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1 Introduction

Mainstream economics adopts the classical mechanical approach of 19th century
physics, based upon the reductionist principle, according to which one can un-
derstand the aggregate simply by analyzing its single elements. The microfoun-
dation of macroeconomics in the (New) Classical tradition is based on the hope
that the aggregate behavior is the magnification of the single agent’s behavior
on a larger scale. The application of the reductionist framework implies that
the so-called overlapping principle holds true, that the dynamics of a (linear)
model can be decomposed into its constituent parts through the representative
agent (RA) framework.

The microeconomic foundations of general equilibrium models must be based,
according to mainstream economics, on an optimizing RA, fully rational and om-
niscient. Unfortunately, “there are no assumptions on [...] isolated individuals
which will give us the properties of aggregate behavior which we need to obtain
uniqueness and stability. Thus we are reduced to making assumptions at the ag-
gregate level which cannot be justified by the usual individualistic assumptions.
This problem is usually avoided in the macroeconomic literature by assuming
that the economy behaves like an individual. Such an assumption cannot be
justified in the context of the standard economic model and the way to solve the
problem may involve rethinking the very basis on which this model is founded”
(Hildenbrand and Kirman 1988, p. 239).

The quantum revolution of the last century radically changed the perspec-
tive in contemporary physics. According to the holistic approach, the aggregate
is different from the sum of its components because of the interaction of parti-
cles. In the social sciences, a step in this direction is taken by the agent-based
modeling (ABM) strategy.

Agent-based models, which are increasingly applied in economics (Tesfatsion
2007, Axelrod 1997), have been developed to study the interaction of many
heterogeneous agents. In a sense they are based on new microfoundations,
according to a bottom-up approach. They follow a holistic methodology as
opposed to the reductionist approach of the mainstream economics. One builds
a model starting from simple behavioral rules at the single agent level. Through
interactions some aggregate statistical regularities emerge so that they can not
be inferred from the individual level. This emergent behavior often feeds back
to individual agents, making their rules change (they may evolve in an adaptive
way). According to this approach, macroeconomics is not a set of equations
that occurs by summation and averaging of the individual decisions, but it is a
SOC (Self-Organized Critical) phenomenon that rises from the micro-level.

As already mentioned, ABM and simulations have been extensively used in
many scientific fields, including economics, in the last decade (Axelrod 1997,
Axtell 2000). However, in recent years only, researchers have started consid-
ering the issue of validation: that is whether a model and its results may be
considered correct. As Sargent (1998, p. 53) puts it, “This concern is addressed
through model verification and validation. Model validation is usually defined
to mean substantiation that a computerized model within its domain of appli-
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cability possesses a satisfactory range of accuracy consistent with the intended
application of the model”. This is not at all a secondary problem; in fact, only
a correct model can be considered a suitable model.

In this paper we deal with some validation experiments of a simplified version
of the model proposed in Gallegati et al. (2003a, 2005), the so called CATS
(Complex Adaptive Trivial System) model.

The CATS model has been extensively used (see, for example, Gallegati et
al. 2003b, 2004, 2005) to replicate a large number of scaling type stylized facts
with a remarkable degree of precision, and for these purposes, the simulation
of the model has been performed entering ad hoc parameters’ values and using
the same initial set up for all the agents involved in the experiments. It must
be recalled that the above mentioned analyses have been performed following
Kaldor’s suggestion: “construct a hypothesis that could account for these styl-
ized facts, without necessarily committing himself on the historical accuracy”
(1965, p. 178).

In this paper our intentions are more ambitious: using an initial set up of
actual data (a sample of Italian firms in 1996) we aim to verify whether the
CATS model, simulated over a period for which actual data are fully available
(the interval 1996-2001), is an acceptable representation of the real system. In
other words we intend to perform an ex-post validation of the model.

Alternative distributional and goodness-of-fit tests, discussed in Prabhakar
et al. (2003) and Kleiber and Kotz (2003), are performed, and some graphical
tools (Embrechts et al. 1997) are proposed in order to give the reader a quick
comprehension of actual and simulated data.

In the validation exercise, over the simulation period 1996-2001, we use
a sample of 6422 Italian firms included in the AIDA database. The model
parameters have been estimated using actual data, and the initial set up consists
of the sample data of the year 1996. The CATS model is then simulated over
the period 1996-2001, and the simulations’ results are ex-post validated with
respect to actual data.

