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Interprovincial Differences in the Rates of Minor
Crimes of Violence and Related Disorders
in New Zealand 1853 - 1930:

Part 11

Stephen Haslett, Miles Fairburn*

Abstract: The problem of comparing historical data
with common variables from two or more distinct lo-
cations remains an open question in historical studies.
The issues of formulating suitable historical models and
comparing them, using appropriate statistical models
and techniques, are the topics of this paper. These mat-
ters are first discussed in general and a number of pos-
sible techniques outlined in concept. The advantages
and disadvantages of each are summarised. The que-
stion of distinguishing between differences of structure
| and differences of degree, in the presense of measure-
ment error, is then considered in greater detail with re-
ference to factor analysis and the New Zealand provin-
cial data base, 1853 - 1930.

1. Introduction

In an earlier contribution to HSR (Vol. 1 Haslett and Fairburn, 1990) we
asked whether the ecological structure of minor violent crime in New
Zealand from 1853 to 1930 was subject to a large amount of regional
variation. We found that in each of New Zealand's nine regions the struc-
ture differed not just in degree but in type (or kind) from that for all the
nine regions taken as a whole and that each region had a different type of
structure. We also found, however, that the structural variations were not
fundamental in type, i.e. each regional structure was a sub-type of the

* Address all communications to Stephen Haslett, Institute of Statistics
and Operations Research, Victoria University of Wellington, Welling-
ton, New Zealand; or to Miles Fairburn, History Department, Victoria
University of Wellington, Wellington, New Zealand.
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global model. On this basis, we speculated that the same model may have
been universal to other frontier societies. This model we called 'atomism':
a deficiency in the means of association and informal regulation.

The purpose of the following article is to spell out in detail the technical
and statistical underpinnings of the earlier article. We hope the discussion
might prove useful since it addresses a wider problem that is often struck
in quantitative social historical research - the problem of how to decide
whether the same model fits two or more sets of data having common
variables.

Part II of this article is intended to be rather more a methodological
note, than further exposition of the historical material on interprovincial
differences in crime rates and related disorders in New Zealand,
1863-1930. The intention is to provide sufficient statistical detail that the
two parts of the article, taken together, might provide a blueprint for com-
parative historical studies involving measurement error, where the distinc-
tion between difference in structure and difference of degree needs to be
made.

For this reason tables and graphs referred to, but not contained in Part I,
have the same titles and numbering system in Part II. Part II thus forms
the complement to Part I, not only in that it contains the graphs and
figures referenced but not given in the first part, but also in that it provides
the statistical justification for the analytical methods used to analyse the
multivariate time series data for each of the nine New Zealand provinces
and to compare their underlying structure.

2. Statistical Techniques - General Notes

Some very general background notes on statistical techniques appropriate
for analysis of historical data in the form of time series seem appropriate
here. Particular consideration is given to multiple regression, multivariate
time series techniques, principal components analysis, measurement error
models, and factor analysis. The discussion is developed without the use of
mathematical formulae.

2.1 Multiple Linear Regression

Multiple linear regression is a useful technique for using linear combina-
tions of a set of independent variables to find, separately, a best estimate
for each of a set of dependent variables. See, for example, Dunn and Clark
(1974), or Seber (1977). The technique is essentially a predictive one; it
seeks to minimise the sums of the squares of the differences between the
observed and estimated dependent variable. The regression coefficient for
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e

a particular independent variable (and a given dependent variable) mea-
sures the predicted effect on the dependent variable of a unit change in
that particular independent variable, with all other independent variables
being held constant.

A number of cautions about the use of multiple regression are both

warranted and necessary.

Regression techniques assume that each independent variable has
only a linear effect on the dependent variable; squares of a variable
and the product of two variables can, for example, be determined and
included specifically as independent variables which themselves have
linear effects, but this often creates problems of multicollinearity of
independent variables, variable selection and interpretation of regres-
sion coefficients.

Model errors, or the differences between observed and expected va-
lues of the dependent variable, are assumed not to be correlated, for
example over time. Caution is necessary then when using regression
techniques on time series data, especially where rates of change or
growth rates are included in the independent variables. Correlation of
model errors over time (i.e. autocorrelation) makes the usual least
squares estimates of regression coefficients inefficient (i.e. such esti-
mates are no longer best linear unbiased estimates).

Interpretation of regression models in terms of causes is fraught with
difficulty, because the technique makes no attempt to determine the
interdependences between variables except in a predictive sense.
Multiple regression coefficients are consequently often poor indica-
tors of the relative importance of independent variables in some un-
derlying structural model.

All independent variables are assumed to be observed without error.
If there is measurement error in these variables, estimates of regres-
sion coefficients will be biased.

