser: Was the author involved in the DMP as an organiser, facilitator or mediator? In cases of multiple authors, consider all co-authors.

5. **AUTH STKH**
- **variable short name**: AUTH STKH
- **variable scale**: bin.
- **variable range of values**: [0/1]
- **variable full name: explanation**: Author stakeholder: Was the author involved in the DMP as a participant (including as the CA) or as a non-participating stakeholder? In cases of multiple authors, consider all co-authors.

6. **AUTH ACTIVE**
- **variable short name**: AUTH ACTIVE
- **variable scale**: bin.
- **variable range of values**: [0/1]
- **variable full name: explanation**: Author active researcher: Was the author actively involved in the DMP as a researcher (through action research or mission-oriented contract research etc.)? In cases of multiple authors, consider all co-authors.

7. **AUTH NEUTRAL**
- **variable short name**: AUTH NEUTRAL
- **variable scale**: bin.
- **variable range of values**: [0/1]
- **variable full name: explanation**: Author neutral researcher: Was the author a neutral researcher (if involved in the DMP then as neutral observer)? In cases of multiple authors, consider all co-authors.
<table>
<thead>
<tr>
<th></th>
<th>CASE START DATE</th>
<th>date</th>
<th>Date (99)</th>
<th>Case start date: The case starts when there is first evidence of events leading to a DMP. This could be the adoption of higher-level policy triggering action at local levels, an application for a building permit, or public debate or expressions of concern calling for a public decision.</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>DMP START DATE</td>
<td>date</td>
<td>Date (99)</td>
<td>(*) Decision-making process start date: Start of the DMP in the form of a first interaction/meeting with the intention of reaching a collectively binding decision. Applies equally to ‘top-down’ and ‘bottom-up’ initiated processes.</td>
</tr>
<tr>
<td>10</td>
<td>DMP END DATE</td>
<td>date</td>
<td>Date</td>
<td>(*) Decision-making process end date: Date of the final decision (output) that terminated this particular DMP. If multiple subsequent decisions exist, take the most collectively binding one, without taking into account court action. This implies that the final output is not necessarily identical to a decision made in a public participatory process. If there is insufficient information available on the most collectively binding decision and another (perhaps less binding) decision exists on which more information is available, the latter may be defined as the output. Code -99 if the process failed to produce a decision (output).</td>
</tr>
<tr>
<td>11</td>
<td>IMPL END DATE</td>
<td>date</td>
<td>Date</td>
<td>Implementation end date: End of decision implementation phase. Implementation is completed if all requirements laid down in the final decision are fulfilled. Where the decision combined actions with goals, e.g. do A, B, C [all legally binding] in order to achieve X, Y, Z (also legally binding), code the date when A, B and C were completed (regardless of whether they achieved X, Y, Z). In cases of continuous implementation (e.g. regular monitoring activities), implementation is completed when all arrangements allowing for ongoing activities are made and there is no evidence that they will be interrupted again. Code -99 (= 13.13.1313 for date field) if there was no decision to be implemented, if the decision did not need implementation, or if the decision was not yet implemented.</td>
</tr>
<tr>
<td>12</td>
<td>CASE END DATE</td>
<td>date</td>
<td>Date</td>
<td>Case end date: Note when the case was completed in the sense that no (major) further action was required. Code -99 (= 13.13.1313 for date field) if the case was not yet completed.</td>
</tr>
<tr>
<td>13</td>
<td>CASE END STATE</td>
<td>qual. Text</td>
<td>area (99)</td>
<td>(99)</td>
</tr>
<tr>
<td>14</td>
<td>LATEST DATA</td>
<td>date</td>
<td></td>
<td>Latest available data: Note the last reported date for which information was available on the case.</td>
</tr>
</tbody>
</table>
B. CONTEXT

All context variables are coded independently of the decision-making process and represent the socio-political context before the decision-making process started. They ignore potential changes in that context that occurred during the decision-making process.

B.I POLICY SPACE

B.I.1 Policy environment

<table>
<thead>
<tr>
<th>Code</th>
<th>Category</th>
<th>Description</th>
<th>Policy area</th>
<th>Scale</th>
<th>Range of values</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>PA ENERGY PLANT SITING</td>
<td></td>
<td></td>
<td>bin.</td>
<td>[0/1] (99) (rel)</td>
</tr>
<tr>
<td>16</td>
<td>PA WASTE FACILITY SITING</td>
<td></td>
<td></td>
<td>bin.</td>
<td>[0/1] (99) (rel)</td>
</tr>
<tr>
<td>17</td>
<td>PA HOUSING DEVELOPMENT</td>
<td></td>
<td></td>
<td>bin.</td>
<td>[0/1] (99) (rel)</td>
</tr>
<tr>
<td>18</td>
<td>PA TRAFFIC INFRASTRUCTURE PLANNING</td>
<td></td>
<td></td>
<td>bin.</td>
<td>[0/1] (99) (rel)</td>
</tr>
<tr>
<td>19</td>
<td>PA URBAN SPATIAL PLANNING</td>
<td></td>
<td></td>
<td>bin.</td>
<td>[0/1] (99) (rel)</td>
</tr>
<tr>
<td>20</td>
<td>PA SUSTAINABILITY PLANNING</td>
<td></td>
<td></td>
<td>bin.</td>
<td>[0/1] (99) (rel)</td>
</tr>
<tr>
<td>21</td>
<td>PA CLIMATE CHANGE</td>
<td></td>
<td></td>
<td>bin.</td>
<td>[0/1] (99) (rel)</td>
</tr>
<tr>
<td>22</td>
<td>PA COASTAL ZONE MANAGEMENT</td>
<td></td>
<td></td>
<td>bin.</td>
<td>[0/1] (99) (rel)</td>
</tr>
<tr>
<td>23</td>
<td>PA WATERSHED MANAGEMENT</td>
<td></td>
<td></td>
<td>bin.</td>
<td>[0/1] (99) (rel)</td>
</tr>
<tr>
<td>24</td>
<td>PA GROUNDWATER MANAGEMENT</td>
<td></td>
<td></td>
<td>bin.</td>
<td>[0/1] (99) (rel)</td>
</tr>
<tr>
<td>25</td>
<td>PA SEWAGE TREATMENT</td>
<td></td>
<td></td>
<td>bin.</td>
<td>[0/1] (99) (rel)</td>
</tr>
<tr>
<td>26</td>
<td>PA LAND USE PLANNING</td>
<td></td>
<td></td>
<td>bin.</td>
<td>[0/1] (99) (rel)</td>
</tr>
<tr>
<td>27</td>
<td>PA NATURE RESERVE MANAGEMENT</td>
<td></td>
<td></td>
<td>bin.</td>
<td>[0/1] (99) (rel)</td>
</tr>
<tr>
<td>28</td>
<td>PA WILDLIFE MANAGEMENT</td>
<td></td>
<td></td>
<td>bin.</td>
<td>[0/1] (99) (rel)</td>
</tr>
<tr>
<td>29</td>
<td>PA FISHERY MANAGEMENT</td>
<td></td>
<td></td>
<td>bin.</td>
<td>[0/1] (99) (rel)</td>
</tr>
<tr>
<td>30</td>
<td>PA FOREST MANAGEMENT</td>
<td></td>
<td></td>
<td>bin.</td>
<td>[0/1] (99) (rel)</td>
</tr>
<tr>
<td>31</td>
<td>PA BIODIVERSITY ENDANGERED SPECIES</td>
<td></td>
<td></td>
<td>bin.</td>
<td>[0/1] (99) (rel)</td>
</tr>
<tr>
<td>32</td>
<td>PA ECOSYSTEM RESTORATION</td>
<td></td>
<td></td>
<td>bin.</td>
<td>[0/1] (99) (rel)</td>
</tr>
<tr>
<td>33</td>
<td>PA BIOTECH GENETIC ENGINEERING</td>
<td></td>
<td></td>
<td>bin.</td>
<td>[0/1] (99) (rel)</td>
</tr>
<tr>
<td>34</td>
<td>PA NATURAL CATASTROPHE MANAGEMENT</td>
<td></td>
<td></td>
<td>bin.</td>
<td>[0/1] (99) (rel)</td>
</tr>
<tr>
<td>35</td>
<td>PA POLLUTION REDUCTION</td>
<td></td>
<td></td>
<td>bin.</td>
<td>[0/1] (99) (rel)</td>
</tr>
</tbody>
</table>

36. Other

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Policy area other: Specify any other important policy area(s) that characterise(s) the case but is/are not covered by the above list. Code -99 if nothing to add.</th>
</tr>
</thead>
</table>

37. Bottom-up trig. (bin. [0/1] (99))

Bottom-up triggering: Was the DMP triggered (i.e. did the original impulse for initiating a DMP come from) “bottom-up”, i.e. through a non-state actor or a lower-level governmental body?
0 = no;
1 = yes.

38. Bottom-up trig. type (qual. Text)

Bottom-up triggering actor type: If applicable, classify the actor that triggered the DMP. Enter the codes for, first, the respective actor group and, second, its environmental orientation. Separate codes by one single space (e.g. PRIV PROCONS).

Select the appropriate code for the actor group from this list and enter it in the text field:
- GOVT = government sector;
- PRIV = private sector, for-profit;
- CIV = civic sector, non-profit;
- CIT = citizens, ad hoc citizen groups.

Select the appropriate code for the environmental orientation from this list and enter it in the text field:
- PROCONS = Pro-conservation;
- PROHEALTH = Pro-human health;
- PRONRP = Pro-natural resource protection;
- PROEXPL = Pro-exploitation.

Code -99 if the DMP was not triggered by an NSA.
<table>
<thead>
<tr>
<th></th>
<th>POL TRIGG</th>
<th>bin.</th>
<th>[0/1]</th>
<th>Higher order policy triggering: Was the DMP triggered by a higher order policy? A higher order policy is a legally binding rule (e.g. law, directive, decree), typically issued by a superordinate level of government that requires further decision making on subordinate levels as part of its implementation. Note that a governmental decision that is not a general rule but targeted at an individual case (e.g. a permit) is not a policy. The fact that no higher order policy triggered a DMP does not necessarily imply that there are no higher order policies of relevance to the DMP (meaning that variables 43–45 can potentially still be coded). 0 = no higher order policy was involved in the initiation of the DMP; 1 = there was a higher order policy involved in the initiation of the DMP.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>POL DESCR</td>
<td>qual.</td>
<td>Text</td>
<td>Higher order policy description: Briefly name any higher order policies of relevance to the issue that may serve as an evaluative yardstick against which to assess the environmental output of the DMP. For instance: Art. 5, Water Framework Directive. If 39. HIGHER ORDER POL is 1, then this policy should be named first, followed (if applicable) by other relevant policies.</td>
</tr>
<tr>
<td></td>
<td>AMBIGUITY</td>
<td>s-q</td>
<td>[0..4]</td>
<td>Policy goal ambiguity: Degree to which higher-order policy as in 40. HIGHER ORDER POLICY DESCR was ambiguous, and therefore able to be interpreted in different ways. 0 = not ambiguous (e.g. clearly defined duties, courses of action, and policy goals); 2 = some degree of ambiguity; 4 = highly ambiguous (e.g. policy instruments and goals are vaguely defined, overall phrasing leaves course of action unclear). Code -99 if 40. HIGHER ORDER POLICY DESCR is coded -99.</td>
</tr>
<tr>
<td></td>
<td>POL CONS</td>
<td>s-q</td>
<td>[-4..4]</td>
<td>Policy goal conservation: Degree to which an existing higher order policy pursued an environmental conservation goal related to the issue of the DMP. This variable is to be coded in relation to 39. HIGHER ORDER POL. If 39. HIGHER ORDER POL is 0, this variable can be coded in relation to other higher order policies named in 40. HIGHER ORDER POLICY DESCR. Conservation: To preserve, protect or restore the natural environment and ecosystems (including the atmosphere, biodiversity, terrestrial and aquatic habitats, and flora and fauna) largely independent of their instrumental value to humankind. -4 = higher order policy pursued a goal highly incompatible with, or antagonistic to, conservation; 0 = higher order policy pursued a goal neutral to conservation; 4 = higher order policy pursued a highly ambitious conservation goal. Code -99 if there was no higher order policy with goals concerning the issue of the DMP.</td>
</tr>
<tr>
<td></td>
<td>HEALTH</td>
<td>s-q</td>
<td>[-4..4]</td>
<td>Policy goal human health: Degree to which an existing higher order policy pursued a human health goal related to the issue of the DMP. This variable is to be coded in relation to 39. HIGHER ORDER POL. If 39. HIGHER ORDER POL is 0, this variable can be coded in relation to other higher order policies named in 40. HIGHER ORDER POLICY DESCR. Human health: To protect quality of (human) life through enhancing environmental factors beneficial to human health, and/ or mitigating environmental impacts and remediating environmental problems detrimental to human health. -4 = higher order policy pursued a goal highly incompatible with, or antagonistic to, human health; 0 = higher order policy pursued a goal neutral to human health; 4 = higher order policy pursued a goal highly compatible with human health. Code -99 if there was no higher order policy with goals concerning the issue of the DMP.</td>
</tr>
</tbody>
</table>
B.I.2 Multi-level and spatial aspects

46. COUNTRY

qual. Text

(*) **Country**: Country or countries in which the **DMP** took place. If multiple countries were involved, name in order of importance starting with the most important one (typically the one in which the CA is located).

Format: Internet domain suffixes (e.g. for USA use ‘us’), separated by commas.

47. CONTINENT

qual. Text

(*) **Continent**: Continent in which the **DMP** took place (if in doubt, take the seat of the CA). Europe, North America, or Australia and New Zealand.

48. MLG VERT

interv. Number

Multi-level governance vertical: Number of discernible policy levels in the respective political system, which are of relevance to the **DMP**. To be considered relevant to the **DMP**, authorities must have oversight of or potential responsibility for part of the decision-making process (e.g. municipal authority + catchment authority + state authority + national authority + supranational authority = 5).

49. CA LEVEL

s-q (ord.)

Jurisdictional level of the competent authority.

- 0 = locality / municipality;
- 1 = cross-municipality;
- 2 = county (or e.g. département);
- 3 = cross-county;
- 4 = subnational level such as federal state, province, autonomous region, Kanton
- 5 = cross-subnational (as defined in 4; i.e. within a federal system);
- 6 = country (in the sense of a sovereign state, e.g. Germany, UK, USA);
- 7 = bilateral or multilateral;
- 8 = supra-national (e.g. EU, UN).

If in cross-border collaborations, different levels are involved, code the most important one; if equally important, code the highest one (e.g. Saarland and Luxembourg collaboration would be coded bilateral = 7). Luxembourg does not have categories 4 and 5. Also, in the case of Hamburg (which is municipality as well as state), take the highest one.

50. GOVCE SCALE LEVEL

s-q (ord.)

Governance scale level: Policy level of the **DMP** (which is not necessarily equal to CA SCALE LEVEL).

- 0 = locality / municipality;
- 1 = cross-municipality;
- 2 = county (or e.g. département);
- 3 = cross-county;
- 4 = subnational level such as federal state, province, autonomous region, Kanton
- 5 = cross-subnational (as defined in 4; i.e. within a federal system);
- 6 = country (in the sense of a sovereign state, e.g. Germany, UK, USA);
- 7 = bilateral or multilateral;
- 8 = supra-national (e.g. EU, UN).

If in cross-border collaborations, different levels are involved, code the most important one; if equally important, code the highest one (e.g. Saarland and Luxembourg collaboration would be coded bilateral = 7). Luxembourg does not have categories 4 and 5. Also, in the case of Hamburg (which is municipality as well as state), take the highest one.

Policy goal natural resource protection: Degree to which an existing higher order policy pursued a natural resource protection goal related to the issue of the DMP. This variable is to be coded in relation to 39. **HIGHER ORDER POL.** If 39. **HIGHER ORDER POL** is 0, this variable can be coded in relation to other higher order policies named in 40. **HIGHER ORDER POLICY DESCR.**

Natural resource protection: To protect, preserve, enhance or restore stocks and flows of natural resources that are of instrumental value to humans, and provide for their sustainable use.

-4 = higher order policy pursued a goal highly incompatible with, or antagonistic to, NRP;
0 = higher order policy pursued a goal neutral to NRP;
4 = higher order policy pursued a goal highly compatible with NRP.