The model reproduces, in a short (medium) term horizon, a good percentage
(81% in 2001) of the output actual data. The two samples (simulated and
observed data) belong to the same distribution with a confidence interval of
95%. Moreover the model also reproduces the firms’ growth dynamics at a
micro level, while less satisfying is the simulation for the behavior of the very
small and very large firms.

The papers is organized as follows. Section 2 presents the state of the art
for the validation of agent-based models, Section 3 introduces the model we
have studied and validated, Section 4 describes the database we used and the
empirical evidence we aim to investigate, Section 5 shows the proceeding of the
validation procedure, and Section 6 concludes.

2

Page 3 of 34 



Ac
ce

pt
ed

 M
an

us
cr

ip
t

2 Empirical Validation of Agent-based Models

As Leigh Tesfatsion points out in her important website on Agent-based Com-
putational Economics1, the validation of ACE models is becoming one of the
major points in the agenda of those researchers who work according to the
agent-based approach.

In the literature, looking at the main methodological aspects, there are three
different ways of validating computational models:

1. Descriptive output validation, matching computationally generated out-
put against already available actual data. This kind of validation proce-
dure is probably the most intuitive one, and it represents a fundamental
step towards a good model’s calibration.

2. Predictive output validation, matching computationally generated data
against yet-to-be-acquired system data. Obviously, the main problem con-
cerning this procedure is essentially due to the delay between the simula-
tion results and the final comparison with actual data. This may cause
some difficulties when trying to study long time phenomena. Anyway,
since prediction should be the real aim of every model2, predictive output
validation must be considered an essential tool for an exhaustive analysis
of a model meant to reproduce reality.

3. Input validation, ensuring that the fundamental structural, behavioral and
institutional conditions incorporated in the model reproduce the main as-
pects of the actual system. This is what we can call ex ante validation; the
researcher, in fact, tries to introduce the correct parameters in the model
before running it. The information about parameters can be obtained
analyzing actual data, thanks to the common empirical analysis. Input
validation is obviously a necessary step one has to take before calibrating
the model.

In this paper we analyze points 1 and 3. As far as predictive validation is
concerned, we hope to develop it in the near future.

Since the empirical validation of agent-based models is still a new topic, at
the moment there are only a limited number of contributions in the literature
dealing with it, as summarized below.

In their paper, Axtell et al. (1996) develop the basic concepts and methods
of an alignment process for agent-based models. In particular they show how
alignment can be used to test whether two different computational models can
be considered similar in terms of behavior and output.

In Carley (1996), there’s a first stress on model validation issues, even if the
attention of the author is still focusing on computational modeling in general.

1http://www.econ.iastate.edu/tesfatsi/empvalid.htm
2Validation is not the end of the study process. Indeed, it must be considered an interme-

diate step, necessary to ameliorate the model in order to make predictions.
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A very interesting experiment can be found in the paper by Gilli and Winker
(2003), in which the authors present an agent-based exchange market model and
introduce a global optimization algorithm for calibrating the model’s parameters
via simulation.

In Troitzsch (2004), there is a comprehensive list of all the issues concerning
the validation of simulation models to describe and predict real world phenom-
ena.

In Fagiolo et al. (2007), one can finally find a very interesting discussion
about the ways agent-based modelers have tried to face the empirical valida-
tion of their models. The authors briefly review the standard approaches to
model validation employed by mainstream economists and then point out the
main differences dealing with ABM validation. The paper concludes with some
suggestions regarding the methodological aspects of validation.

Finally, without any presumption of being complete and exhaustive, we can-
not forget the mainly theoretical and methodological contributions by Sargent
(1998), Klevmarken (1998), Epstein (1999) and Judd (2006).

3 The CATS model

The model we present was first introduced in Gallegati et al. (2003a) to study
financial fragility and power laws. Here, it’s modified to better reproduce actual
data, according to the input validation principle we have mentioned above.

Following the ACE philosophy, it is a simple model, since it makes use
of straightforward and clear-cut assumptions. Simplicity is one of the main
qualities of agent-based models, which are considered good models only if able
to reproduce and explain empirical evidences without being too complicated or
making too many assumptions. In other words, the simpler the model is, the
easier are reading and interpreting the results.