In summary, multiple (linear) regression is a useful and appropriate

predictive technique where data are not autocorrelated, independent va-
riables are observed without error, and the dependent variable can be mo-
delled as a linear combination of the independent variables.

2.2 Multivariate Time Series Techniques

Multivariate time series analysis is a very broad field. See, for example,
Hannan (1970), Koopmans(1974), Box and Jenkins (1976), Priestley (1981,
1988). While techniques include fitting non-linear and non-stationary time
series (e.g. Priestley, 1988), much of the necessarily elaborate theory has
been developed for the simpler case of linear stationary time series (Koop-
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mans (1974, pp. 38, 81)). (A time series is, for example, (weakly) stationary
if it has a constant mean and variance.) Under fairly general conditions,
namely the continuity of its spectrum, every weakly stationary process has
an infinite order moving average representation. This leads rather natu-
rally, via rational spectra, into ARMA (autoregressive-moving average)
representations for time series, in which a process in time is viewed as a
linear combination of its own past values (hence auto-regressive) and the
present and past values of a white noise, or self-uncorrected, process (hen-
ce moving average). When exogenous (or independent) variables are also
available ARMAX models are appropriate. In ARMAX models the depen-
dent variable is regressed on a number of independent variables as in
multiple regression, but the model error rather than being independent
and identically distributed is an ARMA process (see, for example, Judge et
al. (1980, Chapters 5, 6)). ARMAX models extend multiple regression mo-
dels in allowing the error from the regression to be autocorrelated, but
otherwise the cautions mentioned above for regression models apply. Even
in its more general context of non-stationary and/or non-linear time series,
the techniques are essentially predictive, and ARMAX models assume that
exogenous variables are observed without error.

2.3 Principal Components Analysis

Principal components analysis (see, for example, Morrison (1976), Seber
(1984), Flury (1988)) differs from regression and multivariate time series
techniques in that no distinction is made between dependent and indepen-
dent variables. If variables are rescaled to have unit variances, the analysis
becomes a principal components analysis of the correlation matrix. If a
multidimensional scatterplot of the (possibly rescaled) data points were
made (with the same number of dimensions as there are variables) then
the first principal component would correspond to the direction in which
the data has maximum spread within this multidimensional space, the
second principal component to the direction of next greatest spread (con-
ditional on that direction being orthogonal (i.e. at right angles) to the first
principal component), etc. There are in general as many eigenvectors (or
principal components) as there are variables, and the extent of spread in
the direction of each eigenvector is measured by the corresponding eigen-
value. In general, the covariance and correlation matrices will have dif-
ferent eigenvalues and different eigenvectors.

Principal components involves a decomposition of the covariance or
correlation matrix. Once this decomposition is achieved a principal com-
ponent score corresponding to each eigenvalue can be calculated for each
observation. These scores measure the position of the data point on each
particular principal component axis, i.e. then the principal components are
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used as a reference system. Finding eigenvectors and eigenvalues corre-
sponds to a rotation of the original orthogonal axis system to a new system,
also orthogonal, in which scores on one component (or axis) are uncor-
rected with scores on any other.

When the original variables are highly inter-correlated, the first few
principal components often explain much of the variability or spread in
the data. If the data are variables observed over time, a plot of the prin-
cipal component scores over time may reveal much about the underlying
structure of the data.

Further, if the time series data are stationary in each component series,
principal components can be found at various frequencies in the spectrum
of the multivariate time series (Brillinger (1975), Chapter 9, especially
p-353) and this may reveal component trends (at low frequencies) or com-
mon short-term patterns (at high frequencies). An analogous procedure is
simply to include past (i.e. lagged) values of the component series in the
vector for which the covariance (or correlation) matrix is calculated. Ad-
ding lagged variables is of little benefit however when lag correlations are
close to zero or close to one.

Although often illuminating, use of principal components analysis is not
without its own possible complications:

- Principal components analysis assumes the model is linear in the va-
riables.

- The scaling of variables is critical; unless variables are on a somewhat
similar scale the variables with the greatest spread will predominate
in the principal components. Scaling of variables can be somewhat
arbitrary when variables are on different scales; Morrison (1976,
p.268) suggests that a principal component analysis of the correlation
matrix should be considered in such circumstances.

- If the variables are observed with measurement error, the eigenvalues
and eigenvectors of the covariance (or correlation) matrix of the mea-
sured variables are not those of the variables measured without error.

- Interpretation of principal components, particularly by giving them
names, does not remove the fact that they are chosen simply as linear
combinations of variables having maximum spread (possibly subject
to orthogonality constraints imposed by other eigenvectors).

