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Abstract

We analyze a model of conformity with contrasting inferences. Given a form of ‘strong inferences’,

any non-conforming agent is believed to have ‘extreme preferences’ and can expect to receive low

esteem. With a weaker form of inferences, a non-conforming agent could be inferred to have ‘average

preferences’ and can expect a smaller fall in esteem. We find that the type of inferences need not

influence whether a conformist equilibrium exists. It will, however, impact on the size of the set of

conformist equilibria and thus weakening inferences acts as an equilibrium selection device.
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1 Introduction

A social norm is a prescription of how a person should behave. Examples, include ‘wear a suit at

work’, ‘do not live off other people’ or ‘send a Christmas card to someone who sends one to you’ (Elster

1989). Typically conformity to a norm involves sacrifice such as wearing a suit when jeans and a T-

shirt would be preferred, so why do people adhere to norms? One reason is that actions send signals

to others of a ‘persons type’ (Bernheim 1994). If non-conformity is seen as a signal of someone with

‘extreme preferences’, then conforming may be better than non-conforming because conformity, while

immediately costly, leads to better treatment by others (Kreps 1997). There can exist, therefore, a

‘conformist’ Bayesian Nash equilibrium in which people conform to the norm and anyone who does not

conform is inferred as having some ‘extreme preferences’. The problem for anyone wishing to model

this type of conformity is that the definition of Bayesian Nash equilibrium does not tie down ‘out of

equilibrium beliefs’ (Banks and Sobel 1987, Cho and Kreps 1987). Basically, because no person should

not conform, Nash equilibrium allows that anything could be inferred about a person who does not

conform. Clearly, however, out of equilibrium beliefs are a crucial aspect of the equilibrium. Our goal

in this paper, using the model of conformity developed by Bernheim, is to explore how out of equilibrium

beliefs impact conformity.

To explain the issues consider, informally, the norm of ‘how much to tip at a restaurant’. Suppose

that the size of tip is seen as a signal of generosity. The ‘ideal type of person’ is someone who would

like to tip 10%. People who would want to tip less are considered greedy, and people who would want

to tip more are too generous. Suppose that there exists a norm to tip 15% and people adhere to this

norm. If someone tips 10%, then what should others infer about this person? Even if we restrict

attention to so-called ‘reasonable beliefs’ (Banks and Sobel 1987, Cho and Kreps 1987), there are plenty

of possibilities. One possibility, let’s call it strong inferences, is to say that anyone who tips less than

15% must be very greedy; the fact that he has not adhered to the norm is a signal that he has the ‘most

extreme preferences’ (Bernheim). Another possibility, weak inferences, is to say that if someone tips

10%, then they may be very greedy, but equally they might just be the type of person who likes to tip

10%.

Intuitively, it should make a difference whether people have strong or weak inferences. If people

have strong inferences, then there are strong incentives to conform because the costs of deviation are

high. If people have weak inferences, then the motivations to conform are much less. Indeed a person

may deviate from the norm precisely to signal that they have the ‘ideal type’. To question whether

it does make a difference whether inferences are weak or strong we first need to formally capture the

notion of weak and strong inferences. We use the D1 Criterion, as used by Bernheim, to capture strong

inferences. Informally, if inferences satisfy the D1 Criterion then any deviation from the norm is inferred

to have been done by the person with the most incentive to deviate. To capture weak inferences, we

introduce the IWD1 Criterion, which is closely related to divinity (as defined by Banks and Sobel). If

inferences satisfy the IWD1 Criterion then any person with an incentive to deviate is inferred to be

equally likely to deviate from the norm. Using the model of conformity introduced by Bernheim, and
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contrasting the outcome when inferences satisfy the D1 Criterion to that when inferences satisfy the

IWD1 Criterion, we show whether it does make a difference if inferences are strong or weak. Our results

can be summarized as follows:

Equilibrium existence: Bernheim demonstrated that there always exists a conformist equilibrium (in

his model) if inferences satisfy the D1 Criterion. In this paper we provide a necessary and sufficient

condition, called the worse than condition, for the existence of a conformist equilibrium that can be

supported by inferences satisfying IWD1. We demonstrate, with an example, that the worse than

condition need not hold, so there need not exist a conformist equilibrium when inferences satisfy IWD1.

This demonstrates that using the D1 Criterion, as Bernheim did, is not innocuous. We prefer, however,

to focus on the more positive conclusion that in many cases a conformist equilibrium can be sustained

by weaker inferences than those of the D1 Criterion. The worse than condition will, for example, be

satisfied if the desire to be inferred as a ‘good type’ is sufficiently high or many people have types near

the ideal. Bernheim’s existence result was a seminal contribution to the literature in showing how ‘harsh

enough penalties’ for non-conformity can be produced endogenously rather than simply assumed. Our

results demonstrate that weaker inferences can still produce ‘harsh’ penalties to non-conformity.

Equilibrium selection: One possible shortcoming of the results of Bernheim is the multiplicity of

conformist equilibria. In particular, there may exist multiple conformist equilibria supported by inferences

satisfying the D1 Criterion, all based on a different norm. For example, there could be a conformist

equilibrium where the norm is to ‘tip 5%’, one where the norm is to ‘tip 20%’, and so on. If there are

many equilibria, each with a different norm, then one may question how we can think of conformity

arising if no-one knows what the norm is, and everybody knows that no one knows what the norm

is, and so on? Bernheim suggests, as seems reasonable, that this indeterminacy may be resolved by a

focal point, possibly determined by history or a policy maker. We demonstrate, however, that weaker

inferences act as an equilibrium selection device and reduce the set of actions that could potentially

become norms. Indeed, there may be at most one conformist equilibrium, and therefore at most one

norm, that can be supported by any inferences satisfying IWD1.1 This norm will correspond to the

preference of what we call the median type. The median type is characterized by a symmetry in which

the ‘costs’ of being seen as ‘above’ or ‘below’ this type are the same. For example, if the median type is

‘to tip 15%’, then it is the same to be seen as ‘someone who likes to tip more than 15%’ as to be seen

as ‘someone who likes to tip less than 15%’.

Equilibrium ‘efficiency’: There will always exist a conformist equilibrium supported by inferences

satisfying the D1 Criterion where the norm is the action preferred by the ‘ideal type’ (Bernheim).

Intuitively one might expect that the equilibrium selection of IWD1 selects such an equilibrium. In

general, however, the median type differs from the ideal type, so there need not exist a conformist

equilibrium supported by inferences satisfying IWD1 where the norm is the action preferred by the ‘ideal

type’. For example, if ‘tip 10%’ is preferred by the ideal type but to ‘tip 15%’ is preferred by the median

1Related results are due to Azar (2004). Azar considers a model of tipping where slight deviations from a tipping norm
result in only mild consequences. This could be equated to weak inferences. Azar finds that a tipping norm can only be
sustained on specific tip values that will depend on the preferences of agents. There is therefore not the multiplicity of
equilibria that one finds in Bernheim.
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type, then there may exist a conformist equilibrium with a norm to ‘tip 15%’ but not one to ‘tip 10%’.

The median type will differ from the ideal type if it is, say, better to be inferred as more generous rather

than more greedy than the ideal. In this case, a norm of 10% could not be an equilibrium because some

would want to tip more in order to signal that they are more generous than the ideal type.

We proceed as follows: Section 2 outlines the model, Section 3 discusses out of equilibrium beliefs,

Section 4 treats equilibrium existence, Section 5 equilibrium selection, Section 6 q-uniform inferences

and Section 7 concludes with an Appendix containing remaining proofs and full derivations of the

examples used.

2 Model of conformity

We use a model of conformity introduced by Bernheim. The model is characterized by a separability

between an agent’s intrinsic utility, determined by his own action, and esteem, determined by the type

others infer him to have. It is also characterized by incomplete information about type. An agent’s

action, thus, serves as a signal to others of his type. [For complete details of the model see Bernheim.]

There are a continuum of agents. Each agent chooses a publicly observable action x from the set

X = [0, 2] and has a type from the set of agent types T = [0, 2]. The type of an agent indicates his

intrinsic bliss point. Specifically, there exists an intrinsic utility function g : [0, 2]→ R and an agent of
type t receives intrinsic utility g(x− t) from playing action x where

Assumption 1: Function g is twice continuously differentiable, strictly concave, symmetric and

achieves a maximum at 0.

Thus, an agent of type t maximizes intrinsic utility by choosing action x = t, and the further his action

from type, then the lower his intrinsic utility.

The distribution of types within the population is described by a cumulative density function F

defined on set T and a corresponding probability density function f .

Assumption 2: The support [f ] = T and f is continuous.

The type of an agent is private information. Agents receive esteem according to the type that they are

inferred to be. Specifically, there exists an esteem function h : [0, 2]→ R where h(b) is the esteem of an

agent who is inferred to be of type b.

Assumption 3: Function h is twice continuously differentiable, strictly concave, symmetric (h(1+z) =

h(1− z)) and achieves a maximum at b = 1.

Type 1 is the ideal type in the sense that someone inferred to be of type 1 receives the maximum esteem.

The further is inferred type from 1, then the less is esteem; so someone inferred to be of type 0 or 2

receives the least esteem.

The tension that will exist in the model between conforming and not conforming should now be

clear. An agent faces the trade off between choosing an action that gives high intrinsic utility but may
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result in low esteem versus sacrificing intrinsic utility to earn esteem. The key feature is that each type

of agent has her own preferred action that maximizes intrinsic utility, but there exists a unique type

that agents wish to be inferred as.

Action will be used as a signal of type. Specifically, there exists an inference function φ(b, x) where,

informally, φ(b, x) denotes the probability that an agent who chooses x is inferred to be of type b. More

formally, φ(·, x) is a probability density function defined on set X. Let

Tφ(x) := {b ∈ T : φ(b, x) > 0}

be the set of types that are inferred as having potentially chosen x. Let

Hφ(x) :=

Z 2

0
φ(b, x)h(b)db (1)

denote the esteem of an agent who chooses x. Note that esteem is a weighted average based on the

esteem function and inferences.