Consider a sequential economy3, with time running t = 1, 2, ..., populated
by firms and banks. Two markets are opened in each period: the market for
a homogeneous produced good and the market for credit. As in the levered
aggregate supply class of models first developed in Greenwald and Stiglitz (1990,
1993), our model is fully supply-determined in the sense that firms can sell all the
output they optimally decide to produce. Due to informational imperfections
in the equity market, firms can raise funds only from the credit market, apart
from retained profits from previous periods. This assumption seems to reflect
the examined reality in Italy since new equity issues were rarely a financial
option for Italian firms in the observed period. Moreover, the full distribution
of dividends to shareholders was expensive due to the fiscal system. In a perfect
environment, without taxes, corporations would not have preferences among
these financial options, as shown by the Modigliani-Miller theorem.

Hence, in our setting, the demand for credit is related to investment expen-
diture, and it is fully satisfied at the fixed banks’ interest rates (i.e. total credit

3In a sequential economy (Hahn 1982) spot markets open at given dates, while future
markets do not operate.

4

Page 5 of 34 



Ac
ce

pt
ed

 M
an

us
cr

ip
t

supply always equals the demand for it). This hypothesis helps us to identify
a suitable proxy of the individual interest rates (namely, the average interest
rate) since we have no reliable information related to them.

Let us then briefly describe the main features of the model in the remaining
part of the section.

At any time t, the economy consists of Nt firms, each belonging to two
different sets (small firms and large ones)4, depending on their size, and facing
different levels of risk (price shocks). This assumption is different from the
original one (Gallegati et al. 2003a) with a single risk level.

Every firm i ∈ Nt produces the output Y according to a linear production
function, in which capital (Kit) is the only input5:

Yit = φitKit. (1)

For each firm i the productivity φit in t = 1 corresponds to its actual pro-
ductivity (estimated on the AIDA data in 1996), and it evolves according to the
following formula:

φ
it

= φ
it−1 + ̺

it
φ2

it−1, where ̺
it

=
M

2
, (2)

with M ∼ U(0, 1), if the firm is small, and to

φ
it

= φ
i1, (3)

if large. All this reproduces the evidence from our database, reported in Figure
1, where one can see the evolution of the average productivity for small and big
firms for actual and simulated data. It clearly emerges that the growth rates of
productivity are decreasing in firms’ size, contradicting Gibrat’s law for means6.

Figure 1: Evolution of average productivity for small and big firms from 1996
to 2001. Actual (straight lines with pluses) and simulated (dotted lines with

diamonds) data.

Each firm’s demand for goods is affected by an iid idiosyncratic real shock.
Since arbitrage opportunities are imperfect, the individual selling price is the
random outcome of a market process around the average market price Pt of
the output, according to the law Pit = uitPt, where E(uit) = µ and σ2

uit
<

+∞. Actual data suggest splitting the price generator process into two different

4According to the Italian Fiscal Law, to which we referred in writing this paper, a firm
is considered “small” if it has less than 50 employees, “medium” if it has between 51 and
250 employees and “large” if it has more than 250 employees. In our sample, the percentage
of firms is: ≈ 56% small, ≈ 31% medium, ≈ 13% large. In 1996 the smallest firm shows 2
employees, while the largest one 7308.

5Capital stock never depreciates.
6This is not the only evidence in the AIDA database contradicting Gibrat’s law. As we will

see in what follows (section 5), power law behaviors in firms’ size distributions and Laplacian
growth rates are an unambiguous negation of Gibrat’s prediction, at least in its strongest
version. For further details see Cirillo (2007), section 2.
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processes, depending on firms’ size. For the sake of simplicity we assume that uit

follows two different uniform distributions; small firms get a high average price
and a stronger volatility, while big firms face more concentrated prices with a
lower mean. This assumption has a justification in the analysis of actual data:
small firms, in fact, show a stronger volatility in their revenues and profits.

Summarizing, if U1 is the distribution of uit if i is small and U2 if i is large,
we have that µU1 > µU2 and σ2

U1
> σ2

U2
.

