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Abstract

Microaggregation by individual ranking (IR) is an important technique for masking

confidential econometric data. While being a successful method for controlling the

disclosure risk of observations, IR also affects the results of statistical analyses. We

conduct a theoretical analysis on the estimation of arbitrary moments from a data

set that has been anonymized by means of the IR method. We show that classical

moment estimators remain both consistent and asymptotically normal under weak

assumptions. This theory provides the justification for applying standard statisti-

cal estimation techniques to the anonymized data without having to correct for a

possible bias caused by anonymization.

Key words: consistent estimation; disclosure control; individual ranking;

microaggregation; general moments.
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1 Introduction

Confidential econometric data that have been collected by a statistical office

are usually anonymized before publication. Anonymization is accomplished

by making use of statistical disclosure control techniques. These techniques

result in a reduction of the information content of the data and thus in a

low re-identification risk of the observations in the published data set. As

a consequence, data users (e.g., econometricians employed by universities or

research institutes) have to rely on the quality of the results obtained from

the masked data. A drawback of disclosure control techniques is that the re-

duction of the information content often leads to an efficiency loss and/or to

biased statistical analysis (Willenborg and de Waal (2001), Doyle et al. (2001),

Domingo-Ferrer and Torra (2004), Ronning et al. (2005), Aggarwal and Yu

(2008)). Due to confidentiality requirements, a certain amount of efficiency

loss cannot be avoided. However, if the efficiency loss is not too large, econo-

metricians will still benefit from the published data. In order to control the

efficiency loss arising from the anonymization of data sets, the effect of sta-

tistical disclosure control techniques on statistical analysis has to be carefully

examined.

In this paper the focus is on the effect of microaggregation by individual rank-

ing (IR) on the estimation of general moments and, by implication, on the

least squares (LS) estimation of a linear model in transformed variables. IR,

which has been popularized by the Statistical Office of the European Com-

munities (Eurostat), is an important statistical disclosure control technique

1 Corresponding author. Email: matthias.schmid@imbe.imed.uni-erlangen.de, Tel.:

+49 9131 85 22706, Fax: +49 9131 85 25740
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for continuous microdata (see Defays and Anwar (1998)). The idea of IR is to

anonymize each continuous variable in a data set one after another by forming

small groups (usually of size 3 or 5) of ”similar” data values and by replacing

the original data values with the respective group means. It is thus hoped that

the values of (potentially sensitive) outliers at the tails of a distribution are

masked while the multivariate distribution of the data is approximately pre-

served. A drawback of IR is that the technique seems to result in a relatively

high identification risk of individual observations (Domingo-Ferrer and Torra

(2001), Domingo-Ferrer et al. (2002), Winkler (2002)). For this reason, IR

has often been used in combination with other disclosure control techniques,

especially with techniques designed for masking discrete data. In the United

States, for example, IR has been applied to anonymize various versions of

the Individual Income Tax Return Public Use File (Strudler et al. (1986), see

also http://www.nber.org/~taxsim/gdb/). Similarly, according to a survey

conducted by the United Nations Economic Commission for Europe (UNECE

Secretariat (2001)), IR has been used by several European statistical offices

to mask officially collected data before publication. Another review stating

that IR is used by European statistical offices was conducted by Felsö et al.

(2001). In a recent publication on disclosure control, Eurostat considered IR

to be a “perfectly acceptable strategy if a slight modification of the data is

deemed sufficient” for avoiding disclosure of respondents (Hundepool et al.

(2009), p. 115). Similarly, the members of a major German research project

recommended to anonymize business data by using a combination of IR and

disclosure techniques for discrete variables (Ronning et al. (2005), Rosemann

et al. (2006)). This strategy has been adopted by the German statistical offices

(Rosemann et al. (2006)).

3
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In two previous papers (Schmid (2006), Schmid and Schneeweiss (2008)) we

have analyzed the effect of IR on the estimation of linear models. In Schmid

(2006) it was shown analytically that a linear model can be consistently esti-

mated from the microaggregated data by standard LS estimation techniques.

In addition, if the continuous variables in a data set are assumed to follow

a mixed normal distribution each, the efficiency loss due to IR is asymptot-

ically zero. In Schmid and Schneeweiss (2008) we have extended this theory

by considering linear models in transformed variables where nonlinear vari-

able transformations are applied to the data after microaggregation. We have

shown that even in this case the LS estimators of a linear model remain con-

sistent under mild regularity assumptions.

It should be pointed out that the consistency results derived for transformed

data (Schmid and Schneeweiss (2008)) do not automatically follow from the

results for untransformed data (Schmid (2006)). This is because nonlinear

transformations of microaggregated data introduce an additional (finite sam-

ple) bias in the LS estimators. For instance, the empirical mean of three loga-

rithmized data values is usually different from the logarithmized mean of the

three values.

