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A Bayesian Analysis of Total Factor Productivity 
Persistence 

Tapas Mishra, Claude Diebolt, Mamata Parhi,  
Asit Ranjan Mohanty ∗ 

Abstract: »Eine Bayesianische Analyse der Persistenz der Totalen Faktorpro-
duktivität«. This paper studies persistence properties of total factor productivity 
(TFP) from Bayesian perspective. Emphasizing that classical unit root test for 
TFP cannot determine the probability whether a stochastic shock to the series 
is permanent, we design a Bayesian unit root test for TFP. Examination for a 
set of African economies’ TFP data show that the probability of having a unit 
root is very high for majority of countries. The evidence of high-persistence 
has implications for perpetual growth and business cycles. 
Keywords: Total factor productivity, Persistence, Bayesian unit root, Innova-
tion, Business cycle fluctuations.– JEL classification: C11, C32, O47, O55. 
 

1. Introduction 
What is the source of cross-country economic growth volatility? Is volatility a 
persistent phenomenon? What kind of economic structure one can generalize 
from the observed persistence profile of output for a country? Questions like 
these have produced scores of theoretical and empirical research since Solow’s 
(1956) seminal contribution on total factor productivity (TFP). Following the 
neoclassical tradition, the growth of output not contributed by the growth of 
inputs, is the contribution of total factor productivity – broadly, the innovation 
shocks to output accumulation. Indeed, the piece of history that conceals the 
gospel of growth differentials among countries lies in the innovation attributes 
or TFP growth because it is not possible to readily identify the sole causes of 
innovation growth, although approximate reasons, such as human capital 
growth, good governance and distributive and social equality, etc., come closer 
to good explanations.  
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A keen observer of TFP and economic growth literature till date will most 
possibly come across two broad streams of study. While the first of set of re-
search concerns theoretical analysis of TFP’s impact on business cycles, cross-
country growth differentiation, monetary policy and innovation strategies, the 
second strand of literature concerns its modelling and measurement with im-
proved statistical methodology. For every observed economic event, there is a 
specific pattern and this is duly identified/modelled by state-of-the-art statisti-
cal tools. In our context, by testing for the persistence properties of TFP in a 
temporal setting, for instance, it is possible to know if a deterministic or sto-
chastic component contributed to its growth over time. It is also possible to 
identify the type of economic growth system (i.e., exogenous or endogenous) 
that generated it. Since small and big changes in socio-economic structure and 
development are reflected in TFP, it is essential to choose an appropriate statis-
tical test which best approximates its own ‘evolutionary character’ and at the 
same time characterizes the co-evolving pattern with other variables. Keeping 
up with this objective, this paper addresses the persistence test of TFP under 
classical and Bayesian paradigms and emphasizes that it is important to ask 
‘what is the probability that there is a unit root in TFP, then testing straightway 
if there is a unit root?’ Nothing is certain in the phenomenal world. At best, one 
can say, an event is highly or remotely probable. The extent of probability has 
powerful implications for identifying socio-economic structure as opposed to 
the classical test of unit root where it can be generated by a host of events, viz., 
coordination failure of economic activities, existence of multiple equilibria and 
influence of nature, etc. In either case, the design of test matters for a thorough 
understanding of the socio-economy environment which generates it. This is 
discussed in Section 2 of the paper which provides an empirically testable 
model of TFP for classical and Bayesian unit root tests. Section 3 discusses 
data and empirical results and finally, concluding remarks are presented in 
Section 4.  

2. Model of TFP persistence and testing via Bayesian route 
Before we discuss the Bayesian unit root tests for persistence of TFP, let’s 
define in the following the neoclassical production where output (Y) is pro-
duced by physical capital (K) and human capital (H) according to the Cobb-
Douglas form:  
 

βα
ttt HAKY =   

 
Here α represents the share of capital in the production of one unit of output, 

Y. Human capital’s share is presented by β. Various degrees of returns to scale 
occur when the combined value of α + β exceeds, is less than or equal to unity. 