Since, by assumption, credit is the only external source of finance for firms,
the firm can finance its capital expenditure by recurring to net worth (Ait) or
bank loans (Lit), that is Kit = Ait + Lit. At the exogenous real interest rate r,
at each time t debt commitments for every firm are equal to rLit. Since for the
sake of simplicity there are no dividends distributed to shareholders, financing
costs equal debt commitments. Therefore, profit/loss (πit) in real terms is

πit = uitYit − rLit. (4)

In our model a firm goes bankrupt if its net worth becomes negative, that
is to say Ait < 0. The law of motion of Ait is, for hypothesis,

Ait = Ait−1 + πit. (5)

As in Greenwald and Stiglitz (1993), we assume that the probability of
bankruptcy (Prb) is directly incorporated into the firm’s profit/loss function:
bankruptcy is costly and increasing with the firm’s size. In particular we have
chosen a quadratic cost function:

Cb = cY 2
it c > 0. (6)

Finally, each firm, by maximizing its objective function, determines its op-
timal capital stock K∗

it
,

max
Kit

Γit = E(πit) − E(Cb), (7)

and the demand for credit.

4 The Database and the Empirical Evidence

All our validation experiments, together with the subsequent empirical analysis,
are based on firm-level observations from the AIDA database for the period 1996-
2001, AIDA, formerly developed by the Italian Chambers of Commerce, is now
a subset of AMADEUS, a comprehensive pan-European database elaborated by
Bureau Van Dijk7.

Thanks to several queries on the database, we have collected a sample of
6422 Italian non-financial firms, all satisfying the following: (i) no missing data
in each year, and (ii) reliable data for capital, employees and costs. For each firm

7For more information: http://amadeus.bvdep.com

6
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and year, we have data on equities, long term debts and loans, short term debts,
total capital, gearing ratio, solvency ratio, debt ratio, number of employees, cost
of employees and revenues.

Recent explorations (Gallegati et al. 2007) in industrial dynamics have de-
tected three empirical regularities that are so widespread across countries and
persistent over time as to be characterized as universal laws:

1. The distribution of firms’ size is right skewed and can be described by
a Zipf or power law probability density function (Gallegati et al. 2003b,
Gaffeo et al. 2003, Axtell 2001, Ramsden and Kiss-Haypal 2000, Okuyama
et al. 1999; Quandt 1966a-b, Mandelbrot 1960, Simon 1955);

2. Firms’ growth rates are Laplace distributed, belonging to the Subbotin’s
Family (Stanley et al. 1996, Bottazzi and Secchi 2005);

3. There is a power law relation between the variance of the size growth rates
and the size itself (Stanley et al. 1996, Gabaix et al. 2003).

Gallegati et al. (2005) have shown analytically that 1-3 determine several
industrial, financial and business cycle facts (see that paper for a review of the
empirical literature.) A model should therefore be able to replicate the empirical
evidence 1-3, and our validation exercise is focused on it.

The following section will present the validation exercise (i.e. if the above
presented CATS model successfully deals with the evidence 1-3).

5 Simulation and Results

Our validation exercise is run with a sample of 6422 firms over the period 1996-
2001.

The validation procedure we have used is new for agent-based models8, but
it is based on some well-known results of extreme value theory, mainly as far as
the analytical tests are concerned (for a reference see Embrechts et al. 1997).

In t = 1996 (t = 1 in simulations), each firm is initialized with its actual
data from 1996: net worth, loans, productivity and so on. The market interest
rate is exogenous and equal for all the firms.9

In each period actual data from the AIDA database are compared with
the simulated data produced by the model. In particular our analysis can be
divided into two different approaches: a pointwise analysis, meant to evaluate
the evolution of the single firm in order to study the predictive power of the
model, and a distributional analysis, whose aim is to look for regularities.

Our experiments can be considered a first ex-post validation of the CATS
model, that is to say a first step, necessary to develop all the subsequent analysis.

8On JEBO website an appendix describing the procedure in detail is available.
9It decreases every year starting from 11.5% (1996) and arriving at 10% (2001).

7
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5.1 Capital Distributions

As far as the aggregate output is concerned, the model underestimates it slightly
(average aggregate actual output over six years on log scale is equal to 10.3486;
average aggregate simulated output over six years on log scale is equal to
10.1132), while the output volatility is almost identical (≃ 1.205 vs. ≃ 1.207).
This is a first interesting result that underlines the ability of the model in repli-
cating actual data10.