The purpose of this paper is to provide a generalization of the theory presented

in Schmid (2006) and Schmid and Schneeweiss (2008) to the estimation of ar-

bitrary moments based on transformed and untransformed microaggregated

data. The variables involved need not be continuous variables as in Schmid

and Schneeweiss (2008), so the consistency proof is adapted to this more gen-

eral case. In addition, arbitrary multivariate moments are considered and not

only product moments as in Schmid and Schneeweiss (2008). We will not only

prove the consistency of the empirical moments computed from microaggre-

4
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gated data but will also specify conditions and regularity assumptions under

which the moments are asymptotically normal. Arbitrary moments include

first, second, and product moments of the transformed and untransformed data

as special cases. Thus, the consistency results for linear models presented in

Schmid (2006) and Schmid and Schneeweiss (2008) are confirmed. Moreover,

since the consistent estimation of arbitrary moments from the microaggregated

data is guaranteed, any method-of-moments estimator is in turn consistent if

computed from the microaggregated data. It should be noted that these results

(obtained for the IR method) are fundamentally different from previous results

obtained for other microaggregation techniques, such as multivariate microag-

gregation with a sorting variable (Mateo-Sanz and Domingo-Ferrer (1998),

Domingo-Ferrer and Torra (2001)). In the latter case, moment estimators

have been shown to be asymptotically biased, see Schmid et al. (2007). Other

approaches to multivariate microaggregation (Laszlo and Mukherjee (2005),

Domingo-Ferrer et al. (2006), Martinez-Balleste et al. (2007), Domingo-Ferrer

et al. (2008)) have not yet been analyzed analytically with respect to their

impact on the analytic potential of microdata sets.

The paper is organized as follows: In Section 2 we give an example of the

IR method and illustrate the problems arising from nonlinear transformations

of the microaggregated data. In Section 3 the consistency of the empirical

moments computed from transformed micraggregated data is shown. Section 4

deals with the asymptotic normality of these estimators. Section 5 contains

a simulation study on the theoretical results derived in Sections 3 and 4, as

well as the econometric analysis of an officially collected example data set. A

summary of the results presented in this paper is given in Section 6. Proofs of

theorems are given in the Appendix.

5
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2 Microaggregation by individual ranking

Microaggregation by individual ranking works as follows: First, the data set

is sorted by the first continuous variable, and a fixed group size K is cho-

sen for this variable. Next, groups of K consecutive observations are formed.

The values of the variable in each group are replaced by their corresponding

group means, while the values of the other variables in the data set are left

unchanged. Then the same procedure is repeated for the second continuous

variable, and so on. If the number of observations n is not a multiple of K,

it is common practice to alter the procedure such that the groups around the

medians contain K + mod (n/K) adjacent data values (see Domingo-Ferrer

et al. (2002)). It is generally considered necessary to form groups of at least

K = 3 observations, as data attackers can easily identify an observation in a

group of less than 3 observations if they have sufficient background knowledge

on only one of the observations. In practice, it is common to form groups of

sizes 3 or 5. Note that the group size may differ for different variables and can

also be equal to 1, meaning that this variable has not been microaggregated.

If there are discrete variables in the data set, they are left unchanged during the

IR procedure. We assume that all discrete variables have either been left un-

changed or have been masked by so-called non-perturbative disclosure control

techniques, so that the multivariate distribution of these variables is unbiased.

Non-perturbative disclosure control techniques, which include subsampling of

observations and re-coding of data values, are widely used in practice. For

an overview we refer to Willenborg and de Waal (2001) and Ronning et al.

(2005).

As an example of IR we consider a data set consisting of two vectors x and y,

6
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both containing continuous data. In addition, we consider a ”dummy” vector z

containing the values of a discrete binary variable. Assume that the original

data set is given by

x 2 4 7 0 9 5 1 8 3

y 4 2 0 9 1 5 6 11 10

z 1 0 1 0 1 1 1 1 1

.

The first step of IR results in the sorted data set

x 0 1 2 3 4 5 7 8 9

y 9 6 4 10 2 5 0 11 1

z 0 1 1 1 0 1 1 1 1

,

where the rows of the original data set have been ordered according to the

values of x. In the second step of IR, with K chosen to be 3, the values of x

are microaggregated:

x̃ 1 1 1 4 4 4 8 8 8

y 9 6 4 10 2 5 0 11 1

z 0 1 1 1 0 1 1 1 1

.

The third step of IR results in the sorted data set

7
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x̃ 8 8 4 1 4 1 1 4 8

y 0 1 2 4 5 6 9 10 11

z 1 1 0 1 1 1 0 1 1

,

where the rows have been ordered according to the values of y. Finally, in the

fourth step of IR, again with K chosen to be 3, the values of y are microag-

gregated:

x̃ 8 8 4 1 4 1 1 4 8

ỹ 1 1 1 5 5 5 10 10 10

z 1 1 0 1 1 1 0 1 1

.

Now suppose that ỹ is additionally transformed by means of a quadratic trans-

formation. Then

ỹ2 = (1, 1, 1, 25, 25, 25, 100, 100, 100) .

Obviously, taking the squares of the microaggregated values of y results in a

different data set than when the squared values of y are microaggregated. In

the latter case, one would have obtained

ỹ2 = (1.67, 1.67, 1.67, 25.67, 25.67, 25.67, 100.67, 100.67, 100.67) .