(1)
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For instance, decreasing returns to scale to labour and capital occurs when the 
inputs’ marginal productivities decline over time in the absence of any qualita-
tive improvement of their efficiencies. Efficiency enhancement in inputs gives 
rise to increasing returns to scale. In the absence of K and H, output Y grows 
due to the A, the TFP or broadly due to innovation. Simple algebraic manipula-
tion leads to the following TFP growth equation:  
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Let’s denote by tz , the TFP (i.e., AA /& ) at time t . The evolutionary path 

of tz  is governed by how a shock imparted to tz  evolves over time. Denote 
by tε , a shock at time t , then negative shock (in terms of say, natural disaster, 
political turmoil, etc.) to TFP will result in decelerated growth and contraction-
ary monetary policy, while a positive shock (in terms of innovation and diffu-
sion, and good social development) will accelerate economic growth and moti-
vate an expansionary monetary policy. Perpetuation of business cycles will be 
directly influenced by whether there is a persistent negative/positive TFP 
shocks. While it is required that at least a constant or increasing returns to scale 
should exist in the production technology to generate persistence in output (Y), 
such requirements are not necessary for enabling TFP persistence as this is 
determined outside the economic system.1 

Statistically, the evolution of tz  can be represented by an autoregressive 
(AR) moving average (MA) specification. The endogenous or exogenous na-
ture of TFP is characterized by whether tz  is a pure AR or a pure MA process. 
For our purpose, we assume that tz  is characterized by a history dependent 
property, such that the evolutionary path of tz  is given by the following AR 
(1) process without constant term,  

 

ttt zz ερ += −1  3) 
 
where it is further assumed that 0z  is a known constant, tε  are i.i.d nor-

mally distributed with mean zero and unknown variance, 2σ , and 
{ } { }11,1 <≤<−=∪∈ ρρρ lSS , where l is the lower bound which deter-

mines the specification of the prior for ρ . We are interested in discriminating 
between a stationary model ( )1<ρ  and the nonstationary model with 1=ρ , 
i.e a random walk. The assumption of known 0z  points to the dependence of 
analysis on initial observations as the treatment of such condition will differ 

                                                             
1  This is the case of exogenous TFP. Even if TFP is endogenous, such requirements are 

obsolete in this case as endogeneity of TFP depends on policies than on input use.  

(2)

(3)
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between stationary and non-stationary regions (Sims, 1988; Sims and Uhlig, 
1991).  

There is a sharp distinction between the testing procedure of existence of 
unit root between classical and Bayesian models.  

While a knife-edge distinction is made between the presence and absence of 
a unit root in the form of testing whether 1=ρ  or 1<ρ  in classical Dickey-
Fuller (1979) and its subsequent extensions, Bayesian mechanism asks how 
probable is the hypothesis that 1=ρ  against 1<ρ . This is because Bayesians 
are uncomfortable with testing a point hypothesis since it is not natural to com-
pare an interval that receives a positive probability (the composite alternative 

1:1 <ρH ) with a point null hypothesis of zero mass (the null hypothesis 
1:0 =ρH ). They argue that the classical econometricians cannot give the 

probability that a hypothesis holds. What they can tell us is whether a hypothe-
sis is rejected or not rejected (Koop, 1992). Moreover, classical test procedure 
is also criticized very strongly on the ground that it uses information that is not 
contained in the likelihood function which violates the likelihood principle2 
(Bauwens et al., 1999). Sims (1988) argues the classical tests for unit root for 
their unusual nature of asymptotic theory leading to disconnected confidence 
intervals and the lack of power in small samples.  

Equation 3 reflects that TFP at t , i.e. tz depends on its past value as well 
as the stochastic error term, tε . History is shown to affect the evolution of tz  
and as long as tε  is an iid process, the evolutionary path of tz  will be solely 
determined by its past, 1−tz  and the coefficient determining the extent of de-
pendence is ρ . Question may arise then what is the probability that a particular 
value of ρ  will occur given the value of tz , i.e, one needs to find, ( )tzρPr . 
This is arrived at by using Bayes theorem which amount to evaluating the 
product of the likelihood of ( )θtzPr  and a prior probability ( )θρ , where 

{ }σρθ ,= . That is, the posterior information on ρ  given the evolution pattern 
of tz  can be given by: ( )tzρPr ( )θP . ( )θtzPr . Zellner (1971) proposes the 
following posterior odds ratio test to compare a sharp null hypothesis with a 
composite alternative hypothesis,  

 

)|Pr(
)|1Pr(

),,|()()(

),,1|()(

0
0

0
0

01 ZS
Z

ddzzLpp

dzzLp
MM

S

∈
=

=
=

=

∫ ∫

∫
∞

∞

ρ
ρ

ρσσρρσ

σσρσ

 
 

where 0M  is the prior odds in favour of the hypothesis 1=ρ , 1M  is the 
posterior odds in favour of the hypothesis 1=ρ , ( )ρp  is the prior density of 

S∈ρ , ( )σp  is the prior density of σ , ( ).zL  is the likelihood function of 

                                                             
2  This principle makes explicit the notion that only the observed data should be relevant to 

the inference about the parameter. This lies at the heart of the Bayesian inference. 

