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Interprovincial Differences in the Rates of Minor 
Crimes of Violence and Related Disorders 

in New Zealand 1853 - 1930: 

Part II 

Stephen Haslett, Miles Fairburn* 

Abstract: The problem of comparing historical data 
with common variables from two or more distinct lo­
cations remains an open question in historical studies. 
The issues of formulating suitable historical models and 
comparing them, using appropriate statistical models 
and techniques, are the topics of this paper. These mat­
ters are first discussed in general and a number of pos­
sible techniques outlined in concept. The advantages 
and disadvantages of each are summarised. The que­
stion of distinguishing between differences of structure 
and differences of degree, in the presense of measure­
ment error, is then considered in greater detail with re­
ference to factor analysis and the New Zealand provin­
cial data base, 1853 - 1930. 

1. Introduction 

In an earlier contribution to HSR (Vol. 1 Haslett and Fairburn, 1990) we 
asked whether the ecological structure of minor violent crime in New 
Zealand from 1853 to 1930 was subject to a large amount of regional 
variation. We found that in each of New Zealand's nine regions the struc­
ture differed not just in degree but in type (or kind) from that for all the 
nine regions taken as a whole and that each region had a different type of 
structure. We also found, however, that the structural variations were not 
fundamental in type, i.e. each regional structure was a sub-type of the 

* Address all communications to Stephen Haslett, Institute of Statistics 
and Operations Research, Victoria University of Wellington, Welling­
ton, New Zealand; or to Miles Fairburn, History Department, Victoria 
University of Wellington, Wellington, New Zealand. 
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global model. On this basis, we speculated that the same model may have 
been universal to other frontier societies. This model we called 'atomism': 
a deficiency in the means of association and informal regulation. 

The purpose of the following article is to spell out in detail the technical 
and statistical underpinnings of the earlier article. We hope the discussion 
might prove useful since it addresses a wider problem that is often struck 
in quantitative social historical research - the problem of how to decide 
whether the same model fits two or more sets of data having common 
variables. 

Part II of this article is intended to be rather more a methodological 
note, than further exposition of the historical material on interprovincial 
differences in crime rates and related disorders in New Zealand, 
1863-1930. The intention is to provide sufficient statistical detail that the 
two parts of the article, taken together, might provide a blueprint for com­
parative historical studies involving measurement error, where the distinc­
tion between difference in structure and difference of degree needs to be 
made. 

For this reason tables and graphs referred to, but not contained in Part I, 
have the same titles and numbering system in Part II. Part II thus forms 
the complement to Part I, not only in that it contains the graphs and 
figures referenced but not given in the first part, but also in that it provides 
the statistical justification for the analytical methods used to analyse the 
multivariate time series data for each of the nine New Zealand provinces 
and to compare their underlying structure. 

2. Statistical Techniques - General Notes 

Some very general background notes on statistical techniques appropriate 
for analysis of historical data in the form of time series seem appropriate 
here. Particular consideration is given to multiple regression, multivariate 
time series techniques, principal components analysis, measurement error 
models, and factor analysis. The discussion is developed without the use of 
mathematical formulae. 

2.1 Multiple Linear Regression 

Multiple linear regression is a useful technique for using linear combina­
tions of a set of independent variables to find, separately, a best estimate 
for each of a set of dependent variables. See, for example, Dunn and Clark 
(1974), or Seber (1977). The technique is essentially a predictive one; it 
seeks to minimise the sums of the squares of the differences between the 
observed and estimated dependent variable. The regression coefficient for 
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a particular independent variable (and a given dependent variable) mea­
sures the predicted effect on the dependent variable of a unit change in 
that particular independent variable, with all other independent variables 
being held constant. 

A number of cautions about the use of multiple regression are both 
warranted and necessary. 

- Regression techniques assume that each independent variable has 
only a linear effect on the dependent variable; squares of a variable 
and the product of two variables can, for example, be determined and 
included specifically as independent variables which themselves have 
linear effects, but this often creates problems of multicollinearity of 
independent variables, variable selection and interpretation of regres­
sion coefficients. 