Code -99 if there was no higher order policy with goals concerning the issue of the DMP.
B.I.3 Societal environment

<table>
<thead>
<tr>
<th>Code</th>
<th>Dimension</th>
<th>Scale</th>
<th>Lower/Upper Bound</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>51.</td>
<td>SC GEN TRUST GOVT</td>
<td>s-q</td>
<td>[-4..4]</td>
<td>Social capital general trust in government: Degree of general public trust in the capabilities and intentions of the government and government sector actors to act in the public interest – before the DMP. -4 = government and government actors regarded with high levels of distrust; 0 = government and government actors neither trusted nor distrusted; 4 = government and government actors regarded with high levels of trust.</td>
</tr>
<tr>
<td>52.</td>
<td>SC TRUST GOVT ACTORS</td>
<td>s-q</td>
<td>[-4..4]</td>
<td>Social capital trust in governmental actors: Degree of trust of stakeholders and the specific governmental actors potentially involved in the decision-making process – before the DMP. “Trust is the willingness to accept vulnerability based on positive expectations about another’s intentions or behaviors” (McEvily et al. 2003). Levels of trust likely depend on the existence of a prehistory of either antagonism or cooperation between stakeholders and government sector actors. Where there is no prehistory of interaction, there is possibly (but not necessarily) neither trust nor distrust between the parties. -4 = very high levels of distrust between stakeholders and governmental actors; 0 = stakeholders and governmental actors neither trust nor distrust each other; 1..3 = more or less trust between few and many stakeholders and governmental actors; 4 = very high levels of trust between stakeholders and governmental actors. Code -99 if there were no governmental actors involved in the DMP at large.</td>
</tr>
<tr>
<td>53.</td>
<td>SC TRUST STKH</td>
<td>s-q</td>
<td>[-4..4]</td>
<td>Social capital trust among stakeholders: Degree of trust among stakeholders potentially involved in the DMP – before the DMP. “Trust is the willingness to accept vulnerability based on positive expectations about another’s intentions or behaviors” (McEvily et al. 2003). Levels of trust likely depend on the existence of a prehistory of either antagonism or cooperation among potential participants. Where there is no prehistory of interaction, there is possibly (but not necessarily) neither trust nor distrust among the parties. -4 = very high levels of distrust among stakeholders; 0 = stakeholders neither trust nor distrust each other; 1..3 = more or less trust between few to many stakeholders; 4 = very high levels of trust among stakeholders.</td>
</tr>
<tr>
<td>54.</td>
<td>SC NTWK STKH</td>
<td>s-q</td>
<td>[0..4]</td>
<td>Social capital networks among stakeholders: Degree to which the stakeholders potentially involved in the DMP were already communicating with each other engaged in functioning networks (characterised by reciprocal, collaborative and mutually beneficial activity) – before the DMP. 0 = no existing networks among stakeholders; 2 = Strong networks among a few stakeholders, or some degree of networking among many stakeholders; 4 = strong existing networks and collaboration among (almost) all stakeholders (not necessarily implying that all actors are linked through the same network, or that there is co-operation among all stakeholders).</td>
</tr>
<tr>
<td>55.</td>
<td>SC SHARED NORMS</td>
<td>s-q</td>
<td>[0..4]</td>
<td>Social capital shared norms: Degree of social capital in the sense of informal values or norms shared among stakeholders that permit cooperation among these (Fukuyama 1997) – before the DMP. 0 = very low level of norms shared among stakeholders permitting cooperation among these; 4 = very high level of norms shared among stakeholders.</td>
</tr>
</tbody>
</table>
B.II ENVIRONMENTAL ISSUE

| 56. PARTN CULT | s-q | [0..4] | Participation culture: Degree to which participation and cooperation were accepted as appropriate means to resolve social and political conflicts and make public decisions, at the scale of the DMP. In assessing participation culture, consider the following elements (Note: these elements need not all be present to justify a high code):
| | (50) | | - Legal requirement to adopt cooperative conflict resolution;
| | | | - Scope to apply participatory procedures across a variety of political and social areas (ranging from singular policy areas to the wider political system as under conditions of neocorporatism or deliberative democracy);
| | | | - Degree of NSA involvement in public policy-making (ranging from information rights to consultation to participation rights);
| | | | - Degree of public acceptance of participation and cooperation as decision-making procedures;
| | | | - Length of participatory tradition.
| 0 = absence of participation culture; | 4 = long-standing and strong tradition of public participation. |
| 57. GREEN CULT | s-q | [0..4] | Green culture: Degree to which the societal context was characterised by a culture of environmental awareness, at the scale of the DMP. This variable estimates the extent to which environmental and sustainability concerns were present in the public consciousness and inform community action and decision-making. In assessing environmental awareness, consider the following elements (Note: these elements need not all be present to justify a high code):
| | (99) | | - Public awareness of environmental laws and regulations, and understanding of rights, interests, duties and responsibilities with respect to these laws and regulations, and the social, environmental and economic consequences of non-compliance;
| | | | - Prevalence of social action and environmental campaigns at the community level;
| | | | - Prevalence of environmental awareness-raising by public sector authorities, environmental NGOs or interest groups;
| | | | - Coverage of environmental issues in local and national mainstream media and community media.
| 0 = absence of a culture of environmental awareness; | 4 = strong culture of environmental awareness. |

Issue Description

| 58. ISSUE DESCR | qual. | Text area | Issue description: Brief description of the environmental issue at stake. Describe what was at stake for environmental quality. If there was disagreement among actors, describe multiple perspectives. |
| 59. ISSUE PERCEP CONS | s-q | [0..4] | Issue perception conservation: Degree to which conservation was perceived as important by stakeholders.
| | (99) | | Conservation: To preserve, protect or restore the natural environment and ecosystems (including the atmosphere, biodiversity, terrestrial and aquatic habitats, and flora and fauna) largely independently of their instrumental value to humankind.
| | | | 0 = conservation not perceived as important by stakeholders;
| | | | 2 = conservation perceived as very important by a few stakeholders, or somewhat important by most stakeholders;
| | | | 4 = conservation perceived as very important by most stakeholders. |

Issue Perception Human Health

| 60. ISSUE PERCEP HEALTH | s-q | [0..4] | Issue perception human health: Degree to which human health was perceived as important by stakeholders.
| | (99) | | Human health: To protect quality of (human) life through enhancing environmental factors beneficial to human health, and/ or mitigating environmental impacts and remediating environmental problems detrimental to human health.
| | | | 0 = human health not perceived as important by stakeholders;
| | | | 2 = human health perceived as very important by a few stakeholders, or somewhat important by most stakeholders;
<p>| | | | 4 = human health perceived as very important by most stakeholders. |</p>
<table>
<thead>
<tr>
<th>Code</th>
<th>Type</th>
<th>Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>61. ISSUE PERCEP NRP</td>
<td>s-q</td>
<td>[0..4]</td>
<td>Issue perception natural resource protection: Degree to which natural resource protection was perceived as important by stakeholders.

Natural resource protection: To protect, preserve, enhance or restore stocks and flows of natural resources that are of instrumental value to humans, and provide for their sustainable use.

0 = Natural resource protection not perceived as important by stakeholders; 2 = Natural resource protection perceived as very important by a few stakeholders, or somewhat important by most stakeholders; 4 = Natural resource protection perceived as very important by most stakeholders.</td>
</tr>
<tr>
<td>62. ENVI IMPT CONS</td>
<td>s-q</td>
<td>[0..4]</td>
<td>Environmental importance conservation: Degree to which the environmental issue at stake has a potential conservation impact.

Conservation: To preserve, protect or restore the natural environment and ecosystems (including the atmosphere, biodiversity, terrestrial and aquatic habitats, and flora and fauna) largely independently of their instrumental value to humankind. Comparing across cases, provide the scale of the potential conservation impact, considering a spatial scale from the local to the global, and taking into account temporal scope and irreversibility of the impact. 0 = low and/or short-term potential conservation impact of restricted scope; 2 = low and/or short-term impact of global scope, or high and/or long-term impact of very restricted scope; 4 = very high and/or long-term potential conservation impact of global scope.</td>
</tr>
<tr>
<td>63. ENVI IMPT HEALTH</td>
<td>s-q</td>
<td>[0..4]</td>
<td>Environmental importance human health: Degree to which the environmental issue at stake has a potential human health impact.

Human health: To protect quality of (human) life through enhancing environmental factors beneficial to human health, and/ or mitigating environmental impacts and remediating environmental problems detrimental to human health. Comparing across cases, provide the scale of the potential human health impact, considering a spatial scale from the local to the global, and taking into account temporal scope and irreversibility of the impact. 0 = low and/or short-term potential human health impact of restricted scope; 2 = low and/or short-term impact of global scope, or high and/or long-term impact of very restricted scope; 4 = very high and/or long-term potential human health impact of global scope.</td>
</tr>
<tr>
<td>64. ENVI IMPT NRP</td>
<td>s-q</td>
<td>[0..4]</td>
<td>Environmental importance natural resource protection: Degree to which the environmental issue at stake has a potential NRP impact.

Natural resource protection: To protect, preserve, enhance or restore stocks and flows of natural resources that are of instrumental value to humans, and provide for their sustainable use. Comparing across cases, provide the scale of the potential NRP impact, considering a spatial scale from the local to the global, and taking into account temporal scope and irreversibility of the impact. 0 = low and/or short-term potential NRP impact of restricted scope; 2 = low and/or short-term impact of global scope, or high and/or long-term impact of very restricted scope; 4 = very high and/or long-term potential NRP impact of global scope.</td>
</tr>
<tr>
<td>65. TECH COMPLEX</td>
<td>s-q</td>
<td>[0..4]</td>
<td>Technical complexity: Degree to which the key environmental issue at stake in the DMP is difficult to understand and process intellectually. In the context of this variable, the issue is taken to include underlying causes, actual or potential impacts, and possible means to mitigate or enhance these impacts. The notion of complexity includes both the range of associated phenomena that need to be considered in order to comprehend the issue, and the level of expertise, education or specialist knowledge required to make sense of the issue. 0 = low complexity (environmental issue easy to understand); 2 = moderate complexity; 4 = high level of complexity (environmental issue difficult to understand).</td>
</tr>
</tbody>
</table>
66. **FACT UNCERT**

| s-q | [0..4] | **Factual uncertainty:** Degree to which knowledge of the environmental issue and its human or ecological causes and effects is uncertain or incomplete, and therefore hinders reliable prediction of impacts. Factual uncertainty can be a result of any of the following phenomena, which may occur together or separately: Lack of factual knowledge about the environmental issue; controversy or lack of consensus among experts on the nature of the environmental issue; lack of controllability and ability to make reliable predictions.

0 = very low degree of factual uncertainty;
4 = very high degree of factual uncertainty.

67. **RURAL URBAN**

| s-q | [0..4] | **Rural urban:** Degree to which the environmental issue can be characterised as predominantly urban or rural. In characterising the issue, consider the urban/rural nature of both the geographic area of cause and effect, and the type of land-use or human activity that gives rise to the issue. Consider whether the issue is more accurately described as pertaining to the city or the countryside.

0 = predominantly rural;
2 = intermediate/mixed;
4 = predominantly urban.

68. **SPATIAL SCALE ISSUE**

| interv. Number (NIL) | (+) (*) **Spatial scale issue:** Approximate size, in km², of the environmental issue area.

69. **GOVCE ECO SCALE**

| nom. [-1/0/1] | **Governance ecological scale:** Spatial correspondence of governance scale and ecological scale (68. SPATIAL SCALE ISSUE): Does the spatial unit addressed by the DMP ‘fit’ the spatial unit of the environmental issue, or is it too small or too large?

-1 = governance scale smaller than, intersecting or outside of ecological scale:

0 = governance scale equals ecological scale:

1 = governance scale is greater than and fully encompasses ecological scale:
70. SPILL POLLUTION s-q [0..4] (99)

Spillovers pollution: Degree to which what is potentially or actually at stake in the DMP implies pollution spillovers beyond the policy scale of the DMP, as in 50. GOVCE SCALE LEVEL.

A pollution spillover occurs with the movement of pollutants across jurisdictional boundaries (Stewart 1992: 45). In coding, consider both the severity and the geographical scope of the pollution spillover.

0 = no potential or actual pollution spillover;
2 = moderate potential or actual pollution spillover;
4 = significant potential or actual pollution spillover.

71. SPILL CONS s-q [0..4] (99)

Spillovers conservation: Degree to which what is potentially or actually at stake in the DMP implies conservation spillovers beyond the policy scale of the DMP, as in 50. GOVCE SCALE LEVEL.

A conservation spillover occurs when the conservation or protection of an ecologically significant resource has benefits for parties across jurisdictional boundaries (Stewart 1992: 45). The ecological resource may, for example, provide ecosystem services or hold existence value for parties beyond the jurisdiction of the CA.

0 = no potential or actual conservation spillover;
2 = moderate potential or actual conservation spillover;
4 = significant potential or actual conservation spillover.

72. SPILL RACE TOP s-q [0..4] (99)

Competitive spillovers ‘race to the top’: Degree to which what is potentially or actually at stake in the DMP implies environmentally positive competitive spillovers in the sense of a ‘race to the top’ beyond the policy scale of the DMP, as in 50. GOVCE SCALE LEVEL.

Competitive spillovers occur when multiple (potentially distant) jurisdictions compete on environmental regulatory standards in order to gain a competitive advantage, thus influencing each other’s environmental regulation. Competitive spillovers with positive environmental impacts (‘race to the top’) occur when competition drives jurisdictions to increase environmental standards (e.g. when competing for tourists who favour higher environmental standards) (Stewart 1992: 45; Benson & Jordan 2010: 10).

0 = no positive potential or actual competitive spillover;
2 = moderate positive potential or actual conservation spillover;
4 = competitive potential or actual spillover strongly positive for environmental standards (‘race to the top’).

73. SPILL RACE BOTTOM s-q [0..4] (99)

Competitive spillovers ‘race to the bottom’: Degree to which what is potentially or actually at stake in the DMP implies environmentally negative competitive spillovers in the sense of a ‘race to the bottom’ beyond the policy scale of the DMP, as in 50. GOVCE SCALE LEVEL.

Competitive spillovers occur when multiple (potentially distant) jurisdictions compete on environmental regulatory standards in order to gain a competitive advantage, thus influencing each other’s environmental regulation. Competitive spillovers with negative environmental impacts (‘race to the bottom’) occur when competition drives jurisdictions to lower environmental standards (e.g. when competing for industry investments that favour lower environmental standards). (Stewart 1992: 45; Benson & Jordan 2010: 10)

0 = no negative potential or actual competitive spillover;
2 = moderate negative potential or actual conservation spillover;
4 = competitive potential or actual spillover strongly negative for environmental standards (‘race to the bottom’).

74. PREVIOUS ATTEMPT bin. [0/1] (20)

Previous attempt: Had there been a previous ‘unsuccessful’ attempt at resolving the issue at stake (perhaps framed slightly differently)? ‘Unsuccessful’ means that either no output or an insufficient output was produced or that an output was not accepted, implemented or complied with, and that therefore a new attempt was made which led to the current DMP.

0 = no;
1 = yes.
75. PUBLIC ATTN IN
s-q [0..4] (αι)

Public attention in: Degree to which the issue at stake attracted public attention before the DMP started. The public is hereby restricted to those living *inside* the jurisdictional area covered by the decision, as in 50. GOVCE SCALE LEVEL. Important indicators include: media attention, surveys (issue salience), discussion of issue in political debates and among experts.

- 0 = issue has attracted no public attention;
- 4 = issue has attracted high public attention.

76. PUBLIC ATTN OUT
s-q [0..4] (αι)

Public attention out: Degree to which the issue at stake attracted public attention before the DMP started. Public is hereby restricted to the public living *outside* the jurisdictional area covered by the decision, as in 50. GOVCE SCALE LEVEL. Important indicators include: media attention, surveys (issue salience), discussion of issue in political debates and among experts.

- 0 = issue has attracted no public attention;
- 4 = issue has attracted high public attention.

77. CONFL VALUES
s-q [0..4] (αι)

Conflict of values: Degree to which there was an actual or potential conflict of values associated with the issue at stake. Consider diverging ethical, social, cultural and ideological values. Indicators include: latent conflict because of (‘objectively’) conflicting values; manifest conflict or actual dispute among stakeholders. Code the degree of conflict of values in comparison to other cases, and not in comparison to alternative potential scenarios for the same case.

- 0 = no actual or potential conflict of values evident;
- 2 = moderate actual or potential conflict of values evident;
- 4 = significant actual or potential conflict of values evident.