(4) 
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the observed TFP data ( )'1 ,... Tzzz = , and finally, ( )''
0 , zzz = , all observed 

data. The posterior odds 1M  are equal to the prior odds 0M  times the Bayes 
factor. The Bayes factor is the ratio of the marginal posterior density of ρ  
under the null hypothesis 1=ρ  to a weighted average of the marginal posterior 
under the alternative using the prior density of ρ  as a weight function. The 
specification of marginal prior of ρ  and σ  are assumed as: 

( ) ( )00 1/1Pr MM +=== ωρ , ( ) ( )aSp −=∈ 1/1ρρ , and ( )σp σ/1 . The 
prior on ρ  is uniform and has a discrete probability ω  that 1=p . The prior on 
σ  is diffuse, and corresponds to a uniform prior on σln . 

We can now provide the method to test for unit root using a uniform or flat 
prior (Sims, 1988). Suppose in our model we initially put probability α  on the 
interval (0, 1), probability 1-α  on ρ = 1, and independently a flat prior on 

2lnσ . The likelihood then has a normal inverse-gamma shape, conditional on 
the initial observations. The marginal likelihood for ρ is a t-distribution with 

1−T  degrees of freedom and scale parameter.  
 

( ) ⎥⎦
⎤

⎢⎣
⎡ ∑ −= 21/2 tyσρσ

 

 
This distribution is, for large T, very close to  

⎟
⎠
⎞⎜

⎝
⎛ 2,ˆ ρσρN  

If we let Φ  be the c.d.f. for the standard Normal distribution,φ  be its p.d.f. 
and  

( ) ρσρτ /1−=  
stand for the conventional t-statistic for ρ = 1, then for large T the odds ratio 

in favour of the ρ = 1 null hypothesis is 1-α  times the normally shaped likeli-
hood value at τ  divided by α  times the integral of the normally shaped likeli-
hood over (0,1), i.e., the odds ratio in favour of ρ =1 null hypothesis is, 

 
( ) ( )

( ){ }ταρσ

τφα

Φ

−1  

assuming that the posterior probability on ρ <0 turns out to be negligible. 
This would reduce asymptotically to Schwarz criterion were it true that 

ρσ behaves asymptotically like a constant times 1/ T . 
Thus the criterion would be to compare: 
τ2(the square of conventional t-statistics) to 2 log(1- α)/α) - log(σ2

ρ) + 
2log(1-2-1/s) ( )( )τΦ− log2  (where σ2

ρ = σ2/ Σy(t-1)2, σ2 is the variance of εt and 
for annual data s = 1) . The term ( )( )τΦ− log2  will be quite small when 1ˆ <ρ  
and is asymptotically negligible (Sims, 1988). 

The test statistic is the square of the conventional t-statistic for ρ =1. This is 
compared with the Schwarz criterion, which has an asymptotic Bayesian justi-
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fication and is considered as the asymptotic Bayesian critical value. Since the 
first and last terms in the expression for the critical value are constant for a 
given prior and data, a small τ favours no unit root. Therefore if 2t is greater 
than the Schwarz limit, we reject the null hypothesis of a unit root. 

Sims (1988) notes that it may not be reasonable to treat the prior as uniform 
over (0,1). Instead, we are interested in the case when the likelihood is concen-
trated somewhere near one. A lower limit for the stationary part of the prior is 
also specified such that the prior for ρ is flat on the interval (lower limit, 1.0). 
The concentration of the prior around 1 increases with the frequency of the 
data. If the prior is concentrated on (0.5, 1) for annual data, then for monthly 
data it is on (0.94, 1) where 0.94=0.51/12. Following Sims (1988), α = 0.8 is a 
reasonable choice since for this level the odds between stationarity and the 
presence of a unit root are approximately even. 