- Model errors, or the differences between observed and expected va­
lues of the dependent variable, are assumed not to be correlated, for 
example over time. Caution is necessary then when using regression 
techniques on time series data, especially where rates of change or 
growth rates are included in the independent variables. Correlation of 
model errors over time (i.e. autocorrelation) makes the usual least 
squares estimates of regression coefficients inefficient (i.e. such esti­
mates are no longer best linear unbiased estimates). 

- Interpretation of regression models in terms of causes is fraught with 
difficulty, because the technique makes no attempt to determine the 
interdependences between variables except in a predictive sense. 
Multiple regression coefficients are consequently often poor indica­
tors of the relative importance of independent variables in some un­
derlying structural model. 

- All independent variables are assumed to be observed without error. 
If there is measurement error in these variables, estimates of regres­
sion coefficients will be biased. 

In summary, multiple (linear) regression is a useful and appropriate 
predictive technique where data are not autocorrelated, independent va­
riables are observed without error, and the dependent variable can be mo­
delled as a linear combination of the independent variables. 

2.2 Multivariate Time Series Techniques 

Multivariate time series analysis is a very broad field. See, for example, 
Hannan (1970), Koopmans(1974), Box and Jenkins (1976), Priestley (1981, 
1988). While techniques include fitting non-linear and non-stationary time 
series (e.g. Priestley, 1988), much of the necessarily elaborate theory has 
been developed for the simpler case of linear stationary time series (Koop-
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mans (1974, pp. 38, 81)). (A time series is, for example, (weakly) stationary 
if it has a constant mean and variance.) Under fairly general conditions, 
namely the continuity of its spectrum, every weakly stationary process has 
an infinite order moving average representation. This leads rather natu­
rally, via rational spectra, into ARMA (autoregressive-moving average) 
representations for time series, in which a process in time is viewed as a 
linear combination of its own past values (hence auto-regressive) and the 
present and past values of a white noise, or self-uncorrected, process (hen­
ce moving average). When exogenous (or independent) variables are also 
available ARMAX models are appropriate. In ARMAX models the depen­
dent variable is regressed on a number of independent variables as in 
multiple regression, but the model error rather than being independent 
and identically distributed is an ARMA process (see, for example, Judge et 
al. (1980, Chapters 5, 6)). ARMAX models extend multiple regression mo­
dels in allowing the error from the regression to be autocorrelated, but 
otherwise the cautions mentioned above for regression models apply. Even 
in its more general context of non-stationary and/or non-linear time series, 
the techniques are essentially predictive, and ARMAX models assume that 
exogenous variables are observed without error. 

2.3 Principal Components Analysis 

Principal components analysis (see, for example, Morrison (1976), Seber 
(1984), Flury (1988)) differs from regression and multivariate time series 
techniques in that no distinction is made between dependent and indepen­
dent variables. If variables are rescaled to have unit variances, the analysis 
becomes a principal components analysis of the correlation matrix. If a 
multidimensional scatterplot of the (possibly rescaled) data points were 
made (with the same number of dimensions as there are variables) then 
the first principal component would correspond to the direction in which 
the data has maximum spread within this multidimensional space, the 
second principal component to the direction of next greatest spread (con­
ditional on that direction being orthogonal (i.e. at right angles) to the first 
principal component), etc. There are in general as many eigenvectors (or 
principal components) as there are variables, and the extent of spread in 
the direction of each eigenvector is measured by the corresponding eigen­
value. In general, the covariance and correlation matrices will have dif­
ferent eigenvalues and different eigenvectors. 

Principal components involves a decomposition of the covariance or 
correlation matrix. Once this decomposition is achieved a principal com­
ponent score corresponding to each eigenvalue can be calculated for each 
observation. These scores measure the position of the data point on each 
particular principal component axis, i.e. then the principal components are 
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used as a reference system. Finding eigenvectors and eigenvalues corre­
sponds to a rotation of the original orthogonal axis system to a new system, 
also orthogonal, in which scores on one component (or axis) are uncor­
rected with scores on any other. 