Principal components analysis is nevertheless a useful data reduction
technique. Where the data being analysed can be interpreted as belonging
to groups each of which gives rise to a covariance matrix, the existence of
common principal components between groups may be studied using the
methods outlined in Flury (1988).
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2.4 Measurement Error Models

Of the three statistical methods discussed previously, multiple regression,
multivariate time series techniques, and principal components, it is only
certain (multivariate) time series techniques that allow explicitly for pos-
sible measurement error. Indeed, even for time series modelling and AR-
MAX models the exogenous (independent) variables must be observed
without error. An extensive theory detailed in Fuller (1987) has been de-
veloped for regression in the presence of measurement error but such
techniques require knowledge of the measurement error variances and
little suitable computer software is at present available. If measurement
error variances are known, and measurement error is assumed uncorrec-
ted for different variables (and over time) then principal components ana-
lysis is made possible by subtracting the measurement error variances off
the appropriate diagonal elements of the covariance matrix before begin-
ning the principal component analysis. When the measurement error is
known and structured in this way, the off-diagonal elements of the cova-
riance matrix are unaffected by the measurement error.

2.5 Factor Analysis

Factor analysis has been a vexed subject, at least in the statistical literature
(see, for example, Seber). The principal difficulties centre around existence
of a factor solution for a given covariance or correlation matrix, criteria
for specifying the number of common factors, convergence of the maxi-
mum likelihood algorithm for estimating factors given multivariate nor-
mal data, and the naming of factors. Two distinct advantages of factor
analysis are that it is unaffected by uncorrected measurement error, and
that rescaling of variables affects the model only through a rescaling of the
factor loadings.

Factor analysis is, like principal component analysis, a decomposition of
the covariance or correlation matrix but the two techniques are in no way
equivalent. Factor analysis attempts to find a number of common factors
(or latent variables) such that given these common factors, the original
variables in the analysis are conditionally independent. These factors may
be orthogonal or oblique, i.e. factor analysis is a technique for analysing a
covariance or correlation matrix to see whether it can be decomposed into
a positive definite matrix of rank equal to the number of factors, and a
diagonal matrix of specific variances; the second matrix in the decompo-
sition contains specific variances as diagonal elements and has zero off-
diagonal elements due to the conditional independence of variables given
the factors. There is no guarantee that such a decomposition exists for a
given covariance (or correlation) matrix.
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Factor analysis has been popularised, at least in the social science li-
terature, by the availability of the LISREL package (Joreskog and Sorbom,

1986) which allows linear structural relationships to be fitted to multiva- -~

riate data. Kiiveri and Speed (1982) have cautioned that such a model
fitting routine is best used to fit a model suggested on a priori grounds
rather than to initiate an extensive model search.

Where time series data is being analysed, and the correlation of lagged
values (i.e. the autocorrelation) of particular variables is not near zero or
near one, lagged variables may be included in the covariance or correlation
matrix used in the factor analysis. Brillinger (1975, p.353) briefly discusses
factor analysis of time series data in the frequency domain. Differenced
variables or measures of rates of change of variables can also be included
in the covariance (or correlation) matrix analysed. (See, for example, Fair-
burn and Haslett, 1986.) Morrison (1976) notes that factor analysis (like
multiple linear regression, linear time series techniques and principal com-
ponents analysis) involves a search for a model which is linear in the
variables under study, and that lack of linearity in the underlying model is
as proper a conclusion if a factor model does not fit sample data as is the
conclusion that a factor model does not exist.

2.6 Summary

By way of summary then, each of these statistical techniques (multiple
linear regression, (multivariate) time series analysis, principal compo-
nents, measurement error models, and factor analysis) is appropriate in
certain circumstances. Nearly all these techniques assume that the model is
linear in the variables under study. Multiple regression and time series -
techniques are essentially predictive; principal components and factor ana-
lysis allow fitting of models with possibly greater explanatory power. Ge-
nerally speaking, only measurement error models and factor analysis can
be used where variables are measured with error.