5.1.1 Total Capital

Let us now consider the total capital dynamics. Accepting a maximum devia-
tion of ±20% between observed and simulated data in 2001 (that is a composite
yearly deviation rate of 3.5%), we succeed in reproducing 5201 firms over 6422
(81%). As Figure 4 shows, the tails of the firms’ size distribution is not ade-
quately fitted. Similar results can be found in the previous years (in 1997, for
example, the percentage of fitted firms is 74%, while in 1999 it’s 77%) and by
analyzing the pooled distributions (78%).11

In order to verify the real goodness of these results (verifying if they are
due to the goodness of the model rather than to the characteristics of data
such as few years, few firms with respect to the universe and so on), we have
performed an empirical analysis of actual data. In Figure 3 one can observe the
comparison, by the means of a Zipf’s plot, between actual total capital in 1996
and 2001. The evidence is quite clear: there is a substantial difference between
the two amounts of data (see also the boxplot in Figure 4). Accepting the usual
20% deviation, only 25% of the firms (essentially the smallest ones) can be
considered as fitting the data. In fact, even if both distributions belong to the
Paretian case12, their parameters are different. Several analytical tools, such as
the Kolmogorov-Smirnov’s statistics and the Kruskall-Wallis’ test, confirm all
this.

Even if we calculate the average growth rate of firms from 1996 to 2001 and
then we multiply the initial data in 1996 for this coefficient, in 2001 we succeed
in fitting ”only” 62% of the firms. Since our model can fit 81% of them, it must
be considered as performing better.

10Obviously, even if our sample is representative of the universe, we cannot completely
exclude some slight dependence between output volatility and the number of firms in the
system, which is surely influenced by the conditions we have imposed on the database (no
lack of data, plausible capital values and so on). However, our experience of simulations with
different datasets induce us to think that this detail should not be sufficient to invalidate our
results.

11As in Ijiri and Simon (1997), the use of pooled distribution is possible since the single
distributions show similar slopes.

In this paper, almost all the figures refer to year 2001.
12This is quite obvious; in only six years one cannot expect a distribution to change its

shape and family. Finally this is what we can find in most of all the empirical studies about
firms.
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Figure 2: Zipf’s Plot of the total capital distributions: observed (plus) and
simulated (diamonds).

Figure 3: Comparison between actual total capital in 1996 (plus) and 2001
(diamonds)

Figure 4: Boxplot of actual total capital in 1996 and 2001.

Figure 3 also shows that both observed and simulated capital distributions
are particularly skewed, with fat right tails (decreasing linear relationship in the
plot). This reproduces a widely accepted result (Zipf 1932), according to which
firms’ size is power law distributed13 (Axtell 2001, Gaffeo et al. 2003, Gabaix
et al. 2003).

We have performed many graphical and analytical tests to check if our two
samples (observed and simulated data) may be considered belonging to the same
distribution.

A first Quantile-Quantile plot (Figure 5) supports the idea of a unique dis-
tribution for both samples, since there is a clear linear relationship between the
observed and simulated data.

Figure 5: Q-Q Plot of the two Capital distributions

Another graphical test, the Box Plot (Figure 6), shows that the two distri-
butions have many similarities. For example, the median (thick line14) is almost
the same and it is not centered in the box, indicating two skewed distributions.
Moreover, both distributions present a great number of outliers (red plus) in
the right tails, underling the possible presence of fat tails.

Figure 6: Box Plot of simulated (left) and actual (right) Capital.

The same results are supported by the Generalized Kolmogorov-Smirnov
Test15 with a confidence interval of 95%. Therefore, it is possible to say that
our two samples belong to the same distribution.

13A power law behaviour in firms’ size is essentially due to the random iid micro-
multiplicative shocks (Solomon 1995) and the presence of the (bankruptcy) lower bound we
have modelled. It is possible to show that a system with power laws tails distributions have
divergent first and second moments, so the law of large numbers does not hold and the system
is not ergodic.

14Line is red in the website version.
15The Generalised or Two Sample Kolmogorov-Smirnov test is a variation of the classical

Kolmogorov-Smirnov test.
Given N data points Y1, Y2, ..., Yn the empirical distribution function (ECDF) is defined as

FN =
n(i)

N
, (8)

where n(i) represents the number of points less than Yi. As one can see, this step function
increases by 1

N
for each data point.

