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Abstract

We study the time-stationarity of rating transitions, modelled by a time-

continuous discrete-state Markov process and derive a likelihood ratio test.

For multiple Markov processes from a multiplicative intensity model, maxi-

mum likelihood parameter estimates can be written as martingale transform

of the processes, counting transitions between the rating states, so that the

profile partial likelihood ratio is asymptotically χ2-distributed. An applica-

tion to an internal rating data set reveals highly significant instationarity.

JEL classifications. C33, C34, C41

Keywords. Stationarity, Multiple Markov process, Counting process, Like-

lihood ratio, Multiple spells

∗address for correspondence: Rafael Weißbach, Department of Economics, Faculty of

Economic and Social Sciences, University of Rostock, Ulmenstraße 69, D-18057 Rostock,

Germany, email: rafael.weissbach@uni-rostock.de, Fon: +49/381/4984429.

†Institute for Business and Social Statistics, Department of Statistics, Technische

Universität Dortmund, D-44221 Dortmund, Germany, email: ronjawalter@statistik.tu-

dortmund.de.

1



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

1 Introduction

The homogenous Markov process, with stationary transition intensities, re-

mains the staring point for rating-transition modelling (Bluhm et al., 2002,

pg. 197ff). Evidence of non-Markovian property - due, for example, to sig-

nificant dependence on regressors - is mounting, see Lando and Skødeberg

(2002), Altman and Kao (1992), Bangia et al. (2002) and Frydman and

Schuerman (2007). For the estimation of non-Markovian transition intensi-

ties, see e.g. Meira-Machado et al. (2006). More recently, evidence of inho-

mogeneity, i.e. the instationarity of the transition intensities, has appeared

(Kiefer and Larson, 2007; Weißbach et al., 2009). For the estimation of insta-

tionary transition intensities, see Weißbach (2006). In the present paper, we

perform a likelihood ratio test for stationarity based on a multiple Markov

process, i.e. for panel data of debtors. In the case of only one transitory

state, an approximation of the alternative parameter space can be found, for

instance, with Laguerre polynomials in Kiefer (1985). In our model, with

several transitory rating states, the unknown hazard rates in the alternative

are approximated by step-functions. Piecewise constant hazards occur in

Bayesian duration analysis (Lancaster, 2004). The goodness-of-fit aspect of

the constant hazard rate requires a profile likelihood, being of current interest

(Murphy and van der Vaart, 2000).

Time-dependent intensities can be interpreted as a continuous-time gener-

alization of time-variability in dependence of the Markov chain. In this sense,

the paper is an extension of a test for stationary dependence in discrete-time

Markov chains from Anderson and Goodman (1957).

The partial profile likelihood ratio is asymptotically χ2-distributed, due to

the asymptotic normality of the maximum likelihood (ML) estimates for the

piecewise constant hazard rates. For globally constant hazard rates, Albert

(1962) established a maximum likelihood generator for the time-continuous
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finite-state Markov process. The normality of our estimate results from its

representation as a martingale transform. The main building block are the

martingales that arise by counting transitions between the rating states. Fi-

nally, a martingale limit theorem by Rebolledo (1980) applies. A large part

of the proof is to study the predictable covariation process, using Lenglart’s

inequality.

Our application is credit risk, in particular, the stationarity of rating

transition intensities in an internal rating system. Additional applications

might arise, for instance, in labor market dynamics.

2 The Model

We consider time-continuous discrete-state Markov processes X = {Xt, t ∈
[0, T ]} defined on a probability space (Ω,F, P ). The set of states K =

{1, . . . , k} includes states 1 to k (e.g. rating classes), where k is an ab-

sorbing state (e.g. bankruptcy). We denote Xt as the state of an asset at

time t, after a certain origin, which means that we observe multiple spell

data. The process is determined by the transition matrices

P (s, t) = (phj(s, t))h,j∈K ∈ Rk×k; s, t ∈ [0, T ], s ≤ t.

where the transition probabilities phj(s, t) = P (Xt = j | Xs = h) give the

conditional probability for a transition from state h to j, within the time

period from s to t. Denote by mh(t) the unconditional probability of state

h at time t. The infinitesimal generator of the process is defined by the

transition intensities

qhj(t) = lim
u→0+

phj(t, t+ u)

u
.