3. Application to the New Zealand Data

The variables analysed in this study consist of the rate variables listed in
Appendix 1. An outline of the particular methods of analysis listed here,
including confirmatory factor analysis, is given in Section III of Part I.
When supplemented with the additional material in the Appendices, these
together detail the methods of analysis used for this study, and, we hope,
provide a blueprint for any future studies where data involving the same
variables collected from different regions over time are to be compared to
make a distinction between differences of degree and differences of struc-
ture.
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APPENDIX 1

Description of Variables Analysed

Percentage of Total Population who are Overseas-bom Europeans
Percentage of Total Population who are Irish-born

Percentage of Total Population who are European Adult Males

Percentage of Total Population who are European Adult Females
Percentage of Total Population who are European and Urban

Percentage of Total Population who are Young European Males (aged 21-40 years)
European Dwellings 1-2 Rooms, per capita

European Total Dwellings, per capita

Spirits, Imperial Gallons Consumed, per capita

Beer, Imperial Gallons Consumed, per capita

Ratio of European Adult Males to Adult Females

European Dwellings, 1-2 Rooms, as a Ratio of Total Dwellings

Imports, pound per capita

Exports, pound per capita

Manufacturing Horse Power per capita

Percentage of Total Population who are Manufacturing Employees

Police Manpower, per 100,000 of Total Population

Immigration rate, per 100.000 of Total Population

Emigration rate, per 100,000 of Total Population

Drunkenness rate, summary convictions, per 100,000 of Total Populalation
Civil Suits tried and disposed of in the Magistrates' Courts, rate per 100,000 of Total Population
Violence rate, per 100,000 of Total Population

Notes: Details of the analysis period, population bases, and data sources can be found in Appendix 1 of
Fairbum and Haslett (1986).
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APPENDIX 2A

The Effect of Measurement

Factor analysis involves the decomposition of a p-dimensional covariance or correlation
matrix. E into the product with its transpose of a factor loading matrix A of rank k < p, and a

diagonal matrix of specific variances
T
E=AA+7 (AD)

where A is the loading matrix of rank k
AT is A with the rows of A as columns (and the columns as rows)

¥ is a diagonal matrix containing specific variances.

From this equation it is clear, since '¥ is diagonal, that the p variables for which E is the

covariance (correlation) matrix are conditionally independent given the factors.

We denote these p variables by the vector x, and consider each realisation of x to be the true

x, namely x° plus a random error e, i.e.
x=x"+e (A2)

If the components of the error e are taken to be uncorrelated with themselves and with x° then the
covariance (correlation) matrix of e is itself diagonal.

Further the covariance (correlation) matrix of x can be written

E[(X - )X - poy) |

E[(x°+e-p)(x° +e - p,)T]

E[(*+ B - )] + Ee €T)

E . +A,say (A3)

£y

where A is a diagonal matrix. Here E denotes expected value. Note that the cross product term
E[x° - p,0) has expectation zero and hence vanishes, since e and x° are assumed uncorrelated,;
note also that the population mean of x, namely py, equals the population mean of x°, namely pyo,

since the mean of e , E(e) equals zero.

The importance of the above equation is that, providing the e are not correlated with
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themselves or with the true values x°, the off-diagonal elements of the covariance matrix of x are
the same as the corresponding off-diagonal elements of the covariance matrix of x°. A factor
analysis of E, will thus yield the same factors as a factor analysis of f..o since A will be absorbed

into the diagonal matrix specific variances, i.e.
£ T+ ¥
g o A‘u Al" + Ty (Ad)
where
¥, = F.+A (AS)

and where Ao is the factor loading matrix for the true values x°.

In these circumstances then, the factors are unaffected by measurement error.
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APPENDIX 2B
On the Relationship Between the Global Analysis and Separate Factor
Analyses for Each Province

In Fairburn and Haslctt (1986) a factor analysis model was fitted to the combined data from
all nine provinces. In the present paper we consider separate factor analysis models for each

province. This appendix explores the mathematical relationship between the two analyses.

Given a vector of variables x (such as those in Appendix 1) we may write
x-pe=Af +5 (B1)

where pby is the (population) mean of x. (In fact in most factor analyses x is implicitly "mean
corrected" so that it is (X - Pby) that is analysed rather than x; if the correlation matrix is factor

analyses, (X - by) is also standardised by dividing by the appropriate standard deviations.)
By multiplying equation (Bl) by its transpose and taking expectations

E[(x - p)(xX - )]
E(AE+B)AE+B))
v i T
AEEE)A +EBS)
AN+ ¥ (B2)

£y

since Ek tT) =1, the identity matrix, and
EGBT) =¥ =¥, of Appendix 2A.

Noting that A here is fy =0 of Appendix 2A, equations (Bl) and (B2) provide the connection

between the factor scores land the decomposition of the covariance (correlation) matrix.
Some specifications of the factor analytic model decomposef., as
T
E, = AGA+Y (B3)
(see, for example, Joreskog and Sorbom(1986)). Here ® - E(t tT), so that if @ = I, the identity
matrix, we get equation (B2), and if® has non-zero off-diagonal elements (with the columns of Ay

orthogonal) we get an oblique factor analysis. By setting A =912 where P12 P12 =P

equations (B2) and (B3) are seen to be equivalent.
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The connection between a factor analysis of the correlation matrix and that for the covariance

matrix is provided by

R, = D'g, '
D'AAT+¥)D?
@'AD AT +D ¥ D!

n

T
Ap Ap +¥p B4)

where D is a diagonal matrix containing standard deviations as diagonal elements, and D" is its
inverse. Thus the factor analytic decomposition of a correlation matrix yields the same factors as
the decomposition of the corresponding covariance matrix, when the factor loading matrix of the
covariance matrix are scaled by dividing by the appropriate standard deviations. (See Everitt
(1984), equation (2.6), p. 16 for further details.)