The Kolmogorov-Smirnov test is based on the maximum distance between the ECDF and
the theoretical cumulative distribution one wants to test (F T ):

D = max
1≤i≤N

∣

∣

∣

∣

F T (Yi) −
i

N

∣

∣

∣

∣

. (9)

On the contrary, the two sample K-S test, instead of comparing an empirical distribution

9
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In particular, excluding the right Paretian tails16, we found out that our
data follow a Generalized Pareto Distribution (GPD)17, in particular a Pareto
II type (ξ ≤ 0). Figure 7 shows a linear Pareto II Plot18 of the observed capital
distribution (again, after excluding the largest firms).

Figure 7: Pareto II Plot of the actual capital (biggest 10% trimmed)

The presence of Paretian behavior in the right tails of the two distributions is
also supported by the Mean Excess Function versus Threshold Plot (MEPLOT).
An upward sloping mean excess function, as in Figure 8, indicates a heavy tail
in the sample distribution. That is why, thanks to the Hill’s method19, we have
decided to estimate the shape parameters of the two samples in order to see
whether data have a similar behavior in the right tails.

Figure 8: Meplot of observed (above) and simulated (under) Capital.

function to the theoretical one, compares two different ECDF, that is

D = |F1(i) − F2(i)| , (10)

where Fi is the empirical distribution for sample i.
The generalised K-S statistic can be defined as:
H0 : F1 = F2 → the two samples come from the same distribution;
H1 : F1 6= F2 → the two samples come from different distributions.
To decide the results of the test, the values of D are compared to the critical values obtained

from Kolmogorov and Smirnov’s table.
16We have trimmed them after a threshold study based on graphical (for example looking for

linearity in meplots) and analytical (studying the behavior of Hill’s and Pickands’ estimates)
analysis. A very detailed description of the methodology is presented in Embrechts et al.
(1997).

17Starting from the well-known Fisher-Tippett Theorem, which deals with the convergence
of maxima, the GPD distribution represents one of the most important limiting cases.

Its functional form is

H(x) =
{ 1 − (1 + ξ x

β
)
− 1

ξ if ξ 6= 0

1 − e
−

x
β

if ξ = 0
, (11)

where β > 0 and x is such that 1 + ξx > 0 and ξ is the shape parameter (tail index α = 1

ξ
).

There are three different situations:

1. ξ > 0 → GPD distribution becomes the classical Pareto distribution and shows fat
tails;

2. ξ = 0 → GPD distribution converges to the exponential distribution;

3. ξ < 0 → GPD distribution; it is then known as Pareto II.

18That’s a quantile-quantile plot with Pareto II coefficients.
19The well-known Hill’s Estimator ξ, together with the Pickands’ one, is the most used way

to determine the shape parameter α = 1

ξ
of a distribution belonging to the GEV family.

In particular

ξ =
1

k − 1

k−1
∑

i=1

ln xi,N − ln xk,N for k ≥ 2, (12)

where k is the upper order statistics and N the sample size.
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Figure 9 reports the Hill’s estimates of the shape parameter for the simulated
capital, while Figure 10 refers to observed data. In the first case α = 1.61,
while in the second one α = 1, 68. Hence, the two parameters are very similar
(Figure 11) and belong to the Paretian field (0.8 < α < 2)20, but we cannot
claim that the two tails behave in the same way. Simulated capital, in fact,
shows a slightly heavier tail (since its alpha is lower21), demonstrating that we
slightly overestimated the observed values.

Figure 9: Hill Plot of the simulated capital
Figure 10: Hill Plot of the actual capital

Figure 11: Comparison of the two Hill Plots.

5.1.2 Net Worth and Loans

As far as net worth is concerned, accepting a maximum deviation of ±20%
between actual and simulated data in 2001, we succeed in reproducing 4944 firms
over 6422 (77%)22. This number is lower than that of total capital, indicating
some more problems of fitting23.

Other positive results, see Figure 12, are the skewness of the two distributions
and the presence of a clear Paretian behavior in both actual and simulated net
worth. Hill’s estimates of the shape parameters both show heavy right tails:
actual data present α = 1.52, while the simulation produces α = 1.48.