The payoff of an agent is a weighted sum of intrinsic utility and esteem. Specifically, the payoff of

an agent of type t from playing action x given inference function φ is

U(x, t, φ) := g(x− t) + λHφ(x)

where λ is an index of how important is esteem for the agent.

2.1 Signalling equilibria

All agents of the same type are assumed to choose the same action.2 An action function µ maps T

into X where µ(t) denotes the action chosen by agents of type t. The pair (µ, φ) consisting of action

function µ and inference function φ are sufficient to determine the payoffs of all agents. Pair (µ, φ) is

a signalling equilibrium if actions are optimal given inferences and inferences can be deduced from the

action function using Bayes’ Rule. Following Bernheim we focus on a specific type of pure strategy

signalling:

A signalling equilibrium (µ, φ) is characterized by a tuple (xp, tl, th, µs) consisting of real numbers xp, tl
and th, where 0 ≤ tl ≤ xp ≤ th ≤ 2, and a continuous, strictly increasing function µs : [0, 1]→ X where3

µ(t) =


µs(t) if t < tl

xp if t ∈ [tl, th]
2− µs(2− t) if t > th

. (2)

2Essentially this is an assumption that agents use pure strategies. Allowing mixed strategies significantly complicates
the analysis and also makes the interpretation of an equilibrium much more difficult. It need not, however, be an innocuous
assumption. In particular, when we look at equilibrium existence in Section 4 it should be born in mind that we are looking
for the existence of a pure strategy equilibrium.

3Note that it is more convenient for us to use the function µs mapping types to actions. Bernheim uses function φs
mapping actions to types. Thus, µs(t) = φ−1s (t) and µ−1s (x) = φs(x).

5
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The inference function φ will satisfy

φ(b, x) =


1 if x = µ(b) and b < tl or b > th

0 if x = µ(b0) 6= xp for some b0 6= b

f(b) [F (th)− F (tl)]
−1 if x = xp and b ∈ [tl, th]

0 if x = xp and b 6= [tl, th]

. (3)

Bernheim demonstrates that any (pure strategy) signalling equilibrium with inferences satisfying the

D1 Criterion (to be explained below) can be characterized by such a tuple (xp, tl, th, µs). Thus, an agent

with type t < tl chooses action µ(t) and is (correctly) inferred to be of type t, so receives esteem h(t).

An agent with type t > th chooses action µ(t) and is (correctly) inferred to be of type t, so receives

esteem h(t).4 Agents with types t ∈ [tl, th] choose action xp. Consequently, they receive esteem

Hφ(xp) :=

Z th

tl

h(b)f(b)

F (th)− F (tl)
db. (4)

Agents with types t /∈ [tl, th] fully separate while those with types t ∈ [tl, th] constitute a central pool
who choose unique action xp. Action xp can be interpreted as the norm, and agents with types t ∈ [tl, th]
conform to the norm. Note that xp need not equal 1, but a type 1 agent will conform to the norm, so

tl ≤ 1 ≤ th (see Theorem 3 of Bernheim). An inference function satisfying (3) is consistent with Bayes

Rule. It remains to check that actions are optimal. For this we require that

g(µ(t)− t) + λHφ(µ(t)) ≥ g(x− t) + λHφ(x) (5)

for all t ∈ T and x ∈ X.5

Throughout the following we shall use examples to illustrate the analysis. All examples will be based

on the spherical case of g(z) = −z2 and h(b) = (1 − b)2. Even though we have not quite finished the

description of a signalling equilibrium (we do this in the next Section), it seems worthwhile to provide

our first example of such an equilibrium in order to illustrate what one may look like. The example will

also prove useful in discussing the further issues that will arise as we proceed.

In Example 1 we set λ = 1.25 and f(t) = 0.5 for all t ∈ [0, 2]. There exists (see the Appendix
for more details on all of the examples) a signalling equilibrium (µ, φ) with inferences satisfying the D1

Criterion where xp = 1, tl ≈ 0.076 and th ≈ 1.924. The norm, therefore, is 1, and any agent with type
t ∈ [0.076, 1.924] conforms to the norm. Given (3) this means that φ(b, 1) = (th − tl)

−1 for all b ∈ [tl, th]
and is 0 otherwise. Using (4) we can then calculate that an agent who conforms to the norm receives

esteem Hφ(1) = −0.2845. An agent with type t ∈ [0, 0.076) does not conform to the norm but, as we

can see in Figure 1 below, does choose an action closer to the norm than his type. An agent of type

4Note that the action function is symmetric in the sense that µ(2− t) = µ(t) if t < tl and 2− tl > th. This is the case
even if the distribution over types f is asymmetric (see p. 852 of Bernheim).

5 If (µ, φ) is a signalling equilibrium, then µ can be recovered from φ, and thus, where it will cause no confusion, we
shall use φ to characterize the equilibrium, as in the notation Hφ(t).
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t = 0.05, for example, chooses action µ(0.05) ≈ 0.4. The type 0.05 agent will, however, be correctly
inferred as a type 0.05 agent and thus receive esteem −(1− 0.05)2.

0 0.5 1 1.5 2
0

0.5

1

1.5

2

type

ac
tio

n

Figure 1: The action function in Example 1 when xp = 1.

Three special cases of a conformist equilibrium are (1) a fully separating equilibrium where tl = th = 1

implying that there is no central pool, (2) a fully conformist equilibrium where tl = 0 and th = 2,

implying that all agents conform to the norm and conformity is no signal of type, (3) a partially

conformist equilibrium where either tl ∈ (0, 1) and/or th ∈ (1, 2). Example 1 is an example of a

partially conformist equilibrium. This lies somewhere between the two extremes of full separation and

full conformity where there is a central pool but not all types of agent conform to the norm.

3 Out of equilibrium beliefs and the IWD1

Given a signalling equilibrium (µ, φ) characterized by tuple (xp, tl, th, µs), let

xl := lim
t↑tl

µ(t) and xh := lim
t↓th

µ(t)

be the actions chosen by those ‘at the edge of the central pool’ (where we set xl = 0 or xh = 2 if

appropriate). Let

XEµ =
©
x ∈ X : µ−1(x) = ∅

ª
be the set of actions that should not be chosen if agents behave according to action function µ. From

Bernheim we know that XEµ = [xl, xh] − {xp}.6 If (µ, φ) is a fully separating equilibrium, then

XEµ = ∅. Otherwise, xl < xh and the set XEµ is non-empty (Theorem 6 of Bernheim). There are

therefore actions that should not be played in equilibrium. In Example 1, for instance, we find that

6That actions x ∈ [0, xl) and x ∈ (xh, 2] are chosen follows because µ(0) = 0 (if tl > 0), µ(2) = 2 (if th < 2), and the
action function is a continuous function of type for t ∈ [0, tl) and t ∈ (th, 2].
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xl ≈ 0.4512 and xh ≈ 1.5488, so XEµ = [0.4512, 1) ∪ (1, 1.5488]. No agent, for example, should choose
x = 0.9.

As is standard (see Fudenberg and Tirole 1991), the definition of a signalling equilibrium ties down

(see in particular (3) and (4)), inferences about actions that are chosen with positive probability. It

does not, however, impose restrictions on inferences about actions ‘off the equilibrium path’, namely

x ∈ XEµ. Basically, if an agent ‘deviates’ and chooses an action x ∈ XEµ, then Bayes Rule is no guide

as to what type of agent it should be inferred has deviated.

Clearly inferences about actions off the equilibrium path are a crucial aspect of equilibrium as they

determine the incentives or lack of incentive for an agent not to conform to the norm. It determines,

for instance, in Example 1 whether a type 0.9 agent would want to conform to the norm and choose

xp = 1 or ‘deviate’ and choose his internal bliss point of x = 0.9. Thus, one looks to impose criterion

on the inference function φ to obtain ‘reasonable’ beliefs (Banks and Sobel 1997, Cho and Kreps 1997).

Bernheim uses the D1 criterion. We shall formally define the Criterion below but can state here

Fact 1: If (µ∗, φ∗) is a signalling equilibrium characterized by tuple (xp, tl, th, µs) and inferences satisfy
the D1 Criterion, then Tφ∗(x) = {tl} for all xl ≤ x < xp and Tφ∗(x) = {th} for all xh ≥ x > xp.

Thus, any agent who deviates from the central pool is assumed to have either of the types ‘at the edge of

the central pool’. This provides a strong incentive for an agent to conform. In Example 1, for instance

any agent who chooses x = 0.9 is inferred to have type tl = 0.0761, meaning that they receive esteem

Hφ∗(0.9) = −(1− 0.9)2 ≈ −0.854. Given that the esteem from conforming is Hφ∗(1) = −0.2845, there
is no incentive to deviate.

The D1 Criterion imposes a ‘strong’ criterion on out of equilibrium beliefs. Intuitively, for instance,

it seems reasonable that a type t = 0.9 agent would potentially deviate to x = 0.9 as this is his intrinsic

bliss point. This motivates asking whether a signalling equilibrium (µ∗, φ∗) supported by inferences
satisfying the D1 Criterion remains an equilibrium if ‘weaker’ conditions are assumed of the inference

function. To answer this question we clearly must define ‘weaker’ conditions. We do this below to give

inference function φ0. Given this we then fix µ∗ and ask whether the pair (µ∗, φ0) is also a conformist
equilibrium.

Before proceeding one point is worth noting. For each action x ∈ X, there is at most one signalling

equilibrium with inferences satisfying the D1 Criterion where the norm is xp = x (Theorem 4 of Bern-

heim). Thus, fix a norm xp and let (µ∗, φ∗) denote a signalling equilibrium with inferences satisfying the
D1 Criterion. It is a simple matter to show that any signalling equilibrium with inferences satisfying (3)

and where the norm is xp must also have action function µ∗, whether inferences satisfy the D1 Criterion
or not. Fact 2 (below) will formalize this for the inference functions that we shall use, so we do not

spend time formally proving this more general claim here.7 What this does mean, however, is that we

7However here is the intuition: In constructing the unique equilibrium action function µ∗ when inferences satisfy the D1
Criterion, the out of equilibrium beliefs are irrelevant (see pages 849-857 of Bernheim or the derivation of µ∗ for Example
1 in the current paper). The only point at which out or equilibrium beliefs prove important is in checking whether µ∗

actually is consistent with equilibrium or not (see page 857 of Bernheim). Different out of equilibrium beliefs cannot
therefore lead to different equilibrium actions, but they can change whether µ∗ is consistent with an equilibrium.

