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1. Introduction

Economic decisions often involve a significant amount of uncertainty. A thorough understanding

of economic decision making is therefore only possible by investigating how people actually form

probability judgments. Economic theory typically assumes that decisions will be consistent with

the basic laws of probability theory. In contrast, a large number of experimental studies has

shown that humans frequently make mistakes in processing probabilistic information.1 Despite the

extensive experimental evidence, three important questions have received little attention so far:

Can the cognitive biases we observe in laboratory subject pools also be documented in the general

population? To what extent are individual characteristics, such as measures of cognitive ability,

related to biased probability judgment? And, finally, are biases in probability judgment related to

individual economic outcomes?

In this paper we address these questions about individual decision making under uncertainty by

directly measuring the capability for probability judgment in a representative sample of more than

one thousand individuals drawn randomly from the adult population in Germany. This procedure

allows us to explore the pervasiveness of cognitive biases in the general population. In a second

step, we study the determinants of biased probability judgment, with a particular focus on respon-

dents’ education levels and cognitive abilities. Finally, we assess the relationship between biased

probability judgment and individual economic outcomes.

We elicit respondents’ abilities in probabilistic reasoning via a survey question that addresses

two fundamental biases in probability judgment. The first bias, which is often referred to as the

“gambler’s fallacy”, induces individuals to view random processes as having self-correcting proper-

ties, which is in direct contradiction to the principle of independence between random outcomes.

The gambler’s fallacy has been widely discussed in the literature, starting with a famous essay by

Laplace (1820). In the paper “Concerning Illusions in the Estimation of Probabilities”, Laplace

states:

1See for example Tversky and Kahneman (1971), Grether (1980), Charness and Levin (2005). A comprehensive
overview is given by Conlisk (1996).
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When a number in the lottery of France has not been drawn for a long time, the crowd is
eager to cover it with stakes. They judge since the number has not been drawn for a long
time that it ought at the next drawing to be drawn in preference to others. So common an
error appears to me to rest upon an illusion by which one is carried back involuntarily to the
origin of events. It is, for example, very improbable that at the play of heads and tails one
will throw heads ten times in succession. This improbability which strikes us indeed when it
has happened nine times, leads us to believe that at the tenth throw tails will be thrown. (p.
161ff)

We designed our probability task such that respondents were confronted with the following series

of eight tosses of a fair coin: tails - tails - tails - heads - tails - heads - heads - heads. Respondents

then had to indicate the probability with which tails occurs in the next toss of the coin. The correct

answer is 50%, as the coin tosses are independent of each other. Since the sequence ends with a

streak of three heads, the gambler’s fallacy would lead respondents to predict that tails comes up

with a probability of more than 50%. The opposite bias, the so-called “hot hand fallacy”, implies

the belief that the streak of heads at the end of the sequence is likely to be continued. Thus,

the hot hand fallacy would lead respondents to indicate a probability of less than 50%.2 Since

the terms gambler’s fallacy and hot hand fallacy are well established in the literature, and for the

sake of clarity, we will continue to use these terms as synonyms for the two fundamental biases in

probability judgment under investigation in the remainder of the paper.

The probability task was administered to a sample of more than 1,000 individuals, drawn to

be representative of the German population. Results show that 60.4% of the respondents give the

correct answer. Thus, a majority of the respondents is aware of the independence between random

outcomes. Among the incorrect answers, the gambler’s fallacy is the most frequent bias: 21.1%

of the respondents overestimate the probability for tails. In contrast, 8.8% answer in line with

the hot hand fallacy, as they underestimate this probability. The answer “I don’t know” is given

by 9.6% of the sample. Our findings have two important implications: first, a substantial share

of the population seems to lack basic knowledge about stochastic processes and therefore exhibits

biased probability judgment. Second, the biases we observe are systematic, as deviations from the

normative solution are not distributed randomly. Rather, among people who make a mistake, the

gambler’s fallacy is the predominant bias.

2The term hot hand derives from basketball, where players who make a shot are often believed to be more likely
to hit the next shot, in contrast to players who miss a shot (see for example Gilovich et al., 1985).
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In order to address the determinants of biased probability judgment, the survey elicited a number

of background variables such as education, age, and gender. Our empirical analysis shows that

more educated people are much more likely to answer correctly. Moreover, we find a gender effect,

with women being less likely to give the correct answer. A special advantage of the data set

is that it includes two cognitive performance tasks that distinguish between two components of

intellectual ability (Lang et al., 2007). One test assesses perceptual speed and is designed to

measure the mechanics of cognition, i.e. the hard-wired biology-related capacities of information

processing (also often referred to as fluid intelligence). The other test measures word fluency

which proxies for educational and experience-related competencies, i.e. knowledge (also referred

to as crystallized intelligence).3 These measures relate to respondents’ answers in plausible ways:

whereas the measure for knowledge is positively correlated with answers to the probability question,

the measure for perceptual speed has no explanatory power.4 This finding is consistent with the

view that a correct perception of the independence between random outcomes relies mainly on

acquired knowledge, not on respondents’ mechanical cognitive functions.

As uncertainty is a crucial factor in many economic decisions, one would expect that biased

probability judgment is related to individual economic outcomes. The gambler’s fallacy and the

hot hand fallacy are likely to affect economic decision making in domains where people base their

decisions on a sequence of realizations of a random process. In particular, these two biases should

matter in situations where a streak of similar outcomes has occurred prior to the decision and imply

opposite predictions for economic outcomes. Our data contain information about behavior in two

domains where the specific forms of judgment biases studied in this paper are potentially relevant:

job search decisions by an unemployed person and consumption decisions by a cash-constrained

consumer.

