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Frans N. Stokman

Graph Theoretical Elaboration of Cumulative Scaling Techniques

In this paper a graph theoretical elaboration of the stochastic cumulative scaling
model of Mokken1 will be given to determine:

a. cumulative scales of vertices on the basis of their relations with other vertices

in a simple graph;
b. cumulative scales of relations in a multigraph

In Stokman both graph theoretical elaborations are given and applied to (co)

sponsorship of resolutions in the United Nations General Assembly to determine

leadership structures among developing nations2. Felhng elaborated the apphca

bihty of the deterministic cumulative scaling model of Guttman to determine cu

mulative scales of relations m multigraphs3. Graph theoretical elaboration of the

stochastic scalmg model gives however certain new insights, that were not con

sidered by Felling.
In Section 1 we introduce a number of graph theoretical concepts that will be

used in the remainder of the paper. In Section 2 cumulative scales of vertices m a

simple graph are treated, in Section 3 cumulative scales of relations in a multigraph
After determination of the different cumulative dimensions of relations in a mui

tigraph, for each dimension a new graph can be generated and analyzed In Section

4 it will be shown how this can be done

1. Graph Theoretical Concepts4

A graph is an object, that contains vertices and edges, each edge being incident with

one or two vertices5. Let us consider
,
as an example, the graph that consists of the

vertices u, v, w, x, y, z and the edges a, b, c, d, e, f, g, h. The incidence relations are

given in Table 1 The graph is given in Figure 1.

1
Mokken, R. J., A Theory and Procedure of Scale Analysis. With applications m pohtical re

search, The Hague 1970.
2

See Stokman, Frans N., Roll CaUs and Sponsorship. A methodological analysis of Third

World group formation m the United Nations, Leiden 1977.
3

FeUing, A.J. A., Sociaal-netwerkanalyse, Alphen aan den Rijn 1974.
4

The presentation of the graph theoretical concepts is strongly based on Helmers, H M ,et al
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Table 1: Incidence Relations

edge incident with

a v and y

b X

c w and v

d u and x

e w

f y and w

g X

h u and x

Source: Helmers et. al., 1975, p. 112.

Figure 1: A Graph

y

Source: Helmers et. al., 1975, p. 115.

The edges e, g and b are only incident with one vertex. Such edges are calied

loops. The other edges are incident with two vertices. These two vertices are direct¬

ly connected by such edges. Two directly connected vertices are adjacent or neigh¬
bors. The vertex z has no neighbors. Such a vertex is an isolated vertex. The edges
d and h are both incident with u and x; such edges are parallel. The number of

parallel edges between two vertices is the multiplicity of that direct connection be¬

tween two vertices, also calied the muliplicity of the edges.

Graven naar macht. Op zoek naar de kern van de Nederlandse economie, Amsterdam 1975,
and Stokman, Roll CaUs.

For a more elaborate introduction the reader is refered to öre, Oystein, Graphs and Their Uses,
New York 1963; Harary, Frank, Graph Theory, Reading/Mass. 1969, and Harary, Frank, et.al.,

Structural Models: An Introduction to the Theory of Directed Graphs, New York 1965.

A directed graph is a graph in which each edge has a direction, from one vertex to another.

An edge, together with its direction, is calied an are. In this paper we consider only undirected

graphs. The stochastic scale model can also be applied in directed graphs; in that case the direc¬

tion of the arcs should be taken into account.
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A simple graph is a graph without loops and paraUel edges. If parallel edges (can)
occur in a graph, such a graph is caüed a multigraph. Information can be added to

the edges and/or vertices of a graph. A graph, together with the information

associated with its elements, is a network. Multigraphs can be represented as net¬

works, if adjacent vertices are connected by only one edge and the multiplicity of

the relation is added as information to that edge. In case of different kinds of rela¬

tions between elements a multigraph can be used as representation by adding the

kind of the relation as information to the edges. This Situation wiU be considered in

section 3. A graph is a bipartite graph, if the set of vertices of the graph is divided in

two disjoint, non-empty subsets in such a way that the vertices have no neighbors

within their own subset.