8
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can fix the action function µ∗ without any need to worry whether a weakening of inferences should lead
to a change in equilibrium actions.

3.1 Incentive to deviate

Take as given a signalling equilibrium (µ∗, φ∗) where inferences φ∗ satisfy the D1 Criterion. If we
consider some ‘weaker’ inferences φ0 then we know that pair (µ∗, φ0) can only be a signalling equilibrium if
inference functions φ∗ and φ0 ‘agree’ for actions x /∈ XEµ∗ . Thus, we shall impose that φ∗(b, x) = φ0(b, x)
for all b and x /∈ XEµ∗ . This implies that Hφ∗(x) = Hφ0(x) for all x /∈ XEµ∗ .8 It also implies

that equilibrium payoffs U(µ∗(t), t, φ∗) can be fixed independently of φ0. That is U(µ∗(t), t, φ∗) =
U(µ∗(t), t, φ0). What may change when we consider inferences φ0 are inferences about actions x ∈ XEµ∗

that are off the equilibrium path. Thus, Hφ∗(x) and Hφ0(x) may differ as may U(x, t, φ∗) and U(x, t, φ0)
for x ∈ XEµ∗ . This can change the ‘incentives’ to conform.

Given pair (µ∗, φ0) if an agent of type t were to choose some action x ∈ XEµ∗ , then he would receive

payoff g(x− t)+λHφ0(x). We know that g(x− t)+λHφ∗(x) is less than U(µ∗(t), t, φ∗), so he would not
want to deviate given inference function φ∗. But what about g(x−t)+λHφ0(x)? If g(x−t)+λHφ0(x) ≥
U(µ∗(t), t, φ∗) then he would want to deviate to x and not conform. If g(x−t)+λHφ0(x) ≤ U(µ∗(t), t, φ∗)
then he would not want to deviate. The first possibility is not consistent with equilibrium while the

second is. Crucial, therefore, is the value of9

εφ
∗
(t, x) :=

U(µ∗(t), t, φ∗)− g(x− t)

λ
. (6)

If Hφ0(x) < εφ
∗
(t, x), then an agent of type t would not gain from choosing x rather than µ∗(t). If

Hφ0(x) > εφ
∗
(t, x), then an agent of type t would do better choosing x than µ∗(t). Given this we shall

interpret εφ
∗
(t, x) as the incentive to conform and say that a type t agent has more incentive to deviate

to x than a type t0 agent if εφ
∗
(t, x) < εφ

∗
(t0, x).10 Clearly, if (µ∗, φ0) is a signalling equilibrium, then

Hφ0(x) ≤ εφ
∗
(t, x) for all t and x ∈ XEµ∗ . This is equivalent to condition (5) and will provide a simple

check of whether (µ∗, φ0) is a signalling equilibrium or not. Note that εφ
∗
(t, x) is independent of φ0 and

can thus be fixed given φ∗.
Figures 2a and b plot εφ

∗
(t, x) for values of x = 0.9 and 1.4 respectively. In interpretation we can

see from Figure 2a that εφ
∗
(0.5, 0.9) ≈ −0.35, implying that a type t = 0.5 agent would prefer x = 0.9

to µ∗(0.5) = 1 if the esteem from playing x = 0.9 exceeded −0.35. As we have already seen, if inferences
satisfy the D1 Criterion, then Hφ∗(0.9) = −0.854, so a type 0.5 agent does not want to deviate. We
need to question whether ‘weaker’ conditions on inferences still guarantee that Hφ0(0.9) < −0.35.

8This explains why we shall not be interested in fully separating equilibria where XEµ∗ = ∅ and, thus, the D1 Criterion
is never used.

9Bernheim uses the notation I(x, t) where I(x, t) = λεφ(t, x).
10Note, however, that, fixing a value of Hφ(x) an agent will typically either do better to choose x or do better not to

choose x, so it is not immediately clear that a higher εφ(t, x) would equate with less likelihood of actually choosing x.

9
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Figure 2a: incentive to choose x = 0.9
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Figure 2b: incentive to choose x = 1.4
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Figure 2: The value of εφ
∗
(t, 0.9) and εφ

∗
(t, 1.4) in Example 1 when xp = 1.

We can see from Figure 2 that when x = 0.9 agents with types near tl have the most incentive to

deviate while the converse holds when x = 1.4. [Also note the change in the scale of the y-axis.] This

is a general property as shown by Bernheim (see the Proof of Theorem 3):

Lemma 1 (Bernheim): For any x ∈ (xl, xp) the value εφ∗(t, x) is strictly decreasing in t for t < tl and

strictly increasing in t for t > tl.11 For any x ∈ (xp, xh) the value εφ∗(t, x) is strictly decreasing in t for

t < th and strictly increasing in t for t > th.

The type of agent who has most incentive to deviate proves important, so let

εφ
∗
(x) =

½
t ∈ T : εφ

∗
(t, x) = min

b∈T
εφ
∗
(b, x)

¾
.

3.2 Weak D1 Criterion

Before defining weaker conditions on the inference function we can now formally define the D1 Criterion

(Cho and Kreps).

11More formally, if t0 < t00 ≤ tl then ε(t0, x) > ε(t00, x), and if tl ≤ t0 < t00, then ε(t00, x) > ε(t0, x).

10
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D1 Criterion: Inference function φ∗ satisfies the D1 Criterion if φ∗(b, x) = 0 for each x ∈ XEµ∗ and

every b /∈ εφ
∗
(x).

Fact 1 is immediate from Lemma 1. To contrast the D1 Criterion we shall follow the approach of

Cho and Kreps (1987) and Banks and Sobel (1987) by modelling inferences φ0 as resulting from an

iterative process of reasoning. More specifically, we shall consider a sequence of inference functions

φ0, φ1, ..., φy, ... where informally φ
0 = limy→∞ φy.

One condition we shall impose in constructing the inference functions φy is that those agents with

relatively more incentive to deviate to action x are, at least, equally likely to be inferred as having

chosen x.

Incentive Condition: Inference function φ satisfies the incentive condition if for each x ∈ XEµ∗ and any

t, t0 ∈ [tl, th] or t, t0 ∈ [0, tl] or t, t0 ∈ [th, 2], if εφ∗(t, x) ≤ εφ
∗
(t0, x), then

φy(t, x)

φy(t
0, x)

≥ f(t)

f(t0)
. (7)

Clearly, an inference function satisfying the D1 Criterion satisfies the incentive condition. We shall

discuss other possibilities as we proceed.

To construct the inference functions φy we need one definition. Given some real number A let

T (x,A) := {t ∈ T : εφ
∗
(t, x) ≤ A} ∪ εφ∗(x). (8)

If t ∈ T (x,A), then an agent of type t would want to deviate to action x if the esteem Hφ(x) from

choosing x is greater than or equal to A. If no agent would wish to deviate, then we have T (x,A) =

εφ
∗
(x). The necessity for this condition will soon become clear.

The D1 Criterion essentially fixes A at h (tl) or h (th). Given that (µ∗, φ∗) is a signalling equilibrium
we know, for instance, that T (x, h(tl)) = εφ

∗
(x) for all x ∈ (xl, xp). To derive weaker inferences

we need to set A at some level greater than Hφ∗(x). In equilibrium, those who conform and receive

esteemHφ∗(xp) have the highest esteem.12 An intuitive starting point, therefore, in constructing weaker

inferences is to set Hφ∗(xp) as an upper bound on the esteem an agent could expect if he were to choose

action x ∈ XEµ∗ .13 If t /∈ T (x,Hφ∗(xp)), then a type t agent would not want to deviate to action x if

he expected to receive esteem Hφ∗(xp). This suggests a weaker condition on inferences.

12To demonstrate this we need to show that Hφ∗(xp) > h(tl), h(th). Given that tl < xl < xp a type tl agent would do
strictly better to choose action xl than xp if h(tl) ≥ Hφ∗(xp). This contradicts that (µ∗, φ∗) is a signalling equilibrium. A
similar argument shows that h(th) < Hφ∗(xp).
13A weaker starting point would be to set A equal to the maximum esteem of h(1). It turns out that doing so would not

significantly alter our results. In particular, as can be seen from reading the proofs, the results of Section 5 (equilibrium
selection) and the results of Section 4 (equilibrium existence) concerning the necessary conditions for equilibrium would be
unaffected. The sufficient conditions for equilibrium existence would change because any type of agent would likely want
to deviate to any x for an esteem of h(1). It, therefore, becomes harder to tie down inferences. This, however, only seems
to motivate why h(1) is unreasonably high as an intuitive starting point in constructing inferences.

11
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Weak D1 Criterion:14 Inference function φ0 satisfies the weak D1 criterion if it satisfies the incentive

condition and φ0(b, x) = 0 for every x ∈ XEµ∗ and every b /∈ T (x,Hφ∗(xp)).

Inference function φ∗, satisfying the D1 Criterion, also satisfies the weak D1 Criterion. There are,
however, many other inference functions that do not satisfy the D1 Criterion, but do satisfy the weak

D1 Criterion. In Example 1 for instance we have that Hφ∗(1) = −0.2845, so, as can be seen from
Figure 2a, T (0.9,Hφ∗(1)) = [0, 0.95]. This implies that inference function φ0 in which all agents with

types t ∈ [0, 0.95] are inferred as equally likely to have chosen x = 0.9 satisfies the weak D1 Criterion.