78. CONFL DISTN
s-q [0..4] (αι)

Conflict of distribution: Degree to which there was an actual or potential conflict of distribution (=conflict of interests) associated with the issue at stake. This type of conflict concerns the distribution of resources or opportunities among stakeholders (*who gets what? Whose interests are threatened?*). Conflict may arise over the distribution of tangible or intangible resources, costs and reparations, power and authority, health hazards, etc., and the situation need not be a zero-sum game. Code the degree of conflict of distribution in comparison to other cases, and not in comparison to alternative potential scenarios for the same case.

- 0 = no actual or potential conflict of distribution evident;
- 2 = moderate actual or potential conflict of distribution evident;
- 4 = significant actual or potential conflict of distribution evident.

79. NIMBY
bin. [0/1] (αι)

NIMBY – ‘Not in my backyard’: Existence of a NIMBY situation in the political conflict at hand. A NIMBY situation can be said to exist where there is general agreement on the need for a particular facility or activity, but disagreement on the appropriate location. In particular, there is widespread and strong resistance by people to its being located in their neighbourhood or immediate vicinity.

- 0 = no NIMBY situation;
- 1 = NIMBY situation.

80. BAU SCENARIO
qual. Text area

(*) **Business as usual scenario:** Brief description of the counterfactual scenario of how the issue would have developed without the DMP (i.e. extrapolate from just before the DMP started). This is termed the ‘business as usual’ scenario. A BAU scenario can imply positive and/or negative environmental change. In permitting cases, the BAU scenario typically relates to a scenario without a permit being granted.
B.III STAKEHOLDER CHARACTERISTICS

Stakeholders are conceived of as anyone potentially affected by the environmental problem and the consequences of possible solutions, e.g. redistribution effects, loss of access to resources, etc. Note: Stakeholders are defined independently of who actually participated in (or was invited to) the decision-making process. There are four stakeholder categories:

Government sector: All governmental actors and organisations at various levels engaged in the formulation of policies and their execution (i.e. involved state agencies), including quasi non-governmental organisations fulfilling functions of government.

Private sector (for profit): All for-profit organisations that are owned or operated by private individuals, and companies engaged in the supply of goods and services (i.e. productive private enterprises, farmers, industry, etc.), including umbrella organisations representing industry, and state-owned enterprises that are mandated to return a profit from their commercial activity.

Civic sector (non-profit): A collection of entities and groups that are organised (institutionalised), non-governmental, non-profit, self-governing, and voluntary (e.g. NGOs, churches, unions) (adapted from Salamon & Anheier 1997: 33f).

Citizens: Non-organised individuals (e.g. consumers, residents, etc.), and ad-hoc, temporary and issue-related citizen initiatives.

The stakeholder field is understood as the multitude of actors that have a meaningful relation to the issue at stake. These ‘real’ actors are mapped onto a set of analytical categories (segments) defined by four types of societal sectors (government, private, civic, citizens) and four different positions towards the environment (pro-conservation, pro-human health, pro-natural resource protection, pro-exploitation). It is the aim of coding to describe the stakeholder field through the characteristics of its different segments. While coding, it is essential to consider each segment as a whole and not only a single stakeholder in this segment. Segments may of course remain ‘empty’ in the sense that only those ‘segment variables’ should receive non-0 codes that are explicitly mentioned in the case or for which informed guesses on stake, power etc. can be made.

<table>
<thead>
<tr>
<th>Societal sector</th>
<th>Government Sector</th>
<th>Private Sector</th>
<th>Civic Sector</th>
<th>Citizens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pro-Conservation</td>
<td>Segment</td>
<td>Segment</td>
<td>Segment</td>
<td>Segment</td>
</tr>
<tr>
<td>Pro-Human Health</td>
<td>Segment</td>
<td>Segment</td>
<td>Segment</td>
<td>Segment</td>
</tr>
<tr>
<td>Pro-Natural resource protection</td>
<td>Segment</td>
<td>Segment</td>
<td>Segment</td>
<td>Segment</td>
</tr>
<tr>
<td>Pro-Exploitation</td>
<td>Segment</td>
<td>Segment</td>
<td>Segment</td>
<td>Segment</td>
</tr>
</tbody>
</table>

The first step in the coding procedure is to assign a given ‘real’ actor or actor group to its analytical category (segment) according to its societal sector and its position towards the environment. Here, each actor must be unambiguously assigned to one (and only one) sector; if in doubt, consider the function that the actor fulfils in relation to the issue at hand (e.g. policy-making and implementation are usually tasks of government actors, while production and trade of goods and services usually correspond to private actors). Any given actor may have a broad spectrum of interests and therefore may hold multiple positions towards the environment. This means that an actor may be assigned to more than one segment within the same column. The table below gives an example for actor allocation.

<table>
<thead>
<tr>
<th>Societal sector</th>
<th>Government Sector</th>
<th>Private Sector</th>
<th>Civic Sector</th>
<th>Citizens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pro-Conservation</td>
<td></td>
<td></td>
<td></td>
<td>E</td>
</tr>
<tr>
<td>Pro-Human Health</td>
<td>A</td>
<td></td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>Pro-Natural resource protection</td>
<td>B</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro-Exploitation</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The second step requires assigning a code to each segment for the two variables Stake and Power resources. To do this, the characteristics of the different actors comprising this segment have to be aggregated. The usual procedure for this is to consider the actor with the highest value in this segment and assign this to the whole segment; there should be no averaging out across different actors of the segment. If an actor is assigned to different segments due to a mixed position towards the environment, its characteristics shall not be split between the segments but count fully in each (actors A, E); in this case, actor characteristics may vary according to different segments (illustrated by actor E, but not actor A). The tables below illustrate this step:
Societal sector

<table>
<thead>
<tr>
<th>Position towards Environment</th>
<th>Government Sector</th>
<th>Private Sector</th>
<th>Civic Sector</th>
<th>Citizens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pro-Conservation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro-Human Health</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro-Natural resource protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro-Exploitation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If a segment is empty (i.e. there are no mentionable actors with the respective orientation) both STAKE and POWER are coded 0 – as well as REPRESENTATION and INFLUENCE –, and their absence is marked by a -99 code for ACCEPTANCE.

STAKE GOVT PROCONS

Stake government sector pro-conservation: Degree to which the actors of this stakeholder group had a stake in the issue at hand. “Stake [...] involves all those – regardless of where they live, what their nationality is or what their level of information/skills may be – that could be materially or even spiritually affected by a given measure” (Schmitter 2002: 63). Affectedness can derive from different factors, including proximity, economic interest, usage, social concerns or values.

0 = there were no stakeholders in this category or actors in this category did not have any relevant stake in the issue at hand;

4 = actors in this category had a vital stake in the issue at hand.

STAKE PRIV PROCONS

Stake private sector pro-conservation

STAKE CIV PROCONS

Stake civic sector pro-conservation

STAKE CIT PROCONS

Stake citizens pro-conservation
<table>
<thead>
<tr>
<th>Pro-human health</th>
<th>85. STAKE GOVT PROHEALTH</th>
<th>86. STAKE PRIV PROHEALTH</th>
<th>87. STAKE CIV PROHEALTH</th>
<th>88. STAKE CIT PROHEALTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stakes government sector pro-human health:</td>
<td>Stakes private sector pro-human health:</td>
<td>Stakes civic sector pro-human health:</td>
<td>Stakes citizens pro-human health:</td>
<td></td>
</tr>
<tr>
<td>See above for description.</td>
<td>See above for description.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pro-natural resource protection</th>
<th>89. STAKE GOVT PRONRP</th>
<th>90. STAKE PRIV PRONRP</th>
<th>91. STAKE CIV PRONRP</th>
<th>92. STAKE CIT PRONRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stakes government sector pro-natural resource protection:</td>
<td>Stakes private sector pro-natural resource protection:</td>
<td>Stakes civic sector pro-natural resource protection:</td>
<td>Stakes citizens pro-natural resource protection:</td>
<td></td>
</tr>
<tr>
<td>See above for description.</td>
<td>See above for description.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pro-exploitation</th>
<th>93. STAKE GOVT PROEXPL</th>
<th>94. STAKE PRIV PROEXPL</th>
<th>95. STAKE CIV PROEXPL</th>
<th>96. STAKE CIT PROEXPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stakes government sector pro-exploitation:</td>
<td>Stakes private sector pro-exploitation:</td>
<td>Stakes civic sector pro-exploitation:</td>
<td>Stakes citizens pro-exploitation:</td>
<td></td>
</tr>
<tr>
<td>See above for description.</td>
<td>See above for description.</td>
<td>See above for description.</td>
<td>See above for description.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pro-Conservation</th>
<th>97. PWR RES GOVT PROCONS</th>
<th>98. PWR RES PRIV PROCONS</th>
<th>99. PWR RES CIV PROCONS</th>
<th>100. PWR RES CIT PROCONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power resources government sector pro-conservation:</td>
<td>Power resources private sector pro-conservation:</td>
<td>Power resources civic sector pro-conservation:</td>
<td>Power resources citizens pro-conservation:</td>
<td></td>
</tr>
<tr>
<td>Degree to which the actors of this stakeholder group possessed strong power resources. Power is the "probability that one actor within a social relationship will be in a position to carry out his own will despite resistance" (Weber 1947: 152). Power resources, as the measurable basis of power, refer to "anything that can be used to sway the specific choices or the strategies of another individual" (Dahl 1978: 226), and might include: access to time, money, information and human resources as well as social standing, charisma, legitimacy and legality. 0 = there were no stakeholders in this category or actors in this category possessed very few power resources; 4 = actors in this category possessed significant power resources, potentially enabling them to control the DMP.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pro-human health</th>
<th>101. PWR RES GOVT PROHEALTH</th>
<th>102. PWR RES PRIV PROHEALTH</th>
<th>103. PWR RES CIV PROHEALTH</th>
<th>104. PWR RES CIT PROHEALTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power resources government sector pro-human health:</td>
<td>Power resources private sector pro-human health:</td>
<td>Power resources civic sector pro-human health:</td>
<td>Power resources citizens pro-human health:</td>
<td></td>
</tr>
<tr>
<td>See above for description.</td>
<td>See above for description.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pro-natural resource protection</th>
<th>105. PWR RES GOVT PRONRP</th>
<th>106. PWR RES PRIV PRONRP</th>
<th>107. PWR RES CIV PRONRP</th>
<th>108. PWR RES CIT PRONRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power resources government sector pro-natural resource protection:</td>
<td>Power resources private sector pro-natural resource protection:</td>
<td>Power resources civic sector pro-natural resource protection:</td>
<td>Power resources citizens pro-natural resource protection:</td>
<td></td>
</tr>
<tr>
<td>See above for description.</td>
<td>See above for description.</td>
<td>See above for description.</td>
<td>See above for description.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pro-exploitation</th>
<th>109. PWR RES GOVT PROEXPL</th>
<th>110. PWR RES PRIV PROEXPL</th>
<th>111. PWR RES CIV PROEXPL</th>
<th>112. PWR RES CIT PROEXPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power resources government sector pro-exploitation:</td>
<td>Power resources private sector pro-exploitation:</td>
<td>Power resources civic sector pro-exploitation:</td>
<td>Power resources citizens pro-exploitation:</td>
<td></td>
</tr>
<tr>
<td>See above for description.</td>
<td>See above for description.</td>
<td>See above for description.</td>
<td>See above for description.</td>
<td></td>
</tr>
<tr>
<td>Variable</td>
<td>Type</td>
<td>Range</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>-------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>113. PERCEIVED URGENCY</td>
<td>s-q</td>
<td>[0..4]</td>
<td>Perceived urgency: Degree to which members of the public perceived the issue at hand as one requiring urgent attention and/or action. Indicators: media coverage, bottom-up debates in town halls, formation of neighbourhood initiatives, demonstrations, strikes and protests, public campaigns. This variable has two dimensions: number of individual or organised actors that perceived the issue as urgent, and the degree of urgency or significance of the issue identified. 0 = no one perceived the issue at hand as one of urgency; 2 = many members of the public perceived the issue at hand as one of moderate urgency; 4 = many members of the public perceived the issue at hand as one of great urgency.</td>
<td></td>
</tr>
<tr>
<td>114. COOP PROCONS</td>
<td>s-q</td>
<td>[0..4]</td>
<td>Cooperativeness of pro-conservation actors: Degree of cooperativeness of pro-conservation actors. Cooperativeness is an aggregate concept describing the willingness to engage in a collaborative process, to contribute information and to reach a compromise or consensus. 0 = pro-conservation actors were not cooperative; 4 = pro-conservation actors were fully cooperative. Code -99 if stakeholder group not present.</td>
<td></td>
</tr>
<tr>
<td>115. COOP PROHEALTH</td>
<td>s-q</td>
<td>[0..4]</td>
<td>Cooperativeness of pro-health actors: Degree of cooperativeness of pro-health actors. Cooperativeness is an aggregate concept describing the willingness to engage in a collaborative process, to contribute information and to reach a compromise or consensus. 0 = pro-health actors were not cooperative; 4 = pro-health actors were fully cooperative. Code -99 if stakeholder group not present.</td>
<td></td>
</tr>
<tr>
<td>116. COOP PRONRP</td>
<td>s-q</td>
<td>[0..4]</td>
<td>Cooperativeness of pro-NRP actors: Degree of cooperativeness of pro-NRP actors. Cooperativeness is an aggregate concept describing the willingness to engage in a collaborative process, to contribute information and to reach a compromise or consensus. 0 = pro-NRP actors were not cooperative; 4 = pro-NRP actors were fully cooperative. Code -99 if stakeholder group not present.</td>
<td></td>
</tr>
<tr>
<td>117. COOP PROEXPL</td>
<td>s-q</td>
<td>[0..4]</td>
<td>Cooperativeness of pro-exploitation actors: Degree of cooperativeness of pro-exploitation actors. Cooperativeness is an aggregate concept describing the willingness to engage in a collaborative process, to contribute information and to reach a compromise or consensus. 0 = pro-exploitation actors were not cooperative; 4 = pro-exploitation actors were fully cooperative. Code -99 if stakeholder group not present.</td>
<td></td>
</tr>
<tr>
<td>118. WIN WIN POT</td>
<td>s-q</td>
<td>[0..4]</td>
<td>Win-win potential: Degree of a win-win potential (that was also recognised by at least one stakeholder) prior to the DMP. It does not matter how many stakeholders recognised the potential, provided it was recognised by at least one. Decisive is the size or significance of the win-win potential. Win-win (or Pareto optimal) solutions are those that provide gains (or at least: no losses) to all involved parties. These are always positive-sum solutions compared to the non-collaborative alternative. Win-win solutions include solutions where compensation is provided to those who would otherwise suffer losses. Win-win solutions are not necessarily limited to the environmental issue at hand, but may be linked to alternative issues and competing interests on and off the table, as well as to future decisions (Wondolleck & Yaffee 2000: 50). 0 = there was no win-win potential recognised by stakeholders; 2 = there was a moderate win-win potential recognised by stakeholders; 4 = there was a significant win-win potential meeting all stakeholders’ maximum expectations.</td>
<td></td>
</tr>
</tbody>
</table>
C. PROCESS

Process variables relate to the whole DMP, that is, to all possible process types that were employed during the DMP. The DMP may be more or less participatory. Participation may occur through one or more participatory sub-processes or elements within the DMP, but not through parallel processes external to or independent from the DMP.

C.I. PROCESS DESIGN

Variables in this section assess the way in which the decision-making process (and its participation possibilities) was designed and set up. Process design relates to all basic decisions on how the process should be set up (at any point before or during the DMP). Actual process may of course play out differently to how it was designed. However, as process design is of course connected to the actual process, some of the variables in this section require consideration of features of the actual process.

C.I.1 Rationales and goals of the process

119. INITR NAME qual. Text (99) (*) Initiator name: Enter the name of the main formal process initiator – that is, the main organisation or group through whose action the decision-making process was initiated.

120. INITR TYPE qual. Text (99) Initiator type: Classify the main formal process initiator. Enter the codes for, first, the respective actor group and, second, its environmental orientation. Separate codes by one single space (e.g. PRIV PROCONS). Select the appropriate code for the actor group from this list and enter it in the text field:

- GOVT = government sector;
- PRIV = private sector, for-profit;
- CIV = civic sector, non-profit;
- CIT = citizens, ad hoc citizen groups.

Select the appropriate code for the environmental orientation from this list and enter it in the text field:

- PROCONS = Pro-conservation;
- PROHEALTH = Pro-human health;
- PRONRP = Pro-natural resource protection;
- PROEXPL = Pro-exploitation.

121. DMP INITN GOVT s-q [0..8] Decision-making process initiation government: Administrative level of the government sector organisation that initiated or co-initiated the DMP. In the case that the DMP was initiated by government sector as well as non-state actors, consider here only the government sector actor.