In the empirical analysis, we find that being prone to the gambler’s fallacy is not associated

with a significantly higher probability of being long-term unemployed, while being prone to the hot

hand fallacy implies a significantly higher probability of long-term unemployment.5 The results

3See also the seminal contribution by Cattell (1963).
4Based on data from a web-based experiment among a sample of university students, Oechssler et al. (2009) report

that higher cognitive ability is associated with lower incidences of biased judgment.
5Probit estimates indicate that exhibiting the hot hand fallacy is associated with a 6.1%-point increase in the

probability of being long-term unemployed, controlling for background characteristics such as age, gender, years of
schooling, and household wealth.

3
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also suggest that financial behavior is related to people’s ability to form probability judgments,

with people who exhibit the gambler’s fallacy being significantly more likely to overdraw their

bank account.6 These distinct effects are noteworthy, as they point at potentially very different

implications for distinct biases in probability judgment. Of course, one has to be very careful

in interpreting these empirical findings, as job search decisions and financial decisions are highly

complex and likely to be influenced by many other factors, including institutions, preferences and

abilities other than probability judgment. Nevertheless, our findings allow us to speculate about

a direct link between people’s perception of probabilities and their actual economic decisions. In

particular, the finding that the hot hand fallacy appears to be important in job search decisions,

whereas the gambler’s fallacy appears relevant for financial decisions suggests that it is not biased

probability judgment per se that determines economic outcomes, but rather the specific form of a

person’s bias within the particular context in which economic decisions are made.

Our paper contributes to the recent literature on cognitive biases and the gambler’s fallacy

by presenting results from a representative sample, which allows us to draw conclusions about

cognitive biases in the general population.7 Rabin (2002) has shown from a theoretical perspective

that the gambler’s fallacy can be interpreted as people’s tendency to exaggerate the degree to

which a small sample reflects the properties of the underlying data generating process. A number

of empirical studies has used field data to investigate probability judgment biases. Clotfelter and

Cook (1993) demonstrate that lottery players act in line with the gambler’s fallacy: evidence from

the Maryland state lottery shows that in the days after a winning number has been drawn, betting

on this particular number drops significantly. Terrell (1994) investigates field data from horse races

and finds that betting behavior is consistent with the gambler’s fallacy. Croson and Sundali (2005)

investigate the betting behavior of roulette players in a casino in Reno, Nevada. They find that a

long streak of the same outcome leads players to bet disproportionately on the opposite outcome.

For example, a streak of 5 times red in a row leads to significantly more bets on black. Note

that all these studies rely on aggregate data, as for instance the total number of bets placed on a

particular number. In contrast, an important feature of our analysis is that we elicit individual data

6Being prone to the gambler’s fallacy increases a person’s probability for having an overdrawn bank account by
8.8%-points, while the share of people with an overdrawn bank account in the total sample is 16.6%.

7For instance, Hogarth (2005) argues in favor of a more representative design of empirical research in economics
and a more careful assessment of the circumstances under which evidence from experiments can be generalized to
the population at large.
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about respondents’ perception of probabilities. Moreover, our data set contains information about

respondents’ educational background, cognitive ability, and individual economic outcomes. Our

findings therefore complement recent evidence on financial literacy (see, e.g., Lusardi and Mitchell,

2007, 2008) in the population by shedding new light on how individuals judge probabilities.

Several studies have argued that the effectiveness of policy measures could be improved by

taking into account that a substantial part of the population exhibits non-standard decision making

patterns (Bernheim and Rangel, 2007; Bertrand et al., 2004). As a first step in this direction, the

methodology employed in this paper can inform policy makers about the actual prevalence of

probability judgment biases and about the way in which these biases affect economic outcomes.

From an applied perspective, our findings have straightforward implications for the design of policy

measures on the labor market and in the domain of household debt counseling. Our results suggest

that better education of boundedly-rational agents might help ’de-bias’ them, and therefore help

them to make better decisions, without limiting the freedom of agents who decide optimally in the

first place (Camerer et al., 2003; Thaler and Sunstein, 2003).

The remainder of the paper is structured as follows: Section 2 contains a description of the

data. Section 3 presents evidence on the pervasiveness of cognitive biases in the population and

addresses the determinants of these biases. The link between biased probability judgment and

economic outcomes is explored in Section 4, and Section 5 concludes.

2. Data

The data set under investigation consists of 1,012 observations and is a representative sample

of the population living in Germany aged 16 years and older. The data were collected by the

professional interview group TNS Infratest in June and July 2005. Households were contacted

by interviewers according to the Random Route Method (see Fowler, 2002) and one person per

household was surveyed. All interviewers used the Computer Assisted Personal Interview (CAPI)

procedure, administering questions and collecting answers with the help of a notebook computer.

To elicit respondents’ abilities in making probability judgments, we used the following question

(translated from German):8

8The exact wording was: “Nehmen Sie an, Sie werfen eine Münze, die gleichmäßig auf die eine oder die andere
Seite fällt. Nach acht Würfen beobachten Sie folgendes Ergebnis: Zahl - Zahl - Zahl - Kopf - Zahl - Kopf - Kopf -
Kopf. Wie hoch ist die Wahrscheinlichkeit, ausgedrückt in Prozent, dass der nächste Wurf ‘Zahl’ ist?”.