A graph or network can be used to generate other graphs or networks. Selection,

aggregation and induction are the main processes used to generate a new graph or

network from an existing one .

A new graph is generated by selection, if its elements (vertices, edges) are chosen

from the set of elements of the original graph. The new graph then consists of

the vertices and edges that satisfy the selection criteria. The selected edges must be

edges of the new graph, the vertices incident with each selected edge must be

selected vertices. A subgraph consists of a subset of the vertices of the original

graph and aU edges of the original graph of which both incident vertices belong to

the selected subset of vertices. A subgraph is generated by deleting a number of

vertices and aU edges that are incident with these vertices. A partial graph consists

of aU vertices of the original graph and a subset of edges of that graph. A partial

subgraph is a partial graph of a subgraph.
A new graph is generated by aggregation of vertices, if a subset of vertices in the

original graph is Condensed to a new vertex. Edges with both incident vertices with¬

in the subset became loops on the new vertex. Each edge between a vertex within

and a vertex outside the subset becomes an edge between the new vertex and the

vertex outside the subset. A new graph can also be generated by aggregation of

edges, for example by condensing paraUel edges to one new edge.
Induction is the third main process used to generate new graphs. In the case of

induction two vertices in the new graph are directly connected by an edge, if these

two vertices have a common neighbor in the original graph. The vertices of the in-

duced graph (calied inductees) are a subset of the vertices of the original graph. The

induction can be limited to common neighbors in a certain subset of vertices of the

original graph, caüed the subset of inductors. Each inductor induces edges between

the inductees to which it is adjacent.
As an ülustration, Figure 2 contains a bipartite graph. Each vertex in the first

subset represents a delegation, each vertex in the other subset represents a proposal.
A delegation and a proposal are connected by an edge if that delegation sponsored
that proposal. This graph can be used to generate other graphs or networks, in

particular those of co-sponsorship relations between delegations. The subset of in-

Anthonisse, Jac M., and Lageweg, B. J., Graphlib O, Amsterdam 1975.
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ductees are then the delegations, the subset of inductors the proposals. By induc¬

tion a new graph is generated, consisting of relations between delegations. Each pro¬

posal induces an edge between each pair of delegations, by which it was sponsored.
In the new graph two delegations are directly connected by as many edges as they
co-sponsored proposals. The relations in the new graph are therefore the co-spon¬

sorship relations between delegations. In this new graph parallel edges can be

aggregated; the multiplicity of the edges (the number of co-sponsored proposals) is

associated as information with each edge7.
For the analysis of a graph or network we consider here only the density, the

Connectivity and the component density of a graph. We ignore the multiplicity of

the edges. If the multiplicity is associated as information with the edges, we there¬

fore ignore that information for the moment. Later in this section we shall take that

information into account.

Figure 2: Induction

delegation a

delegation b

delegation c

delegation d

proposal 1

proposal 2

proposal 3

delegation e proposal 4

The bipartite graph between delegations and resolutions could have been represented as a

directed graph by associating a direction with each edge, e. g. from delegation to resolution.

AnalyticaUy this has no meaning because only Symmetrie relations can be distinguished be¬

tween delegations after induction, namely co-sponsorship relations.
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The density (a) of a graph is the fraction of adjacent vertices. In a graph with p

vertices and b neighbor relations (edges), the density is:

u

(i)
l/2p(p-l)

In bipartite graphs vertices of the same subset cannot be adjacent. This can be

taken into account by defining the density of a bipartite graph as:

a

=^77- (2)

in which q and r are the number of vertices in the two subsets.

If two vertices in a graph are not adjacent, they can be connected indirectly, e. g.

because they have a common neighbor. If two vertices are adjacent, indirect connec¬

tions between the two vertices can exist as well.

A path between vertex x and vertex y of a graph consists of an alternative se¬

quence of edges lj and vertices zj:

x, l^zj, ^zg, • * -»zk-l» 1k'V (3)

in which li is incident with x an zj, l£ incident with zj and Z2 etc. and 1^ inci¬

dent with z^_i and y.