Fairburn and Haslett (1986) contained a factor analytic model fitted to the correlation matrix
of a subset of the variables in Appendix 1; the factor model for decomposition of the covariance
matrix of the same variables is related to the factor model for the correlation matrix by equation

(B4). Only the first factor was considered important in that analysis.

The model of Fairburn and Haslett (1986) is given by equation (B1) with /A containing a
single factor (so that A is itself a column vector). The nine provinces arc known to have different
sample means (and by inference different poPulation means) for the same variables, so that
ML(I) # Wy for different provinces g « 1,2,...9 where }wa is the (population) mean of x in
province g.

Now a separate factor analysis applied to the covariance matrix in each province fits

® @
x® ., ® AP 5" (BS)

We seek the relationship between equations (Bl) and (B5) when equation (Bl) applies to the

combined provincial (i.e. the global) data.

From equation (B1)

® (8
x(')-p.xwz(p.‘-p.‘w)+1\ E +56 (B6)
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where the superscript, g, is used to denote that the random variables, or parameters, are tﬁose
relating to province g. (Note that E® and 6® are simply those realisations of € and 8 of equation
(BI1) for province g.)

Under the condition that the error process in equation (B6) has zero mean not only overall but

also within each province, we have

E®E ) g) = EG®) =0

i.e. that the population mean of the error process generating the specific variances be zero for each

province considered separately.

By way of simplification of notation, let

beo= EE I1p (B7)
®
ko= EG 1D ®7)
e L
and ®
I"l‘ “Hx =4 ptm (B9)

= (®)
For simplicity we now consﬁiﬂhg ca‘ggrllhm%i‘agi thlegPactors taken globally are orthogo%q,)

and the factors in each province are also orthogonal. E.l(;} andz‘ are then diagonal (where

5, - E¢ g (B10)

Then taking expectations of equation (B6) for each province, g, separately, yields
is the unconditional covariance matrix for t) If we now standardise the random variables tw to

have uncorrelated components with zero mean and variance one, using

(8) an . ®
E, =E % -pgy (B11)
t t
(8 £ -1z (&) ()
we have, on re: % "",tlJ = e "’,w) +A "'Iw tA E‘w 2 I & (B12)
o ®) (8)
(8) 172 gl £ (B12)

A N T Ho +A E‘m
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and hence from equation (B9) that

an @ @
<@ By = A z‘:.’?) £, +5 (B13)

Equation (B13) is then the factor analytic model for each province, g, corresponding to the global
factor analytic model of equation (B1) under the assumption that the mean of the error process in
equation (B13) has zero mean for each province, g. Equation (B13) has an elegant interpretation: it
is a factor analytic model for which the factor loading matrix for each province, g, is simply a
rescaling of the factor loading matrix from the global analysis. Each column of the global factor
loading matrix is scaled for province g, by the corresponding diagonal element of the square root of

the covariance matrix E‘(‘) (i.e. the jth column of A is scaled up by the standard deviation of §(8)).
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APPENDIX 3

Additional Tables

TABLE A-I

Measures of goodness of fit for constrained and unconstrained factor analyses by province

Unconstrained Constrained
Adjusted Root mean % of Adjusted Rootmean % of
goodness square normalised goodness square normalised
of fitindex  residual residuals>3 * of fitindex  residual residuals>3 *
Auckland 0.918 0.040 35 0.486 0.110 62.0
Hawkes Bay 0.978 0.029 1.0 0.790 0.097 41.0
Taranaki 0977 0.015 53 0.592 0.069 485
Wellington 0.933 0.070 35 0414 0.228 75.0
Marlborough 0971 0.013 55 0.581 0.054 550
Nelson 0.993 0.016 1.0 0.664 0.118 69.5
Canterbury 0.946 0.041 6.0 0.743 0.098 53.5
‘Westand 0.947 0.105 5.0 0912 0.148 17.0
Otago 0921 0.055 11.5 0.815 0.093 27.5
Notes: For constrained fits the Q plot had an average slope of approximately 0.3, indicating poor fits, with very

little variation of slope from province to province.