5
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Imagine you are tossing a fair coin. After eight tosses you observe the following result:
tails - tails - tails - heads - tails - heads - heads - heads. What is the probability, in
percent, that the next toss is “tails”?

We chose the sequence of outcomes such that the overall occurrence of tails in the sample is in-

deed 50% (4 out of 8), to avoid raising doubts among the respondents about the coin being fair.

Respondents had to answer with a number between 0% and 100%. Alternatively, they had the

possibility to answer “I don’t know”. The correct answer is 50%, as the coin is fair and the tosses

are independent of each other.

In order to address the determinants of biased probability judgment, the data contain a number

of socioeconomic background variables such as education, age, gender, income, and wealth. A novel

feature of the survey is that it elicited measures of respondents’ cognitive abilities. The design of

these measures is based on the two-component theory of cognitive ability, originating from research

in developmental psychology (Lang et al., 2005). According to this theory, cognitive ability can be

broadly divided into cognitive mechanics and cognitive pragmatics (Baltes et al., 2006; Lindenberger

and Baltes, 1997). The mechanics of cognition (fluid intelligence) reflect fundamental organizational

properties of the central nervous system (Singer, 1995). In contrast, the cognitive pragmatics

(crystallized intelligence) reflect the knowledge-based domain of cognitive ability. Examples of the

mechanics of cognition include the speed, the accuracy, and the coordination of cognitive processing

operations. Examples of pragmatics include reading and writing skills, educational qualifications,

and professional skills.

Respondents’ performances in the domain of cognitive mechanics was assessed via a symbol-digit

test that has been designed to measure perceptual speed. For this test, respondents had to match

the correct digit to symbols on the computer screen. They had to match as many symbol-digit pairs

as possible within a time frame of 90 seconds. The CAPI method allows for a direct measurement

of performance, registering decisions through software that was running in the background. In

the area of cognitive pragmatics, a word fluency test was used to elicit a measure of respondents’

general knowledge. The test asked participants to name as many distinct animals as possible in 90

seconds. Lang et al. (2007) and Lang et al. (2005) describe the design of these tests in more detail

and examine the validity, internal consistency and retest-reliability of the measures.

Regarding the impact of biased probability judgment on economic behavior, our research ques-

tion leads us to focus on two specific domains: respondents’ employment status and respondents’

6
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financial situations. With respect to employment status, the data contain information on whether

respondents are registered as unemployed. Moreover, respondents have to indicate whether they

are long-term unemployed, i.e., unemployed for 12 months and longer. To address respondents’

financial situations, they are asked about the number of days (per year) their bank account is

overdrawn, and whether their account is currently overdrawn at the time of the interview.

Sample statistics are shown in Table 1. About 53.7% of the sample are female, average age is

47.6 years, and respondents have on average 10.3 years of schooling.9 The measures for cognitive

ability have a mean value of 28.3 (symbol-digit test) and 22.9 (word fluency test). For the empirical

analysis, both cognitive ability measures are standardized to have variance one and mean zero.

Histograms of the two standardized measures are presented in Figure 1. Note that the shape of

both distributions resembles a normal distribution. With regard to the economic outcome variables,

11.4% of the respondents are unemployed, and 16.6% indicate that their bank account is overdrawn

at the time of the interview.

3. Pervasiveness and Determinants of Biased Probability Judgment

In this section we document the pervasiveness of cognitive biases in a representative sample

of the German population. We then proceed to address the determinants of biased probability

judgment. Responses to the probability question are shown in the histogram in Figure 2(a). We

find that 60.4% of the survey participants gave the correct answer of 50%. Thus, a majority of the

respondents knows that the toss of a coin does not depend on outcomes of previous tosses. However,

39.6% seem to lack a basic understanding of probability theory. The answer “I don’t know” is given

by 9.6% of the respondents. As can be seen from the histogram, the remaining incorrect answers

are spread out over the full range of the answer space, from 1% to 100%. The average estimate for

tails to come up in the next coin toss is a probability of 54.2%. Recall that, as the sequence in our

setting ends with a streak of three heads, the gambler’s fallacy leads respondents to an estimate of

more than 50%. In contrast, the hot hand fallacy implies an estimate of less than 50%. We find that

the gambler’s fallacy is exhibited by 21.1% of the respondents, whereas 8.8% of the respondents

are prone to the hot hand fallacy. Figures 2(b) and 2(c) display histograms of the responses of

9There are two types of high school in Germany, vocational and university-track. Individuals opting for the
vocational track leave school after 9 or 10 years and then typically go on to do an apprenticeship or vocational
training. Individuals in the university-track complete an exam, the Abitur, that qualifies an individual to attend
university after 12-13 years (depending on the state).

7
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individuals who exhibit the gambler’s fallacy and the hot hand fallacy, respectively. The average

estimate for tails to come up in the next coin toss is a probability of 79.2% for individuals prone to

the gambler’s fallacy, and 22.9% for individuals prone to the hot hand fallacy.