The vertices x and y are joined by a path through the vertices zj and edges lj.
A graph consists of one or more components. Two vertices belong to the same

component if they are joined by a path; if two vertices are not joined by a path,

they belong to different components. A graph is connected if it has only one com¬

ponent, i. e. if every pair of vertices is joined by a path. A component is therefore a

maximal connected subgraph of the graph.
The Connectivity of a graph is the number of pairs of vertices, joined by a path,

as a fraction of all pairs of vertices in a graph. If the graph consists of s components

and the i-th component consists of pj vertices, the Connectivity of the graph is:

s

The Connectivity between two disjoint subsets Q and R of vertices of a graph is

based on all pairs of vertices, of which one vertex belongs to one subset and the

other to the other subset. If the i-th component contains qj vertices from the first

subset and rj vertices from the other subset, the Connectivity between the subsets Q

and R is:

1 s

CQR
=

oTT -^ 3iri <5>

The density is based on all pairs of vertices that are directly connected; the Connect¬

ivity is based on aU pairs of vertices that are connected, either directly of indirectly.
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Therefore we always have:

c > a

with equality if all pairs of vertices within aU components are adjacent.
In the density we expressed the number of adjacent vertices as a fraction of aU

pairs of vertices. We can also express the number of adjacent vertices in a graph as a

fraction of aU pairs of vertices that belong to the same component, because vertices

in different components cannot be adjacent. This component density is defined by:

b 2b

(6)
s s

S l/2Pi (K-l) s Pi (pj -i)
i=l i=i

The relation between the Connectivity, the component density and the density is:

a =

ac . c

For bipartite graphs the component density is defined by:
b

ac" "1 (7)
2 q. rj

i = l

Again we have:

a' -

ar CQR

One of the possibilities to take the multiplicity of the edges into account in the

analyses is a repeated (stepwise) analysis of the graph for different levels of multi¬

plicity. From the network we select a partial graph, containing only edges of a cer¬

tain level of multiplicity or higher, and we analyze that partial graph; we repeat that

for different levels of multiplicity, For example, we might analyze the network of

co-sponsorship relations for the following levels of multiplicity (m):

m>10;m>5;m> 2;m> 1

All edges of a partial graph at a higher level of multiplicity are contained in a graph
at a lower level of multiplicity; the graph at a lower level of multiplicity is obtained

by adding a number of edges to the partial graph at a higher level of multiplicity.
The graph at a higher level of multiplicity is nested in the graph at a lower level.
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2. Cumulative Scales of Vertices in a Simple Graph

In Figure 3 the stochastic cumulative scaling model of Mokken is given. We are

dealing with an underlying continuum 6 and two sets of elements (in the interview

Situation: subjects and items). Each subject has an unknown numerical value 0 on

the continuum. For each item we can draw a trace line, which gives the probabüity
of a positive response for the different subject values 0. Each item also has an un¬

known numerical value, £ ,
on that continuum 9. For theoretical reasons we make

the value ö * for item i equal to the value 0 of that subject that gives the positive re¬

sponse with probabüity of .5. In the stochastic scaling model of Mokken it is re¬

quired that the trace lines are doubly monotone or holomorphic: each trace line is

monotone non-decreasing for increasing subject values; the different trace line may

not intersect (see Figure 3).

Figure 3. Trace Lines for Four Holomorphic Items

probabüity

1.00

item 4 item 3 item 2 item 1 Ö-value-

We can represent the data on which we apply the Mokken-model, as a bipartite

graph. Each vertex in the first subset represents a subject, each vertex in the second sub¬

set represents an item. A subset and an item are directly connected by an edge if that

subject responds positively to that item. The structure of the data is equal to that

of Figure 2, the bipartite graph of sponsorship in the United Nations. It depends on

the theoretical perspective whether we consider the delegations as the subset of sub¬

jects or as the subset of items. In Stokman and Stokman and Van Schuur the dele¬

gations were considered as items and the resolutions as subjects, because we were
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interested in cumulative leadership scales of delegations8. We wül now consider

which implications the cumulative scaling model has for the structure of the net¬

work between items as induced by the subjects. In case ofthe sponsorship data we

therefore consider which implications a cumulative structure of the relations in the

bipartite graph between delegations and resolutions has for the network of co-spon¬

sorship relations between delegations, which was generated from the bipartite graph

by induction.