Figure 12: Zipf’s Plots of the net worth distributions: observed (plus) and
simulated (diamonds) data

As far as the possibility of a unique distribution for the two samples, the two-
sided generalized Kolmogorov-Smirnov test rejects such a null hypothesis. On
the contrary the one-sided right version of the test24 is not rejected, indicating
that we get a better fitting of medium and big firms, but we fail in forecasting
the smallest one.

The results we get about loans are very similar to those of the total capital:
we succeed in fitting 5137 firms out of 6422 (80%).

20Once again the results concerning the pooled distributions are very similar. The reason
can be found in the words of Ijiri and Simon (p. 19): “We conclude that when two or more
Pareto distributions are pooled together, the resulting distribution is Pareto if and only if
all the distributions have similar slopes [...]. This result is important in dealing with the
aggregation of empirical firm size distributions.”

21As clearly showed in Kleiber and Kotz, the Pareto density has a polynomial right tail that
varies at infinity with index (−α − 1), implying that the right tail is heavier as α is smaller.

2266% in 1997, 73% in 1999
23In particular this may depend on the hypothesis of the model that 1) firms cannot raise

funds on the equity market, 2) profits are entirely retained in the firm and 3) as suggested
by the referee, that all firms face the very same interest rate. However, these simplifying
hypothesis, typical of CATS model, do not seems to affect too much the robustness of our
validation results.

24H0 : F+

1
(x) = F+

2
(x).

H1 : F+

1
(x) > F+

2
(x).
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Moreover, similarly for total capital, both graphical and analytical tests
support the idea of a unique distribution for both actual and simulated debt
data (Figure 13).

Figure 13: Zipf’s plot of loans: observed (plus) and simulated (diamonds).

As in Fujiwara (2004), the distribution of loans is also power law. The Hill’s
estimates of the shape parameters of the Paretian right tails are α = 1.71 for the
actual data and α = 1.58 for the simulated ones, demonstrating an overestimate
of biggest firms.

Finally, analyzing the ratio between net worth and debt we find out that,
apart from some exceptions25, it is almost constant for each firm over time. In
other words, if firm i has a ratio of x% in 1996, it shows a very similar ratio in
2001.

5.2 Growth Rates

As far as firms’ growth rates are concerned, several studies (Bottazzi and Secchi
2005, Axtell 2001, Hall 1987) find a tent-shape behavior. In particular, the
Laplace and Lévy distributions seem to provide the best fit (Gabaix et al. 2003).

We have investigated whether the empirical distributions of growth rates (in
terms of capital) belong to the well-known Subbotin’s family (Subbotin 1923),
which represents a generalization of several particular cases such as Laplace and
Gaussian distributions. The functional form of Subbotin’s family is

f(x, a, b) =
1

2ab
1
b Γ

(

1 + 1
b

)e−
1
b |

x−µ
a |b, (13)

where µ is the mean, b and a two different shape parameters and Γ is the
standard Gamma. If b → 1 the Subbotin distribution becomes a Laplace, a
Gaussian for b → 2.

Using the maximum likelihood method26, we have estimated the three Sub-
botin’s parameters on our data. Table 1 contains the results.

Figure 14: Empirical distributions of actual and simulated growth rates.

At a first glace, observed and simulated growth rates show several similari-
ties:

1. The two means are very close to zero;

25While validating our model, we have conducted several experiments on interest rates,
finding out that those firms showing a decreasing net worth/debt ratio are the same that
obviously go bankrupt if the interest rates rise. This is interesting since the decreasing ratio is
almost completely due to a monotonically deteriorating equity ratio (Beaver 1966, Gallegati
et al. 2005). Moreover, surprisingly, all the firms that went bankrupt in our simulations were
the same as those that really went bankrupt in 2002, showing a decreasing equity ratio.

Unfortunately, as already said, our data are not complete for 2002, so we prefer not to state
this as a result.

26The results are very similar, using the method of moments.
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observed data Simulated data

µ -0.0030 (0.0013) 0.0048 (0.0021)

a 0.0587 (0.0244) 0.0614 (0.0238)

b 1.0184 (0.3495) 1.0626 (0.3664)

−loglik 1.1528 1.1549

Table 1: Estimated Subbotin’s Parameters (standard errors in brackets)

2. Since b is very near to 1, both distributions are in the field of attraction
of the Laplacian case27. Figure 14 supports this evidence since it is tent-
shaped;

3. The values of a, the Laplacian shape parameter, are not very different in
both cases, even if simulated data show slightly fatter tails (0.061>0.059);
see Figure 14.