This is what we shall define below as uniform inferences and implies that φ0(b, 0.9) = 1.053 for all

b ∈ [0, 0.95] and is 0 otherwise. [See Table 1 below.] With this inference function the esteem from

choosing x = 0.9 can be calculated, using (4), as Hφ0(0.9) = −0.3507. This can be contrasted with
the esteem of Hφ∗(0.9) = −0.854 that would result if inferences satisfy the D1 Criterion. The ‘weaker
inferences’ of the weak D1 Criterion result in a higher esteem from deviating and, in this case, are

not consistent with equilibrium. This can be seen from Figure 2a where −0.3507 > εφ
∗
(t, 0.9) for

many types, implying that there are agents with an incentive to deviate to 0.9. Consequently there are

inferences that satisfy the weak D1 Criterion but are not consistent with a signalling equilibrium (in

Example 1 with norm xp = 1).

The Weak D1 Criterion can, however, be thought of as the starting point (rather than the end point)

in forming inferences. In particular, there is an inconsistency between the esteem Hφ∗(xp) that agents

‘expect’ to receive and actual esteem Hφ0(x). If inferences are given by φ0, then one could reason that

the most esteem an agent can expect from choosing action x is Hφ0(x). For instance in Example 1 the

most esteem an agent could expect from choosing x = 0.9 is Hφ0(0.9) = −0.3507. This suggests that
it may be more appropriate to say that a type t agent is only deemed likely to choose x if he had an

incentive to do so given esteem of Hφ0(x) (rather than Hφ∗(xp)). This leads to

1-step weak D1 Criterion (1-WD1): Inference function φ1 satisfies the 1-step weak D1 criterion if it

satisfies the incentive condition and φ1(b, x) = 0 for every x ∈ XEµ∗ and b /∈ T (x,Hφ0(x)) and φ0

satisfies the weak D1 criterion.

From Figure 2a we can see that when x = 0.9 and Hφ0(0.9) = −0.3507, we get that T (0.9,Hφ0(0.9)) =

[0, 0.5373]. We can thus revise the set of agent types who could be inferred as having deviated to x.

Given the 1-WD1 we can also revise the esteem an agent can expect to receive from choosing x to

Hφ1(x). Iterating this argument produces more refined beliefs where the more iterations are performed,

the more introspection is required of agents.

y-step weak D1 Criterion ( y-WD1): Inference function φy satisfies y-WD1 if it satisfies the incentive

condition and φy(b, x) = 0 for every x ∈ XEµ∗ and b /∈ T (x,Hφy−1(x)) and φy−1 satisfies y − 1-WD1.
14This condition can be seen as in the spirit of equilibrium domination (Cho and Kreps). We adopt the term weak D1

criterion reflecting the discussion of Cho and Kreps about the D1 criterion.

12
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Iterated weak D1 Criterion (IWD1): Inference function φ0 satisfies IWD1 if φ0(b, x) = 0 for every

x ∈ XEµ∗ and b /∈ T (x,Hφ∞(x)) where H∞(x) := limy→∞{Hφy(x)}.15

In the y-step IWD1, starting with beliefs satisfying the weak D1 criterion, y iterations are performed

sequentially, eliminating types of agents deemed as potentially choosing each action. Taking y to infinity

we obtain beliefs satisfying IWD1.

At this stage we have not specified how φy will be derived from φy−1. If inferences satisfy the
D1 Criterion, then we set φ0(b, x) = 0 for all b /∈ εφ

∗
(x) and x ∈ XEµ∗ . Given that (µ∗, φ∗) is an

equilibrium, it is trivial that inferences φy satisfying the D1 Criterion also satisfy y-WD1. Consequently

the D1 Criterion is a special case of IWD1. A second special case, already discussed informally above,

represents the opposite extreme where all agents who had an incentive to deviate are deemed equally

likely to have chosen x.

Uniform y-step weak D1 Criterion (uniform y-WD1): Inference function φy satisfies uniform y-WD1 if

φy(b, x) =

 0 for all b /∈ T (x,Hφy−1(x))

f(b)
hR

T (x,Hφy−1 (x)) f(b)db
i−1

otherwise
(9)

and φy−1 satisfies uniform y − 1-WD1.16

Thus, all agents with a positive incentive to deviate are seen as equally likely to deviate. Such inferences

are essentially equivalent to divine beliefs as introduced by Banks and Sobel. The D1 Criterion and

uniform IWD1 can be seen as opposite ends of the spectrum of inference functions consistent with IWD1

(and the incentive condition). In Section 6 we discuss a more general inference function that covers the

entire spectrum. In Example 1 with uniform inferences we get

Table 1: Deriving uniform inferences for Example 1.

x = 0.9 x = 1.4

y T (x,Hφy−1x)) Hφy(x) T (x,Hφy−1(t∗)) Hφy(x)

− −0.2845 −0.2845
0 [0, 0.95] −0.3507 [1.2, 2] −0.4136
1 [0, 0.54] −0.5590 [1.4017, 2] −0.5210
2 {tl} −0.854 [1.5698, 2] −0.6315
3 [1.7429, 2] −0.7649
4 {th} −0.854

Thus, pair (µ∗, φ0) is not a signalling equilibrium because agents of type [0, 0.95] would want to deviate

to action x = 0.9 and agents of type [1.2, 2] would want to deviate to action x = 1.4. The more iterations

we perform, however, the more types are eliminated as potentially having chosen both x = 0.9 and 1.4.

15 If the limy→∞{Hφy (x)} does not exist (see Example 3 in Section 5.1 below), set H∞(x) = miny
©
Hφy (x)

ª
.

16We use the natural extension of a uniform weak D1 Criterion to derive φ0.

13
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Inference function φ2 is such that no agent would want to deviate to x = 0.9 because the esteem from

doing so is only Hφ1(0.9) = −0.5590. In this case we set esteem at h(εφ
∗
(x)). The inference function

must satisfy φ2(b, 0.9) > 0 for some b, so once all types are eliminated (as was the case above), we have

to make an assumption. Setting Hφ0(x) = h(εφ
∗
(x)) seems natural but means that inferences in this

case are equivalent to those of the D1 Criterion (for this particular x).

More generally if (µ, φ0) is a signalling equilibrium and inferences satisfy y-WD1 then Tφ0
y+1(x) is {tl}

or {th}. Otherwise, by construction, an agent of type t ∈ Ty+1(x) would do strictly better to choose

x than µ(t). Thus, a signalling equilibrium can be supported by inferences satisfying IWD1 only if

inferences ‘collapse’ to those obtained with the D1 criterion. This need not be the case as we shall show

below. It does, however, motivate an important observation:

Fact 2: If (µ, φ0) is a signalling equilibrium and inference function φ0 satisfies y-WD1 then there exists
a signalling equilibrium (µ, φ∗) where inference function φ∗ satisfies the D1 Criterion.

Informally, the set of signalling equilibria with inferences satisfying the D1 Criterion nests the set of

signalling equilibria with inferences satisfying the y-WD1. In looking, therefore, for signalling equilibria

with an inference function that satisfies y-WD1 we can restrict our attention to action functions µ∗

that result from signalling equilibria with an inference function that satisfies the D1 Criterion. We can

conclude, for example, from Table 1 that there does not exist a signalling equilibrium in Example 1

when xp = 1 if inferences satisfy uniform 2-WD1.

4 Equilibrium Existence

Our first result provides necessary and sufficient conditions for the existence of a signalling equilibrium

(µ∗, φ0) where inferences φ0 satisfy IWD1. The following result is due to Bernheim:

Fact 3 (Bernheim Theorems 2 and 5): Given Assumptions 1-3 there does exist a signalling equilibrium
(µ∗, φ∗) where inference function φ∗ satisfies the D1 Criterion.

Given Facts 2 and 3 our task is to look at each signalling equilibria (µ∗, φ∗) with an inference function
satisfying the D1 Criterion and question whether the existence of equilibrium (µ∗, φ∗) implies the ex-
istence of equilibrium (µ∗, φ0) where inference function φ0 satisfies IWD1. We begin with an example
demonstrating that a signalling equilibrium need not exist if inferences satisfy uniform IWD1.

In Example 2 we set λ = 2.5 and f(t) = 0.9 for t ∈ [0, 0.5] and t ∈ [1.5, 2] and f(t) = 0.1 for

t ∈ [0.5, 1.5]. The distribution of agent types is therefore skewed towards agents with ‘more extreme
types’. To illustrate that there does not exist a signalling equilibrium with inferences satisfying the

uniform IWD1 we consider norm xp = 1. When xp = 1 there is a unique signalling equilibrium (µ∗, φ∗)
supported by inferences satisfying the D1 Criterion. The pair (µ∗, φ0) is not, however, a signalling
equilibrium if inferences satisfy uniform IWD1.

To see why, we first note that (µ∗, φ∗) is a fully conformist equilibrium, so µ(t) = 1 for all t. Next,
consider the motivation for a type t = 0.5 agent to choose x = 0.5. One can easily calculate, as we do

14
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in the Appendix, that εφ
∗
(0.5, 0.5) = −0.633 < −0.6. In other words, a type t = 0.5 agent would prefer

x = 0.5 to x = 1 if the esteem from choosing 0.5 exceeded −0.6. We know, however, (by Lemma 1 and
the fact that tl = 0) that if inference function φy satisfies the uniform y-WD1, then Tφy = [0, ty] for

some ty. If ty ≥ 0.5, then we can also show that Hφy(x) ≥ −0.6. This gives the circularity that we
require: a type 0.5 agent would want to deviate to 0.5 if he gets esteem of more than −0.6 from doing

so, but if a type 0.5 agent is inferred as potentially deviating to 0.5, then the esteem from deviating

will be more than −0.6. Consequently, if inferences satisfy uniform IWD1, a type t = 0.5 agent would

prefer x = 0.5 to conformity and the pair (µ∗, φ0) cannot be a signalling equilibrium. The table below
illustrates this.

Table 2: Deriving inferences for Example 2.

y Tφy(0.5) Hφy(0.5)

−0.5334
0 [0, 0.75] −0.560
1 [0, 0.683] −0.567
...

...
...