If initiated in (cross-border) collaboration, where different levels were involved, code the most important one; if equally important, code the highest one (e.g. Saarland and Luxembourg collaboration would be coded bilateral = 7).

- 0 = locality / municipality;
- 1 = cross-municipality;
- 2 = county (or e.g. département);
- 3 = cross-county;
- 4 = subnational level such as federal state, province, autonomous region, Kanton
- 5 = cross-subnational (as defined in 4; i.e. within a federal system);
- 6 = country (in the sense of a sovereign state, e.g. Germany, UK, USA);
- 7 = bilateral or multilateral;
- 8 = supra-national (e.g. EU, UN).

Code -99 if the DMP was not initiated by a government sector organisation.
122. **DMP INITN NSA**

| s-q | [0..4] | **Decision-making process initiation non-state actor:** Size of the non-state organisation that initiated or co-initiated the DMP. Non-state actors include civic, sector, and private sector actors, and individual citizens. Size refers here to the size of the organisation’s constituency or membership. In the case that the DMP was initiated by non-state as well as government sector actors, consider here only the non-state actors.

0 = individual citizens that demanded a collective decision on a given problem;
1 = small scale, local non-state organisation;
2 = medium scale and/or regionally active non-state organisation;
4 = large scale, supra-nationally operating organisation.

Code -99 if no non-state actors were involved in the initiation of the DMP. |

123. **PP INITN GOVT**

| s-q (ord.) | [0..8] | **Participatory process initiation government:** Administrative level of the government sector organisation that initiated participation. In the case that a PP was initiated by government sector as well as non-state actors, consider here only the government sector actor. If initiated in (cross-border) collaboration, where different levels were involved, code the most important one; if equally important, code the highest one (e.g. Saarland and Luxemburg collaboration would be coded bilateral = 7).

0 = local / municipality;
1 = cross-municipality;
2 = county;
3 = cross-county;
4 = state;
5 = multi-state (e.g. within a federal system);
6 = country;
7 = bilateral or multilateral;
8 = supra-national (e.g. EU, UN).

Code -99 if no government sector organisation was involved in the initiation of participation, or if no PP took place. |

124. **PP INITN NSA**

| s-q | [0..4] | **Participatory process initiation non-state actors:** Size of the non-state organisation that initiated participation. Non-state actors include civic, sector, and private sector actors, and individual citizens. Size refers here to the size of the organisation’s constituency or membership. In the case that a PP was initiated by non-state as well as government sector actors, consider here only the non-state actor.

0 = individual citizens that demanded the opportunity to participate in a DMP;
1 = small scale, local non-state organisation;
2 = medium scale and/or regionally active non-state organisation;
4 = large scale, supra-nationally operating organisation.

Code -99 if no non-state actor was involved in the initiation of participation, or if no PP took place. |

125. **INITR GOAL CONS**

| s-q | [-4..4] (99) | **Initiator goal conservation:** Degree to which the main formal process initiator, as specified in 119. INITR NAME, pursued an environmental conservation goal in the DMP, i.e. only code the position towards the DMP issue, not general goals.

-4 = initiator pursued a goal highly incompatible with, or antagonistic to, conservation;
-2 = initiator pursued a goal moderately incompatible with, or antagonistic to, conservation;
0 = initiator pursued a goal neutral to conservation;
2 = initiator pursued a moderately ambitious conservation goal;
4 = initiator pursued a highly ambitious conservation goal. |

126. **INITR GOAL HEALTH**

| s-q | [-4..4] (99) | **Initiator goal human health:** Degree to which the main formal process initiator, as specified in 119. INITR NAME, pursued a human health protection goal in the DMP, i.e. only code the position towards the DMP issue, not general goals.

-4 = initiator pursued a goal highly incompatible with, or antagonistic to, human health protection;
-2 = initiator pursued a goal moderately incompatible with, or antagonistic to, human health protection;
0 = initiator pursued a goal neutral to human health protection;
2 = initiator pursued a goal moderately compatible with human health protection;
4 = initiator pursued a goal highly compatible with human health protection. |
127. INITR GOAL NRP	s-q	[-4..4]	Rationale legitimacy: Degree to which (democratic) legitimacy was an overall rationale for the chosen type of DMP. Legitimacy refers here to input-legitimacy deriving from the consent of the public and the authentic expression of its will in the behaviour and decisions of the government (Wolf 2002). Public participation “provides a mechanism for obtaining the consent of the governed in more specific ways than are possible with elections. In the ideal case, public participation is a form of democracy in action, and its results are likely to be widely accepted as legitimate” (Nonet, 1980) (Dietz & Stern 2008: 2-15). Indicators include: acceptance, transparency, etc. 0 = legitimacy provided no rationale for the chosen type of DMP; 2 = legitimacy provided a significant rationale for the chosen type of DMP; 4 = legitimacy provided a very strong rationale for the chosen type of DMP.
128. RAT EMPOWER	s-q	[0..4]	Rationale empowerment: Degree to which empowerment was an overall rationale for the chosen type of DMP. Empowerment includes measures of public capacity building by means of information and education with the aim of “leveling the playing field between the public and the government”, and facilitating individual and collective public agency in the DMP (Stern & Fineberg 1996, cited in Beierle & Cayford 2002: 15). 0 = empowerment provided no rationale for the chosen type of DMP; 2 = empowerment provided a significant rationale for the chosen type of DMP; 4 = empowerment provided a very strong rationale for the chosen type of DMP.
129. RAT LEGITIMACY	s-q	[0..4]	Rationale effectiveness: Degree to which the effective achievement of specific substantive goals (= outcomes as opposed to process) (e.g. environmental, social, economic), was an overall rationale for the chosen type of DMP. 0 = effective achievement of substantive goals provided no rationale for the chosen type of DMP; 2 = effective achievement of substantive goals provided a significant rationale for the chosen type of DMP; 4 = effective achievement of substantive goals provided a very strong rationale for the chosen type of DMP.
130. RAT EFFECTIVE	s-q	[0..4]	Rationale environmental benefit: Degree to which the achievement of environmental benefits was an overall rationale for the chosen type of DMP. 0 = achievement of environmental benefits provided no rationale for the chosen type of DMP; 2 = achievement of environmental benefits provided a significant rationale for the chosen type of DMP; 4 = achievement of environmental benefits provided a very strong rationale for the chosen type of DMP. This rationale is a sub-rationale of 130. RAT EFFECTIVE meaning that 130. RAT EFFECTIVE is always coded at least as high as 131. RAT ENVI.
131. RAT ENVI	s-q	[0..4]	Rationale long-term efficiency: Degree to which long-term efficiency was an overall rationale for the chosen type of DMP. Long-term efficiency refers to the achievement of lasting and more satisfactory decisions, avoiding potential obstacles such as litigation and gridlock that characterise much environmental decision-making (Susskind & Cruikshank 1987). 0 = long-term efficiency provided no rationale for the chosen type of DMP; 2 = long-term efficiency provided a significant rationale for the chosen type of DMP; 4 = long-term efficiency provided a very strong rationale for the chosen type of DMP.
132. RAT LONGTERM EFFICIENCY	s-q	[0..4]	**Initiator goal natural resource protection:** Degree to which the main formal process initiator, as specified in 119. INITR NAME, pursued a natural resource protection goal in the DMP, i.e. only code the position towards the DMP issue, not general goals. -4 = initiator pursued a goal highly incompatible with, or antagonistic to, NRP; -2 = initiator pursued a goal moderately incompatible with, or antagonistic to, NRP; 0 = initiator pursued a goal neutral to NRP; 2 = initiator pursued a goal moderately compatible with NRP; 4 = initiator pursued a goal highly compatible with NRP.
133. RAT MINIMISING RES	s-q	[0..4]	Rationale minimizing resources: Degree to which considerations of short-term efficiency in achieving a given goal were an overall rationale for the chosen type of DMP. Short-term efficiency means that actors spend less time, money and person-hours to achieve a specific result in the short term (Susskind et al. 1999: 6); 0 = short-term efficiency provided no rationale for the chosen type of DMP; 2 = short-term efficiency provided a significant rationale for the chosen type of DMP; 4 = short-term efficiency provided a very strong rationale for the chosen type of DMP.
134. RAT CONFL RESOL	s-q	[0..4]	Rationale conflict resolution: Degree to which conflict resolution was an overall rationale for the chosen type of DMP. 0 = conflict resolution provided no rationale for the chosen type of DMP; 2 = conflict resolution provided a significant rationale for the chosen type of DMP; 4 = conflict resolution provided a very strong rationale for the chosen type of DMP.
135. RAT INFO GAIN	s-q	[0..4]	Rationale information gain: Degree to which gaining relevant information was an overall rationale for the chosen type of DMP. The term information includes scientific and non-scientific information about the issue at hand, as well as about the social environment within which the DMP takes place. 0 = information gain provided no rationale for the chosen type of DMP; 2 = information gain provided a significant rationale for the chosen type of DMP; 4 = information gain provided a very strong rationale for the chosen type of DMP.
136. RAT ACCEP	s-q	[0..4]	Rationale acceptance: Degree to which increased acceptance of output was an overall rationale for the chosen type of DMP. “Acceptance, [in this context], ranges from mere toleration despite a lack of approval up to support of and identification with a decision.” (Newig 2007: 62); 0 = acceptance provided no rationale for the chosen type of DMP; 2 = acceptance provided a significant rationale for the chosen type of DMP; 4 = acceptance provided a very strong rationale for the chosen type of DMP.
137. RAT LEGAL REQ	s-q	[0..4]	Rationale legal requirements: Degree to which fulfilment of legal requirements was an overall rationale for the chosen type of DMP. That is, higher order policies or laws required a certain level of participation; in the absence of these policies or laws participation would not have taken place. 0 = fulfilment of legal requirements provided no rationale for the chosen type of DMP; 2 = fulfilment of legal requirements provided a significant rationale for the chosen type of DMP; 4 = fulfilment of legal requirements provided a very strong rationale for the chosen type of DMP.
138. RAT ETHICAL DUTY	s-q	[0..4]	Rationale ethical duty: Degree to which the fulfilment of an ethical duty was the overall rationale for the chosen type of DMP. Ethical duty implies an individually perceived sense of obligation on the part of the initiator deriving from his/her personal values, societal position as a citizen of a democratic political community, and the social responsibilities attached to that. “These obligations include responsibility for establishing and maintaining horizontal relationships of authority with one’s fellow citizens, seeking ‘power with’ rather than ‘power over’ the citizenry” (Cooper 1984: 143); 0 = fulfilment of ethical duty provided no rationale for the chosen type of DMP; 2 = fulfilment of ethical duty provided a significant rationale for the chosen type of DMP; 4 = fulfilment of ethical duty provided a very strong rationale for the chosen type of DMP.
139. OPEN RAT	qual.	Text area	Open rationale: Note any further rationale(s) for the chosen type of DMP. Code -99 if nothing to add.
C.1.2 Process design characteristics

Process design characteristics relate to the whole DMP, that is, all process types that were employed during the decision-making process. The table on process types (PT) serves as an overview of the most important process types constituting the DMP, capturing some details on these sub-processes. In coding, the whole DMP including all its possible sub-processes should be regarded as a unity, such that every variable should be coded considering the DMP as a whole.

<table>
<thead>
<tr>
<th>Process type (PT): Note all of the process types that were part of the DMP in this case, using the author's own terminology. ‘Process type’ refers here to the common types of democratic decision-making (such as administrative rule-making, parliamentary legislation, taskforces, etc.) as well as established types of participatory processes (such as public hearings, referenda, citizens’ juries, negotiated rule-making, mediation, etc.). Code rather general than specific process types. Note: lawsuits / court procedures are defined as external to the DMP. If there are no sub-processes, the DMP as a whole can be coded as PT1. qual. / Text For PT2 or PT3, code -99 if not applicable.</th>
<th>Number of instances: How many times was this process type employed?</th>
<th>Number of meetings: Average number of meetings (of max. one day duration) per instance of this process type.</th>
<th>Number of participants: Average number of participants per instance (if multiple meetings per instance, then average over all meetings).</th>
<th>Female participants: Average share [%] of female participants.</th>
<th>Professionals: Average share [%] of participants who participated as part of their professional activity.</th>
</tr>
</thead>
<tbody>
<tr>
<td>140. (*) PT1 NAME</td>
<td>141. PT1 IN-STANCES</td>
<td>142. PT1 MEETINGS</td>
<td>143. PT1 PARTICIP</td>
<td>144. PT1 FEMALE</td>
<td>145. PT1 PROFS</td>
</tr>
<tr>
<td>146. (*) PT2 NAME</td>
<td>147. PT2 IN-STANCES</td>
<td>148. PT2 MEETINGS</td>
<td>149. PT2 PARTICIP</td>
<td>150. PT2 FEMALE</td>
<td>151. PT2 PROFS</td>
</tr>
<tr>
<td>152. (*) PT3 NAME</td>
<td>153. PT3 IN-STANCES</td>
<td>154. PT3 MEETINGS</td>
<td>155. PT3 PARTICIP</td>
<td>156. PT3 FEMALE</td>
<td>157. PT3 PROFS</td>
</tr>
</tbody>
</table>

Resources: Degree to which sufficient overall resources (including money, time, staff, office space, etc.) were available to support the preferred type of DMP.

| 158. RESOURCES | s-q | [0..4] |

0 = the available resources were insufficient to allow planning for the preferred process type;

2 = the available resources were sufficient to allow planning for certain parts of the preferred process type (e.g. interviews, information leaflets, etc.);

4 = the available resources were sufficient to allow planning for all required steps in the preferred process type (e.g. scientific assessments, travel reimbursements, etc.).

Process leeway: Degree to which the choice of how to conduct the DMP was ‘voluntary’ (i.e. how much leeway did the PO have in choosing a specific form of decision-making?).

| 159. PROC LEEWAY | s-q | [0..4] |

0 = no leeway, the specific type of DMP was strictly prescribed;

2 = some process principles were required;

4 = the PO could freely choose what form of DMP to use.

Knowledge about stakeholders: Degree to which the process organiser was familiar with the range, priorities or characteristics of stakeholders.

| 160. KNOWL STKH | s-q | [0..4] |

0 = the PO designed the process without knowledge of who would be affected by the decision;

2 = the PO had identified the prominent actors and stakeholders interested in the decision;

4 = the PO had detailed knowledge about the stakeholders.