Stationarity occurs whenever intensities are constant over time. In such

cases, the transition matrices can be represented as a matrix exponential of

3
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Q = (qhj)h,j∈K , where pkj(s, t) = qkj = 0 for j 6= k.

Defining qhj(t) as a step function can approximate any arbitrary function.

Definition 2.1 Let the intensities on [0, T ] with the given change-points

0 = t0 < t1 < . . . < tb−1 < tb = T be

qhj(t) = 1[0,t1)(t)qhj +
b∑

l=2

1[tl−1,tl)(t)(qhj + δhjl)

with qhj > 0 and δhjl ∈ (−qhj,∞), l = 2, . . . , b.

The fragmentation of the parameter space may be selected differently for

different rating class combinations. Step functions are commonly used to ap-

proximate smooth functions, even though other approximations, for instance

by wavelets, are conceivable.

The data are transition histories Xi = {X i
t , t ∈ [0, T ]} for each of the

i = 1, . . . , n assets in a sample. We observe the panel continuously over

time. Compared to the analysis of all transition histories X1, . . . ,Xn, there

is no loss of information when using the vector of initial ratings X1
0 , . . . , X

n
0

together with the processes

Nhj(t) = #{s ∈ [0, t], i = 1, . . . , n|X i
s− = h,X i

s = j}, t ∈ [0, T ], j 6= h

counting the number of transitions from state h to j until time t in the entire

sample. Additionally, let the processes Yh(t) denote the number of assets in

state h at time t. For large samples, this is a clear reduction in the number

of random processes. The data situation is depicted in Figure 1.

We impose two additional assumptions:

(A1) For fixed t

Yh(t)

n

P−→ mh(t).

4
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Figure 1: Four Markov processes and the counting process N43(t)

(A2) The counting processes must follow a multiplicative intensity model,

i.e. have the intensity process

λhj(t) = Yh(t)qhj(t), h, j ∈ K, j 6= h.

Due to the law of large numbers, assumption (A1) is fulfilled if the Markov

processes are independent. If independence cannot be expected, (A1) is a

weaker assumption which, however, suffices for our results.

As usual in the analysis of durations, only a partial likelihood can be

evaluated (see Andersen et al., 1993, equation 2.7.4’)

log(L) =

∫ t1

0

∑

j 6=h
log(Yh(t)) + log(qhj) dNhj(t)

+
b∑

l=2

∫ tl

tl−1

∑

j 6=h
log(Yh(t)) + log(qhj + δhjl)dNhj(t) (1)

−
∑

j 6=h

[∫ t1

0

Yh(t)qhjdt+
b∑

l=2

∫ tl

tl−1

Yh(t)(qhj + δhjl)dt

]

where
∑

j 6=h is short for
∑k−1

h=1

∑k
j=1
j 6=h

and adds up all possible state combina-

tions.
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In order to test the stationarity of the intensities, the null hypothesis can

be written as

H0 : δhj2 = . . . = δhjb = 0 ∀j 6= h, h, j ∈ K, (2)

with the alternative

H1 : ∃ δhjl 6= 0. (3)

3 Results

Our aim is to construct a likelihood ratio test of stationarity in a multiplica-

tive intensity model. Likelihood ratios are usually asymptotically χ2 under

certain regularity conditions. In our case, there are two obstacles. Firstly,

there is right censoring, at time T or because of a loss to follow-up. Secondly,

the qhj are nuisance parameters, requiring a profile likelihood.

Denote the partial likelihood ratio by

∆ =
L((q̂hj)h,j∈K,j 6=h)

L((˜̂qhj, δ̂hjl)h,j∈K,j 6=h,l=2,...,b)
, (4)

where q̂hj are the ML-estimates in the case of stationarity and ˜̂qhj resp. δ̂hjl

are the ML-estimates in the case of piecewise stationary processes with (b-1)

change-points.

The following theorems demonstrate that the asymptotic distribution of

the test statistic remains χ2, their proofs follow thereafter.

Theorem 1 For a sample of Markov processes with an intensity as in Def-

inition 2.1, let assumptions (A1) and (A2) be fulfilled. The partial ML-

estimators of the parameters then converge in distribution (
d→) to a Gaussian

random vector

√
n




˜̂qhj − qhj0
δ̂hjl − δhjl0



j 6=h,h,j∈K,l=2,...,b

d−→ N
(
0,Σ−1

)
,

where qhj0 and δhjl0 denote the true parameters.