When the original variables are highly inter-correlated, the first few 
principal components often explain much of the variability or spread in 
the data. If the data are variables observed over time, a plot of the prin­
cipal component scores over time may reveal much about the underlying 
structure of the data. 

Further, if the time series data are stationary in each component series, 
principal components can be found at various frequencies in the spectrum 
of the multivariate time series (Brillinger (1975), Chapter 9, especially 
p.353) and this may reveal component trends (at low frequencies) or com­
mon short-term patterns (at high frequencies). An analogous procedure is 
simply to include past (i.e. lagged) values of the component series in the 
vector for which the covariance (or correlation) matrix is calculated. Ad­
ding lagged variables is of little benefit however when lag correlations are 
close to zero or close to one. 

Although often illuminating, use of principal components analysis is not 
without its own possible complications: 

- Principal components analysis assumes the model is linear in the va­
riables. 

- The scaling of variables is critical; unless variables are on a somewhat 
similar scale the variables with the greatest spread will predominate 
in the principal components. Scaling of variables can be somewhat 
arbitrary when variables are on different scales; Morrison (1976, 
p.268) suggests that a principal component analysis of the correlation 
matrix should be considered in such circumstances. 

- If the variables are observed with measurement error, the eigenvalues 
and eigenvectors of the covariance (or correlation) matrix of the mea­
sured variables are not those of the variables measured without error. 

- Interpretation of principal components, particularly by giving them 
names, does not remove the fact that they are chosen simply as linear 
combinations of variables having maximum spread (possibly subject 
to orthogonality constraints imposed by other eigenvectors). 

Principal components analysis is nevertheless a useful data reduction 
technique. Where the data being analysed can be interpreted as belonging 
to groups each of which gives rise to a covariance matrix, the existence of 
common principal components between groups may be studied using the 
methods outlined in Flury (1988). 
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2.4 Measurement Error Models 

Of the three statistical methods discussed previously, multiple regression, 
multivariate time series techniques, and principal components, it is only 
certain (multivariate) time series techniques that allow explicitly for pos­
sible measurement error. Indeed, even for time series modelling and AR-
MAX models the exogenous (independent) variables must be observed 
without error. An extensive theory detailed in Fuller (1987) has been de­
veloped for regression in the presence of measurement error but such 
techniques require knowledge of the measurement error variances and 
little suitable computer software is at present available. If measurement 
error variances are known, and measurement error is assumed uncorrec­
ted for different variables (and over time) then principal components ana­
lysis is made possible by subtracting the measurement error variances off 
the appropriate diagonal elements of the covariance matrix before begin­
ning the principal component analysis. When the measurement error is 
known and structured in this way, the off-diagonal elements of the cova­
riance matrix are unaffected by the measurement error. 

2.5 Factor Analysis 

Factor analysis has been a vexed subject, at least in the statistical literature 
(see, for example, Seber). The principal difficulties centre around existence 
of a factor solution for a given covariance or correlation matrix, criteria 
for specifying the number of common factors, convergence of the maxi­
mum likelihood algorithm for estimating factors given multivariate nor­
mal data, and the naming of factors. Two distinct advantages of factor 
analysis are that it is unaffected by uncorrected measurement error, and 
that rescaling of variables affects the model only through a rescaling of the 
factor loadings. 

Factor analysis is, like principal component analysis, a decomposition of 
the covariance or correlation matrix but the two techniques are in no way 
equivalent. Factor analysis attempts to find a number of common factors 
(or latent variables) such that given these common factors, the original 
variables in the analysis are conditionally independent. These factors may 
be orthogonal or oblique, i.e. factor analysis is a technique for analysing a 
covariance or correlation matrix to see whether it can be decomposed into 
a positive definite matrix of rank equal to the number of factors, and a 
diagonal matrix of specific variances; the second matrix in the decompo­
sition contains specific variances as diagonal elements and has zero off-
diagonal elements due to the conditional independence of variables given 
the factors. There is no guarantee that such a decomposition exists for a 
given covariance (or correlation) matrix. 
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Factor analysis has been popularised, at least in the social science li­
terature, by the availability of the LISREL package (Joreskog and Sorbom, 
1986) which allows linear structural relationships to be fitted to multiva­
riate data. Kiiveri and Speed (1982) have cautioned that such a model 
fitting routine is best used to fit a model suggested on a priori grounds 
rather than to initiate an extensive model search. 