Code -99 if there were no stakeholders.
<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| **161. PARTICIPATION SELECTION** | s-q | [0..4] | **Participant selection:** Degree to which participant selection was designed in a controlled way and followed a specific logic.
0 = open, whereby participants were not selected but ‘anyone’ could participate as they wished (e.g. public hearing);
2 = open to all that fulfilled certain requirements;
4 = closed, whereby particular participants were selected according to specific criteria (e.g. citizens jury).
Code -99 if the process was non-participatory or if the PO had no say in participant selection. |
| **162. COMM POT** | s-q | [0..4] | **Communication potential:** Degree to which the process was designed to provide for access by participants (excluding the CA) to all relevant information (i.e. potential flow of information in the direction of participants, in relation to the amount of information the PO had, or could easily access).
0 = no provision for access by participants to any relevant information;
4 = provision for access by participants to all relevant information. |
| **163. EXPERT KNOWL** | s-q | [0..4] | **Access to expert knowledge:** Degree to which the process was designed to provide stakeholders with access to expert knowledge (e.g. via scientific databases or invited experts, etc.). Expert knowledge is defined here as explicit, systematised, decontextualised and transferable knowledge (Reed 2008: 2425).
0 = the process provided no access to expert knowledge;
4 = the process provided access to all relevant knowledge.
Code -99 if there was no expert knowledge relevant to the specific issue of decision-making. |
| **164. CONSUL POT** | s-q | [0..4] | **Consultation potential:** Degree to which the process design provided for participants (excluding the CA) to be able to give all the input they considered relevant.
0 = process design made no provision for participants to give input;
4 = process design allowed for participants to give all input they considered relevant. |
| **165. STRUC INFO ELICIT** | s-q | [0..4] | **Structured information elicitation:** Degree to which the process design provided for the elicitation of information from stakeholders.
Elicitation refers to the process of providing occasions and incentives for stakeholders to provide information. Elicitation methods can be interviews, questionnaires, agenda points with lead questions, etc.
0 = process design did not provide for any structured or facilitated mode of information elicitation;
2 = process design provided for much of the information used in the process to be elicited through structured / facilitated methods;
4 = process design provided for the elicitation of a maximum of information from stakeholders through structured / facilitated methods. |
| **166. STRUC INFO AGGR** | s-q | [0..4] | **Structured information aggregation:** Degree to which the process design provided for the aggregation of stakeholder input (i.e. through the use of structured / facilitated aggregation methods).
Aggregation refers to the process of summarising, combining and prioritising information. Aggregation methods are means of defining which opinions and information become part of decisions and which do not. Examples of aggregation methods include majority vote and selective summary of letters from the public. In some cases there may be overlap between aggregation and elicitation, but each is possible independently of the other.
0 = process design did not provide for stakeholder input to be aggregated in a structured way;
2 = process design provided for much stakeholder input to be aggregated in a structured way;
4 = process design provided for a maximum of stakeholder input to be aggregated in a structured way. |
<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>
| 167. DEC MODE POT | nom. | [0..6] | **Potential decision mode:** What was the planned decision mode? With multiple sub-processes, consider the one with the (potentially) greatest contribution to shaping the output.
| | | | | | | | | | | | | |
| 168. DIALOGUE POT | s-q | [0..4] | **Dialogue potential:** Degree to which process design provided room for two-way information flow and direct interaction among participants and between participants and the process organisers. Dialogue implies more than just extensive communication and/or consultation but requires responsive, on-going interaction, so that the relevant information is exchanged (i.e. assumes the possibility to ask questions and respond to comments).
| | | | | | | | | | | | | |
| 169. FACE TO FACE | s-q | [0..4] | **Face-to-face:** Degree to which process design provided for participants to communicate in person.
| | | | | | | | | | | | | |
| 170. KNOWL INTEGR METH | s-q | [0..4] | **Knowledge integration methods:** Degree to which process design provided for different methods for knowledge integration (e.g. participatory modelling, multi-criteria analysis). Integration of knowledge is conceived of here as the combination of different kinds of knowledge to more comprehensively inform the output.
| | | | | | | | | | | | | |
| 171. PWR DELEGATION | s-q | [0..4] | **Power delegation:** Degree to which the process design provided the possibility for participants (excluding the CA) to develop and determine the output. The output referred to is the one named in 243. OUTP NAME.
| | | | | | | | | | | | | |
| 172. ISSUE SCOPE | s-q | [0..4] | **Issue scope:** Degree to which the scope of the environmental issue was defined clearly and unambiguously (before the DMP or at the first meeting) as a basis for decision-making. The scope of the issue refers to which policy areas and aspects are part of decision-making, which causes and effects of the issue are considered part of decision-making, and consequently who the relevant stakeholders are.
| | | | | | | | | | | | | |
| 173. STRICT DEADL | s-q | [0..4] | **Strict deadline:** Degree to which the DMP was subject to a strict deadline by which the decision had to be taken.
| | | | | | | | | | | | | |
| 174. DEADL TIME | interv. Number | **Deadline time:** Note the time interval available for decision-making in days, as applicable.
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |

Code -99 if no decision mode was set beforehand.
Adaptive process design: Degree to which the process was designed to be flexible and adaptive to changing conditions, experiences and learning.

- 0 = the process design was inflexible;
- 2 = the process design could be adapted for specific requirements;
- 4 = the process design could be freely adapted according to arising needs and demands.

Participant design: Degree to which participants (excluding the CA) were involved in designing the DMP (i.e. the variables in this section C.I.).

- 0 = participants were not involved in designing the process;
- 2 = participants had some influence on the process design (e.g. invitation of expert witnesses);
- 4 = the process was fully designed by the participants (e.g. participants could decide who to include, what kind of participatory process to conduct, how to communicate, how to decide, etc.).

Code -99 if 159. PROC LEEWAY = 0.

C.II ACTUAL PROCESS

C.II.1 Role of the competent authority

(*) Name of competent authority: The authority that has legal responsibility for the issue and is therefore responsible for the DMP. Code the most important authority or group of authorities. Code -99 if there was no CA.

Competent authority initiator: Was the CA the (main) initiator of the process?

- 0 = no;
- 1 = yes.

Code -99 if there was no CA.

Competent authority goal conservation: Degree to which the CA, as specified in 177. NAME CA, pursued a conservation goal in relation to the DMP, i.e. only code the position towards the DMP issue, not general goals.

If 178. CA INTR = 1, then this variable must be equal to 125. INTR GOAL CONS.

-4 = CA pursued a goal highly incompatible with, or antagonistic to, conservation;
-2 = CA pursued a goal moderately incompatible with, or antagonistic to, conservation;
-0 = CA pursued a goal neutral to conservation;
-2 = CA pursued a goal moderately compatible with conservation;
-4 = CA pursued a goal highly compatible with conservation.

Code -99 if there was no CA.

Competent authority goal human health: Degree to which the CA, as specified in 177. NAME CA, pursued a human health protection goal in relation to the DMP, i.e. only code the position towards the DMP issue, not general goals.

If 178. CA INTR = 1, then this variable must be equal to 126. INTR GOAL HEALTH.

-4 = CA pursued a goal highly incompatible with, or antagonistic to, human health;
-2 = CA pursued a goal moderately incompatible with, or antagonistic to, human health;
-0 = CA pursued a goal neutral to human health;
-2 = CA pursued a goal moderately compatible with human health;
-4 = CA pursued a goal highly compatible with human health.

Code -99 if there was no CA.
181. **CA GOAL NRP** s-q [-4..4]

Competent authority goal natural resource protection: Degree to which the CA, as specified in 177. NAME CA, pursued a natural resource protection goal in relation to the DMP, i.e. only code the position towards the DMP issue, not general goals.

If 178. CA INTR = 1, then this variable must be equal to 127. INTR GOAL NRP.

-4 = CA pursued a goal highly incompatible with, or antagonistic to, NRP;
-2 = CA pursued a goal moderately incompatible with, or antagonistic to, NRP;
0 = CA pursued a goal neutral to NRP;
2 = CA pursued a goal moderately compatible with NRP;
4 = CA pursued a goal highly compatible with NRP.

Code -99 if there was no CA.

182. **CA NEUTRALITY** s-q [0..4]

Competent authority neutrality: Degree to which the CA remained neutral in the DMP.

0 = CA was highly partial and pursued its own specific interest;
4 = CA remained entirely neutral.

Code -99 if the CA was not directly involved in the process, or if there was no CA.

183. **CA PROC LEAD** bin. [0/1]

Competent authority process leadership: Was the CA the leader (in a participatory setting, e.g. chair, moderator, facilitator) of the DMP (or substantive parts thereof)?

0 = CA did not lead the process;
1 = CA did lead the process.

Code -99 if the CA was not directly involved in the process, or if there was no CA.

184. **COMMITMENT CA** s-q [0..4]

Commitment competent authority: Degree to which the CA was committed to (maintaining) the DMP.

“Commitment involves support [of the CA] at all levels for the objectives of the process, stated at the outset and updated periodically as the participation process and the context evolve. It implies clarifying how and by whom the outputs will be used, and a commitment to open-minded consideration of those outputs” (Dietz & Stern 2008: 4-4).

0 = no (or very low level of) CA commitment to the process;
2 = medium level of CA commitment to the process;
4 = high level of CA commitment to the process.

Code -99 if there was no CA.

C.II.2 **Actor characteristics**

Code variables 185 - 220 in relation to the participants in the DMP. If the DMP was non-participatory, but influence was exerted by other non-state actors, influence variables (INFL) may be coded in relation to these other actors.

For coding the following actor table reconsider step one outlined above for the stakeholder table. The second step again requires assigning a code to each segment. In this step, the variables of Influence and Representation are coded according to different procedures.

The procedure for Influence follows the usual procedure described above for the stakeholder table: In aggregating the characteristics of the different actors comprising a segment consider the actor with the highest value in this segment and assign this value to the whole segment; there should be no averaging out across different actors of the segment. Also, if an actor is assigned to different segments due to a mixed position towards the environment, its characteristics shall not be split between the segments but count fully in each.

While these guidelines are true for the Influence variables, Representation is an exception. Representation variables assess the degree to which the composition of participants in the process mirrors the interest constellation in the public. The degree to which a particular segment of participants is representative of a corresponding segment of stakeholders is coded in relation to (a) the degree to which the participant segment is proportionally representative of the corresponding stakeholder segment, and (b) the degree to which participants are accepted by their constituency as representatives.

It is important to note that with Representation, the aggregation of actors in one segment does not follow the maximum rule, but rather it should be averaged out across different actors of one segment.

The reference point for coding the representation of participants is the segment with the highest representation, which is assigned a relatively high value. All others are coded in relation to this segment, meaning that the other segments can only be equally- or under-represented. Overrepresentation is not possible here.
The diagram provides a simplified illustration of this coding procedure. The outer circle encompasses the whole stakeholder field, while the inner shows the participants. Here, it becomes obvious that the group with the highest representation is the private sector, which may therefore be considered as the reference point for the other segments and assigned a high code. The government sector also appears to be well represented and may therefore also be given a high code. But, in relation to the reference segment of the private sector, the civic sector and citizens are certainly less well represented and may thus be assigned lower codes.

The tables below illustrate the coding procedures for the variables of this table:
<table>
<thead>
<tr>
<th>Societal sector</th>
<th>Government sector</th>
<th>Private sector (non-profit)</th>
<th>Civic sector (non-profit)</th>
<th>Citizens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position towards environment</td>
<td>GOVT TOTAL Total number government sector: Total number of government agencies/organisations that took part in the DMP, either due to a participatory process design, or on their own initiative.</td>
<td>PRIV TOTAL Total number private sector: Total number of private sector organisations that took part in the DMP, either due to a participatory process design, or on their own initiative.</td>
<td>CIV TOTAL Total number civic sector: Total number of civic sector organisations that took part in the DMP, either due to a participatory process design, or on their own initiative.</td>
<td>CIT TOTAL Total number citizens: Total number of citizens that took part in the DMP, either due to a participatory process design, or on their own initiative.</td>
</tr>
</tbody>
</table>

Pro-Conservation

REPR GOVT PROCONS Representation private sector pro-conservation: Representation refers to the extent to which the composition of participants in the process mirrors the interest constellation in the public. Full representation is reached when there are a sufficient number of representatives and those representatives are fully accepted as such by their constituencies. $c = \text{stakeholder group is not represented at all}; 2 = \text{stakeholder group is quantitatively underrepresented by accepted representatives or representatives are sufficient in number but not accepted by their stakeholder group}; 4 = \text{stakeholder group is perfectly represented in terms of number and acceptance of representatives}.

Pro-Health

REPR GOVT PROHEALTH Representation private sector pro-health: See above for description.

Pro-Natural resource protection

REPR GOVT PRONRP Representation private sector pro-natural resource protection: See above for description.

Pro-Exploitation

REPR GOVT PROEXPL Representation private sector pro-exploitation: See above for description.

Pro-Conservation

INFL GOVT PROCONS Influence private sector pro-conservation: Degree to which the members of this stakeholder group developed and determined the output: $c = \text{no influence on the output}; 4 = \text{full control over the output}.$

INFL CIV PROCONS Influence civic sector pro-conservation: Degree to which the members of this stakeholder group developed and determined the output: $c = \text{no influence on the output}; 4 = \text{full control over the output}.$
<table>
<thead>
<tr>
<th>Pro-human health</th>
<th>s-q</th>
<th>INFLUENCE</th>
<th>209. INF GOVT PROHEALTH</th>
<th>Influence government sector pro-human health: See above for description.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pro-natural resource protection</td>
<td>s-q</td>
<td>INFLUENCE</td>
<td>213. INF GOVT PRONRP</td>
<td>Influence government sector pro-natural resource protection: See above for description.</td>
</tr>
<tr>
<td>Pro-exploitation</td>
<td>s-q</td>
<td>INFLUENCE</td>
<td>217. INF GOVT PROEXPL</td>
<td>Influence government sector pro-exploitation: See above for description.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>210. INF PRIV PROHEALTH</td>
<td>Influence private sector pro-human health: See above for description.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>211. INF CIV PROHEALTH</td>
<td>Influence civic sector pro-human health: See above for description.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>212. INF CIT PROHEALTH</td>
<td>Influence citizens pro-human health: See above for description.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>214. INF PRIV PRONRP</td>
<td>Influence private sector pro-natural resource protection: See above for description.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>215. INF CIV PRONRP</td>
<td>Influence civic sector pro-natural resource protection: See above for description.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>216. INF CIT PRONRP</td>
<td>Influence citizens pro-natural resource protection: See above for description.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>218. INF PRIV PROEXPL</td>
<td>Influence private sector pro-exploitation: See above for description.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>219. INF CIV PROEXPL</td>
<td>Influence civic sector pro-exploitation: See above for description.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>220. INF CIT PROEXPL</td>
<td>Influence citizens pro-exploitation: See above for description.</td>
</tr>
</tbody>
</table>

221. OPINION LEADERS

Opinion leaders: Degree to which important opinion leaders were involved in the DMP.

"Opinion leadership is the degree to which an individual is able to influence other individuals’ attitudes or overt behaviour informally in a desired way with relative frequency. This informal leadership is not a function of the individual’s formal position or status in the system. Opinion leadership is earned and maintained by the individual’s technical competence, social accessibility, and conformity to the system’s norms” (Rogers 1995: 26).

- 0 = no important opinion leaders were involved in the DMP;
- 1..3 = some important opinion leaders were involved;
- 4 = all important opinion leaders were involved.

Code -99 if the DMP was not participatory.

222. POL ADDR

Policy addressees: Degree to which those potentially responsible for implementing the output participated in the decision-making process.

- 0 = none of the policy addressees participated or were represented in the DMP;
- 4 = all policy addressees or their representatives participated in the DMP.

Code -99 if there were no policy addressees.

223. SCIENT PROC ADV

Scientific process advice: Degree to which scientific process expertise informed the process (either by external advisors or process organisers).

- 0 = no researchers were involved in the DMP as process advisors;
- 4 = the DMP was designed and steered by scientific advisors.

224. FACILITATION

Facilitation: Degree to which the process was characterised by skilled facilitation.

A facilitator is a specialist who helps people design effective meetings and problem-solving sessions, and acts as the meeting leader on behalf of the group. A facilitator does not have the authority to make substantive decisions, but may have a say in how the meeting is run, and will consult with the group about major process decisions, such as a significant change in agenda or meeting procedures (adapted from Creighton 1998).

Skilled facilitation consists of the following elements:

- Assistance with designing meetings;
- Helping to keep meetings on track;
- Clarifying and accepting communication and feelings;
- Stating problems in a constructive way;
- Suggesting appropriate procedures or problem-solving approaches;
- Summarising and clarifying direction;
- Consensus-testing;
- Managing power imbalances between participants.

- 0 = process did not have any of the elements of skilled facilitation;
- 2 = process had a number elements of skilled facilitation;
- 4 = process had all elements of skilled facilitation.
C.II.3 Process characteristics

228. PROC ADAP s-q [0..4]
Process adaptations: Degree to which the DMP design was changed or adapted in the course of the process.

0 = there was no change during the process;
2 = considerable adaptations were made during the process;
4 = the DMP was completely reorganised.

229. COMM ACT s-q [0..4]
Actual communication: Degree to which participants (excluding the CA) received all relevant information (i.e. actual flow of information in the direction of participants), in relation to the amount of information the PO had or could easily access.

0 = no provision for access by participants to any relevant information;
4 = provision made for access by participants to all relevant information.

230. CONSUL ACT s-q [0..4]
Actual consultation: Degree to which participants (excluding the CA) gave all the input they considered relevant.

0 = participants did not give any input;
4 = participants gave all the input they considered relevant.

231. DIALOGUE ACT s-q [0..4]
Actual dialogue: Degree to which a two-way information flow and direct interaction among participants and between participants and the process organisers took place. Dialogue implies more than just extensive communication and/or consultation but requires responsive on-going interaction, so that the relevant information is exchanged (i.e. assumes the possibility to ask questions and respond to comments).

0 = the process did not allow for dialogue;
2 = the process allowed for a medium degree of dialogue (i.e. intense information flow between few participants or some information flow between all participants);
4 = the process allowed for a high degree of dialogue.
232. INFL ACT s-q \([0..4]\) \((\text{q})\) **Influence actual**: Degree to which the **participants** (excluding the CA) actually developed and determined the **output**. The output referred to is the one named in 243. **OUTP NAME**.
0 = participants did not directly influence the output;
2 = participants considerably influenced the output;
4 = participants fully determined the output.