The fact that the gambler’s fallacy is by far more pervasive than the hot hand fallacy indicates

that respondents display systematic biases. This relates our results to an important debate in

economics and in cognitive psychology (see Conlisk, 1996; Stanovich and West, 2000) . According to

one side of this debate, observing non-normative answers does not prove that people are boundedly

rational. Theoretically, mistakes could be observed even if respondents were fully rational, e.g., due

to lack of concentration or due to lack of motivation. However, one would expect such mistakes to

be random noise, without a systematic pattern. If the mistakes in our sample were indeed random

noise, the share of people who exhibit the gambler’s fallacy and the share of people who exhibit the

hot hand fallacy should be of approximately equal size. This is clearly not the case, as the gambler’s

fallacy is more than twice as frequent as the hot hand fallacy. Moreover, a Shapiro-Wilkinson Test

rejects the null hypothesis of a Gaussian distribution of the deviations from the normatively correct

answer at any conventional significance level (p < 0.001). Therefore, our findings indicate that the

pattern of non-normative answers is systematic.

An explanation for the fact that the gambler’s fallacy is the dominant bias in our setting is

suggested by the work of Ayton and Fischer (2004). In their study, subjects were presented with

sequences of binary outcomes that had either a high rate of alternations, or a high rate of streaks.

Subjects then had to guess whether a given sequence was derived from human performance (e.g.,

hits and misses of a professional basketball player during a game), or from an inanimate chance

process (e.g., heads and tails in the successive tosses of a fair coin). Their study demonstrates that

subjects were more likely to attribute sequences with many streaks to human skilled performance.

In contrast, sequences with high rates of alternation were attributed to inanimate chance processes.

Our results are complementary to these findings, as they show that people who make predictions

regarding the outcome of an inanimate chance process tend to overestimate the occurrence of

alternations, whereas the belief in streaks is relatively infrequent.

Regarding the determinants of biased probability judgment, several basic insights already emerge

from the descriptive statistics. Table 2 provides a look at participants’ answers, stratified by

education, age, and gender. With respect to high school education, we see that people with more

than 10 years of schooling have a relatively high propensity to answer correctly (72.6% vs. 54.5% of

8
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people with 10 years of schooling or less). Moreover, people with more than 10 years of schooling

are very unlikely to either exhibit the hot hand fallacy (4.6%) or to answer “I don’t know” (4.3%).

Still, they frequently exhibit the gambler’s fallacy: 18.5% of them estimate the probability of tails

in the next toss to be higher than 50%. This finding suggests that the gambler’s fallacy is prevalent

even among highly educated individuals.

Looking at the control variables, we find that gender is an important factor: 65.6% of men give

the correct answer, whereas only 56.0% of women do so. In particular, women are much more likely

to answer “I don’t know”. Younger people (below 50 years of age) are more likely to give the correct

answer, but they are also more prone to the gambler’s fallacy. Older people are much more likely

to answer “I don’t know” (16.2% vs. 4.5%).

In the following regression analysis we test whether these determinants are statistically signif-

icant and robust to controlling for background characteristics. Table 3 presents probit estimates

with the dependent variable being equal to 1 if a respondent gives the correct answer of 50%.10

It turns out that the effect of schooling is large and significant: an additional year of schooling is

related to an increase in the probability of giving the correct answer of about 4.5 percentage points

(p < 0.01), controlling for cognitive ability. As the baseline of correct answers in the total sample

is 60.4%, this effect is quite sizeable. For the cognitive ability measures, we see that the coefficient

for the word fluency measure is large and significant, whereas the coefficient for the perceptual

speed measure is small and insignificant. These results suggest that the cognitive pragmatics (gen-

eral knowledge) have a decisive impact on giving the correct answer, whereas mechanical cognitive

ability (perceptual speed, quick comprehension) is not relevant to answering the question at hand.

Given that the task does not involve computational skills but is rather testing knowledge that is

part of general education, this is a plausible finding. Regarding the control variables, we find a

significant gender effect that persists even if we include age, cognitive ability and years of schooling

in the regression. According to the estimates, the probability of giving the correct answer is almost

10 percentage points lower for women (p < 0.01).11

10For simplicity, answering “I don’t know” is categorized as a wrong answer in these regressions. If we exclude
these observations from the analysis (i.e., categorize them as missing), the results are very similar. The coefficients for
gender and years of schooling remain highly significant, only the word fluency measure turns out to be insignificant.

11A similar gender effect has been shown by Charness and Levin (2005), who conducted a laboratory experiment
to test under which circumstances individual behavior in a probabilistic decision making task is consistent with
standard economic theory. Our data allows us to show in a representative sample that the gender effect persists
when we control for background characteristics.

9
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To address the interplay between the nature of participants’ cognitive biases and their back-

ground characteristics in more detail, we estimate multinomial logit and multinomial probit models

(Table 4). These regression methods allow us to determine whether the differences between the

separate answer categories are statistically significant. The dependent variable indicates in which

of the four categories a respondent’s answer is located: either it is correct, or it is consistent with

either the gambler’s fallacy or the hot hand fallacy, or the respondent answered “I don’t know”.

In the estimations, the reference group consists of those respondents who answered the probability

question correctly. This allows us to analyze which factors determine whether a respondent exhibits

a particular bias. The estimates confirm our earlier descriptive analysis. For instance, the effect of

years of schooling is highly significant: schooling reduces the probability of making a mistake. This

finding holds for each of the three possible mistakes, be it the hot hand fallacy, the gambler’s fallacy,

or the answer “I don’t know”. Remarkably, the effect of schooling is quite asymmetric: Whereas

more schooling protects people from committing the hot hand fallacy (coefficient -0.293, p < 0.01

when controlling for word fluency in the multinomial logit estimations; coefficient -0.294, p < 0.01

when controlling for perceptual speed in the multinomial logit estimations), its impact on averting

the gambler’s fallacy is considerably weaker (coefficients of -0.122, p = 0.02 and -0.144, p < 0.01,

respectively). This is in line with the descriptive evidence which showed that the gambler’s fallacy is

quite common among highly educated individuals, whereas the hot hand fallacy is mostly confined

to respondents with 10 years of schooling or less. With regard to the control variables, we find that

women and older people are significantly more likely to answer “I don’t know”.