Where time series data is being analysed, and the correlation of lagged 
values (i.e. the autocorrelation) of particular variables is not near zero or 
near one, lagged variables may be included in the covariance or correlation 
matrix used in the factor analysis. Brillinger (1975, p.353) briefly discusses 
factor analysis of time series data in the frequency domain. Differenced 
variables or measures of rates of change of variables can also be included 
in the covariance (or correlation) matrix analysed. (See, for example, Fair-
burn and Haslett, 1986.) Morrison (1976) notes that factor analysis (like 
multiple linear regression, linear time series techniques and principal com­
ponents analysis) involves a search for a model which is linear in the 
variables under study, and that lack of linearity in the underlying model is 
as proper a conclusion if a factor model does not fit sample data as is the 
conclusion that a factor model does not exist. 

2.6 Summary 

By way of summary then, each of these statistical techniques (multiple 
linear regression, (multivariate) time series analysis, principal compo­
nents, measurement error models, and factor analysis) is appropriate in 
certain circumstances. Nearly all these techniques assume that the model is 
linear in the variables under study. Multiple regression and time series 
techniques are essentially predictive; principal components and factor ana­
lysis allow fitting of models with possibly greater explanatory power. Ge­
nerally speaking, only measurement error models and factor analysis can 
be used where variables are measured with error. 

3. Application to the New Zealand Data 

The variables analysed in this study consist of the rate variables listed in 
Appendix 1. An outline of the particular methods of analysis listed here, 
including confirmatory factor analysis, is given in Section III of Part I. 
When supplemented with the additional material in the Appendices, these 
together detail the methods of analysis used for this study, and, we hope, 
provide a blueprint for any future studies where data involving the same 
variables collected from different regions over time are to be compared to 
make a distinction between differences of degree and differences of struc­
ture. 
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APPENDIX 1 

Description of Variables Analysed 

Percentage of Total Population who are Overseas-bom Europeans 
Percentage of Total Population who are Irish-born 
Percentage of Total Population who are European Adult Males 
Percentage of Total Population who are European Adult Females 
Percentage of Total Population who are European and Urban 
Percentage of Total Population who are Young European Males (aged 21-40 years) 
European Dwellings 1-2 Rooms, per capita 
European Total Dwellings, per capita 
Spirits, Imperial Gallons Consumed, per capita 
Beer, Imperial Gallons Consumed, per capita 
Ratio of European Adult Males to Adult Females 
European Dwellings, 1-2 Rooms, as a Ratio of Total Dwellings 
Imports, pound per capita 
Exports, pound per capita 
Manufacturing Horse Power per capita 
Percentage of Total Population who are Manufacturing Employees 
Police Manpower, per 100,000 of Total Population 
Immigration rate, per 100.000 of Total Population 
Emigration rate, per 100,000 of Total Population 
Drunkenness rate, summary convictions, per 100,000 of Total Populalation 
Civil Suits tried and disposed of in the Magistrates' Courts, rate per 100,000 of Total Population 
Violence rate, per 100,000 of Total Population 

Notes: Details of the analysis period, population bases, and data sources can be found in Appendix 1 of 
Fairbum and Haslett (1986). 
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APPENDIX 2A 

The Effect of Measurement 

Factor analysis involves the decomposition of a p-dimensional covariance or correlation 
matrix into the product with its transpose of a factor loading matrix of rank k < p, and a 
diagonal matrix of specific variances 

where is the loading matrix of rank k 

is with the rows of as columns (and the columns as rows) 
is a diagonal matrix containing specific variances. 