233. DELIB s-q \([0..4]\) \((\text{q})\) **Deliberation**: Degree to which deliberation in the sense of a ‘rational’ discourse among participants took place.
The notion of deliberation refers to a process of interaction, exchange and mutual learning preceding any group decision. During this process, participants disclose their respective (relevant) values and preferences, avoiding hidden agendas and strategic game playing. Agreements are based on rational arguments, and principles such as laws of formal logic and analytical reasoning (Renn 2004: 303; Fung 2006: 68).
0 = no deliberation took place;
2 = some deliberation with limited impact took place;
4 = the DMP was characterised by steady deliberation among participants.

234. DEC MODE ACT nom. \([0..6]\) **Actual decision mode**: Mode by which the **output** was decided upon. With multiple subprocesses, consider the one with the greatest contribution to shaping the output.
0 = autocratic decision (i.e. one person or another homogenous entity decides);
1 = minority decision (i.e. a small group decides);
2 = simple majority vote;
3 = absolute majority (i.e. more than 50%);
4 = qualified majority (e.g. two thirds or three quarters);
5 = relatively broad consensus (i.e. as many as possible can accept the agreement);
6 = unanimity (i.e. every participant has the right to veto).
Code -99 if no decision was taken.
Analogous to 167. **DEC MODE POT**.

235. DISC FAIR s-q \([0..4]\) \((\text{q})\) **Discursive fairness**: Degree to which the **DMP** was executed through a process of fair discourse.
Indicators include: all **participants** must be able to attend, make statements, participate in the discussion, and participate in the decision-making (Webler & Tuler 2000: 569).
0 = DMP was not discursively fair, but highly discriminatory;
2 = DMP afforded participants limited opportunity to engage in fair discourse;
4 = DMP was characterised by fair discourse.

236. GROUP DYSF s-q \([0..4]\) \((\text{q})\) **Group dysfunction**: Degree to which there were dysfunctional group dynamics.
Group dysfunction refers to situations where internal group dynamics eliminate discursive principles based on reason and argument and lead to unfavourable transformations of the participants’ attitudes and behaviour. Common types of group dysfunction are risky shift, Abilene paradox and group think (explained below) (Cooke 2001: 106 ff.).
Risky shift: Refers to a situation in which a group discussion leads its members to take more risky decisions than they would otherwise have taken as individuals (Cooke 2001: 106 ff.).
Abilene paradox: In collective decision making processes group members may agree to a certain action because everyone else is in favour of this action. An Abilene paradox arises where all group members agree against their genuine will because all others seem to be in favour, leading an organisation or group to act in contradiction to its own objectives (Cooke 2001: 109).
Group think: May occur in situations where an ‘ingroup’ versus ‘outgroup’ mentality prevails. In the context of a collective decision making process, group think may result in irrational and dehumanising reactions to the views of outgroups. The more amiability and esprit de corps there is among the ingroup, the greater the danger of group think replacing independent critical thinking (Cooke 2001: 112).
0 = no dysfunctional group dynamics;
4 = DMP characterised by dysfunctional group dynamics.

237. EXPERT SELECTION PARTICIPT s-q \([0..4]\) \((\text{q})\) **Expert selection participants**: Degree to which participants (excluding the CA) drew on expertise from sources that they could independently choose.
0 = participants did not draw on expertise from independently selected sources;
4 = participants chose independently which sources of expertise to draw on.
238. **COMPR INFO** s-q [0..4] **Comprehensible information for lay public:** Degree to which information was processed in the DMP in a way that enabled all participants to understand and use it equally.

- 0 = information was not processed for special needs of participants;
- 2 = information was processed, so that all participants could understand some of it;
- 4 = information was processed in a way that enabled all participants to understand everything;

Code -99 if participants had no special information needs or if the DMP was not participatory.

239. **TIME NEED** interv. Number **Time need:** Average number of hours each participant spent in meetings and preparations in total, regarding the whole participatory process.

Code -99 if there was no participatory process.

240. **PP DURATION** interv. Number **Participatory process duration:** If a participatory process was conducted, note the number of months (with decimal place) that the process lasted from first to final event.

Code -99 if there was no participatory process.

241. **REIMBURSEMENT** s-q [0..4] **Reimbursement:** Degree to which financial, material or immaterial compensation was offered to participants for their efforts to engage in the DMP.

- 0 = no reimbursement was offered to participants;
- 4 = full reimbursement was offered to participants.

Code -99 if there were no participants that needed reimbursement.

242. **EXT TRANSP** s-q [0..4] **External transparency:** Degree to which the process was transparent to third parties, including constituencies, and the general public.

Transparency here refers to *the degree to which* information about the process was accessible, *how* it was accessible (e.g. in its original version, filtered), *when* information was accessible (e.g. immediately, after processing, after the process) and *to whom* (e.g. journalists, the public).

- 0 = no information was made public;
- 1..3 = only selected information was made public; and/or only selected people had access to the information; and/or information provision was delayed; and/or information was first filtered;
- 4 = all information was made public immediately in accessible and unfiltered form.
D. RESULTS

D.I SUBSTANTIVE OUTPUT

The output of a public decision-making process presents the developed ‘solution’ to the issue and usually consists of a single decision (e.g. to build or not to build a power plant), or a plan (e.g. the designation of a natural park and specific steps for its management).

This section of the Code Book is concerned with capturing information about the output. Therefore, the variables in D.I only refer to the characteristics of the output.

For example, for coding the variable 267. OUTP INFO GAIN, only information that was used for formulating the output should be considered. That means that information that was disregarded in the output is not coded in the variables in D.I (such information would be coded in D.II).

Code all variables in this section -99 if there was no output.

For each case the ‘final decision’ discussed in the text(s) will be identified as the output. Final decision is defined as the most legally binding output described in the text(s), excluding subsequent changes through litigation. The caveat being that sufficient information must be available for coding this final decision.

D.I.1 Environmental and sustainability-related output

Here, a threefold approach is adopted to assessing environmental outputs [like that adopted for assessing impacts below] in order to make them comparable across cases, building on concepts developed by Mitchell (2008). In variables 253 - 261 the output is assessed against: First, the goals of the process initiator; second, the goals of any higher order policy of relevance to the issue; third, implied change from the ‘business as usual’ scenario towards either a hypothetical ‘optimal’ condition or a worst case scenario.

<table>
<thead>
<tr>
<th>Output</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal attainment</td>
<td>Initiator goal</td>
</tr>
<tr>
<td></td>
<td>Output goal (= OUTPUT OPTIMUM)</td>
</tr>
<tr>
<td>Higher order policy</td>
<td>Higher order policy goal</td>
</tr>
<tr>
<td></td>
<td>Higher order policy goal</td>
</tr>
<tr>
<td>Collective optimum</td>
<td>Planned improvement [or tolerated deterioration] of environmental conditions, moving from the ‘business as usual’ scenario (projected trend) towards a hypothetical ‘optimal’ condition [or towards a hypothetical ‘worst case’ condition]</td>
</tr>
<tr>
<td></td>
<td>a) actual impact can already be determined (because implementation is - almost - complete): actual improvement of environmental conditions, moving from the counterfactual ‘business as usual’ scenario towards a hypothetical ‘optimal’ condition</td>
</tr>
<tr>
<td></td>
<td>b) actual impact cannot yet be determined (because implementation is not sufficiently under way), but likely impact can be assessed from case data: likely improvement of environmental conditions, moving from the ‘business as usual’ scenario (projected trend) towards a hypothetical ‘optimal’ condition</td>
</tr>
</tbody>
</table>

Table: Normative standard (in Italics) against which output and impact are evaluated.

243. OUTP NAME qual. Text (*) Output name: Note the name of the output or describe it such that it is clear for all coders which output (if multiple exist) is meant.

If multiple subsequent decisions exist, take the most collectively binding one, without taking into account court action. This implies that the final output is not necessarily identical to a decision made in a public participatory process. If there is insufficient information available on this most collectively binding decision, and another (perhaps less binding) decision exists on which more information is available, the latter may be defined as the output.

Code -99 if there was no output.

244. OUTP BINDINGNESS s-q [0..2] Output bindingness: Degree to which the output was legally binding.

0 = the output did not have any binding character but was a mere recommendation;
1 = the output had some degree of legal bindingness (e.g. government guideline);
2 = the output was legally binding.

Code -99 if there was no output.
Output Description Environmental

Concisely describe the environmental output(s): The goal(s), how to achieve them (e.g. measures, monitoring provisions), etc.

The focus on environmental outputs means that only those aspects of the output that have a positive or negative effect on the environment are relevant here, independently of social or other aspects.

Please note if there was a trade-off in environmental quality within one of the three dimensions (conservation, human health and natural resource protection).

Output End-of-Pipe

Did the output include 'end-of-pipe' measures (i.e. measures that deal with the symptoms rather than with the causes of environmental issues)?

- 0 = the output included no end-of-pipe measures;
- 1 = the output included end-of-pipe measures.

Code -99 if there was no output.

Output Technologically Innovative

Did the output involve early adoption of innovative technologies?

- 0 = no;
- 1 = yes.

Code -99 if there was no output.

Output Awareness-Raising

Did the output include measures to raise awareness and build capacity (education, training, information, etc.)?

- 0 = no;
- 1 = yes.

Code -99 if there was no output.

Output Economic Measures

Did the output include general (i.e. not just directed at a particular addressee) economic or financial measures (e.g. taxes or charges)?

- 0 = no;
- 1 = yes.

Code -99 if there was no output.

Output Command and Control Measures

Did the output include command and control measures such as requirements and prohibitions (e.g. threshold values for pollutants)?

- 0 = no;
- 1 = yes.

Code -99 if there was no output.

Output Reorganisation of Competencies

Did the output include a reorganisation of administrative competencies (e.g. shifting of responsibilities such as devolution, re-scaling of government entities to fit natural scales, integration of different policy areas in a new agency, etc.)?

- 0 = no;
- 1 = yes.

Code -99 if there was no output.

Output New Institutions

Did the output include the formation of new governance institutions such as networks or participatory procedures?

- 0 = no;
- 1 = yes.

Code -99 if there was no output.
<table>
<thead>
<tr>
<th>Code</th>
<th>Attainment Type</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 253. OUTP PROC GOAL ATTAIN CONS | s-q [-4..4] | **Output process goal attainment conservation**: Degree to which the goals and implications of the output were consistent with the environmental conservation goals of the process initiator at the beginning of the DMP. Code in relation to 125. INITR GOAL CONS. If a trade-off occurred between two or more conservation goals, note this in the annotations and code the net output goal.
-4 = the conservation goal of the output was significantly inferior to the initiator conservation goal;
0 = the conservation goal of the output was consistent with the initiator conservation goal;
4 = the conservation goal of the output was significantly superior to the initiator conservation goal.
Code -99 if there was no output. |
| 254. OUTP PROC GOAL ATTAIN HEALTH | s-q [-4..4] | **Output process goal attainment human health**: Degree to which the goals and implications of the output were consistent with the human health goals of the process initiator at the beginning of the DMP. Code in relation to 126. INITR GOAL HEALTH.
If a trade-off occurred between two or more human health goals, note this in the annotations and code the net output goal.
-4 = the human health goal of the output was significantly inferior to the initiator human health goal;
0 = the human health goal of the output was consistent with the initiator human health goal;
4 = the human health goal of the output was significantly superior to the initiator human health goal.
Code -99 if there was no output. |
| 255. OUTP PROC GOAL ATTAIN NRP | s-q [-4..4] | **Output process goal attainment natural resource protection**: Degree to which the goals and implications of the output were consistent with the natural resource protection goals of the process initiator at the beginning of the DMP. Code in relation to 127. INITR GOAL NRP.
If a trade-off occurred between two or more natural resource protection goals, note this in the annotations and code the net output goal.
-4 = the NRP goal of the output was significantly inferior to the initiator NRP goal;
0 = the NRP goal of the output was consistent with the initiator NRP goal;
4 = the NRP goal of the output was significantly superior to the initiator NRP goal.
Code -99 if there was no output. |
| 256. OUTP POL CONS | s-q [-4..4] | **Output higher order policy conservation**: Degree to which environmental outputs were consistent with the environmental conservation goal of a higher-order policy of relevance to the issue. Code in relation to 43. POL GOAL CONS.
-4 = the conservation goal of the output was significantly inferior to the conservation goal of the higher order policy;
0 = the conservation goal of the output was consistent with the conservation goal of the higher order policy;
4 = the conservation goal of the output was significantly superior to the conservation goal of the higher order policy.
Code -99 if there was no higher order policy to be implemented. |
| 257. OUTP HEALTH | s-q [-4..4] | **Output higher order policy human health**: Degree to which environmental outputs were consistent with the human health goal of a higher-order policy of relevance to the issue. Code in relation to 44. POL GOAL HEALTH.
-4 = the human health goal of the output was significantly inferior to the human health goal of the higher order policy;
0 = the human health goal of the output was consistent with the human health goal of the higher order policy;
4 = the human health goal of the output was significantly superior to the human health goal of the higher order policy.
Code -99 if there was no higher order policy to be implemented. |
258. OUTP POL NRP

| s-q | [-4..4] | **Output higher order policy natural resource protection:** Degree to which environmental outputs were consistent with the natural resource protection goal of a higher-order policy of relevance to the issue. Code in relation to 45. POL GOAL NRP.

-4 = the NRP goal of the output was significantly inferior to the NRP goal of the higher order policy;

0 = the NRP goal of the output was consistent with the NRP goal of the higher order policy;

4 = the NRP goal of the output was significantly superior to the NRP goal of the higher order policy.

Code -99 if there was no higher order policy to be implemented.

259. OUTP OPTIMUM CONS

| s-q | [-4..4] | **Output optimum conservation:** Degree to which the environmental output aimed at an improvement (or tolerated a deterioration) of environmental conditions in terms of conservation. This is to be assessed moving from the ‘business as usual’ scenario (projected trend) towards a hypothetical ‘optimal’ (or ‘worst case’) condition.

A collective ‘optimum’ is defined as “one that accomplishes ... all that can be accomplished - given the state of knowledge at the time” (Underdal 2002, p. 8).

-4 = the output implied a deterioration in environmental conditions from the business as usual scenario to a hypothetical ‘worst case’;

0 = the output implied no improvement in environmental conditions compared to the business as usual scenario;

2 = the output implied an improvement in environmental conditions halfway between the business as usual scenario and hypothetical ‘optimum’;

4 = the output implied an improvement in environmental conditions equal to a hypothetical ‘optimum’.

Code -99 if there was no output.

260. OUTP OPTIMUM HEALTH

| s-q | [-4..4] | **Output optimum human health:** Degree to which the environmental output aimed at an improvement (or tolerated a deterioration) of environmental conditions in terms of human health. This is to be assessed moving from the ‘business as usual’ scenario (projected trend) towards a hypothetical ‘optimal’ (or ‘worst case’) condition.

A collective ‘optimum’ is defined as “one that accomplishes ... all that can be accomplished - given the state of knowledge at the time” (Underdal 2002: 8).

-4 = the output implied a deterioration in environmental conditions from the business as usual scenario to a hypothetical ‘worst case’;

0 = the output implied no improvement in environmental conditions compared to the business as usual scenario;

2 = the output implied an improvement in environmental conditions halfway between the business as usual scenario and hypothetical ‘optimum’;

4 = the output implied an improvement in environmental conditions equal to a hypothetical ‘optimum’.

Code -99 if there was no output.

261. OUTP OPTIMUM NRP

| s-q | [-4..4] | **Output optimum natural resource protection:** Degree to which the environmental output aimed at an improvement (or tolerated a deterioration) of environmental conditions in terms of natural resource protection. This is to be assessed moving from the ‘business as usual’ scenario (projected trend) towards a hypothetical ‘optimal’ (or ‘worst case’) condition.

A collective ‘optimum’ is defined as “one that accomplishes ... all that can be accomplished - given the state of knowledge at the time” (Underdal 2002: 8).

-4 = the output implies a deterioration in environmental conditions from the business as usual scenario to a hypothetical ‘worst case’;

0 = the output implies no improvement in environmental conditions compared to the business as usual scenario;

2 = the output implies an improvement in environmental conditions halfway between the business as usual scenario and hypothetical ‘optimum’;

4 = the output implies an improvement in environmental conditions equal to a hypothetical ‘optimum’.