Taken together, our findings regarding the determinants of biased probability judgment all point

in the same direction: more schooling increases the likelihood that a respondent gives the correct

answer in the probability task. From a policy perspective, it is important to stress that schooling

has an effect on probability judgment beyond the impact that works through cognitive abilities.

A competing hypothesis would be that the only determinant of probability judgment is cognitive

ability, which also related to the amount of schooling a given person obtains. To avoid this confound,

we controlled for cognitive ability in all regressions by including measures of respondents’ word

fluency and perceptual speeds. As the coefficient on years of schooling remains highly significant,

the estimates suggest that schooling directly affects people’s capability for probability judgment.

10
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4. Economic Outcomes and Biased Probability Judgment

Uncertainty is a crucial factor in many economic decisions. One would therefore expect that

biased probability judgment can have a detrimental effect on individual economic outcomes. We

investigate two domains in which decisions are of a nature that closely resembles the structure of

our probability judgment task: job search decisions by an unemployed person and consumption

decisions by a cash-constrained consumer. In the following, we first develop predictions of how the

gambler’s fallacy and the hot hand fallacy might affect decision making in these domains. In a

second step we investigate the hypotheses in our data set.

4.1. Behavioral Predictions

The biases that are the focus of this paper are likely to affect economic decision making in

domains where agents base their decisions on a sequence of realizations of a random process. A

straightforward example of such an environment can be found in the domain of job search. As

a thought experiment, assume that a person is looking for a job and sends out a number of ap-

plications. The relevant sequence of random outcomes consists then of the reactions that the job

seeker receives to his applications: they can be either negative (a rejection) or positive (a job offer).

After observing the realization of a sequence of outcomes, the job seeker has to decide whether to

continue his search for a job or not.

Of course, many factors can play a role in the job finding process. For instance, the institutional

environment, the particular skills of a job-seeker, as well as his previous work experience might have

a large influence on success in the labor market. Still, our approach allows us to speculate about

an additional influence that might play a role on top of these factors: the impact of a job-seeker’s

perception of probabilities on actual job search behavior. Given the nature of the cognitive biases we

investigate, we are interested mainly in situations where a streak of similar outcomes has occurred

prior to the decision. Consider the case in which a job seeker has received a streak of rejections, and

suppose that, as is standard in search models, search outcomes are independent from each other.

The probability of generating a job offer is only related to search intensity, a choice variable of the

searcher. Then, the two probability judgment biases, gambler’s fallacy and hot hand fallacy, would

imply different predictions: a person who is prone to the gambler’s fallacy should believe that the

streak of rejections is going to end, which implies that a job offer has now become more likely. As

a consequence, the unemployed will be encouraged to continue his search for a job. In contrast, a

11
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person who is prone to the hot hand fallacy is going to believe that the streak of rejections is likely

to continue. Given this belief, the worker will become discouraged and may give up his search for a

job altogether. One would therefore predict that job-seekers who are prone to the gambler’s fallacy

face a high probability of leaving unemployment. In contrast, the hot hand fallacy can lead to

prolonged unemployment by biasing the job-seeker’s beliefs about his job finding probability such

that they become too pessimistic.12 Note that, due to the need for a streak of rejections to occur,

our prediction is unlikely to affect persons who just became unemployed a short while ago. Rather,

we would expect the detrimental effect of the hot hand fallacy to play a role for job seekers who

have been unemployed for a long time.13

Another domain where biased probability judgment might have a substantial effect on economic

behavior is in the domain of consumption decisions. Assume that a cash-constrained consumer has

to decide whether to make a large purchase that exceeds the amount of funds that is currently

available in his bank account. Thus, in order to make the purchase, the consumer would have to

overdraw his account. In this context, the sequence of random outcomes on which the decision

is based can be thought of as unexpected idiosyncratic income shocks that are either positive

(e.g., finding a bank note on the sidewalk, winning money in a game of poker with friends) or

negative (e.g., receiving a speeding ticket, having a bill to pay that is higher than anticipated). The

consumption decision will then depend on the belief whether it is likely that a positive income shock

occurs in the near future. If this probability is high, it is optimal to overdraw the bank account for

the short period until the positive income shock is realized. If, instead, this probability is low, it is

optimal to postpone the purchase until it can be made without overdrawing the account.

12In the opposite case (in which a streak of job offers has occurred) the theoretical predictions are less clear. Here,
it is very likely that both a gambler’s fallacy type and a hot hand fallacy type are going to accept one of the job
offers and therefore stop searching for a job.

13The assumption of a stationary job finding probability, with job offers arriving at a fixed Poisson rate – and
therefore the independence of subsequent realizations of job search outcomes – is standard in the search literature.
Exceptions are papers considering inherently non-stationary subjective job finding probabilities in an environment
in which there is employer stigma, or in which the unemployed have imperfect information about their stationary
job finding probability and update their subjective beliefs about this probability. In this context, the unemployed’s
personal job search history (i.e., past realizations) matters and may lead to a discouraged worker effect, see Falk et
al. (2006a, 2006b). These cases would leave the hypotheses arising from biased probability judgment unaffected. For
instance, even in a model with learning about the job finding probability, one would predict that a hot hand fallacy
type reduces search intensity faster than people without bias in probability judgment, or gambler’s fallacy types, after
a streak of negative search outcomes for a given job finding rate. This is because hot hand fallacy types overvalue
the information content of a streak of negative outcomes since they would predict future outcomes to be more likely
to be negative than they really are. Thus, although updating might be the channel through which searchers become
long-term unemployed, the underlying reason for hot hand fallacy types to become discouraged faster is their biased
probability judgment.