6
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The representation and estimation of Σ is described later. Clearly, the

asymptotic normality of the estimate vector may be used to construct con-

fidence ellipsoids for the parameter vector, resulting in confidence sets for

the rating transition probabilities comparable to those in Christensen et al.

(2004). For instance, confidence sets for the δhjl can be used for inclusion

rules, in order to confirm or reject both the equality hypothesis (3) and the

equivalence hypothesis (see Munk and Weißbach, 1999). Additionally, Wald

and score (Lagrange Multiplier) tests can be derived from the asymptotic

normality. However, we restrict to the likelihood ratio test as an example.

Corollary 2 Under the assumptions of Theorem 1 we have

−2 log(∆)
n→∞∼ χ2

(b−1)(k−1)2 .

As expected, the degrees of freedom depend on the number of change-points

(b− 1), and additionally, on the number of states k in the model.

With explicit expressions of the ML-estimates, the test statistic becomes

computable.

Theorem 3 The ML-estimate in (4) under the null hypothesis (2) has the

following representation

q̂hj =
Nhj(T )∫ T

0
Yh(t)dt

.

Under the alternative (3), one obtains

˜̂qhj =
Nhj(t

−
1 )∫ t1

0
Yh(t)dt

.

With the definition q̂hjl =
Nhj(t

−
l )−Nhj(t−

l−1)
∫ tl
tl−1

Yh(t)dt
, l = 2, . . . , b it holds that

δ̂hjl = q̂hjl − ˜̂qhj, l = 2, . . . , b.

As a consequence, −2 log(∆) has the form

−2
∑

j 6=h

[
Nhj(t

−
1 ) log

(
q̂hj
˜̂qhj

)
+

b∑

l=2

(Nhj(t
−
l )−Nhj(t

−
l−1)) log

(
q̂hj
q̂hjl

)]
. (5)

7
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It is evident, that ˜̂qhj depends on the number of transitions from h to j, as

well as on the number of assets in state h until time t1. Similar behavior

can be observed with the q̂hjl. The latter only depend on the transitions

and number of assets in state h between time tl−1 and tl. The estimates are

derived from the transition counts and duration times of a trimmed data set,

defining time tl−1 as starting point 0 and tl as the end of a particular study.

4 Proofs

The score statistic, evaluated at the true parameters, is a martingale trans-

form. The vector of parameter estimates is asymptotically normal, see The-

orem 1, implying that the test statistic −2 log ∆ follows a χ2-distribution,

see Theorem 2. Explicit formulae for parameter estimates and the likelihood

ratio of Theorem 3 facilitate various applications.

4.1 Proof of Theorem 1

The normality of the estimates results from the necessary condition for the

ML property. The partial derivatives of the log-likelihood are equal to zero,

so that the leading term in a Taylor-expansion, the score statistic, equals

(minus) the residual terms. The linear expansion of the classical case, is

replaced by a quadratic. However, we first need some prerequisites,

Note, that for all h ∈ K
1

n

∫ tj

ti

Yh(t)dt ≤
n(tj − ti)

n
= tj − ti, i, j = 0, . . . , b, i < j. (6)

Lemma 4.1 The matrix A with

A =




A1 0 · · · 0

0 A2
. . .

...
...

. . . . . . 0

0 · · · 0 An




8
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6
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Figure 2: Environment of q0 and δ0

where

Ai =


ai + ci ai

ai ai


 , ai, ci > 0,

is positive definite.

Proof: All eigenvalues e of A should be positive. Using matrix algebra,

one can show det(A − eI) =
∏n

i=1 det(Ai − eI). Therefore, it suffices to

prove that the Ai have positive eigenvalues. Then eij = (2ai + ci)/2 ±
√

(2ai + ci)2/4− aici > 0, j = 1, 2 with ai, ci > 0. �

Lemma 4.2 For q ∈ (0,∞) and δ ∈ (−q,∞) and for all true parameters q0

and δ0, there exist ξ1, ξ2 > 0, so that the neighborhood Θq
0 = [q0 − ξ1,∞) ⊂

(0,∞) and Θδ
0 = [δ0 − ξ2,∞) ⊂ (−q0 + ξ1,∞).