∞ [0, 0.66] −0.569

The above treats the case of a norm xp = 1. To demonstrate formally that there does not exist a

signalling equilibrium where inferences satisfy the D1 Criterion for Example 2 we also need to consider

possible signalling equilibria with norms xp 6= 1. The conclusion, however, is the same, and because the
exercise is somewhat tedious we relegate the details to the Appendix.

The reason that there does not exist an equilibrium (µ∗, φ0) with inferences satisfying uniform IWD1
in Example 2 is that a type t = 0.5 agent would want to deviate to x = 0.5 even if inferences were such

that any agent who deviates to x = 0.5 is inferred to be of type 0.5 or less. This motivates our first

result and the following notation. Let

H(t1, t2) :=
1

F (t2)− F (t1)

Z t2

t1

f(b)h(b)db.

Note that if inferences φ0 are uniform and Tφ0(x) = [t1, t2], then Hφ0(x) = H(t1, t2). Define

E−(x) := H(tl, x) and E+(x) := H(x, th)

for all x ∈ (xl, xh) as the esteem from playing action x if an agent who chooses x is inferred to be equally
likely to have a type t ∈ [tl, x] or t ∈ [x, th] respectively. Figures 3a and 3b plot E−(x) and E+(x) for

Examples 1 and 2.

15



Page 16 of 33

Acc
ep

te
d 

M
an

us
cr

ip
t0 0.5 1 1.5 2

-1

-0.8

-0.6

-0.4

-0.2
Figure 3a: E-(x) and E+(x) in Example 1
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Figure 3: Values of E−(x) and E+(x) for example 1 and 2.

We now define an important condition:

Worse-than Condition: We say that the worse than condition is satisfied if E−(x) < εφ
∗
(x, x) for all

x ∈ (xl, xp) and E+(x) < εφ
∗
(x, x) for all x ∈ (xp, xh).17

The worse than condition requires that an agent of type t < xp would not want to play action x = t

rather than norm xp if any agent who plays x is inferred to have a type between tl and x. Thus, a type t

agent would only want to play action x = t if in doing so he is inferred as potentially having a type b > t.

In Example 2 we saw that the worse than condition was not satisfied for x = 0.5. This is confirmed in

Figure 4b and was given as the reason an equilibrium did not exist. Figure 4a shows that the worse

than condition is satisfied in Example 1 where we have evidence to suggest that an equilibrium does

exist.
17 In the case of a fully separating equilibrium we think of the worse than condition as being satisfied ‘by default’ as

there exists no such x.
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Figure 4: The value of E−(x)− εφ
∗
(x, x) for x ∈ (xl, xp) and of E+(x)− εφ

∗
(x, x) for all x ∈ (xp, xh)

in Examples 1 and 2.

The following result demonstrates that the worse than condition is a necessary and sufficient condition

for equilibrium existence.

Theorem 1: Let pair (µ∗, φ∗) be a signalling equilibrium where inference function φ∗ satisfies the D1
Criterion. If the worse than condition is satisfied and φ0 satisfies IWD1, then (µ∗, φ0) is a signalling
equilibrium. If the worse than condition is not satisfied, then there exists inference function φ0 that
satisfies IWD1 such that (µ∗, φ0) is not a signalling equilibrium.

Proof of Theorem 1: Pick a x ∈ (xl, xp) with a symmetric argument treating x ∈ (xp, xh). We begin
by showing that if the worse than condition is satisfied, no agent would wish to play x rather than xp. By

Lemma 1, Tφy(x) = [t−y , t+y ] for some t−y ≤ tl ≤ t+y . We conjecture (*) that limy→∞ t−y = limy→∞ t+y = tl.

If so, Tφ0(x) = {tl} = Tφ∗(x), and if playing x is not individually rational for an agent given inferences

φ∗, then it cannot be given inferences φ0.
To prove the conjecture (*) we begin by noting that, given Assumption 4 and Lemma 1, the maximal

esteem for choosing x that is consistent with inferences satisfying the Weak D1 Criterion would put

φ0(b, x) = kf(x) for some constant k and all b ∈ Tφ0 = [tl, t
∗
0] for some t

∗
0 ≤ t+0 . Thus, if inferences

φ0 satisfy the weak D1 Criterion we have H
φ0(x) ≤ E−(t∗0). The worse than condition implies that

E−(t∗0) < εφ
∗
(t∗0, t∗0). Given that g achieves a maximum at 0, we also know that εφ

∗
(t∗0, t∗0) ≤ εφ

∗
(x, t∗0).

Thus, Hφ0(x) < εφ
∗
(x, t∗0), implying that t∗0 /∈ T (x,Hφ0(x)) and t∗0 /∈ Tφ1(x) if inferences satisfy the 1-

WD1. Thus, we must have t+1 < t∗0. By the choice of t∗0 we also know that Hφ1(x) < E−(t∗0). Repeating
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the above argument we see that t+y strictly decreases to limit tl. That is limy→∞ t+y = tl. For t+y
sufficiently close to tl we know by the worse than condition that t+y /∈ T (x,Hφy(x)), so Tφy+1(x) = {tl}
by Lemma 1. This implies that limy→∞ t−y = tl as desired.

To demonstrate the ‘only if’ element of the result, suppose that there exists some x < xp where

E−(x) ≥ εφ
∗
(x, x). We know that x ∈ T (x,Hφ∗(x)), so, we can set Tφ0 = [tl, x], implying that

Hφ0(x) = E−(x). Inferences φ0 satisfy the weak D1 Criterion. Given that E−(x) ≥ εφ
∗
(x, x), we know

that x ∈ T (x,Hφ0(x)), so we can set Tφ1 = [tl, x] and Hφ1(x) = E−(x). Iterating this argument implies
that there exists an inference function φy that satisfies y-WD1 and where x ∈ T (x,Hφy(x)) for all y.

There exist therefore inferences φ0 that satisfy IWD1 such that (µ∗, φ0) is not a signalling equilibrium.¥

Example 2 demonstrated that the worse than condition need not be satisfied and thus there need not

exist a signalling equilibrium with inferences satisfying IWD1. From Figure 4a we see that for Example

1 the worse than condition is satisfied, so there does exist a signalling equilibrium if inferences satisfy

IWD1. In looking for when the worse than condition will hold more generally, we make two observations.

First, the worse than condition will be satisfied if λ is sufficiently large. To see why note that for λ

sufficiently large there will only exist fully conformist equilibria.18 Using tl = 0 and th = 2 the worse

than condition can be rewritten

g(0)− g(xp − x) < λ
h
Hφ∗(xp)−H(0, x)

i
(10)

for all x ∈ (0, xp) and
g(0)− g(xp − x) < λ

h
Hφ∗(xp)−H(x, 2)

i
(11)

for all x ∈ (xp, 2). It can be shown (see Lemma 2 below) that there always exist some xp ∈ X such that

Hφ∗(xp) > H(0, x) for all x ∈ (0, xp) and Hφ∗(xp) > H(x, 2) for all x ∈ (xp, 2). Given that, in this case,
the right hand side of both (10) and (11) will be positive, the condition will hold for sufficiently large

λ. In Example 2, for instance, the worse than condition is satisfied if λ > 5 (see the Appendix).

Second, we note that whether or not the worse than condition holds will depend on the distribution

of agent types. Recall that the worse than condition requires an agent of type t < xp not to want

to choose action x = t rather than norm xp if any agent who chooses x is inferred to have a type

between tl and x. This is more likely to hold if the esteem from conforming to the norm is relatively

high while the esteem of being inferred to have a type between tl and x is relatively low. The esteem

from conforming will be relatively high if proportionally many agents who conform have types near to

the ideal type. This suggests that the worse than condition is likely to hold when proportionally many

agents have types near to the ideal type. The following result supports this by demonstrating that the

worse than condition is satisfied in the spherical model if λ ≥ 1.5 and f is unimodal around 1 in the

sense that f is symmetric (f(t) = f(2 − t)) and f(t) ≤ f(t0) for all t < t0 ≤ 1. Note that f was not
unimodal in Example 2 where the ‘mass of agents’ with types at the two extremes lowered the esteem

from conforming and meant the worse than condition was not satisfied.
18A type t agent would conform to norm xp if g(0)+λmax{h(tl), h(th)} < g(t−xp)+λH(tl, th). Given that h(tl), h(th) <

H(tl, th), this is satisfied for sufficiently high λ.
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Corollary 1: Suppose that g(z) = −z2, h(t) = −(1 − t)2, λ ≥ 1.5 and f is unimodal. Then, there

exists action function µ∗ such that (µ∗, φ0) is a signalling equilibrium for any inference function φ0 that
satisfies IWD1.

The proof is in the Appendix. One important point to note about Theorem 1 and Corollary 1 is that

they only guarantee existence of a signalling equilibrium with inferences satisfying IWD1. There may

not exist a signalling equilibrium with inferences satisfying the y-step IWD1 for some finite y, so, we

do require ‘introspection’ on the part of agents to be able to ‘sequentially eliminate deviating types’. In

reality, however, it may require only few iterations to eliminate types as we see in Table 1.

5 Equilibrium Selection

If inferences satisfy the D1 Criterion, then for sufficiently high λ, there can exist a signalling equilibrium

(µ∗, φ∗) with any norm.19

Fact 4: For any x ∈ X there exists λx such that if λ > λx there exists a signalling equilibrium (µ∗, φ∗)
where inference function φ∗ satisfies the D1 Criterion and xp = x.

In this Section we shall demonstrate that if inferences satisfy IWD1, then equilibria need only exist for

specific norms. The ‘weaker inferences’ of IWD1 thus act as an equilibrium selection device. To explain

why we require a second lemma.

Lemma 2: (i) There exists a unique type tm ∈ [tl, th] such that E−(tm) = E+(t
m). (ii) E−(x) is an

increasing function of x for all x ∈ (tl, tm] and E+(x) is a decreasing function of x for all x ∈ [tm, th).
(iii) E− (x) ≥ H(tl, th) for all x ∈ (tm, th) and E+(x) ≥ H(tl, th) for all x ∈ (tl, tm).