12
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Again, we are interested in a situation where the decision maker has experienced a streak of

similar outcomes. Consider the case in which a streak of negative income shocks has occurred.

The probability judgment biases lead to the following behavioral predictions: if the consumer is

prone to the gambler’s fallacy, he will have the belief that the streak of negative income shocks

is likely to end, such that a positive income shock will realize with a high probability in the near

future. Thus, his inclination to overdraw the bank account in order to make the purchase will be

high. In contrast, the hot hand fallacy will lead to the opposite prediction: if the consumer believes

that the streak of negative income shocks is likely to continue, he will refrain from overdrawing his

account and will not make the purchase.14 In sum, a person who is prone to the gambler’s fallacy is

predicted to be more likely to have an overdrawn bank account, as the biased belief that a positive

income shock is “due” can lead to persistent household debt. By contrast, a person who is prone

to the hot hand fallacy will be less likely to have an overdrawn bank account.

4.2. Empirical Results

To test the predictions regarding employment status with our data, we run two sets of regres-

sions. First, we estimate a probit model in which the dependent variable is a dummy equal to

one if the respondent is registered as unemployed at the time of the interview. In a second set of

regressions, the dependent variable is an indicator for whether the respondent is long-term unem-

ployed, i.e., registered as unemployed for 12 months or more. As explanatory variables, we include

dummies for the observed cognitive biases: the gambler’s fallacy, the hot hand fallacy, and the

answer “I don’t know”. The reference group consists therefore of those respondents who answered

the probability judgment task correctly. Results from regressions with the unemployment dummy

as dependent variable are presented in Table 5. In column (1) we control only for age and gender

and find that both the hot hand dummy and the gambler’s fallacy dummy are positive and weakly

significant. Adding controls for education and for wealth renders both coefficients insignificant, see

columns (2) and (3).

In light of the hypotheses described before, our analysis next turns to persons who have been

looking for a job for an extended period of time. Columns (4) to (6) present results from regres-

14Predictions in the opposite case (in which a streak of positive income shocks has occurred) are ambiguous: if the
consumer is prone to the hot hand fallacy, he will believe that the positive income shocks are going to continue and
he will decide to make the large purchase. If the respondent is prone to the gambler’s fallacy instead, he will expect
that a negative income shock is likely to occur in the near future. Still, if the streak of positive income shocks has
led to a large amount of funds available in his account, he might nevertheless make the purchase.
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sions where the dependent variable is a dummy equal to one for respondents who are long-term

unemployed. The explanatory variables are the same variables as before. Our estimates show that,

controlling for age and gender, the hot hand fallacy is positive and significant at the 1%-level. Thus,

the results are consistent with the behavioral predictions regarding the effect of the hot hand fallacy

on long-term unemployment. If, in addition, we control for respondents’ educational background,

the coefficient for the hot hand fallacy remains significant at the 5%-level. Even if we control for

education and wealth, the coefficient for the hot hand fallacy dummy remains significant at the

10%-level and the marginal effect indicates that the probability of being long-term unemployed

is increased by 6.1%-points.15 Given that the baseline of long-term unemployment in the sample

is 6.8%, this is a considerable effect. We therefore conclude that our predictions regarding the

detrimental effect of the hot hand fallacy are supported in case of long-term unemployed job seek-

ers. Moreover, we find for all specifications that the gambler’s fallacy has no significant effect on

employment status, which is again in line with our predictions.

Next, we empirically test the predictions regarding consumption decisions of cash-constrained

consumers. To this aim, we analyze the interplay of probability judgment biases and the decision

to overdraw one’s bank account. In a first set of regressions, the dependent variable indicates how

many days per year a respondent’s bank account is overdrawn. The variable can take on four

distinct values, as the set of possible responses consisted of four intervals (0 days, 1 to 30, 31 to 90,

more than 90 days). As explanatory variables we include again the dummies for whether a person

exhibits a bias in probability judgment, with the reference group being those respondents who gave

the correct answer to the probability task. Results of ordered probit regressions are presented in

columns (1) to (3) of Table 6. The estimates show that the dummy for whether a respondent is

prone to the gambler’s fallacy is positive and significant at the 1%-level even when controlling for

age, gender, and education. Adding controls for net household income and net household wealth

leaves the coefficient virtually unchanged and significant at the 5%-level. This is in line with the

behavioral prediction: people who are prone to the gambler’s fallacy have a higher number of days

per year on which their bank account is overdrawn.