Proof: This is based on the openness of the parameter space; see Figure 2.

�
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In the interest of simplicity, we now restrict our analysis, for the time

being, to the case of only one change-point, namely

λhj(t) = 1[0,t1)(t)qhjYh(t) + 1[t1,T ](t)(qhj + δhj)Yh(t), h, j ∈ K, j 6= h.(7)

Lemma 4.3 The first to third partial derivatives of the intensity process (7)

and the log-intensity process with respect to the parameters qhj and δhj exist

and are continuous. Additionally, the first to third partial derivatives of the

log-likelihood (1) exist.

Proof : The first partial derivatives of the intensity process have the form

∂λhj(t)

∂qhj
= Yh(t) and

∂λhj(t)

∂δhj
= 1[t1,T ](t)Yh(t).

The first to third derivatives with respect to any other δil or qil, i, l = 1, .., k

exist and equal zero. The first to third derivative of the log-intensity process

also exists, because qhj > 0 and qhj + δhj > 0 (see Definition 2.1). The third

derivatives result in

∂3 log(λhj(t))

∂q3
hj

=
2 1[0,t1)(t)

q3
hj

+
2 1[t1,T ](t)

(qhj + δhj)3
(8)

and

∂3 log(λhj(t))

∂δ3
hj

=
2 1[t1,T ](t)

(qhj + δhj)3
. (9)

They are obviously continuous in qhj and δhj. The mixed second and third

derivatives with respect to δhj and qhj yield the same form as the second and

third derivatives with respect to δhj. It is also easy to show that the first

three derivatives of the log-likelihood exist and are continuous in qhj and

δhj, because the log-likelihood (1) is an additive composition of the intensity

processes. �

10
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We now derive the asymptotic distribution of the ML-estimators. The Taylor

series expansions of the score statistics U i
T (θ̂) = ∂ logL

∂θi

∣∣∣
θ=θ̂

around the true

parameters qhj0 and δhj0 are:

0 =
1√
n
U i
T (θ̂) =

1√
n
U i
T (θ0)−

2(k−1)2∑

l=1

√
n(θ̂l − θl0)

1

n
IilT (θ0)

+

2(k−1)2∑

l=1

√
n(θ̂l − θl0)

1

2n

2(k−1)2∑

m=1

(θ̂m − θm0)Rilm
T (θ∗)

(10)

where

θ =


qhj
δhj



j 6=h,h,j∈K

∈ R2(k−1)2 (11)

denotes the parameter vector, and θ̂ its ML-estimates. Here, IT (θ) denotes

(minus) the Hesse matrix, and Rilm
T (θ) the third partial derivatives of the log-

likelihood, while θ∗ is on the line segment between θ̂ and the true parameter

θ0. If we wish to apply Billingsley (1961, Theorem 10.1), 1
n
IilT (θ0), in the

linear term, must converge to a covariance matrix. The quadratic term must

be asymptotically negligible.

The constant term 1√
n
U i
T (θ0) is a local square integrable martingale, as

a function of T , and normality can be studied by the means of the martin-

gale central limit theorem (Rebolledo, 1980; Andersen et al., 1993, Theorem

II.5.1). To this end, two properties must be demonstrated. First, its co-

variation processes must converge in probability to a covariance matrix. The

covariation processes depend mainly on the partial derivatives of the intensity

processes.

Lemma 4.4 Let δhj0 and qhj0 be the true parameters. For θil ∈ {{qil} ∪
{δil}, i, l ∈ K, i 6= k} and θxy ∈ {{qxy} ∪ {δxy}, x, y ∈ K, x 6= y}, without the

case where i, x = h and l, y = j, it holds

1
n

∫ T
0

∂ log(λhj(t))

∂θil
|θ0 ∂ log(λhj(t))

∂θxy
|θ0λhj(t, θ0)dt = 0. (12)

11
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The only covariances that do not equal zero are

1

n

∫ T

t1

1[t1,T ](t)Yh(t)

(qhj0 + δhj0)
dt

P−→
∫ T

t1

mh(t)

qhj0 + δhj0
dt =: ahj > 0 (13)

and

1

n

∫ t1

0

1[0,t1)Yh(t)

qhj0
dt

P−→
∫ t1

0

mh(t)

qhj0
dt =: chj > 0. (14)

Hence, the covariance matrix Σ yields, on the diagonal, matrices described

by

Σhj =


ahj + chj ahj

ahj ahj


 , ahj, chj > 0,

with h ∈ K, j ∈ K, j 6= h. All other entries equal zero, and the Σ is positive

definite.