Proof : Given Assumptions 2 and 3 (in particular that f is continuous) it is immediate that E−(x) is a
continuous function of x and there exists real number x− such that E−(x) is increasing in x for x < x−
and decreasing in x for x > x−. Clearly E−(tl) = h(tl) and E−(th) = H(tl, th). Similarly E+(x) is a

continuous function of x that is increasing in x for x < x+ and decreasing in x for x > x+ for some real

number x+. Here E+(tl) = H(tl, th) and E+(th) = h(th). Finally, if E−(x) = E+(x), then because

H(tl, th) =
E−(x) [F (x)− F (tl)] +E+(x) [F (th)− F (x)]

F (th)− F (tl)

we know that E−(x) = H(tl, th). The three statements of the Lemma now follow.¥

Figures 3 (and 5 to follow) illustrate by plotting E−(x) and E+(x) for Examples 1, 2 (and 3). The

unique type tm where E−(tm) = E+(t
m) will prove important in the following and be referred to as

the median type. The median type is characterized by a symmetry in which there is the same esteem

to being inferred as of a type ‘above tm’ as of a type ‘below tm’. The following result (a corollary of

19See Footnote 18 for an explanation why.
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Theorem 2 to come later) illustrates the potential for weaker inferences to select equilibria and also

illustrates the importance of the median type.

Corollary 2: If (µ∗, φ0) is a fully conformist equilibrium and inferences satisfy the uniform y-WD1 or

uniform IWD1, then xp = tm.

Below we shall consider the consequences of non-uniform inferences and partially separating equilibrium.

Before doing so, however, to illustrate Corollary 2, we look at what happens if f is not symmetric. If f

is symmetric and there is a fully conformist equilibrium with inferences satisfying uniform IWD1, then

the norm must be the action preferred by the ideal type. This seems intuitive given symmetry and

that 1 is the ideal type. If f is not symmetric, then tm is unlikely to equal 1, and there may exist no

signalling equilibrium supported by inferences satisfying IWD1 where the norm is 1. Example 3 will

hopefully show why this is also intuitive.

5.1 Selection with an asymmetric distribution

In Example 3 we set F (0) = 0.1 and F (t) = 0.1 + 0.45t for all t ∈ (0, 2].20 There is an obvious

asymmetry in the distribution where many agents have type t = 0. In the Appendix we show that

there exists a unique tm ' 1.17 where E−(tm) = E+(t
m). Setting λ = 2.5 there does exist a fully

conformist equilibrium (µ∗, φ∗) supported by inferences satisfying the D1 Criterion if either xp = 1 or
xp = tm. Applying Corollary 2, however, there exists a fully conformist equilibrium (µ∗, φ0) supported
by inferences satisfying uniform IWD1 if and only if xp = tm.

We can illustrate the ‘if’ part of Corollary 2 by setting xp = tm and asking whether any agent would

want to deviate to x = 1. Intuitively a type t = 1 agent may want to deviate to signal that he does

have the ideal type. The following table shows, however, that if inferences satisfy the uniform 3-WD1,

then no agent would want to deviate.

Table 3: Deriving uniform inferences in Example 3 with xp = tm.

y Tφy(1) Hφy(1)

−0.4
0 [0, 1.085] −0.425
1 [0, 0.9] −0.495
2 [0, 0.309] −0.785
2 {0} −1

Deviating to x = 1 when the norm is x = tm is a signal that the agent has some type in the interval

[0, t+y ] for some t
+
y . In this example that is an ‘undesirable’ signal to send as it suggests the agent is

of type b = 0 with high probability. This is why no agent would wish to deviate to x < tm. Figure

5b confirms that there is indeed a signalling equilibrium if inferences satisfy IWD1 and xp = tm. To

20Clearly Assumption 2 is not satisfied. This, however, is not important for the example as we could ‘make f continuous’
without consequence for our analysis.
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illustrate the ‘only if’ part of Corollary 2, we set xp = 1 and show that some agent would want to

deviate to x = tm.

Table 4: Deriving uniform inferences in Example 3 with xp = 1.

y Tφy(tm) Hφy(tm)

−0.4
0 [1.085, 2] −0.364
1 [0.821, 2] −0.284
...

...
...

9 [0, 2] −0.4

The cycle of Table 4 repeats implying that some types of agent would always want to deviate to x = tm.

Deviating to x = tm when the norm is xp = 1 is a signal that the agent has some type in the interval

[t−y , 2] for some t−y . This is a ‘desirable’ signal to send, in this example, as it can be inferred the agent
cannot have type b = 0. This is illustrated in Figure 5c where we see that E+(x) > εφ

∗
(x, x) for x = tm,

so the worse than condition is not satisfied.

0 0.5 1 1.5 2
-1

-0.8

-0.6

-0.4

-0.2
Figure 5a: E-(x) and E+(x)

E
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E-(x)
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0.1
Figure 5b: The worse than condition when xp = 1.17
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E(x) - epsilon(x,x)
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Figure 5c: The worse than condition when xp = 1
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Figure 5: The values of E−(x) and E+(x) and of E−(x) − εφ
∗
(x, x) for x ∈ (xl, xp) and of E+(x) −

εφ
∗
(x, x) for all x ∈ (xp, xh) in Example 3.
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In Example 2 it is better to be inferred as having a type above 1 than below 1, so the norm cannot

exist on action xp = 1 if inferences satisfy uniform IWD1. It seems reasonable given the ‘mass of agents’

with type 0 that the norm should be above 1. More generally, the norm must exist on an action where

E−(x) and E+(x) coincide because only at this point will there be no incentives to deviate either above
or below xp. A weakening of inferences to IWD1 thus suggests that the action preferred by the median

type, and not that of the ideal type, may be an appropriate norm.

5.2 Equilibrium selection a partially conformist equilibrium

Section 5.1 and Corollary 2 focused on fully conformist equilibrium. We now briefly consider equilibrium

selection in the case of a partially conformist equilibrium. Uniform IWD1 does not act as such a powerful

equilibrium selection device in this case. To illustrate we can return to Example 1 but set xp = 1.05.

Now we find that tl = 0.177 and th = 2. Figure 6 plots the action function µ∗.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

type

ac
tio

n

Figure 6: The action function in Example 1 when xp = 1.05.

Given that E−(xp) 6= E+(xp) we may expect that a signalling equilibrium need not exist if inferences

satisfy uniform IWD1. There does, however, exist such an equilibrium. The following table illustrates

why by showing that no agent would have an incentive to deviate to x = 1.04 if inferences satisfy

uniform IWD1.

Table 5: Deriving uniform inferences in Example 1 with xp = 1.05.

y Tφy(1.04) Hφy(1.04)

−0.285
0 [0.154, 1.045] −0.226
1 [0.078, 2] −0.309
2 {tl} −0.677

The important point to recognize is that with a partially conformist equilibrium (µ∗, φ∗) where φ∗

satisfies the D1 Criterion, the esteem from deviating to x = 1.04 is h(0.177) = −0.677, not h(0) = −1
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(as would be the case with a fully conformist equilibrium). That inferences satisfy uniform IWD1 thus

provides contrasting effects on the esteem to agents who deviate because they may be inferred as having

a type closer to 1 than tl but may also be inferred as having a type closer to 0 than tl. This implies that

uniform IWD1 is not so clearly ‘weaker’ than the D1 Criterion. That no agent would want to deviate

to x = 1.04 confirms this. Figure 7 further illustrates by contrasting the worse than condition with a

revised worse than condition. The revision uses H(0, x)− εφ
∗
(x, x) rather than the H(tl, xl)− εφ

∗
(x, x)

of the worse than condition to recognize that agents could potentially be inferred to have types less

than tl.

0 0.5 1 1.5 2
-0.2

-0.1

0

0.1

type

ut
ili

ty

E(x) - epsilon(x,x)  
H(x,0) - epsilon(x,x)

Figure 7: The values of E−(x)−εφ∗(x, x) or H(0, x)−εφ∗(x, x) for x ∈ (xl, xp) and of E+(x)−εφ∗(x, x)
for x ∈ (xp, xh) in Example 1 when xp = 1.05.

The discussion above highlights that in the case of a partially conformist equilibrium, inferences sat-

isfying uniform IWD1 are not necessarily much weaker than the D1 Criterion. We do, however, still

obtain an equilibrium selection result if the requirement of uniform inferences is relaxed.

Theorem 2: If (µ∗, φ∗) is a signalling equilibrium where E−(xp) 6= E+(xp), then there exist inferences

φ0 satisfying IWD1 such that (µ∗, φ0) is not a signalling equilibrium.

Proof : Suppose that xp > tm with a symmetric argument treating xp < tm. Choose some x ∈
(xl, xp) such that x ≥ tm. Clearly, tm ∈ T (x,Hφ∗(xp)). Thus, by Lemma 1, inferences φ0 such that

Tφ0 = [tl, t
+
0 ] for some t+0 ∈ [tm, th) satisfy IWD1. By Lemma 2 we have that E−(t+0 ) ≥ H(tl, th).

Given that Hφ∗(xp) = H(tl, th) we have that tm ∈ T (x,Hφ0(x)). Repeating this argument we get

tm ∈ T (x,Hφy(x)). There exist therefore inferences satisfying y-WD1 such that a type tm agent would

wish to deviate to x rather than conform.¥

The proof of Corollary 2 is immediate by noting that the inferences given in the proof of Theorem
2 correspond to uniform inferences if tl = 0 (as would be the case with a fully conformist equilibrium).
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6 Non-uniform inferences

We have seen that if inferences satisfy uniform-IWD1, then there need not exist an equilibrium or can

exist at most one action that can be the norm. We also know (Facts 3 and 4) that if inferences satisfy

the D1 Criterion, then there exists a signalling equilibrium and any action could be the norm. Between

the extremes of uniform IWD1 and the D1 Criterion are criteria that satisfy IWD1 and result in more

or less signalling equilibrium and more or less actions that could be norms.