From this equation it is clear, since is diagonal, that the p variables for which is the 
covariance (correlation) matrix are conditionally independent given the factors. 

We denote these p variables by the vector x, and consider each realisation of x to be the true 

x, namely x° plus a random error e, i.e. 

If the components of the error e are taken to be uncorrelated with themselves and with x° then the 

covariance (correlation) matrix of e is itself diagonal. 

Further the covariance (correlation) matrix of x can be written 

where is a diagonal matrix. Here E denotes expected value. Note that the cross product term 
has expectation zero and hence vanishes, since e and x° are assumed uncorrelated; 

note also that the population mean of x, namely , equals the population mean of x°, namely 
since the mean of e , E(e) equals zero. 

The importance of the above equation is that, providing the e are not correlated with 
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themselves or with the true values x°, the off-diagonal elements of the covariance matrix of x are 
the same as the corresponding off-diagonal elements of the covariance matrix of x°. A factor 
analysis of will thus yield the same factors as a factor analysis of since will be absorbed 
into the diagonal matrix specific variances, i.e. 

and where is the factor loading matrix for the true values x°. 

In these circumstances then, the factors are unaffected by measurement error. 
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APPENDIX 2B 
On the Relationship Between the Global Analysis and Separate Factor 
Analyses for Each Province 

In Fairburn and Haslctt (1986) a factor analysis model was fitted to the combined data from 
all nine provinces. In the present paper we consider separate factor analysis models for each 
province. This appendix explores the mathematical relationship between the two analyses. 

Given a vector of variables x (such as those in Appendix 1) we may write 

where is the (population) mean of x. (In fact in most factor analyses x is implicitly "mean 
corrected" so that it is that is analysed rather than x; if the correlation matrix is factor 
analyses, is also standardised by dividing by the appropriate standard deviations.) 

By multiplying equation (Bl) by its transpose and taking expectations 

since , the identity matrix, and 
of Appendix 2A. 

Noting that here is of Appendix 2A, equations (Bl) and (B2) provide the connection 
between the factor scores and the decomposition of the covariance (correlation) matrix. 

Some specifications of the factor analytic model decompose as 

(see, for example, Joreskog and Sorbom( 1986)). Here - , so that if , the identity 
matrix, we get equation (B2), and if has non-zero off-diagonal elements (with the columns of 
orthogonal) we get an oblique factor analysis. By setting where , 
equations (B2) and (B3) are seen to be equivalent. 
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The connection between a factor analysis of the correlation matrix and that for the covariance 
matrix is provided by 

where D is a diagonal matrix containing standard deviations as diagonal elements, and D-1 is its 

inverse. Thus the factor analytic decomposition of a correlation matrix yields the same factors as 

the decomposition of the corresponding covariance matrix, when the factor loading matrix of the 

covariance matrix are scaled by dividing by the appropriate standard deviations. (See Everitt 

(1984), equation (2.6), p. 16 for further details.) 

Fairburn and Haslett (1986) contained a factor analytic model fitted to the correlation matrix 
of a subset of the variables in Appendix 1; the factor model for decomposition of the covariance 
matrix of the same variables is related to the factor model for the correlation matrix by equation 
(B4). Only the first factor was considered important in that analysis. 

The model of Fairburn and Haslett (1986) is given by equation (Bl) with containing a 
single factor (so that A is itself a column vector). The nine provinces arc known to have different 
sample means (and by inference different population means) for the same variables, so that 

for different provinces g • 1,2,...,9 where is the (population) mean of x in 
province g. 

Now a separate factor analysis applied to the covariance matrix in each province fits 

We seek the relationship between equations (Bl) and (B5) when equation (Bl) applies to the 

combined provincial (i.e. the global) data. 

From equation (B1) 
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where the superscript, g, is used to denote that the random variables, or parameters, are those 

relating to province g. (Note that and are simply those realisations of and of equation 

(Bl) for province g.) 

Under the condition that the error process in equation (B6) has zero mean not only overall but 

also within each province, we have 

i.e. that the population mean of the error process generating the specific variances be zero for each 

province considered separately. 