Proof : Equation (12) is clear. The convergence in (13) and (14) follow with

(A1) and Helland (1983). Therefore, the covariation processes converge to

a finite function. It also applies, with Lemma 4.1, that Σ is positive definite.�

Second, we need to prove the Lindeberg condition.

Lemma 4.5 For any ε > 0 and j 6= h ∈ K it holds

1

n

∫ t1

0

Yh(t)

qhj0
dt1(ε,∞)

(∣∣∣∣
1√
nqhj0

∣∣∣∣
)

P−→ 0

and

1

n

∫ T

t1

Yh(t)

(qhj0 + δhj0)
dt1(ε,∞)

(∣∣∣∣
1√

n(qhj0 + δhj0)

∣∣∣∣
)

P−→ 0,

as n converges to ∞.

Proof : This follows with (6) and

lim
n→∞

1(ε,∞)

(∣∣∣∣
1√
nqhj0

∣∣∣∣
)

= lim
n→∞

1(ε,∞)

(∣∣∣∣
1√

n(qhj0 + δhj0)

∣∣∣∣
)

= 0.

12
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�

Lemmata 4.4 and 4.5 now imply that 1√
n
U i
T (θ0) is normally distributed with

mean 0 and covariance matrix Σ.

We now consider the linear term of the Taylor expansion (10).

Lemma 4.6 1
n
IilT (θ0) converges to Σ, as n→∞.

Proof : It is possible to formulate the entries of 1
n
IT (θ0) as the sum of the

terms of the left side of (12) and

− 1

n

∫ T

0

∑

j 6=h

∂2

∂θiθl
log λhj(s, θ0)dMhj(s), (15)

where Mhj(t) = Nhj(t) −
∫ t

0
λhj(s)ds. The first term converges to the en-

tries of Σ, because of Lemma 4.4. The second term, depending on the true

parameters, represents a local square integrable martingale and converges in

probability to zero. We can show this with its variation process

1

n

∫ t1

0

∑

j 6=h

qhj0Yh(t)

q4
hj0

dt+
1

n

∫ T

t1

∑

j 6=h

(qhj0 + δhj0)Yh(t)

(qhj0 + δhj0)4
dt

≤
∑

j 6=h

t1
q3
hj0

+
∑

j 6=h

T − t1
(qhj0 + δhj0)3

<∞,

converging to a finite quantity and Lenglart’s inequality (see Lenglart, 1977).

�

In the following, we can show that 1
n
Rilm
T (θ∗) is bounded in probability by a

constant M , hence the quadratic term in the Taylor expansion disappears as

n converges to ∞.

The third partial derivatives of the log likelihood with respect to qhj

(divided by n) have the form

1

n

∫ t1

0

2

q3
hj

dNhj(t) +
1

n

∫ T

t1

2

(qhj + δhj)3
dNhj(t). (16)

13
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The third partial derivatives with respect to δhj or mixed partial derivatives

of both are represented by only the second term.

Lemma 4.7 There exist neighborhoods Θq
hj0 and Θδ

hj0 around the true pa-

rameters and a predictable process Hhjn(t) independent of qhj and δhj, with

sup
qhj∈Θqhj0

∣∣∣∣∣
∂3 log(λhj(t))

∂q3
hj

∣∣∣∣∣ ≤ Hhjn(t),

sup
δhj∈Θδhj0

∣∣∣∣∣
∂3 log(λhj(t))

∂δ3
hj

∣∣∣∣∣ ≤ Hhjn(t).

(17)

Furthermore, it holds that

1

n

∫ T

0

∑

j 6=h
Hhjn(t)λhj(t, qhj0, δhj0)dt <∞. (18)

Proof : It exists with Lemma 4.2 for all qhj0 and δhj0 a (ξqhj, ξ
δ
hj) > 0 with

Θq
hj0 = [qhj0− ξqhj,∞) ⊂ (0,∞) and Θδ

hj0 = [δhj0− ξδhj,∞) ⊂ (−qhj0 + ξqhj,∞)

∀j 6= h, h, j ∈ K. Define

Hhjn(t) =
2 1[0,t1)(t)

(qhj0 − ξqhj)3
+

2 1[t1,T ](t)

(qhj0 − ξqhj + δhj0 − ξδhj)3
.