Code -99 if there was no output.
D.1.2 Information and learning

| Code | Description | Formula | Output information gain: Degree to which additional information in the sense of contextualised, local (including traditional and indigenous) knowledge informed the output. This kind of knowledge is characterised as implicit, informal, context-dependent, and resulting from collective experience, and can concern known parameters and/or new perspectives. This includes knowledge that may be ‘expert’ knowledge (e.g. of local people) but not in the sense of knowledge that is published (e.g. in a handbook) (cf. Berkes & Folke 2002: 122).
0 = contextualised, local knowledge did not contribute to the output;
2 = contextualised, local knowledge contributed to the output;
4 = contextualised, local knowledge was decisive for producing the output.
Code -99 if there was no local knowledge to draw on, or if there was no output. |
Innovation
Did the output present an innovative, novel solution in the sense of a solution addressing the issue at hand that had not been discussed before the DMP? This need not be an innovation in the sense of an ‘invention’ in global comparison.
- 0 = the output did not include innovative elements but only reflected was known and had been discussed before the DMP;
- 2 = the output included considerable innovative elements;
- 4 = the core of the output was innovative.
Code -99 if there was no output.

Problem redefinition
If the problem was reframed or redefined in the course of the DMP, briefly describe how.

D.II SOCIAL OUTCOMES

D.II.1 Acceptance of output

Mutual gains
Degree to which win-win solutions were developed during the DMP (i.e. degree to which the output provided mutual gains).
- Win-win (or Pareto optimal) solutions are those that provide gains (or at least: no losses) to all involved parties. These are always positive-sum solutions compared to the non-collaborative alternative. Win-win solutions include solutions where compensation is provided to those who would otherwise suffer losses. Win-win solutions are not necessarily limited to the environmental issue at hand, but may be linked to alternative issues and competing interests on and off the table, as well as to future decisions (Wondolleck & Yaffee 2000: 50).
- 0 = output provided no mutual gains;
- 2 = output provided moderate gains for some stakeholder groups;
- 4 = output provided high gains for all stakeholder groups.
Code -99 if there was no output.

Conflict resolution
Degree to which an existing conflict was resolved or worsened or a new conflict developed. Consider the nature of change in any pre-existing conflict of values and/or distribution identified in variables 77. CONFL VALUES and 78. CONFL DISTN.
- -4 = conflict severely intensified or developed in the first place;
- 0 = degree of conflict did not change during the process;
- 4 = existing conflict was fully resolved.

Addressees acceptance
Acceptance of the decision on the part of those actors who had to comply with and implement the decision (i.e. those actors coded in 222. POL ADDR).
- 0 = decision was opposed;
- 1 = decision was accepted despite reservations regarding its content;
- 2 = decision was accepted and supported.
Code -99 if there were no policy addressees

Competent authority acceptance
Acceptance of the decision on the part of the CA.
- 0 = decision was opposed;
- 1 = decision was accepted despite reservations regarding its content;
- 2 = decision was accepted and supported.
Code -99 if there was no CA.
<table>
<thead>
<tr>
<th>Societal sector</th>
<th>Government sector</th>
<th>Private sector (for profit)</th>
<th>Civic sector (non-profit)</th>
<th>Citizens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pro.Conservation</td>
<td>ACCEPTANCE</td>
<td>274. ACCEP GOVT PROCONS Acceptance government sector pro-conservation: Did the stakeholders of this segment oppose, accept or support the decision? 0 = decision was opposed; 1 = decision was accepted despite reservations regarding its content; 2 = decision was accepted and supported. Code -99 if this stakeholder group is absent, or if there was no output.</td>
<td>275. ACCEP PRIV PRO- CONS Acceptance private sector pro-conservation: See above for description.</td>
<td>276. ACCEP CIV PRO- CONS Acceptance civic sector pro-conservation: See above for description.</td>
</tr>
<tr>
<td>Pro-exploitation</td>
<td>ACCEPTANCE</td>
<td>286. ACCEP GOVT PROEXPL Acceptance government sector pro-exploitation: See above for description.</td>
<td>287. ACCEP PRIV PROEXPL Acceptance private sector pro-exploitation: See above for description.</td>
<td>288. ACCEP CIV PROEXPL Acceptance civic sector pro-exploitation: See above for description.</td>
</tr>
</tbody>
</table>

D.II.2 Capacity building

290. INFOD ADDR
s-q [0..4]
Informal policy addressees: Degree to which the addressees of a decision (see 222. POL ADDR) received the necessary information to comply with the agreed rules or implement them, in relation to their respective need for information (Newig 2007: 62).
0 = addressees received no or insufficient information relevant for compliance or implementation (because addressees were not involved in the process, and/or no relevant information was supplied);
1..3 = only some addressees received information, or all addressees received partly relevant information;
4 = all addressees received sufficient information relevant for compliance and/or implementation.
Code -99 if there were no addressees, or if there was no output.

291. SOCIETAL LEARNING
s-q [0..4]
Societal learning: Degree to which participants, stakeholders or broader society learned about the issue such that they gained new or improved understanding or knowledge of the issue, enabling them potentially to contribute to future joint problem solving efforts (‘social learning’ in the sense of Reed et al. 2010). Exclude any learning by a CA.
0 = no participants or stakeholders gained new or improved insights about the issue;
1..3 = some participants and/or stakeholders gained some new or improved knowledge;
4 = all participants and/or broad sections of society gained considerable new or improved knowledge relevant to the issue as defined above.
292. INDIV CAPACITY BLDG

s-q
(0.4)
(99)

Individual capacity building: Degree to which the skills and capabilities of individual participants or stakeholders were enhanced through involvement in or engagement with the DMP. These skills and capabilities may be specific to the issue at hand, or incidental and applicable to a range of social situations.
0 = individual-level skills and capabilities were not enhanced;
1..3 = significant enhancement of skills and capabilities among a few individuals, or some enhancement of skills and capabilities among many individuals;
4 = significant enhancement of skills and capabilities among many individuals.

293. COMPENSATION

s-q
(0.4)

Compensation: Degree to which compensation was awarded to groups that would (potentially) suffer from implications of the decision.
0 = no compensation was awarded;
4 = all groups that (potentially) suffer from a decision were awarded adequate compensation.
Code -99 if no groups were affected in a way that compensation would make any sense.

294. SC BUILDING TRUST

s-q
(-4.4)
(99)

Social capital building (trust): Degree to which trust relationships were created or strengthened among participants (and potentially beyond), which can be expected to "facilitate coordination and cooperation for mutual benefit" (Putnam 1995: 67, see also Ansell & Gash 2008). "Trust is the willingness to accept vulnerability based on positive expectations about another’s intentions or behaviors" (McEvily et al. 2003).
-4 = existing trust relationships were seriously undermined, or distrust was built up;
0 = there was no change in trust relationships;
4 = trust relationships in the above sense were significantly built up or strengthened.

295. SC BUILDING NETWK

s-q
(-4.4)
(99)

Social capital building (networks): Degree to which social networks were created or built on (or undermined) among participants and beyond, taking into account the structure of the network including both ‘weak’ and ‘strong’ ties (Granovetter 1973). Networks are defined here in the sense of social capital building, which can be expected to "facilitate coordination and cooperation for mutual benefit" (Putnam 1995: 67; also cf. http://www.socialcapitalresearch.com/definition.html) regarding capacity to address the problem or similar issues.
-4 = existing network relations were seriously undermined;
0 = there was no change in social networks;
4 = network relations were significantly built on or strengthened.

296. SC BUILDING SHARED NORMS

s-q
(-4.4)
(99)

Social capital building (shared norms): Degree to which social capital among participants (and potentially beyond) was created or strengthened in the sense of "informal values or norms shared among members of a group that permit cooperation among them" (Fukuyama 1997).
-4 = shared norms were seriously undermined;
0 = there was no change in shared norms;
4 = shared norms were significantly built up or strengthened.

D.II.3 Other

297. OUTC ECON

s-q
(-4.4)
(99)

Outcomes economic: Degree to which outcomes - in the sense of all intended consequences of the DMP - were economically positive or negative. Economic outcomes include consequences for productivity, competitiveness, standard of living, employment rate, or general economic well-being at the level of the region at issue (as identified in GOVCE SCALE LEVEL), taking into consideration possible negative or positive externalities to other regions, if data are available.
-4 = DMP produced strongly negative economic outcomes;
0 = DMP had no economic consequences;
4 = DMP produced strongly positive economic outcomes.

298. OUTC SOCIAL

s-q
(-4.4)
(99)

Outcomes social equity: Degree to which outcomes - in the sense of all intended consequences of the DMP - were socially equitable in a distributional justice sense. Social equity refers to the distribution of all types of costs and benefits (e.g. economic, environmental, access to information, education).
-4 = DMP produced strongly negative social equity outcomes;
0 = DMP had no social equity consequences;
4 = DMP produced strongly positive social equity outcomes.
D.III ENVIRONMENTAL OUTCOMES AND IMPACTS

Here, a threefold approach is adopted to assessing environmental impacts (like that adopted for assessing outputs above) in order to make them comparable across cases, building on concepts developed by Mitchell (2008). In variables 304 - 261 the impact is assessed against: First, the goals of the output; second, the goals of any higher order policy of relevance to the issue; third, actual or likely change in the environment from conditions under a ‘business as usual’ scenario towards either a hypothetical ‘optimal’ condition or a worst case scenario.

<table>
<thead>
<tr>
<th>Goal attainment</th>
<th>Output</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiative goal</td>
<td>Output goal (= OUTPUT OPTIMUM)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Higher order policy</th>
<th>Higher order policy goal</th>
</tr>
</thead>
</table>

| Collective optimum | Planned improvement [or tolerated deterioration] of environmental conditions, moving from the ‘business as usual’ scenario (projected trend) towards a hypothetical ‘optimal’ condition | a) actual impact can already be determined (because implementation is - almost - complete): actual improvement of environmental conditions, moving from the counterfactual ‘business as usual’ scenario towards a hypothetical ‘optimal’ condition
b) actual impact cannot yet be determined (because implementation is not sufficiently under way), but likely impact can be assessed from case data: likely improvement of environmental conditions, moving from the ‘business as usual’ scenario (projected trend) towards a hypothetical ‘optimal’ condition. |

Table: Normative standard (in Italics) against which output and impact are evaluated.

300. IMPACT DESCR

Description of environmental impact: Brief description of the environmental impact in the case. The impact refers to the actual (or very likely) changes in the environment or, if applicable, unchanged conditions. Thus, impact refers to the effect of the outcome (which refers to the change in behaviour of the actors that are affected by the output).

301. IMPLEMENTATION

Implementation: Degree to which environmental outputs (i.e. those described in 245. OUTP DESCR) were being (or would most probably be) implemented, taking into account everything we know from the case material. Implementation - as opposed to compliance - means putting a more abstract plan or rule into operation by making it more concrete or developing specific measures (i.e. implementation is a process). This is typically done by government sector actors.

Note: This variable only relates to environmental outputs, not the decision as such. Implementation here refers to measures that affect the general public (i.e. public policies). Measures that merely serve private purposes (e.g. a building permit) need not be implemented in this sense, or rather they are self-implementing. If such permitting is the only content of the output, code 4. However, if a permit is issued subject to a number of requirements such as to lessen negative impact on the environment, then these are potentially subject to more/less implementation once the building project is underway.

0 = environmental provisions of the output were not (likely to be) implemented by the relevant bodies;
4 = environmental provisions of the output were (likely to be) fully implemented by the relevant bodies.

Code -99 if no implementation of environmental provisions is required (e.g. see discussion of permitting above).
302. BEHAVIOUR CHANGE

Behaviour change: Degree to which behaviour of actors changed - due to the DMP and/or the output - in ways more or less favourable to the environment. This may include implementation and compliance efforts but also other kinds of behaviour change, including behaviour change induced by the DMP alone, independently of the output (which may even not exist).

-4 = widespread behaviour change likely to produce significant environmental deterioration;
-2 = some degree of behaviour change likely to produce significant environmental deterioration, or widespread behaviour change likely to produce moderate environmental deterioration;
0 = no behaviour change relevant to the environment;
2 = some degree of behaviour change likely to produce significant environmental improvement, or widespread behaviour change likely to produce moderate environmental improvement;
4 = widespread behaviour change likely to produce environmental improvement.

303. COMPLIANCE

Compliance: Degree to which environmental outputs were being (or would most probably be) complied with, taking into account everything we know from the case material. Compliance - as opposed to implementation - means to do what the rule prescribes (rule conformity). This includes more or less simple tasks, including to refrain from doing something. Whereas implementation implies actively (and creatively) designing a solution, compliance simply means adherence to the rule (i.e. compliance is typically a single or repeated action, rather than a process).

Note: This variable only relates to *environmental* outputs, not the decision as such.

0 = environmental provisions of the output were not (likely to be) complied with by the relevant addressees;
4 = environmental provisions of the output were (likely to be) fully complied with by the relevant addressees.

Code -99 if no compliance with environmental aspects is required (e.g. pure permitting). See variable 301. IMPLEMENTATION.

304. IMPACT GOAL ATTAIN CONS

Impact goal attainment conservation: Degree to which the impact corresponded to the environmental conservation goals of the output. Impact refers to actual (or very likely) changes in the environment or, if applicable, unchanged conditions.

-4 = the conservation impact was significantly inferior to the output conservation goal;
0 = the conservation impact was consistent with the output conservation goal;
4 = the conservation impact was significantly superior to the output conservation goal.
Code -99 if there was no output.

305. IMPACT GOAL ATTAIN HEALTH

Impact goal attainment human health: Degree to which the impact corresponded to the human health goals of the output. Impact refers to actual (or very likely) changes in the environment or, if applicable, unchanged conditions.

-4 = the human health impact was significantly inferior to the output human health goal;
0 = the human health impact was consistent with the output human health goal;
4 = the human health impact was significantly superior to the output human health goal.
Code -99 if there was no output.

306. IMPACT GOAL ATTAIN NRP

Impact goal attainment natural resource protection: Degree to which the impact corresponded to the natural resource protection goals of the output. Impact refers to actual (or very likely) changes in the environment or, if applicable, unchanged conditions.

-4 = the NRP impact was significantly inferior to the output NRP goal;
0 = the NRP impact was consistent with the output NRP goal;
4 = the NRP impact was significantly superior to the output NRP goal.
Code -99 if there was no output.
307. IMPACT POL CONS

s-q [-4..4]
Impact higher order policy conservation: Degree to which the impact corresponded to the environmental conservation goal of a higher order policy of relevance to the issue. Impact refers to actual (or very likely) changes in the environment or, if applicable, unchanged conditions. Code in relation to 43. POL GOAL CONS.
-4 = the conservation impact was significantly inferior to the conservation goal of the higher order policy;
0 = the conservation impact was consistent with the conservation goal of the higher order policy;
4 = the conservation impact was significantly superior to the conservation goal of the higher order policy.
Code -99 if there was no higher order policy with goals concerning the issue of the DMP.

308. IMPACT POL HEALTH

s-q [-4..4]
Impact higher order policy human health: Degree to which the impact corresponded to the human health goal of a higher-order policy of relevance to the issue. Impact refers to actual (or very likely) changes in the environment or, if applicable, unchanged conditions. Code in relation to 44. POL GOAL HEALTH.
-4 = the human health impact was significantly inferior to the human health goal of the higher order policy;
0 = the human health impact was consistent with the human health goal of the higher order policy;
4 = the human health impact was significantly superior to the human health goal of the higher order policy.
Code -99 if there was no higher order policy with goals concerning the issue of the DMP.

309. IMPACT POL NRP

s-q [-4..4]
Impact higher order policy natural resource protection: Degree to which the impact corresponded to the natural resource protection goal of a higher-order policy of relevance to the issue. Impact refers to actual (or very likely) changes in the environment or, if applicable, unchanged conditions. Code in relation to 45. POL GOAL NRP.
-4 = the NRP impact was significantly inferior to the NRP goal of the higher order policy;
0 = the NRP impact was consistent with the NRP goal of the higher order policy;
4 = the NRP impact was significantly superior to the NRP goal of the higher order policy.
Code -99 if there was no higher order policy with goals concerning the issue of the DMP.

310. IMPACT OPTIMUM CONS

s-q [-4..4]
Impact optimum conservation: Degree to which the environmental impact implies an improvement in environmental conditions, moving from the ‘business as usual’ scenario (projected trend) towards a hypothetical ‘optimal’ condition in terms of conservation. A collective ‘optimum’ is defined as “one that accomplishes ... all that can be accomplished - given the state of knowledge at the time” (Underdal 2002: 8).
-4 = the impact implies a deterioration in environmental conditions from the business as usual scenario to a hypothetical ‘worst case’;
0 = the impact implies no improvement in environmental conditions compared to the business as usual scenario;
2 = the impact implies an improvement in environmental conditions halfway between the business as usual scenario and hypothetical ‘optimum’;
4 = the impact implies an improvement in environmental conditions equal to a hypothetical ‘optimum’.