For unconstrained fits the Q plot had an average slope of approximately one, indicating moderately good
fits, with very little variation from province to province.

* The expected percentage is 1% under the null hypothesis of an adequate fit. The residuals are differences
between the sample covariance matrix and the covariance matrix fitted via the appropriate factor model.
While all provinces have a higher than expected percentage of normalised residuals greater than three, man
of theses are for variables for which there are large measurement errors.

The maximum value of the adjusted goodness of fit statistic is one, with high values indicating better fits.
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TABLE A-n

Unconstrained Factor Analysis - Factor Loading Matrices
One factor for each province

Ad HB Tara Wgm Marl Nelson Camt W'd Ougo

Violence 0.594 0672 0.428 0.796  0.600 1.083 0637 0879 0.597
Drunkenn's 0.535 0395 0.204 0265 0.183 0490 0292 0217 0.526
Overseas b. 0.144 0202 -0.155 -0.149 -0201 -0234 -0259 -0285 -0274
Irish born 0.637 0474 0.352 0287 0274 0592 0437 0858 0.369
Adult males 0031 0041 0013 0039 0054 0.134 0009 0.153 0.048
Adult females -0.165 -0.187 -0.142 0.1% 0170 -0.161 -0.190 -0.151 0211
Ratio men

10 women 0.115 0245 0.124 0131 0291 0397 0.168 0398 0.251
Urban pop. -0.141 0125 0007 -0.169 -0.067 0.035 -0204 -0.137 -0.147
Males 21-40 0.058  0.195 0.043 0046 0204 0326 0170 0.173 0.202
Small dwllgs 0324 0449 0.326 0429 0485 0.847 0392 1.283 0.619
Total dwllgs 0013 0033 -0011 0011 0.002 0.059 -0039 0178 -0014
Ratio small

1o total dwligs 0.343 0517 0.350 0392 0498 0678 0462 03802 0.649
Spirits cons'n 0321 0619 0.114 0437 0399 0437 0445 0986 0.682
Beerconsn 0.087 0.190 0.008 0.162 0293 0308 0275 0083 -0.126
£ impons 0522 0032 -0.194 0790 -0.021 0300 -0.192 0.251 0.013
£ exports 0418 0629 -0.790 -0.685 -0.167 0172 0278 009  -0.108
Manufact'g

HP 0962 0675 0724 0921 0214 0290 -0608 -1281 -0.778
Manufact'g

Employees 0253 0211 0193 0372 0096 -0124 -039% 0600 -0.350
Police

numbers 0015 0.188 0.199 008 0.170 0286 0212 0216 0.169
Immigration 0072 0.749 0.128 -0462 0.102 0325 0981 0642 0.923
Emigration <0.120  0.086 0028 -1.205 0010 0.147 0214 1286 0.402
Civil suits 0.040 0215 0.266 0359 0454 0683 0611 0.703 0.432

Notes: For description of variables see appendix 1. Except for ratio data, all variables are expressed as proportions
of population, or as rates per 100,000.
Although factor loadings are tabulated relative to the variables for which they are loadings, the table refers
to factor loadings rather than variables, per se.
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TABLE A-m
Unconstrained Factor Analysis -

Correlation of variables with factor score for each province
One factor for each province

Ad HB Tara Wgm Mard Nelson Cant Ww'd Otago

Violence 0.872 0.848 0816 0927 0723 0959 0932 0.792 0.931
Drunkenn's 0.791 0.685 0.616 0.545 0.505 0.855 0477 0480 0.947
Overseas b. 0.897 0958 0.975 0921 0999 0966 0968 0986 0.996
Irish born 0988 0987 0.996 0.839 0902 0976 0884 0997 0.940
Adult males 0510 0556 -0044 0428 0485 0855 0215 0873 0.568
Adult females 0980 -0952 -0924 0869 -0%509 -0856 -0.855 -0925 -0.943
Ratio men

10 women 0953 0975 0.954 0935 0962 0993 0999 0975 0.980
Urban pop. -0.752 -0.893 0.188 089 -0.584 0370 -0912 -0750 -0.848
Males 2140 0466 0900 0.442 0554 0812 0868 0860 0344 0.830
Small dwligs 0.880 0.863 0.974 0.687 0916 0979 0972 0986 0.974
Total dwligs 0311 0702 -0.031 0201 -0.008 0843 0379 0984 -0238
Ratio small