For a monotonely homogeneous set of k items it can be proven that all items, i, j

(i, j =1,2,..., k) are positively correlated. In Table 2 two items are cross-tabulated,

both in terms of frequencies and in terms of probabüities: nx gives the frequency

( tt. the fraction) of the subjects that respond positively to item i; n: gives the fre¬

quency^« the fraction) of the subjects that respond positively to item j. n++ is the

number of subjects (7T++ the fraction) that respond positively to both item 1 and

item j. For k items to form a cumulative scale it can now be proven that for all pairs

of these k items:

«¦++> ""i - "j
or

n_^ n. . n.

++>
i j

N N "N

Table 2. Cross-Tabulation of Two Items i andj

(a) (b)
in Terms of Frequency in Terms of Probabilities

itemj itemj

+ — + —

+
n++ n+_ ^

item i —

n_+ n N—nt itemi — TT TT
+

TT

l'-TT
. 1

n N-n N
J J

^ 1-7T
J J

1

The frequency n++ between items l and j is equal to the multiplicity of the edges

between item i and j in the induced network. Items form a cumulative scale only tf

the multiplicity of the edges between these items in the network induced by the

subjects ts larger than that expected in the case of random response . For the spon-

g
See Stokman, Roll CaUs and Stokman, Frans N., and Van Schuur, Wybrand H., Leadership

Dimensions among Developing Nations in the United Nations (reproduced in this volume).

Mokken uses the coefficient d)/(t) to measure the positive correlation between each
1 ^

max

pair of items. Loevinger's coefficient of scalability H is used tojudge the scalabilit} ofa whole

scale. This coefficient can be written as a function on the whole matrix of the CD/Ct) coef-

ficients (H .*s) between each pair of items (Mokken, 1970, 150). The procecure of multiple scal-
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sorship data it implies, that delegations form a cumulative (leadership) scale only if

the multiplicity of the edges between these delegations in the network of co-spon¬

sorship relations is larger than that expected in the case of random sponsorship.
Double monotony or holomorphism of the items can be checked by inspection

of two matrices, one matrix containing the fractions ff++ of aU pairs and another

matrix containing the fractions ff of aU pairs (see Table2 (b)). This check for

holomorphism is described by Mokken. Let us consider in particular the matrix of

the fractions ff++ ,
because this matrix corresponds to the network between the

items, as induced by the subjects. If the items are ordered according to their diffi¬

culty on the basis of the fraction of positive responses (i < j : TT. -^ff.), the fractions

ff++ in each row of the matrix should increase monotonely with column index j.
This is a necessary condition for a holomorphic set of items. This implies that the

highest ff++ fractions, corresponding with the highest multiplicities n++ in the net¬

work between items induced by the subjects, should be observed between the easiest

items, t. e. the items with the largest number of positive responses. For the sponsor¬

ship data it implies, that the highest multiplicities n++ should be observed between

the most active delegations. In Section 1 we considered a repeated analysis of a net¬

work. In this repeated analysis the minimal levels of multiplicities were decreased

with each step. This stepwise procedure works out in a very specific way, if we are

dealing with a network between items that form a doubly monotone cumulative

scale. In each step the repeated analysis of the network then results in one dense

component (and a number of isolated vertices). Moreover, over the consecutive

steps with decreasing multiplicities items will be added to the component in the or¬

der of decreasing item difficulty: first, the two easiest item form one component;

then, the next easiest items will be added to the component and so on until in the

last step the most difficult item will be added to the component. We may therefore
conclude that the existence of one component with a high component density (ac)
at the different levels of multiplicity in an induced network indicates that the rela¬

tions are cumulative in the graph that generated that network.