Overall, the CATS model is able to mimic firms’ growth dynamic, once again
with some discrepancies as far as the tails are concerned.

5.2.1 Growth Rates and Firms’ Size

In order to analyze the relationship between firms’ size and firms’ growth rates,
we followed the methodology suggested by Gabaix et al. (2003). Stanley et
al. (1996) find that large firms show a lower volatility of their growth rates;
moreover, they show that this volatility (σrates) linearly decreases with size
(S), or

lnσrates = −α lnS + β, (14)

with α ≃ 0.15.

In order to investigate whether this relationship holds true for our actual
and simulated data, we divided firms’ size in four bins. Then we computed the
standard deviation of their growth rates. Finally, we plotted a log-log graph of
the average standard deviation of growth rates versus the average size in each
bin.

For both observed and simulated data, our results are very similar to those
presented in Gabaix et al. Figure 15 shows how the relationship we have found
decreases with size. Our estimates of α are 0.1643 for the actual data and
0.1621 for the simulated ones (not far from Gabaix’s 0.15). Once again, the
CATS model successfully reproduces the empirical data.

In sum, we may say that the CATS model successfully passes the ex-post
validation exercise of this section, with the only exception for very small firms.

Figure 15: Growth Rates Std vs Size (observed data)

27Some authors prefer a truncated Lévy distribution. The querelle is open. See Kleiber and
Kotz.
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6 Conclusions and future research

Even if the results of the ex-post validation experiments discussed in section 4
are preliminary, they shows that in the interval 1996-2001, the simple CATS
model, first introduced by Gallegati et al. (2003a) and slightly modified for
these experiments (see section 3), has good capabilities in replicating empirical
evidence, with few exceptions.

More reliable results could be obtained improving the specification of the
model, better calibrating some key parameters using simulation based methods
discussed, for example, in Gouriéroux and Monfort (1996) and in Klevmarken
(1998), and carefully adjusting the dimensions of the sample used in the initial
set up.

In future validation experiments, we intend to modify the model specifica-
tion, endogenizing the banking sector (see Vagliasindi et al. 2006) and the price
generator process and including a labor market module. Moreover, we hope to
be able to work on a richer and more reliable dataset in order to generalize our
results and correctly calibrate the model, taking also into account the specificity
of the Italian situation.

A Validation Procedure: some notes

The aim of this appendix is to describe briefly the procedure we have used to
validate the CATS model.

All the codes and the programs have been written in Fortran90 c©, while all
the graphics have been developed with Matlab7 c©.

As far as the simulation of the CATS model is concerned, it can be useful
to stress the following aspects:

1. In t = 1 (1996), when the simulation starts, every firm is initialized with
its actual data from the database. These data are net worth, loans and
productivity. The current version of the model has a recursive structure so
that parameters φit have been consistently estimated using, firm by firm,
ordinary least squares. Then productivity evolves according to the laws
of motions presented in 2 and 3;

2. The parameter M in 2 follows an uniform distribution, whose support
(0, 2) has been ad hoc calibrated, thanks to several replications;

3. The interest rate is equal to 11,5% in 1996 (t = 1) and decreases every
year, arriving at 10% in 2001. This reproduces the average behavior of
the interests paid every year by firms in our database;

4. The two different uniform distributions we have used to model the idiosyn-
cratic shocks on prices show support (0.8, 2.8) for small firms and support
(0.5, 1.5) for the large ones. These supports have been inductively cali-
brated with a grid method, considering the results of several alternative
replications, in order to get the best fitting values;
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5. Every year the following data are stored in order to be compared with
actual data: net worth, loans, total capital, productivity, growth rates,
paid interests, total output, aggregate output.

Our analysis of data can be divided into two different approaches: a point-
wise analysis, meant to evaluate the evolution of the single firm, in order to
study the predictive power of the model; and a distributional analysis, whose
aim is to look for general regularities.

In Embrechts et al., one can find a quite complete list of all the tests a
researcher should perform in analyzing data, while Kleijen (1998) deals with
the theoretical implications of validation.
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