By way of simplification of notation, let 

and 

Then taking expectations of equation (B6) for each province, g, separately, yields 

For simplicity we now consider the case in which the factors taken globally are orthogonal, 
and the factors in each province are also orthogonal. and are then diagonal (where 

is the unconditional covariance matrix for . If we now standardise the random variables to 
have uncorrelated components with zero mean and variance one, using 

we have, on rearranging equation (Bl 1) and substituting into equation (B6) that 
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and hence from equation (B9) that 

Equation (B13) is then the factor analytic model for each province, g, corresponding to the global 
factor analytic model of equation (Bl) under the assumption that the mean of the error process in 
equation (B13) has zero mean for each province, g. Equation (B13) has an elegant interpretation: it 
is a factor analytic model for which the factor loading matrix for each province, g, is simply a 
rescaling of the factor loading matrix from the global analysis. Each column of the global factor 
loading matrix is scaled for province g, by the corresponding diagonal element of the square root of 
the covariance matrix (i.e. the jth column of is scaled up by the standard deviation of ). 
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APPENDIX 3 

Additional Tables 

TABLE A-I 

Measures of goodness of fit for constrained and unconstrained factor analyses by province 

Notes: For constrained fits the Q plot had an average slope of approximately 0.3, indicating poor fits, with very 
little variation of slope from province to province. 
For unconstrained fits the Q plot had an average slope of approximately one, indicating moderately good 
fits, with very little variation from province to province. 
* The expected percentage is 1% under the null hypothesis of an adequate fit. The residuals are differences 
between the sample covariance matrix and the covariance matrix fitted via the appropriate factor model. 
While all provinces have a higher than expected percentage of normalised residuals greater than three, man 
of theses are for variables for which there are large measurement errors. 
The maximum value of the adjusted goodness of fit statistic is one, with high values indicating better fits. 
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TABLE A-n 

Unconstrained Factor Analysis - Factor Loading Matrices 
One factor for each province 

Notes: For description of variables see appendix 1. Except for ratio data, all variables are expressed as proportions 
of population, or as rates per 100,000. 
Although factor loadings are tabulated relative to the variables for which they are loadings, the table refers 
to factor loadings rather than variables, per se. 
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TABLE A-m 

Unconstrained Factor Analysis -
Correlation of variables with factor score for each province 

One factor for each province 

Note: For description of variables see appendix 1. Except for ratio data, all variables are expressed as proportions 
of population or rates per 100,000. 
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TABLE A-IV 

Constrained Factor Analysis - Factor Loading Matrices 
One factor for each province 

Notes: For description of variables see appendix 1. Except for ratio data, all variables are expressed as proportions 
of population, or as rates per 100,000. 
Although the factor loadings are tabulated relative to the variables for which they are loadings, the table 
refers to factor loadings rather than variables, per se. 
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TABLE A-V 

Constrained Factor Analysis -
Correlation of variables with factor score for each province 

One factor for each province 

Notes: For description of variables see appendix. Except for ratio data, all variables are expressed as proportions of 
population, or as rates per 100,000. 
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TABLE A-VI 

Standard errors for difference between factor loading matrices 
- Unconstrained less constrained 

One factor per province 

Notes: For description of variables see appendix 1. Except for ratio data, all variables are expressed as proportions 
of population, or as rates per 100,000. 
Although the particular factor loading standard errors are tabulated relative to the variables for which they are 
loadings, the table refers to factor loadings rather than variables, per se. 
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Violence Rates 
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Drunkenness Rates 
New Zealand provincee with maximum and minimum average ratee 
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as 

Spirits Consumption Rates 
New Zealand province8 with maximum and minimum averege rates 
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Civil Suits Rates 
New Zealend provincee with maximum and minimum average ratee 
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Percentage of Overseas Born 
New Zealand provinces with maximum and minimum average rates 
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Ratio of Small to Total Dwellings 
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Ratio of Adult Males to Adult Females 
New Zealand provinces with maximum and minimum average ratea 
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Policing Rates 
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