As it might be relatively complicated for respondents to assess the number of days per year

15We deliberately chose not to control for household income in the unemployment regressions, in order to avoid
endogeneity problems.
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on which their account is in the negative, the survey also included the straightforward question of

whether a person’s account was overdrawn at the time of the interview. A look at the raw data

reveals large effects: out of the respondents who answer the probability question correctly, 14.3%

have an overdrawn bank account. In contrast, this figure is 24.5% among the group of people

who are prone to the gambler’s fallacy. Results of a probit estimation with this simple measure

as dependent variable are presented in columns (4) to (6). The estimates are very similar to our

earlier findings: in most specifications, the coefficient on the gambler’s fallacy dummy is positive and

significant at the 1%-level. The marginal effects indicate that being prone to the gambler’s fallacy

increases the probability of having an overdrawn bank account by about 8.8%-points (p = 0.020),

controlling for age, gender, education, income, and wealth. This is a sizeable effect, as the share of

respondents with an overdrawn bank account is 16.6% in the total sample. Again, these findings are

in line with the predictions: the gambler’s fallacy has a substantial impact on consumers’ decision

to overdraw their bank account.

Taken together, our results are consistent with the behavioral hypotheses that were developed

in Section 4.1. In particular, we find that the gambler’s fallacy affects financial decision making,

whereas the hot hand fallacy has an impact on job search decisions. These findings suggest that

it is not biased probability judgment per se that affects economic outcomes. Rather, depending

on the context in which economic decisions are made, the specific form of a person’s probability

judgment bias might play a decisive role.

5. Conclusion

This paper addressed three closely related research questions. First, it investigated people’s

ability to make simple probability judgments. For this purpose, we used a specifically designed

probability judgment question that was administered to a representative sample of the German adult

population. The results showed that more than a third of the respondents was unable to answer the

probability question correctly, indicating that a substantial part of the population has difficulties

with making simple probability judgments. Among the incorrect answers, by far the most frequent

bias was the gambler’s fallacy, i.e., the tendency to overestimate the occurrence of alternations

in random sequences. Second, we addressed the determinants of biased probability judgment.

Our results have shown that education (years of schooling) and a knowledge-based measure of

cognitive ability are positively related to performance in the probability judgment task. The third
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part of the paper explored the relation between the observed probability judgment patterns and

respondents’ behavior in two domains: job search and financial decision making. The hot hand

fallacy, i.e., the tendency to overestimate the occurrence of streaks in random sequences, was shown

to be significantly related to a higher probability of being long-term unemployed. In contrast, the

gambler’s fallacy was found to be associated with a higher probability of overdrawing one’s bank

account.

If our interpretation of the results, namely that biased probability judgment is likely to translate

into inferior economic outcomes, is correct, our findings regarding the impact of schooling are of

relevance from a policy perspective. Our estimates have shown that schooling has a large and

significant impact on reducing people’s cognitive biases. The fact that the estimates were positive

and significant even when controlling for cognitive ability suggests that the knowledge obtained in

school mitigates probability judgment biases in a direct way. Thus, it may be worthwhile to put a

stronger focus on teaching simple probabilistic reasoning in the early grades of high school. More

generally, an increased dissemination of basic knowledge about random processes might help people

to make better decisions in the economic domains of life.

From an applied perspective, our findings have straightforward implications for the design of

policy measures, emphasizing the role of debiasing of decision makers. With respect to labor

market policy, our results suggest that job centers should offer courses that teach job-seekers about

the probabilities that play a role in the application process. Rather than believing that their

future search success will be the outcome of a continued streak of unsuccessful applications, job-

seekers should understand that their job finding probabilities depend on the overall labor market

conditions in a particular occupation or region, and that the outcome of a particular application

does not necessarily directly depend on earlier unsuccessful applications elsewhere. Similar policy

implications can be derived for the domain of household finances. Here, counselors who give advice

to over-indebted households could inform consumers who exhibit the gambler’s fallacy that they

should avoid overestimating the probability of a positive income shock occurring in the near future.

Of course, the analysis in this paper has limitations. For instance, we were not able to identify

the exact channels through which a cognitive bias influences behavior. While some of our results

are in line with the gambler’s fallacy being a sign of over-optimism (as in the overdrawn bank

account measure), this behavior might as well be related to time-inconsistent preferences or other

cognitive biases in financial decision making (see, e.g., Laibson, 1997, or Stango and Zinman, 2009).
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A promising direction for future research is the combination of incentivized measures of people’s

time and risk preferences with measures of biased probability judgment, in order to identify the

channels through which biased probability judgment affects economic behavior.
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(a) Standardized perceptual speed test, measuring
fluid intelligence. Respondents had to match as
many digits and symbols as possible in 90 seconds
of time.
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(b) Standardized word fluency test, measuring
crystallized intelligence. Respondents had to name
as many distinct animals as possible in 90 seconds
of time.

Figure 1: Measures of Cognitive Ability.

Table 1: Sample Statistics.

Variable average std. dev. num. obs.

1 if female 0.537 (0.499) 1,012
Age 47.555 (18.371) 1,011
Years of schooling 10.328 (1.829) 965
Perceptual speed test (raw data) 28.309 (9.890) 903
Perceptual speed test (standardized) 0 (1) 903
Word fluency test (raw data) 22.807 (10.986) 853
Word fluency test (standardized) 0 (1) 853
Log net household income (per month) 7.521 (0.635) 940
Log net household wealth 7.177 (5.421) 772
1 if unemployed 0.114 (0.318) 1012
1 if long-term unemployed 0.068 (0.252) 1012
Account overdrawn 1.504 (0.885) 943
1 if account overdrawn at time of interview 0.166 (0.372) 1012
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(a) Responses in the Pooled Sample
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(b) Responses by Respondents with Gambler’s Fallacy
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(c) Responses by Respondents with Hot Hand Fallacy

Figure 2: Probability Judgment.