To illustrate we consider a simple ‘intermediate’ criterion of q uniform y-WD1. Recall that set

T (x,A) contains the types of agents who would wish to deviate to x if the esteem from choosing x is

A. We refine the uniform y-WD1 by selecting the proportion q who have the most incentive to deviate.

Formally, define

β(q, x,A) := min {β : F [T (x, β)] ≥ qF [T (x,A)]}

where F [T ] denotes the proportion of agents with types in set T .

q uniform y-WD1: Inference function φy satisfies q-uniform y-WD1 if

φy(b, x) =

 0 for all b /∈ T (x, β(q, x,Hφy−1(x))

f(b)
hR

T (x,β(q,x,Hφy−1 (x)) f(b)db
i−1

otherwise

and φy−1 satisfies q uniform y − 1-WD1.

If q = 1, then inferences satisfy uniform y-WD1, and any agent with a positive incentive to deviate

is inferred as equally likely to have deviated. If q = 0, then inferences satisfy the D1 Criterion, and

only the type of agent with the most incentive to deviate is inferred as likely to deviate. Between these

extremes the proportion q who had the most incentive to deviate are inferred as likely to deviate. This

can have consequences for both equilibrium existence and equilibrium selection. We can illustrate by

revisiting Examples 2 and 3.

Recall that in Example 2 when q = 1 there did not exist a signalling equilibrium. Table 6 illustrates

that a type t = 0.5 agent would not have an incentive to deviate to x = 0.5 when q = 0.7 (even though

he does when q = 1). For example, if inferences satisfy the 0.7-uniform weak D1 Criterion then only

agents with types [0, 0.333] and not those with types [0, 0.75] are inferred as likely to deviate. This

lowers the esteem to choosing x from −0.56 to −0.704. The following can be compared to Table 2.

Table 6: Deriving q-uniform inferences in Example 2 with xp = 1 and q = 0.7.

y T (x,Hφy−1(0.5)) Tφy(0.5) Hφy(0.5)

−0.5334
0 [0, 0.75] [0, 0.333] −0.704
1 [0, 0.216] [0, 0.151] −0.856
2 {0} {0} −1
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Figure 8 confirms that when q = 0.7 there does exist a signalling equilibrium. The plot revises the

worse than condition to reflect q 6= 1 and plots, for instance, E−(qx)− εφ
∗
(x, x) for x ≤ 0.5.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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0
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0.04
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type
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e

E(x) - epsilon(x,x)
when q = 0.7       

Figure 8: The worse than condition in Example 2 when q = 1 and q = 0.7.

Moving on, in Example 3 we know that when q = 1 there is a unique signalling equilibrium with

norm xp = tm. If, however, q = 0.8 and inferences satisfy q-uniform IWD1, then there exists a signalling

equilibrium with xp = 1. Table 7 demonstrates why no agent would wish to deviate to x = tm when

xp = 1 and q = 0.8 and can be compared to Table 4.

Table 7: Deriving q-uniform inferences in Example 3 with xp = 1 and q = 0.8.

y T (x,Hφy−1(tm)) Tφy(tm) Hφy(tm)

−0.4
0 [1.085, 2] [1.268, 2] −0.447
1 [1.4277, 2] [1.542, 2] −0.612
2 {2} {2} −1

Figure 9 plots the revised worse than condition to demonstrates that when q = 0.8 there does exist a

signalling equilibrium.
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Figure 9: The worse than condition in Example 3 with xp = 1 when q = 1 and q = 0.7.

More generally, it is clear that if there exists a signalling equilibrium (µ∗, φ∗) with inferences sat-
isfying the D1 Criterion, then there exists a signalling equilibrium (µ∗, φ0) with inferences satisfying
q-uniform y-WD1 for all q ≤ q for some q > 0. The particular value of q will depend on the param-

eters of the model and nature of the signalling equilibrium. If, therefore, q < 1 and inferences satisfy

q-uniform y-WD1, then more actions can be norms. To summarize consider the thought experiment of

reducing q from 1 to 0. For q = 1 we may find that there exists no signalling equilibrium. For some q

there will exist a signalling equilibrium with norm x = tm. Reducing q further there will exist many

signalling equilibria where any action in some interval [xq−, x
q
+] can be a norm where tm ∈ [xq−, xq+].

Decreasing q will increase the size of the interval until potentially any action x ∈ [0, 2] can be the norm
for q = 0.

7 Conclusions

Using a model of conformity introduced by Bernheim we have contrasted two systems of inferences.

If inferences satisfy the D1 Criterion then any non-conformist is perceived to have the ‘most extreme

preferences’. If inferences satisfy a weaker IWD1 Criterion, then a non-conformist is perceived to be of

a type that could have potentially gained from deviating. We have provided necessary and sufficient

conditions for the existence of a signalling equilibrium that can be supported by any inferences satisfying

IWD1. One consequence of this was to demonstrate that a weakening of inferences acts as an equilibrium

selection device by reducing the set of signalling equilibria.

One implication of the equilibrium selection result we obtain is to reconsider the dynamics of con-

formity proposed by Bernheim who posits that a norm will remain relatively stable to changes in

preferences, but a large change in preferences can result in a discontinuous jump to some new norm.

This is possible because a particular action can be the norm for a wide range of type distributions

when considering signalling equilibria that are supported by inferences satisfying the D1 Criterion. Our
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results demonstrate that once weaker inferences are assumed, there may exist a unique signalling equi-

librium that changes as preferences change. This would suggest a more gradual evolution of the norm

as preferences change. Many norms, such as ‘how much to tip’ are, at least in principle, flexible to

changes in preferences, so this is not an unreasonable prediction.

An interesting question is what types of inferences, and what types of punishment mechanisms, do

exist to sustain conformity. This requires looking more closely at human behavior in specific economic

contexts. A particularly interesting issue is whether different ‘belief structures’ tend to emerge in

different contexts. For example, contrast two social norms. One norm may be to set artificially high

wages; the result is unemployment (Akerlof 1980). A second norm may be not to claim from the welfare

state; the result is reduced unemployment (Lindbeck et al. 1999). Clearly one of these norms could be

seen as good and the other bad. Is the equilibrium selection of ‘weak beliefs’ more likely to select ‘good

norms’? Also, are ‘weak beliefs’ more likely to exist around ‘bad norms’ as compared to ‘good norms’

on the basis that deviating from a bad norm is ‘more understandable’? We leave these as issues for

future work.

8 Appendix

8.1 Details of the Examples

In Example 1, As discussed by Bernheim, the solution for µs can be found by solving the linear
dynamic system · dt

dv
dx
dv

¸
=

·
x− t

λ(1− t)

¸
where v is a ‘dummy’ variable. Working through one obtains the differential equation x00+x0+λx = λ.

This has roots −12 ± 1
2(1 − 4λ)

1
2 . Setting λ = 1.25 and using initial conditions x(0) = t(0) = 0 gives

particular solution

x(v) = 1 + e−
1
2
v

µ
2λ− 1
2

sin v − cos v
¶

t(v) = 1 + e−
1
2
v

µ
1

2λ

µ
2λ− 1
2
− 2
¶
sin v − cos v

¶
.

Tracing out x and t as functions of v provides action x(v) as a function of type t(v) and thus gives µs.

Type tl and th are found by finding the type of agent who is indifferent between choosing action µs(tl)

and being inferred as type tl versus choosing action 1 and receiving esteem Hφ(1). When xp = 1 the

symmetry of the problem implies that th = 2− tl, so, from (4),

Hφ(1) =
−1

2(1− tl)

Z 2−tl

tl

(1− b)2. (12)
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Given this we can find tl by setting

−(tl − µs(tl))
2 − λ(1− tl)

2 = −(1− tl)
2 + λHφ(1). (13)

Using numerical methods to find an approximate value for tl we obtain tl = 0.0761. From (12) this im-

plies that Hφ∗(1) = −0.2845. We now have xp, tl, th and µs and thus have characterized the equilibrium.
We do, of course, need to check that this is indeed an equilibrium. Section 3 sets out the additional

requirements that need be imposed on inferences in order to satisfy the D1 Criterion (see, in particular,

Fact 1), but, given xp, tl, th and µs and the requirement that inferences satisfy the D1 Criterion, we

can derive the action function µ∗ and φ∗ using (2), (3) and Fact 1. It is then a simple matter to check
(5) and verify that there does indeed exist a signalling equilibrium with inferences satisfying the D1

Criterion that can be characterized as above. It should also be clear that this is the unique signalling

equilibrium with norm xp = 1.

In order to derive the numbers given in Table 1 of Section 3.2 we first need to calculate εφ
∗
(t, 0.9)

and εφ
∗
(t, 1.4) using (6). For example,

εφ
∗
(t, 0.9) =

−(t− µ∗(t))2 − λHφ∗(µ∗(t) + (0.9− t)2

λ
.

Figure 2 plots εφ
∗
(t, 0.9) and εφ

∗
(t, 1.4). Given a value for A one can then calculate T (0.9, A) and

T (1.4, A). If Tφy(0.9) = [0, ty] for some ty and inferences are uniform then, using (9), we derive

Hφy(0.9) =
−1
ty

Z ty

0
(1− b)2 = −1 + ty −

t2y
3
. (14)

Similarly, if Tφy(1.4) = [ty, 2] for some ty and inferences are uniform, then

Hφy(1.4) = 1− ty − (2− ty)
2

3
. (15)

Using this and the values of εφ
∗
(t, 0.9) and εφ

∗
(t, 1.4), the numbers in Table 1 are easily obtained.

In Section 5.2 we set xp = 1.05 in which case µs remains the same, but the values of tl and th will

change. Suppose that th = 2. Then

Hφ(xp) =
−1
2− tl

Z 2

tl

(1− b)2. (16)

Using relation (13) we then obtain tl = 0.1777 and Hφ(xp) = −0.2847. As when treating xp = 1 we can
now use Fact 1 to derive an action function and inference function and check (5) to verify that there does

indeed exist a signalling equilibrium with inferences satisfying the D1 Criterion characterized as above.

To derive the numbers in Table 5 we first calculate εφ
∗
(t, 1.04) using (6). The values of εφ

∗
(t, 1.04) are

plotted in Figure 10.
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Figure 10: The value of εφ
∗
(t, 1.04) in Example 1 when xp = 1.05.