ing selects items from a set of items in such a way that the scale coefficient H is maximized. It

can be conceived as a Cluster procedure on the network between items, as induced by the sub¬

jects. However, in this procedure we do not weight the edges according to their multiplicity

(n^): here we make the weight of an edge between items i andj equal to the correlation coef¬

ficient Hj:.
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3. Cumulative Scales of Relations in a Multigraph

The stochastic scaling model of Mokken can also be used to test the cumulative

character of relations in a multigraph10. Let us consider a network of p vertices and

k different relations between these p vertices. We therefore consider k different

graphs, defined on the same set of vertices. The k graphs can be represented in one

multigraph by associating the relation as information with the edge. In the example

of the co-sponsorship data we consider the co-sponsorship relations separately for k

issues. We therefore consider k different graphs of co-sponsorship relations between

the p delegations; two delegations are directly connected by an edge in the itn

graph, if they co-sponsored one or more proposals on issue i. The different relations

can now be considered as the items in the scale model; ez.cn pair of vertices is con¬

sidered as a respondent or subject in the scale model11; the existence of an edge in

the itn graph between a pair of vertices is equivalent to a positive response of a sub¬

ject to that item in the scale model. The density in the itn graph is related to the

difficulty of the itn item (the item difficulty) in the scale model. For a holo¬

morphic set of items the order of the fractions 7Tj in the population (see Table 2) are

determined by the order of the item difficultiesS-v The sample fraction Pj is an un¬

biased and relatively precise estimate of the population fractions TT[12. The density

of the i*" graph is the fraction of pairs of vertices between which the itn relation

has been observed. The density of the **" graph is therefore equal to the population

fraction 7Tj or can be used as an unbiased and relatively precise estimate ofit. The

graph theoretical elaboration of the stochastic cumulative scaling model gives the

density of the graph therefore a number of desirable conceptual and Statistical

properties.
We conclude that the different cumulative dimensions of relations in a multigraph

can be determined with the theory and procedures of scale analysis as developed by

Mokken.

The applicability of the theory and procedure of scale analysis in multigraphs was elaborated

by Mokken and the author in the context of a research project on economic and political power.
In table 2 N is therefore equal to 1/2 p (p— 1), the total number of pairs of vertices in the

|raph.
Mokken, Theory and Procedure, pp 126—8.
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4. Generation and Analysis of the Networks for Each Cumulative

Dimension of Relations

Scale analysis of the different relations in a multigraph, discussed in the last section,
results in one or more cumulative scales of relations. These scales can now be used

to generate networks between the vertices for each cumulative dimension separately.
These networks can then be analyzed to determine the structure and central vertices

for the different dimensions.

Suppose k relations formed a cumulative scale over pairs of vertices. In the

example of the co-sponsorship data, suppose that co-sponsorship is cumulative over

k issues. We can now determine the summation score for each pair of vertices over

these k relations: the number of relations that has been observed between that pair

of vertices. In the model of scale analysis this score is known as the score of a re¬

sponse pattern. It is a good estimate of the order of the pairs of vertices (the sub¬

jects) on the underlying dimension of relations . For each cumulative dimension

of relations we therefore generate a network in which the weight of the edges is

equal to the summation score over the k relations in the scale. These networks can

then be analyzed with graph theoretical concepts and measures to determine the

structure and central vertices.

An example of such an elementary graph analysis of networks for different cumu

lative dimensions of relations can be found in Stokman . In the period 1960—63

two cumulative dimensions of co-sponsorship relations existed among the develop¬

ing nations: one of colonial issues and one of socio-economic issues. We therefore

generated two networks among the developing nations: a colonial network and

a socio-economic network, the weights of the edges being the summation score over

the issues in the issue dimension. Particularly the relations within Latin America

and those between Latin America and Afro-Asia were quite different for the two

networks.

13

Op. cit.,pp. 128-129.
14

Stokman, Roll CaUs.
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