Notes: The normatively correct solution is a probability of tails of 50%. The 95 observations for
the answer “I don’t know” are not shown.
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Table 2: Probability Judgment - Descriptive Statistics.

Hot Correct Gambler’s Don’t Total
hand answer fallacy know sample

All 87 (8.8%) 596 (60.4%) 208 (21.1%) 95 (9.6%) 986 (100%)

Years of schooling > 10 15 (4.6%) 236 (72.6%) 60 (18.5%) 14 (4.3%) 325 (100%)
Years of schooling ≤ 10 72 (10.9%) 360 (54.5%) 148 (22.4%) 81 (12.3%) 661 (100%)

Female 51 (9.6%) 296 (56.0%) 119 (22.5%) 63 (11.9%) 529 (100%)
Male 36 (7.9%) 300 (65.6%) 89 (19.5%) 32 (7.0%) 457 (100%)

Age < 50 45 (8.1%) 349 (63.1%) 134 (24.2%) 25 (4.5%) 553 (100%)
Age ≥ 50 42 (9.7%) 247 (57.0%) 74 (17.1%) 70 (16.2%) 433 (100%)

Notes: “Hot hand” refers to answers in the interval [0%,50%), “Correct answer” refers to answers
equal to 50%, and “Gambler’s fallacy” refers to answers in (50%,100%].
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Table 3: Probability Judgment - Determinants (I).

Dependent variable: =1 if answer is 50%, =0 otherwise

(1) (2) (3) (4)

Standardized word 0.046** 0.041**
fluency score [0.017] [0.018]

Standardized symbol- 0.001 -0.012
digit score [0.019] [0.020]

Age -0.001 -0.000 -0.002* -0.001
[0.001] [0.001] [0.001] [0.001]

1 if female -0.095*** -0.097*** -0.084*** -0.091***
[0.033] [0.035] [0.032] [0.033]

Years of 0.042*** 0.046***
schooling [0.010] [0.010]

N. Obs. 846 805 893 848
Prob > χ2 0.001 0.000 0.015 0.000
Pseudo R2 0.017 0.034 0.009 0.028

Notes: Probit estimates, marginal effects evaluated at the mean of observed variables. Standard
errors are in brackets. The dependent variable is a dummy indicating whether a respondent gave
the correct answer (“50%”). Observations with the answer “I don’t know” are included as incorrect.
Cognitive ability measures are standardized. Significance at the 1%, 5%, and 10% level is denoted
by ***, **, and *, respectively.
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Table 4: Probability Judgment - Determinants (II).

(A) Multinomial Logit Estimates
Dependent variable: =1 if 50%, =2 if GF, =3 if HH, =4 if Don’t know

(1) (2)

Gambler’s Hot Don’t Gambler’s Hot Don’t
fallacy hand know fallacy hand know

Standardized word -0.067 -0.131 -0.614***
fluency score [0.094] [0.137] [0.167]
Standardized symbol- 0.152 -0.142 -0.041
digit score [0.106] [0.143] [0.179]
Age -0.012** -0.004 0.035*** -0.004 -0.002 0.036***

[0.006] [0.007] [0.008] [0.006] [0.008] [0.010]
1 if female 0.354* 0.35 0.662** 0.297* 0.395 0.753**

[0.182] [0.257] [0.281] [0.174] [0.246] [0.303]
Years of -0.122** -0.293*** -0.225*** -0.144*** -0.294*** -0.271***
schooling [0.053] [0.080] [0.087] [0.051] [0.075] [0.095]
Constant 0.55 1.062 -2.145** 0.448 0.986 -1.826

[0.651] [0.922] [1.071] [0.624] [0.878] [1.174]
N. Obs. 805 848
Log likelihood -802.33 -839.68
Prob > χ2 0.000 0.000

(B) Multinomial Probit Estimates
Dependent variable: =1 if 50%, =2 if GF, =3 if HH, =4 if Don’t know

(1) (2)

Gambler’s Hot Don’t Gambler’s Hot Don’t
fallacy hand know fallacy hand know

Standardized word -0.060 -0.100 -0.393***
fluency score [0.072] [0.088] [0.106]
Standardized symbol- 0.111 -0.073 -0.021
digit score [0.082] [0.096] [0.113]
Age -0.009** -0.002 0.022*** -0.003 -0.001 0.022***

[0.004] [0.005] [0.006] [0.005] [0.006] [0.006]
1 if female 0.291** 0.272 0.512*** 0.247* 0.292* 0.516***

[0.141] [0.171] [0.189] [0.136] [0.165] [0.191]
Years of -0.104** -0.209*** -0.168*** -0.120*** -0.212*** -0.187***
schooling [0.040] [0.053] [0.056] [0.039] [0.051] [0.058]
Constant 0.455 0.678 -1.276* 0.371 0.614 -1.139

[0.499] [0.625] [0.695] [0.484] [0.600] [0.716]
N. Obs. 805 848
Log likelihood -802.50 -839.71
Prob > χ2 0.000 0.000

Notes: Panel (A) contains multinomial logit estimates, Panel (B) contains multinomial probit
estimates, standard errors in brackets. The dependent variable equals 1 if correct answer (“50%”),
2 if gambler’s fallacy (> 50%), 3 if hot hand fallacy (< 50%), and 4 if “don’t know”. The reference
category is the correct answer. Cognitive ability measures are standardized to have mean 0 and
standard deviation 1. Significance at the 1%, 5%, and 10% level is denoted by ***, ** and *,
respectively. 25
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