If Tφy = [td, ty] for some td, ty, then

Hφy(1.04) =
−1

ty − td

Z ty

td

(1− b)2.

Given this we can iteratively derive the figures in Table 5.

Throughout the remainder let H :=
R 2
0 f(b)h(b)db. In Examples 2, 3 and 4 where there exists a

fully conformist equilibrium, we know that tl = 0 and th = 2, so

Uφ∗(xp, t, φ
∗) = −(xp − t)2 + λH.

Using equation (6) this implies that εφ
∗
(x, t) ≤ A if and only if

1

λ

h
Uφ∗(xp, t, φ

∗) + (x− t)2
i
≤ A

or

t(xp − x) ≤ 1
2

£
λ(A−H) + x2p − x2

¤
. (17)

To check that there exists a signalling equilibrium supported by the D1 Criterion, we only need check

that a type 0 or type 2 agent has no incentive to choose x = 0 or 2 rather than not conform.21 In

equilibrium a type 0 agent receives payoff Uφ∗(xp, 0, φ
∗) = −x2p+λH, and a type 2 agent Uφ∗(xp, 2, φ

∗) =
−(2−xp)2+λH. If a type 0 agent chooses x = 0 or a type 2 agent chooses x = 2 (and inferences satisfy

the D1 Criterion), he receives payoff U(0, 0, φ∗) = U(2, 2, φ∗) = −λ. Thus, we need to check that

max
©
x2p, (2− xp)

2
ª ≤ λ(1 +H). (18)

21Lemma 1 tells us that type 0 and 2 agents have the most incentive to deviate to any action x. A type 0 or 2 agent
has most incetive to deviate to x = 0 or x = 2 (if inferences satisfy the D1 Criterion).
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In Example 2

H =

Z 2

0
f(b)h(b)db = −2

·
0.9

Z 0.5

0
(1− b)2db+ 0.1

Z 1

0.5
(1− b)2db

¸
= −16

30
.

Putting xp = 1 and λ = 2.5 into condition (18) demonstrates there does exist a fully conformist

equilibrium (µ∗, φ∗) if inferences satisfy the D1 Criterion. To verify the figures given in the text we first
note that Uφ∗(0.5) = −(1− 0.5)2+ λHφ∗(1) = −1912 , so εφ

∗
(0.5, 0.5) = 1

λU
φ∗(0.5) = −1930 < −35 . Second,

if Tφy(0.5) = [0, ty] for some ty ≥ 0.5 then

Hφ0(0.5) ≥ −20
9

Z 0.5

0

9

10
(1− b)2db = − 7

12
.

To derive the numbers in Table 2 we first use (17) to derive that εφ
∗
(x, t) ≤ A if and only if

2t(1− x) ≤ λ

µ
A+

16

30

¶
+ 1− x2. (19)

If Tφy(0.5) = [0, ty] for some ty ∈ (0.5, 1.5) and inferences are uniform, then, using (9),

Hφy(0.5) =
−1

0.45 + 0.1(ty − 2)
·
0.9

Z 0.5

0
(1− b)2 + 0.1

Z ty

0.5
(1− b)2

¸
=

−1
0.45 + 0.1(ty − 2)

"
56

240
+
1

10

Ã
ty − t2y +

t3y
3

!#
. (20)

Iterative use of (19) and (20) gives the numbers in Table 2. [To derive the numbers in Table 6 of Section

6 we iteratively use (19) and (14) to find Hφy(0.5) and T (x,Hφy−1(0.5)) = [0, t1y] with an intermediate

step to find Tφy(0.5) = [0, ty] where F (ty) = 0.7F (t1y).]

Thus far we have considered a signalling equilibrium with xp = 1. To verify there are no signalling

equilibrium in Example 2 with inferences satisfying uniform IWD1, we do need to consider other poten-

tial norms. We find that there does exist a signalling equilibria where inferences satisfy the D1 Criterion

for any norm xp ∈ (0.73, 1.27). For any signalling equilibria we can repeat the exercise above to show
that a type t = 0.5 (or t = 1.5) agent would wish to deviate from the norm. Figure 11 illustrates that

for xp > 1 a type t = 0.5 agent would wish to deviate to x = 0.5. Symmetry implies that a type t = 1.5

agent would wish to deviate for all xp < 1.
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Figure 11: The value of E−(0.5)− εφ
∗
(0.5, 0.5) against xp in Example 2.

Finally, To illustrate that the worse than condition is satisfied when λ > 5, we can derive εφ
∗
(x, x)−

E−(x) for all x ∈ (0, 0.5] to give

εφ
∗
(t, 0.5)−E−(x) >

−(1− t)2 + (0.5− t)2

5
− 16
30
+ 1− t+

t2

3
=
19

60
− 4
5
t+

t2

3
≥ 0

as desired. When x ∈ (0.5, 1) the calculations are considerably more tedious because E−(x) is given by
(20), so we omit the details.

In Example 3 we see that H = − 1
10 − 9

10
1
3 = −0.4. Using condition (18) we can check that there

does exist a fully conformist equilibrium for xp = 1 and xp = 1.17 if λ = 2.5. To find tm we know from

Lemma 2 that E+(tm) = E−(tm) = H = −0.4. Using that

E+(2− t) = −1
t

Z t

0
(1− b)2db = −1 + t− t2

3
(21)

for all t < 2 and setting E+(2 − t) = −0.4 gives quadratic t2 − 3t + 1.8 = 0. Solving this and picking
the root t∗ less than 2 gives tm = 2− t∗ = 1

2 +
3
2
√
5
' 1.17. To derive the numbers in table 3 we first set

xp = tm and x = 1, and using (17) get that εφ
∗
(1, t) ≤ A if and only if

t ≤ 2.5A+ tm
2

2(tm − 1) . (22)

Next note that if Tφy = [0, ty] then

Hφy(ty) =
−0.1− 0.45 R ty0 (1− b)2db

0.1 + 0.45ty
=
−0.1− 0.45

³
ty − t2y +

t3y
3

´
0.1 + 0.45ty

. (23)

Iterative use of (22) and (23) yields Tφy(1) and Hφy(1) and the numbers in Table 3. To derive the
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numbers in Table 4 we set xp = 1 and x = tm to find εφ
∗
(1, t) ≤ A if and only if

t ≥ 2.5A+ 2− tm
2

2(1− tm)
. (24)

If Tφy = [ty, 2] then, from (21), we can see

Hφy(t) = 1− ty − (2− ty)
2

3
. (25)

Iterative use of (24) and (25) yields Tφy(1) and Hφy(1) and the numbers in Table 4. To derive the

numbers in Table 7 of Section 6 we iteratively use (24) and (25) to find Hφy(tm) and T (x,Hφy−1(tm)) =

[t1y, 2] with an intermediate step to find Tφy(tm) = [ty, 2] where 1− F (ty) = 0.8
£
1− F (t1y)

¤
.

8.2 Proof of Corollary 1

Set xp = 1. Using H ≥ −1/3 we know by (18) that there exists a fully conformist equilibrium with

inferences satisfying the D1 Criterion. Now, fix an x < 1 (using a symmetric argument for x > 1).

Given Theorem 1 we need to show that,

g(0)− g(x− 1) < λ [H −E−(x)] . (26)

The value of g(0)− g(x− 1) = (1− x)2 is a given. The value of H −E−(x) will depend on f . We claim
(*) that H −E−(x) attains its minimum value when22

f(t) =

(
1

2(1−x) for all t ∈ [x, 1]
0 for all t ∈ [0, x).

Taking the claim as given, we have

H −E−(x) = − 1

1− x

Z 1

x
(1− b)2db+ (1− x)2

=
−1
1− x

·
1

3
− x+ x2 − x3

3

¸
+ (1− x)2.

Substituting into (26) we require that

(1− x)2 <
−λ
1− x

·
1

3
− x+ x2 − x3

3

¸
+ λ(1− x)2,

which simplifies to
2

3
λ− 1− x(1− x)(2λ− 3)− x3

µ
2

3
λ− 1

¶
> 0. (27)

22The support [f ] does not equal T , but this is basically irrelevant. Making the support equal to T will only increase
H −E−(x).
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Given that maxx(1− x) = 1
4 , equation (27) holds if λ > 3

2 .

It remains to prove the claim (*). The intuition is simpler than the formal argument. Essentially we

wish to minimize H and maximize E−(x) within the limits that f be unimodal around 1. Given that
h(t) is increasing in t for t < 1, the value of H will be minimized by setting f(t) = y for some y and all

t ∈ [x, 1]. The value of E−(x) is maximized, relative to this, (and the restriction that f be unimodal)
by setting f(t) = y for all t ∈ [q, x) and some q. Given that F (1) = 0.5 we know that (1− q)y = 0.5, so

set

fq(t) =

(
1

2(1−q) for t ∈ [q, 1]
0 for t ∈ [0, q) .

We now need to show that H − E−(x) is minimized when q = x. This follows due to the concavity of

the h function. Given that h(x) > h(t) + (x− t)h(1) for all t < x, putting more weight on types t > x

reduces H −E−(x). We can, however, provide a more formal argument. First, note that

H −E−(x) =
1

1− q

Z 1

q
h(b)db− 1

x− q

Z x

q
h(b)db

=
1

1− q

Z 1

x
h(b)db− 1− x

(x− q) (1− q)

Z x

q
h(b)db

=
−1

3(1− q)
+

1

x− q

µ
x− x2 +

x3

3

¶
− 1− x

(x− q) (1− q)

µ
q − q2 +

q3

3

¶
(28)

=
1

1− q

·
x− x2 +

x3

3
+
1− x

1− q

µ
1− (q + x) +

(q + x)2

3

¶
− 1
3

¸
. (29)

Next, note that x−x2+ x3

3 ≥ q−q2+ q3

3 ≥ 0 and 1 ≥ x ≥ q ≥ 0. By inspection, to minimize H−E−(x),
we need that q = x.¥
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