10 total dwllgs 0914  0.860 0.949 0.827 0955 0948 0970 0985 0.992
Spirits cons'n 0.813 0845 0.615 089% 0915 0930 0859 0910 0.932
Beer cons'n 0518 0762 0.077 0.756 0.726 0850 0708 -0.078 -0.103
£ imponts 0709 -0.188 0607 0453 -0324 0905 -0277 0.550 0.104
£ exports 0854 0798 0720 0650 -0459 0.656 -0.649 0047 -0202
Manufact'g

HP 0840 -0667 0754 0665 0618 0682 0634 -0759 0754
Manufact'g

Employees 0826 -0825 -0838 0945 0424 <0333 0910 -0.880 -0.942
Police

numbers -0.118 0830 0.730 0.728 0.548 0894 0783 0.544 0.802
Immigration 0.113 0483 0.184 0068 0255 0546 0677 0709 0.699
Emigration -0.180 0409 0.123 0802 0079 0721 0664 0.788 0.380
Civil suits 0274 0578 0.527 0.700 0832 0936 0882 0.737 0.869

Note: For description of variables see appendix 1. Except for ratio data, all variables are expressed as proportions
of population or rates per 100,000.
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Violence
Drunkenness
Overseas b.
Irish bom
Adult males
Adult females
Ratio men

10 women
Urban pop.
Males 2140
Small dwligs
Total dwllgs
Ratio small
total dwllgs
Spirits cons'n
Beer cons'n -
£ impons

£ exports
Manufact'ing
HP

Manufact'ing
Employees
Police
numbers
Immigration
Emigration
Civil suits

TABLE A-1IV

Constrained Factor Analysis - Factor Loading Matrices

Ad

0.393
0.159
0.128
0.324
0.050
<0.083

0.160
-0.059
0.093
0.452
0.043

0.338
0.369
0.053
0.053
-0.030

-0.455
-0.210
0.101
0.310

0.345
0.285

HB

0.546
0.223
0.179
0450
0.070
-0.115

0223
-0.083
0.120
0.632
0.060

0470
0.514
0.074
0.074
-0.042

-0.633
-0.293
0.140
0.431

0479
0.396

One factor for each province

Tara

0.337
0.137
-0.110
0278
0.043
-0.071

0.138
-0.051
0.080
0.390
0.037

0.290
0.317
0.046
0.046
0.026

<0391
-0.180
0.087
0.266

0.296
0.244

Wen

0283
0.115
-0.092
0233
0.036
-0.060

0.115
0.043
0.067
0.327
0.031

0.243
0.266
0.038
0.038
0.022

-0.327
-0.152
0.073
0223

0.248
0.205

Marl

0357
0.146
0.117
0.295
0.045
-0.075

0.146
-0.054
0.085
0413
0.039

0307
0.336
0.048
0.048
-0.028

0414
-0.191
0.092
0.281

0316
0.259

Nelson Cant
0.617 0.560
0.251 0228

0202 -0.183
0.509 0462
0079 007

-0.130 -0.118
0252 0229

-0.094 -0.085
0.146  0.133
0.4 0.648
0.067 0.061
0.531 0482
0.580 0.527
0.084 0076
0.084 0076

-0.048 -0.043
0.716  -0.650
<0331 -0.301
0.160  0.144
0.487 0.442
0.542 0492
0.447 0406

wd

1.030
0.420
-0.337
0.850
0.131
-0.217

0422
-0.156
0.244
L192
0.113

0.886
0.969
0.139
0.139
-0.080

-1.195
-0.553
0.266
0.813

0.904
0.747

Otago

0.657
0.268
0.215
0.542
0.084
-0.139

0.269
-0.099
0.155
0.760
0.072

0.565
0.618
0.089
0.089
-0.051

-0.762
-0.352
0.170
0.519

0.578
0.476

Notes: For description of variables see appendix 1. Except for ratio data, all variables are expressed as proportions
of population, or as rates per 100,000.
Although the factor loadings are tabulated relative to the variables for which they are loadings, the table
refers to factor loadings rather than variables, per se.
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Violence
Drunkenn's
Overseas b.
Irish bom
Adult males
Adult females
Ratio men

10 women
Urban pop.
Males 21-40
Small dwligs
Total dwligs
Ratio small
to total dwllgs
Spirits cons'n
Beer cons’n

£ imports

£ exports
Manufact'g
HP
Manufact'g
Employees
Police
numbers
Immigration
Emigration
Civil suits

TABLE A-V

Constrained Factor Analysis -
Correlation of variables with factor score for each province
One factor for each province

Ad HB Tara Wgm Mard Nelson Cant

0910 0866 0.793 0965 0.730 0.952 0.944
0.897  0.685 0.668 0627 0526 0.840  0.505
0954 0951 0.959 0911 0982 0969 0990
0960 0977 0.984 0.865 0.852 0979 0911
-0295 0584  -0037 0337 0624 0.847 0.147
-0891 0928 0894 0855 -0869 -0.863 -0.880