For all qhj ∈ Θq
hj0 and δhj ∈ Θδ

hj0, with (8) and (9) one obtains (17). As all

mixed derivatives equal the third derivative with respect to δhj or zero, their

supremum is also less than or equal to Hhjn(t). It now holds with (6)

1

n

∫ T

0

∑

j 6=h
Hhjn(t)λhj(t, qhj0, δhj0)dt (19)

≤
∑

j 6=h

(
2t1qhj0

(qhj0 − ξqhj)3
+

2(T − t1)(qhj0 + δhj0)

(qhj0 − ξqhj + δhj0 − ξδhj)3

)
<∞.

�

Lemma 4.8 With Lemma 4.7, (16) also converges to a deterministic M <

∞.

14
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Proof : First, (16) is less than or equal to the integral over Hhjn with respect

to dNhj(t). This integral is the optional variation process and (19) the pre-

dictable variation process of the same martingale. The asymptotic equality

(and hence the boundedness of (16)) follows from the martingale central limit

theorem, if we can show that

∑

j 6=h

2qhj0
(qhj0 − ξqhj)3

1

n

∫ t1

0

Yh(t)dt1(ε,∞)

(√
2

n(qhj0 − ξqhj)3

)

+
∑

j 6=h

2(qhj0 + δhj0)

(qhj0 − ξqhj + δhj0 − ξδhj)3

1

n

∫ T

t1

Yh(t)dt

1(ε,∞)

(√
2

n(qhj0 − ξqhj + δhj0 − ξδhj)3

)

converges for n → ∞ to 0. This holds because of the same argument as in

the proof of Lemma 4.5. �

Because 1
n
U i
T (θ0)

P→ 0 and Lemmata 4.6 and 4.8, the ML-estimate θ̂ exists

and is consistent.

With (10) and Lemma 4.8, it holds that:

2(k−1)2∑

l=1

√
n(θ̂l − θl0)

1

n
IilT (θ0)− 1√

n
U i
T (θ0)

≤ 1

2
M

2(k−1)2∑

m=1

(θ̂m − θm0)

2(k−1)2∑

l=1

√
n(θ̂l − θl0).

Now, it follows with Lemma 4.6 that:
∣∣∣∣

1√
n
UT (θ0)− Σ

√
n(θ̂ − θ0)

∣∣∣∣ ≤ εn|
√
n(θ̂ − θ0)|

where

εn =
2(k − 1)2

2
M

2(k−1)2∑

m=1

|θ̂m − θm0| n→∞→ 0

because of the consistency of θ̂. Here |.| denotes the absolute norm.

This has the form

|un − vn| ≤ εn|Σ−1vn|.

15
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With a similar proof as to Billingsley (1961, Theorem 10.1), the normality

of the score statistic implies now the normality of the ML-estimates.

As θ̂ converges to θ0, Lemma 4.6 ensures that 1
n
IT (θ̂) is a consistent

estimate of Σ. The proof for (b − 1) > 1 is analogous to that for only one

change-point and is omitted here for the sake of brevity.

4.2 Proof of Corollary 2

For the proof of Theorem 1, the order of δhj and qhj in parameter θ (see

(11)) was necessary for Lemma 4.4. In this section, another order will be

convenient. Let (δ̂, ˜̂q) be the unrestricted ML-estimator, where the vector δ̂

includes all δ̂hj and ˜̂q all ˜̂qhj (in case of b − 1 = 1), and (0, q̂) the restricted

estimator, where q̂ includes all q̂hj. We wish to show that

−2 log
L(0, q̂)

L(δ̂, ˜̂q)

n→∞∼ χ2
(b−1)(k−1)2 .

With Theorem 1, we have:


δ̂ − δ0

˜̂q − q0


 d→ N


0,Γ−1 =


 Γδ Γδ,q

Γq,δ Γq




 (20)

where Γ is a rearrangement of Σ. Now, under H0 : δ = 0 with standard

arguments of the profile likelihood ratio

−2 log
L(0, q̂)

L(δ̂, ˜̂q)

.
= (δ̂ − δ0)Γδ(δ̂ − δ0).