311. IMPACT OPTIMUM HEALTH

s-q [-4..4]
Impact optimum human health: Degree to which the environmental impact implies an improvement in environmental conditions, moving from the ‘business as usual’ scenario (projected trend) towards a hypothetical ‘optimal’ condition in terms of human health. A collective ‘optimum’ is defined as “one that accomplishes ... all that can be accomplished - given the state of knowledge at the time” (Underdal 2002: 8).
-4 = the impact implies a deterioration in environmental conditions from the business as usual scenario to a hypothetical ‘worst case’;
0 = the impact implies no improvement in environmental conditions compared to the business as usual scenario;
2 = the impact implies an improvement in environmental conditions halfway between the business as usual scenario and hypothetical ‘optimum’;
4 = the impact implies an improvement in environmental conditions equal to a hypothetical ‘optimum’.
Impact optimum natural resource protection

Degree to which the environmental impact implies an improvement in environmental conditions, moving from the ‘business as usual’ scenario (projected trend) towards a hypothetical ‘optimal’ condition in terms of natural resource protection. A collective ‘optimum’ is defined as “one that accomplishes ... all that can be accomplished - given the state of knowledge at the time” (Underdal 2002: 8).

-4 = the impact implies a deterioration in environmental conditions from the business as usual scenario to a hypothetical ‘worst case’;
0 = the impact implies no improvement in environmental conditions compared to the business as usual scenario;
2 = the impact implies an improvement in environmental conditions halfway between the business as usual scenario and hypothetical ‘optimum’;
4 = the impact implies an improvement in environmental conditions equal to a hypothetical ‘optimum’.

Counterfactual outcome of less participation

Counterfactual outcome of less participation: Brief description of the most probable alternative outcome concerning environmental quality, had the process been conducted in a non- (or less-) participatory way. Consider authors’ reflections in particular.

The three dimensions of participation (inclusiveness, power delegation, information flow) can serve as conceptual guidelines to construct the counterfactual. E.g. consider: what would have been the outcome if the DMP had been less inclusive.

In particular, note whether any trade-offs between less participation and higher environmental outcomes would have been likely.

Counterfactual outcome of more participation

Counterfactual outcome of more participation: Brief description of the most probable alternative outcome concerning environmental quality, had the process been conducted in a (more) participatory way. Consider authors’ reflections in particular.

The three dimensions of participation (inclusiveness, power delegation, information flow) can serve as conceptual guidelines to construct the counterfactual. E.g. consider: what would have been the outcome, if the DMP had been more inclusive.

In particular, note whether any trade-offs between more participation and higher environmental outcomes would have been likely.

Additional findings

Additional findings: If applicable, shortly name (or quote) any particular findings of relevance to the project’s research question that the author(s) highlight which have not been sufficiently captured in the previous variables.
E. CAUSAL HYPOTHESES

In this section, hypothesised causal mechanisms are coded. Coding assesses the extent to which attributes of the decision-making process (such as different levels of participation) are assumed to affect social or environmental outputs, outcomes or impacts under otherwise unchanged conditions.

It is important to note that here not variables (in the strict sense) but the existence of causal chains (i.e. hypothesized relations between variables according to case evidence and counterfactual considerations) are coded.

In the variable field, the observed strength of the hypothesised causal relation is coded (0 indicates the absence of a particular causal link; 4 indicates strong causal effect); in the reliability field, the strength of evidence or plausibility supporting this effect is coded. It is important to judge whether events were just coincidental or whether one actually brought about the other.

The existence or plausibility of causal links is coded ideally as follows. For each hypothesis, consider (see figure):

- the actual state of the dependent and independent variables in the case;
- a hypothetical counterfactual situation in which the value of the independent variable is lower than its actual value (but contextual conditions remain the same), and assess the hypothetical value of the dependent variable;
- a hypothetical counterfactual situation in which the value of the independent variable is higher than its actual value (but contextual conditions remain the same), and assess the hypothetical value of the dependent variable;

This should yield a relation between the independent and dependent variable.

In the case that the hypothesized relation between independent and dependent variable can reasonably be assumed in a given case, but due to a different causal mechanism than that specified in the hypothesis description, then the hypothesis should still be coded but with a remark in the annotations field explaining this different causal mechanism.

Hypotheses in the coding scheme postulate linear causal relationships between various factors. The relationship between any two different factors may be visualised by a straight line (if the material of a given case suggests a non-linear relationship, this should be noted under 6. ANNOTATIONS).

The code for a hypothesis should reflect the slope of this line: A weak relationship shows a gentle slope, a strong relationship shows a steep slope. The diagram above gives an example for this:

- the blue line assumes a rather strong positive relationship between two different factors, hence resulting in a rather high code
- the red line, despite the higher values for the factors in the current state, shows a much weaker positive relationship and, therefore may be assigned a low code.

The thickness of the line reflects the weakness of the evidence (= inverse of reliability) supporting the hypothesis. Considering the above green line, evidence of the case did not allow for the construction of an unambiguous counterfactual situation but rather offered indication for a vague, informed guess about such a counterfactual situation. Hence, the value assigned to the green line may be supported by a lower reliability score than as those corresponding to the red and blue lines.
E.I.1 Participation produces outputs with higher environmental standards

Hypotheses in this section indicate a positive causal relationship between participation and environmental output (i.e. the more intense the PP, the higher the environmental standards formulated in the output).

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Formulation</th>
</tr>
</thead>
</table>
| **316. OPENING UP** | **Hypothesis opening-up of decision-making**: An open and inclusive DMP leads to stronger representation of environmental groups in the DMP than in less inclusive processes.
Compare the actual situation in the case to counterfactuals with both a more and less open and inclusive DMP: Would a more open and inclusive DMP have led to stronger representation of environmental groups? Would a less open and inclusive DMP have led to less strong representation of environmental groups?
0 = absence of the hypothesised causal link;
4 = a strong causal effect. |
| **317. ENVI INF** | **Hypothesis influence of environmental groups**: Increased representation of environmental groups in the DMP leads to stronger inclusion of environmental considerations in the output.
Compare the actual situation in the case to counterfactuals with both more and less representation of environmental groups (if applicable): Would stronger representation of environmental groups have increased the environmental standard of the output? And vice versa: Would less strong representation of environmental groups have reduced the environmental standard of the output?
0 = absence of the hypothesised causal link;
4 = a strong causal effect. |
| **318. ACTOR DIVERSITY ENVI KNOWL** | **Hypothesis actor diversity and environmental knowledge**: A wider range of participating actors leads to a higher degree of environmentally relevant knowledge and knowledge relevant for implementation being made available to the DMP.
Compare the actual situation in the case to counterfactuals with both a wider and narrower range of actors: Would a wider range of participating actors have increased the relevant knowledge available to the DMP (and vice versa)?
0 = absence of the hypothesised causal link;
4 = a strong causal effect. |
| **319. METH KNOWL** | **Hypothesis structured methods and environmental knowledge**: The use of structured methods of knowledge elicitation (see 165. STRUC INFO ELICIT for explanation) in the DMP leads to a higher degree of environmentally relevant knowledge and knowledge relevant for generating implementable outputs being made available for the DMP.
Compare the actual situation in the case to counterfactuals with both more and less structured methods: Would a more extensive use of structured methods have increased the relevant knowledge available to the DMP (and vice versa)?
0 = absence of the hypothesised causal link;
4 = a strong causal effect.; |
| **320. ENVI RELEVANT KNOWL** | **Hypothesis environmentally relevant knowledge and output standards**: A higher degree of elicited environmentally relevant knowledge leads to higher environmental standards of the output.
Compare the actual situation in the case to counterfactuals with both more and less elicited environmentally relevant knowledge: Would more elicited knowledge have increased the environmental standard of the output (and vice versa)?
0 = absence of the hypothesised causal link;
4 = a strong causal effect. |
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>321. H DELIB</td>
<td>s-q H DELIB</td>
<td>0.4</td>
</tr>
<tr>
<td>322. H COMMON GOOD</td>
<td>s-q H COMMON GOOD</td>
<td>0.4</td>
</tr>
<tr>
<td>323. H NEGOTIATION</td>
<td>s-q H NEGOTIATION</td>
<td>0.4</td>
</tr>
<tr>
<td>324. H POSITIVE SUM GAME</td>
<td>s-q H POSITIVE SUM GAME</td>
<td>0.4</td>
</tr>
<tr>
<td>325. H CREATIVITY</td>
<td>s-q H CREATIVITY</td>
<td>0.4</td>
</tr>
<tr>
<td>326. H ENVI INNOV</td>
<td>s-q H ENVI INNOV</td>
<td>0.4</td>
</tr>
</tbody>
</table>
E.I.2 Participation produces outputs with lower environmental standards

Hypotheses in this section generally indicate a negative causal relationship between participation and environmental output (i.e. the more intense the PP, the lower the environmental standards of the output).

327. H ENVI UNDER RES s-q H hypothesis under-resourced environmental groups: An open DMP leads to less strong representation of environmental groups compared to other groups (because environmental groups are relatively under-resourced, and better-resourced groups tend to dominate the process).

Compare the actual situation in the case to counterfactuals with both a more and less open and inclusive DMP: Would a more open and inclusive DMP have led to less strong representation of environmental groups (and vice versa)?

0 = absence of the hypothesised causal link;
4 = a strong causal effect.

328. H COOPTED ENVI s-q H hypothesis co-opted environmental groups: Participation weakens the position of environmental groups because it alters their institutional position (either because they are co-opted into a general 'development' frame, or because they are disarmed of their common effective tools such as appeals, lawsuits, public relations campaigns).

Compare the actual case to counterfactuals with both more and less participation: Had there been more participation, would the position of environmental groups have been weakened (and vice versa)?

0 = absence of the hypothesised causal link;
4 = a strong causal effect.

329. H VETO PLAYERS s-q H hypothesis veto players: The more veto players involved in a DMP, the more likely that the output will have lower environmental standards (because a solution at the lowest common denominator will result and almost everyone loses, including "the environment").

Compare the actual situation in the case to counterfactuals with both more and fewer veto players: Would involvement of fewer veto players have made low environmental standards less likely (and vice versa)?

0 = absence of the hypothesised causal link;
4 = a strong causal effect.

E.II.1 Participation fosters implementation capacity and acceptance of decisions

Hypotheses in this section indicate a positive causal relationship between participation and implementation (i.e. the more intense the PP, the higher the likelihood of full implementation).

330. H FIT IMPL s-q H hypothesis fit of public demands with existing institutions: Participation leads to a higher compatibility of the demands of stakeholders (or the general public) with existing institutions, and thus a better implementability of decisions (because of intensive discussion and increased mutual understanding).

Compare the actual situation in the case to counterfactuals with both more and less participation: Would more participation have increased the compatibility of public demands and existing institutions and thereby the implementability of the output (and vice versa)?

0 = absence of the hypothesised causal link;
4 = a strong causal effect.

331. H IMPLEMENTABLE OUTP s-q H hypothesis implementable output: Environmentally relevant knowledge and knowledge relevant for implementation generated in the DMP (as in 318. H ACTOR DIVERSITY ENVI KNOWL) leads to improved implementation (because this knowledge is reflected in an output incorporating more feasible measures).

Compare the actual situation in the case to counterfactuals with both more and less relevant knowledge generation: Would more relevant knowledge have led to improved implementation (and vice versa)?

0 = absence of the hypothesised causal link;
4 = a strong causal effect.
| Hypothesis conflict resolution: Resolving a conflict through a participatory process leads to greater acceptance of the output on the part of veto players. Compare the actual situation in the case to counterfactuals with both more and less conflict resolution: Would more conflict resolution have increased acceptance by veto players (and vice versa)? 0 = absence of the hypothesised causal link; 4 = a strong causal effect. |
|---|---|---|---|
| Hypothesis accommodation of interests: A higher degree of participation leads to the accommodation of more diverse interests in the output. Compare the actual situation in the case to counterfactuals with both more and less participation: Would more participation have accommodated more diverse interests in the output (and vice versa)? 0 = absence of the hypothesised causal link; 4 = a strong causal effect. |
| Hypothesis interests and acceptance: Accommodation of more different/diverse interests in the output increases acceptance on the part of veto players. Compare the actual situation in the case to counterfactuals with both more and fewer positive sum results: Would more positive sum results have increased the acceptance by veto players (and vice versa)? 0 = absence of the hypothesised causal link; 4 = a strong causal effect. |
| Hypothesis acceptance and implementation/compliance: The greater the degree of acceptance by veto players, the higher the likelihood of implementation and compliance. Compare the actual situation in the case to counterfactuals with both greater and lesser degrees of acceptance by veto players: Would a greater degree of acceptance have increased the likelihood of full implementation and compliance (and vice versa)? 0 = absence of the hypothesised causal link; 4 = a strong causal effect. |
| Hypothesis acceptance through procedural justice: A DMP that is perceived as fair and legitimate increases acceptance on the part of participants and their respective constituencies, and other veto players (even if substantive interests of involved parties are not reflected in the output) (Lind & Tyler 1988). Compare the actual situation in the case to counterfactuals with both a more and less fair and legitimate DMP: Would a more fair and legitimate DMP have increased acceptance (and vice versa)? 0 = absence of the hypothesised causal link; 4 = a strong causal effect. |
| Hypothesis informed and educated policy addressees: Involving (potential) policy addressees early in the DMP increases the likelihood and degree of compliance and implementation (because it enables early and thorough education and information of policy addressees, who can adapt their practices - such as daily routines, investments, business planning, technology development - earlier to upcoming decisions). Compare the actual situation in the case to counterfactuals with both more and less involvement of potential policy addressees: Would more involvement of potential policy addressees have increased rates of implementation and compliance (and vice versa)? 0 = absence of the hypothesised causal link; 4 = a strong causal effect. |
339. H NETWK CREATION

| s-q | 0.4 |

Hypothesis partnerships and social control for better implementation: Participation provides opportunities for participants to get to know each other and each other's interests and capacities, so that alliances and other networks can develop, which further implementation and/or other environmentally beneficial activities and allow for mutual social control.

Compare the actual situation in the case to counterfactuals with both more and less participation: Would more participation have increased the development of alliances and networks for implementation or other environmentally beneficial activities (and vice versa)?

0 = absence of the hypothesised causal link;
4 = a strong causal effect.

340. H NETWK IMPL

| s-q | 0.4 |

Hypothesis networks for implementation: Creation of networks/partnerships (see 339. H NETWK CREATION) leads to improved compliance and implementation. This includes the possibility that participants play a major role in monitoring each other's compliance and implementation activities.

Compare the actual situation in the case to counterfactuals with both more and less network and partnership creation: Would more network and partnership creation have increased the likelihood of full implementation and compliance (and vice versa)?

0 = absence of the hypothesised causal link;
4 = a strong causal effect.

E.II.2 Participation fosters opposition to decisions

Hypotheses in this section indicate a negative causal relationship between participation and implementation (i.e. the more intense the PP, the lower the likelihood of full implementation).

341. H AWAR DECREASE ACCEP

| s-q | 0.4 |

Hypothesis waking sleeping dogs: Raising stakeholders' awareness of issues and their involvement in decision-making leads them to consider possible negative effects of decisions and thus increases opposition to environmentally beneficial measures (Coglianese 1997).

Compare the actual situation in the case to counterfactuals with both more and less participation: Would more participation have increased opposition to environmentally beneficial measures (and vice versa)?

0 = absence of the hypothesised causal link;
4 = a strong causal effect.

342. H MISFIT INST

| s-q | 0.4 |

Hypothesis misfit of public demands with existing institutions: Participation opens the door for procedural and substantive demands of stakeholders (or the general public), which tend to be incompatible with existing institutions (Bora 1994).

Compare the actual situation in the case to counterfactuals with both more and less participation: Would more participation have decreased the compatibility of public demands and existing institutions (and vice versa)?

0 = absence of the hypothesised causal link;
4 = a strong causal effect.

343. H MISFIT IMPL

| s-q | 0.4 |

Hypothesis misfit of public demands with implementability: Participation opens the door for procedural and substantive demands of stakeholders (or the general public), which tend to be less implementable than 'top-down' decisions (Bora 1994).

Compare the actual situation in the case to counterfactuals with both more and less participation: Would more participation have decreased the implementability of the output (and vice versa)?

0 = absence of the hypothesised causal link;
4 = a strong causal effect.
References

Schmitter, P. C. (2002). Participation in Governance Arrangements: Is there any reason to expect it will achieve "Sustainable and Innovative Policies in a Multi-Level Context"? In J. R. Grote & B. Gbikpi (Eds.), Participatory Governance. Political and Societal Implications (pp. 51-69).