0979 0971 0.965 0951 0989 0988 0992
0617 -0877 0217  -0.851 -0.699 0344 0943
0.630 0905 0.513 0657 0902 0.863 0838
0951  0.881 0.963 0865 0957 098 0972
0.103 -0.661 0.053 0416 0.144 0.845  -0409

0.968 0877 0.926 0953 0971 0958 0969
0895  0.859 0.688 0870 0944 0934 0870
0.540  0.730 0.072 0680 0713 0844 0674
-0.557 0.166 0568 0490 -0.254 0.897 -0.327
0716 0772 0705 -0.684 0409 0.640 -0.687

0716 0650 0739 0662 -0537 0714 -0.691
0908 -0.861 -0853 0922 0393 0350 -0.940
0.172 0822 0.706 0729 0.607 0895 0.793
0.090 0460 0209 0173 0276 0.556 0678

-0.243 0:396 0.101 0717 0071 0.726  0.687
0406 0611 0.585 0773 0858 0923 0889

wid

0.853
0.545
0.989
0981
0.903
-0.891

0.981
-0.767
0.463
0997
0.979

0.984
0.953
0.042
0.635
0.111

-0.719
-0.838
0.629
0.760

0.852
0.816

Orago

0.952
0.944
0.985
0.902
0.646
-0.907

0.990
-0.867
0.879
0.987
0.141

0.995
0.953
0.029
0.171
-0.132

-0.710
-0.950
0.855
0.674

0333
0.885

Notes: For description of variables see appendix. Except for ratio data, all variables are expressed as proportions of
population, or as rates per 100,000.
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TABLE A-VI
Standard errors for difference between factor loading matrices

- Unconstrained less constrained
One factor per province

Ad HB Tara Wgm Mad Nelson Cant W'd Omgo

Violence 0.074  0.085 0.068 0090 0.097 0.112 0064 0.114 0.070
Drunkenn's 0.071  0.064 0.043 0086 0.042 0063 0058 0.051 0.055
Overseas b. 0.017  0.021 0.017 0015 0.020 0.023 0.024 0.027 0.026
Irish bom 0.063 0.049 0.038 0.031 0.037 0.056 0.049 0.081 0.040
Adult males 0.009 0.010 0.009 0008 0.012 0017 0010 0017 0.011
Adult females 0.017 0.019 0.015 0.019 0.020 0019 0021 0018 0.022
Ratio men

0 women 0.014  0.024 0.015 0.015 0.029 0.038 0017 0039 0.025
Urban pop. 0020 0.014 0.015 0020 0.013 0013 0020 0019 0.017
Males 2140 0.016 0.023 0.017 0.014 0.026 0.041 0023 0044 0.026
Small dwligs 0.040  0.057 0.038 0075 0.057 0.081 0043 0.118 0.063
Total dwllgs 0.006 0.005 0.007 0.015 0.009 0.008 0010 0.017 0.007
Ratio small

to total dwligs 0.038  0.064 0.039 0.050 0.054 0.067 0047 0.076 0.063
Spirits cons'n 0.044 0.076 0.035 0.062 0.045 0.048 0054 0.101 0.076
Beer cons'n 0.024  0.030 0.020 0.033 0.046 0.041 0048 0.102 0.084
£ impons 0.084 0.038 0.038 0.137 0.025 0.040 0086 0.051 0.074
£ exports 0.055 0.086 0.120 0092 0.054 0.039 0049 0072 0.048
Manufact'g

HP 0.133 0.120 0.109 0.132  0.063 0062 0108 0241 0.115
Manufact'g

Employees 0034  0.030 0.031 0039 0030 0047 0041 0074 0.039
Police

numbers 0.019 0,023 0.032 0.018 0.038 0.033 0028 0043 0.025
Immigration 0.098 0215 0.097 0203 0058 0.082 0.169 0.101 0.149
Emigration 0122 0.042 0.042 0.166 0.041 0.039 0044 0167 0.116
Civil suits 0.039 0.052 0.095 0.055 0,065 0075 0078 0.097 0.059

Notes: For description of variables see appendix 1. Except for ratio data, all variables are expressed as proportions
of population, or as rates per 100,000.
Although the particular factor loading standard errors are tabulated relative to the variables for which they are
loadings, the table refers to factor loadings rather than variables, per se.
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Drunkenness Rates
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Spirits Consumption Rates
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Civil Suits Rates
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Percentage of Overseas Born
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Ratio of Adult Males to Adult Females
New Zealand provinces with maximum and minimum average ratea
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Policing Rates
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