3. Empirical analysis  

3.1 Data and estimation issues  
We estimated the posterior density of the autoregressive parameter in (3) and 
performed Bayesian unit root test for 23 African economies’ TFP data for the 
period 1960-2003. Under non-stationary theory, estimation of posterior density 
is not straightforward as it involves lot of computational problems. Especially, 
it is required to solve a high-dimensional integral to integrate out the posterior 
function. Among several approaches to solve this problem, Simpson’s integra-
tion rule is easy to use, at least when a flat prior is used for defining the poste-
rior, which is the case with our specification. For details on Simpson’s and 
other rules, the readers are referred to Bauwens et al. (1999).  

Physical capital stocks were calculated according to the method used in 
Klenow and Rodriguez-Clare (1997). Initial capital stocks are calculated ac-
cording to the formula: 

 

ηδ +
=

YI
Y

K /

1960   
 
where (I/Y ) is the average share of physical investment in output from 1960 

through 2003, represents the average rate of growth of output per capita over 
that period, η represents the average rate of population growth over that period, 
and δ  represents the rate of depreciation, which is set equal to 0.03. Given the 
initial capital stock, the capital stock of country i in period t  is calculated by 
the perpetual inventory method: 

 

(5) 
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TFP is then calculated as: 
 

itititit hkyTFP )3/2()3/1( −−=   
where the lower case letters for K and H represent ln(K) and 

ln(H). The global share of labour and capital in the Cobb-Douglas production 
technology has been assumed to be approximately (1/3) and (2/3) respectively 
where a constant returns to scale is allowed in the aggregate growth of all in-
puts together. Data on physical capital stock is available with the authors which 
we do not present in the paper to save space. The real GDP per capita series, 
measured in thousand constant dollars in 2001 international prices, are ex-
tracted from the Penn World Table Version 6.1 (Summer and Heston, 2005), 
while the age-structured human capital data is sourced from IIASA-VID (see 
Lutz et al. 2007).  

3.2 Bayesian test results  

Table 1: Bayesian unit root test for Total Factor Productivity for Africa  
(1960-2003) 

(limit = 0.5, alpha = 0.8) 

Variables Squared t ( 2t ) Schwarz limit Marignal α  
Benin 2.304 4.772 0.406 
Burkina Faso 13.240 5.056 0.003 
Cambodia 1.454 5.697 0.624 
Chad 3.064 5.637 0.419 
Cote-I-vore 9.449 5.711 0.029 
Egypt 0.034 7.851 0.908 
Gambia 8.048 5.763 0.059 
Ghana 8.603 5.047 0.032 
Guinea 4.247 6.130 0.338 
Kenya 6.119 4.834 0.094 
Madagascar 0.304 6.544 0.818 
Malawi 3.376 4.829 0.292 
Mali 0.860 5.147 0.629 
Mauritius 0.522 7.718 0.879 
Morocco 31.199 6.813 0.000 
Mozambique 2.219 5.240 0.474 
Niger 0.498 6.404 0.792 
Table 1 continued… 

(6) 

(7)
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Nigeria 3.900 5.554 0.313 
South Africa 7.623 6.167 0.087 
Togo 0.077 6.624 0.840 
Uganda 0.892 5.776 0.696 
Zambia 6.720 5.150 0.083 
Zimbabwe 3.879 5.068 0.265 
15 out 23 countries with 2t  < Schwarz limit 

 
Note Table 1:‘Alpha’ gives the prior probability on the stationary ρ ; the remaining 
probability is concentrated on ρ  = 1. The choice of the prior weight α can have a sig-
nificant effect on the statistic given above. ‘Marginal Alpha’ is the value for alpha at 
which the posterior odds for and against the unit root are even. A higher value of ‘mar-
ginal alpha’ favours the presence of unit root. Similarly, if t2 is greater than Schwarz, we 
reject the null hypothesis of a unit root. 
 