Together with equation (20), we find that −2 log ∆ is χ2 distributed. We

obtain (k−1)2 degrees of freedom for (b−1) = 1 change-point, since dim(δ) =

(k − 1)2 because of the defaulting class k. With (b− 1) > 1, we achieve the

same result with (b− 1)(k − 1)2 degrees of freedom.

16
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4.3 Proof of Theorem 3

In order to obtain the partial ML-estimators and the explicit test statistic,

we need the first derivatives with respect to qhj and δhjl. They result in

∂ log(L)

∂qhj
=

Nhj(t
−
1 )

qhj
+

b∑

l=2

Nhj(tl)−Nhj(t
−
l−1)

qhj + δhjl
−
∫ T

0

Yh(t)dt,

∂ log(L)

∂δhjl
=

Nhj(tl)−Nhj(t
−
l−1)

qhj + δhjl
−
∫ T

t1

Yh(t)dt.

In the case of stationary intensities where δhjl = 0 ∀j 6= h h, j ∈ K, l =

2, . . . , b we obtain, by equating with zero and solving the resulting equation,

the partial ML-estimators of Albert (1962)

q̂hj =
Nhj(T )∫ T

0
Yh(t)dt

.

With piecewise constant intensities, the partial ML-estimators are

˜̂qhj =
Nhj(t

−
1 )∫ t1

0
Yh(t)dt

q̂hjl =
Nhj(t

−
l )−Nhj(t

−
l−1)

∫ tl
tl−1

Yh(t)dt
l = 2, . . . , b

δ̂hjl = q̂hjl − ˜̂qhj l = 2, . . . , b.

We now obtain the partial likelihood ratio

∆ =
L((q̂hj)h,j∈K,j 6=h)

L((˜̂qhj, δ̂hjl)h,j∈K,j 6=h,l=2,...,b)

=
∏

t∈[0,t1)

∏

j 6=h

(
q̂hj
˜̂qhj

)∆Nhj(t) b∏

l=2

∏

t∈[tl−1,tl]

∏

j 6=h

(
q̂hj

˜̂qhj + δ̂hjl

)∆Nhj(t)

and the test statistic −2 log(∆) equals

−2
∑

j 6=h

[
Nhj(t

−
1 ) log

(
q̂hj
˜̂qhj

)
+

b∑

l=2

(Nhj(t
−
l )−Nhj(t

−
l−1)) log

(
q̂hj

˜̂qhj + δ̂hjl

)]
.
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5 Application

Capital ratios are important for banks, and depend on the rating transitions

of the portfolio counterparts in two ways. On average, the ratios are sensitive

to changes in portfolio risk (Kleff and Weber, 2008). Legally, the capital is a

function of the transition probabilities, especially for the transition to default,

and may be estimated with internal default data (see Basel Committee on

Banking Supervision, 2004, paragraph 461ff).

WestLB AG granted access to an internal system of credit-ratings with 8

non-default rating classes and one default class. The rating histories of 3, 699

counterparts were observed over seven years from 1.1.1997 until 31.12.2003.

Internal rating starts at credit origination, dampening the expected impact of

calendar time over the business cycle (see Bangia et al., 2002). The transition

histories may be assumed to be independent, or at least to fulfill assumptions

(A1) and (A2).

The nonparametric Johansen-Aalen estimates of the transition matrix

P̂ (s, t) for different off-sets s may indicate instationary behavior of rating

transitions, e.g. P̂ (0, t) and P̂ (1, t) must be n-asymptotically equal for a sta-

tionary process. Figure 3 shows the dissimilarity for the rating combinations

p̂43(0, t) and p̂43(1, t).