Before analysing the results of the posterior density, we first interpret the re-
sults of Bayesian unit root which utilizes the posterior odds ratio test (equation 
4) with flat prior. From Table 1 it can be observed that 2t  < Schwarz (asymp-
totic Bayesian) limit for 15 out of 23 countries. That is, unit root cannot be 
rejected for fifteen countries, e.g. Benin, Cambodia, Egypt, etc., while for nine 
countries, e.g., Burkina Faso, Ghana, Kenya, Morocco and others, there is no 
unit root. If we examine the marginal α  for each country’s TFP, it provides 
evidence of the estimated probability of the existence of unit root persistence 
for respective countries. Among 23 countries, the marginal α  is highest for 
Egypt (0.908) and lowest for Morocco (0.000). In other cases, when 2t  ex-
ceeds Schwarz limit, but have small values of marginal alpha (less than 0.5), it 
indicates that only a very strong prior on the unit root will overcome the data 
evidence against it.  

3.3 Posterior analysis 
As remarked before, the posterior value of the AR parameter ( ρ ) expected to 
be contaminated by non-stationarity conditional on the observed TFP data, tz  
is estimated by employing Simpson’s rule. The results of posterior ρ , its stan-
dard deviation and the corresponding range of integration are presented in 
Table 2. The range of integration is adjusted so as to achieve a normal distribu-
tion of ρ . The estimated values of ρ  (column one) of Table 2 reflects the 
what we can expect about the possible non-stationary or stationary value of ρ  
conditional on the available set of information on total factor productivity data 
over four decades (1960-2003) for each country. Statistically, this is given by 

( )tzρPr . From Table 2, it is evident that the posterior value of ρ  is greater 
than 0.5 for all countries under examination. This is highest for Burkina Faso 
(0.925) and Uganda (0.931) whereas for Kenya (0.514) and Mali (0.547), the 
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posterior ρ  is the lowest. The range of integration for all countries show that 
they swing widely between stationary and non-stationary regions. To summa-
rize, the derived posterior values of ρ  indicate in our case that the TFP series 
has high persistent character and that the history dependence feature reflected 
by ρ  conditional on the initial and past information about the data is very 
high.  

Table 2: Comparison of posterior mode for ρ  Africa (1960-2003) 

Countries (TFP) ρ  ρσ  Range of Integra-
tion 

Benin 0.680 0.139 0.20-1.20 
Burkina Faso 0.925 0.140 0.40-1.50 
Cambodia 0.826 0.058 0.60-1.10 
Chad 0.813 0.088 0.50-1.10 
Cote-I-vore 0.626 0.134 0.10-1.10 
Egypt 0.784 0.137 0.30-1.30 
Gambia 0.823 0.082 0.50-1.10 
Ghana 0.685 0.147 0.15-1.20 
Guinea 0.923 0.079 0.60-1.20 
Kenya 0.514 0.137 0.05-1.00 
Madagascar 0.646 0.147 0.15-1.15 
Malawi 0.656 0.153 0.10-1.18 
Mali 0.547 0.116 0.10-0.95 
Mauritius 0.587 0.083 0.30-0.90 
Morocco 0.572 0.134 0.10-1.05 
Mozambique 0.785 0.130 0.30-1.30 
Niger 0.572 0.182 0.00-1.20 
Nigeria 0.847 0.096 0.50-1.20 
South Africa 0.806 0.113 0.40-1.20 
Togo 0.821 0.071 0.50-1.10 
Uganda 0.931 0.067 0.70-1.20 
Zambia 0.642 0.114 0.20-1.10 
Zimbabwe 0.774 0.133 0.30-1.30 

4. Conclusion and some economic interpretation 
In this research note, we tested for the persistence of stochastic productivity 
shock in TFP series for a set of African countries for the period 1960-2003 
using Bayesian framework. We found that the TFP series inherited high persis-
tent character as reflected by derived posterior value of the autoregressive 
parameter. The results of Bayesian unit root test (using posterior odds ratio) 
also confirms the above conclusion. As such, the Bayesian test provided a 
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realistic check of the probability of occurrence of TFP value in non-stationary 
region, which is in contrast to the classical test of unit root, a typical knife-edge 
test. High range of integration of posterior density in Table 2 indicates the 
nature of volatility of TFP for the examined period. It also reflects on the type 
of economic structure which is identified under the frequentist approach. With 
respect to economic policy, our finding of high probability of unit root in TFP 
calls for expansionary monetary policy as highly persistent TFP amounts to 
expansion of output in succeeding periods. Additionally, it could be argued that 
while the issue of the presence of an exact unit root in the classical sense fail to 
identify economic structure (Durlauf, 1989), Bayesian analysis could provide 
some intuition about the behaviour of the parameter and their relation with the 
structure of the economy. 
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