Simultaneous inference for all rating combinations corrects for spurious

effects. The simultaneous test for stationarity of rating transitions, based on

the test statistic −2 log(∆), however, is only asymptotical due to Corollary

2. A Monte Carlo simulation can serve to assess its finite sample properties,

under the conditions of the data. We studied the type I error, using the

generator estimated with q̂hj of Theorem 3 for the data at hand (as in Casjens

et al., 2007). At a nominal significance level of 5%, the actual size for a sample

size of 7, 000 independent rating histories was found to be 0.75%. This means

that the test is very conservative, causing interpretation problems, when the
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Figure 3: Nonparametric estimates for the t-years transition probability at

credit origination (black line) and after one year (grey line)

test does not reject. In simulations for type II error, we found that, for

a doubling of the hazard after T/2, the power achieves virtually 100% for

around n = 1, 000 processes. We also considered monotone exponentiated

Weibull hazard functions for the simplified case of two rating classes with

intensity

q12(t) =
αθq12(1− exp(−(q12t)

α))θ−1exp(−(q12)α)

1− (1− exp(−(q12t)α))θ
, (21)

where q12 = 0.1, α = 0.9 and θ = 1 for a monotone decreasing and q12 =

0.1, α = 2 and θ = 1 for a monotone increasing shape (see Figure 4). The

results for type II error were similar to the piecewise constant alternative.

To continue our empirical analysis of the internal ratings, we are inter-

ested in testing the null of stationarity (2), at the significance level α = 0.05,

against the alternative of transition intensities with structural breaks (3).

We consider different equidistant partitions 0 = t0 ≤ t1 ≤ t2 ≤ . . . ≤ tb = 7

of the time interval [0, 7]. The maximum number of breaks is six, yielding

seven one-year intervals.

[Table 1 about here]

19



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

0 1 2 3 4 5 6 7

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

t

q 1
2((t

))

0 1 2 3 4 5 6 7

0.
06

0
0.

06
5

0.
07

0
0.

07
5

0.
08

0
0.

08
5

0.
09

0
0.

09
5

t

q 1
2((t

))

Figure 4: Monotone (left), convex and concave intensities (right) from an

exponentiated Weibull family

The strikingly small p-values are listed in Table 1, and, except for b = 3,

prove that rating transition intensities in this rating system are not sta-

tionary. Time since origination does influence rating transition probabilities

significantly.

A possible explanation of the result for b = 3 is potential local inconsis-

tency of likelihood ratio tests. The construction of the test (5) implies that

local instationarity within an interval of the alternative cannot be discovered

by means of the test. A possible reason is the non-monotony of some of the

intensities. For illustration purposes, the previous examples of the exponen-

tiated Weibull family (21) allow for both a convex and a concave intensity

shape with parameter values q12 = 0.05, α = 5 and θ = 0.175 for the convex

shape and q12 = 0.1, α = 0.91 and θ = 1.13 for the concave shape, depicted

in Figure 4. In a simulation study, again for T = 7, we tested against one

change-point at T/2. For a sample size as large as n = 10, 000, the convex-

shaped intensity was associated with a type II error of 0.487, for the concave

intensity the error was even 0.918.

In a simplified situation, Weißbach and Dette (2007) propose a globally
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consistent test that detects any alternative. From a practical point of view,

this deficiency is accounted for here, by processing our test on different par-

titions.

6 Concluding Remarks

The question is whether a potential instationarity of rating transitions, de-

tected by the proposed test, may not be due to ignored covariates. Systematic

economic activity constitutes a documented covariate for rating transitions

(Koopman et al., 2008). Systematic risk could lead to higher downgrade

intensities during a recession, compared to upswings. This intuition is true

for migrations measured in calendar time. However, in this case, rating his-

tories are no longer independent of one another. Counting in portfolio time

warrants, at least approximately, that assumption (A1), our proxy for inde-

pendence, is valid.

Another aspect is that covariates, even though known to be influential,

may not be available, so that the model may be under-specified. Heckman

and Singer (1984) show, for single spell data, that under-specification causes

negative duration dependence.

If stationarity is rejected, there may be microeconomic covariates, which

influence the intensities. These may be time-dependent variables, such as

return on investment of the obligor, clearly implying instationary intensi-

ties, as well as variables that are constant over time, such as trade, thus

causing confounding problems. Modelling these variables and testing for

time-stationarity of the baseline intensity may be possible, but with a model

that is yet to be validated. Our aim was to show that, free of any model

apart from the Markov assumption, portfolio age is a covariate that must be

accounted for in further research on rating transitions.
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Table 1: Likelihood ratio test for stationarity of internal rating transitions.

The number of b ranges between 2 and 7.

b 2 3 4 5 6 7

−2 log(∆) 93.9 125.9 289.3 345.8 447.3 626.2

p-value 0.009 0.535 < 0.001 < 0.001 < 0.001 < 0.001