Now consider the estimation of a theoretical moment, i.e., the expectation of

an arbitrary one-dimensional function of the random variables (X, Y, Z) from

the microaggregated data. Since the original data have been altered by IR, the

consistent estimation of the theoretical moment by its corresponding ordinary

8
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empirical moment is not guaranteed any more. In the next sections we will

address this problem.

3 Consistent estimation of moments

Let X = (X(1), . . . , X(p)) be a p-dimensional random vector and let xi =

(x
(1)
i , . . . , x

(p)
i ), i = 1, . . . , n, be an i.i.d. sample taken from the distribution

of X. The corresponding individually microaggregated data are denoted by

x̃i = (x̃
(1)
i , . . . , x̃

(p)
i ), i = 1, . . . , n. The group size for the aggregation of X(k) is

denoted by Kk. For simplicity we always assume n to be a multiple of Kk (this

assumption does not affect the asymptotic results derived in the following).

We want to prove that the usual consistent estimator of the moments of the

distribution of X remains consistent if we replace the original data by their

microaggregated data values.

Let us consider general moments: Suppose that the expectation E[h(X)] for

some measurable real-valued function h exists. We know that, given an i.i.d.

sample (x1, . . . , xn), E[h(X)] can be consistently estimated by the empirical

mean 1
n

∑n
i=1 h(xi). The following sufficient conditions guarantee that E[h(X)]

can be consistently estimated by the empirical mean 1
n

∑n
i=1 h(x̃i) constructed

from the individually microaggregated data x̃i,, i = 1, . . . , n:

H1: h is defined on an open p-dimensional rectangle D = D1 × · · · × Dp, where

Dk is a finite or infinite open interval on the real line, k = 1, . . . , p. The

support of X is contained in D.

H2: h is Lipschitz continuous on every finite closed p-dimensional subrectangle

B = B1 × · · · × Bp ⊂ D, where each Bk, k = 1, . . . , p, is a finite closed

interval on the real line (i.e., there exists a positive bound H ′ depending

9
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only on B such that, for any two points x1 ∈ B and x2 ∈ B, |h(x1)−h(x2)| ≤

H ′d(x1, x2), where d(x1, x2) is the Euclidean distance between x1 and x2).

H3: There exist non-negative real-valued functions hk(x
(k)) defined on Dk, k =

1, . . . p, which are Lipschitz continuous on every finite closed interval Bk ⊂

Dk, such that |h(x)| ≤ ∑p
k=1 hk(x

(k)) for all x = (x(1), .., x(p)) ∈ D.

H4: E[h2
k(X

(k))] < ∞, k = 1, . . . p.

H5: hk is monotone on each side of Ck, where Ck ⊂ Dk is a fixed finite closed

interval and Ck its complement in Dk.

Remark 1: The Lipschitz condition in H2 and H3 can be replaced with the

more familiar condition that h and hk are continuously differentiable on their

domains. Of course, the Lipschitz condition is weaker and therefore to be

preferred. E.g., the function h(x) = |x| is Lipschitz but not differentiable in

its domain.

Theorem 1 Let X be a p-dimensional random vector and (x1, . . . , xn) an

i.i.d. sample from the distribution of X. Let (x̃1, . . . , x̃n) be the corresponding

microaggregated sample with fixed aggregation group sizes Kk, k = 1, . . . , p,

assuming (w.l.o.g.) n to be a multiple of Kk. Let h(x) satisfy the conditions

H1 to H5. Then a. s.

lim
n→ ∞

1

n

n∑

i=1

h(x̃i) = E[h(X)] .

In the univariate case (p = 1), condition H4 can be replaced with the weaker

condition H4′: E[hk(X
(k))] < ∞, k = 1, . . . p.

PROOF. See Appendix.

Example 1: For the one-dimensional case (p = 1), Theorem 1 applies to ordi-

10
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nary moments of X and moments of transformed variables h(X), such as |X|,

sin(X), log(X), or Xλ, λ ∈ R+, where in the last two cases D = (0, ∞). These

moments can be consistently estimated from the microaggregated sample via

the empirical moments 1
n

∑n
i=1 h(x̃i). An example for p = 2 is the product

moment E[h1(X
(1))h2(X

(2))] of two transformed variables with hk Lipschitz

on each Bk, hk(x
(k)) monotone on each side of some C̄k, and E[h4

k(X
(k))] < ∞,

k = 1, 2. Indeed, as |h1(X
(1))h2(X

(2))| ≤ h2
1(X

(1)) + h2
2(X

(2)), condition H3 is

satisfied.

Corollary 1 For two variables X(1) and X(2) (p = 2), the conclusion of The-

orem 1 also holds true if the sum
∑2

k=1 hk(x
(k)) in condition H3 is replaced

with the product: h1(x
(1))h2(x

(2)) of two corresponding functions.

PROOF. See Appendix.

Example 2: Again the product moment is an example, but now we get the

previous result with the weaker condition that both E[h2
k(X

(k))], k = 1, 2, exist,

while E[h4
k(X

(k))] need not exist, see also Schmid and Schneeweiss (2008).

Theorem 1 and Corollary 1 imply that, under mild regularity conditions, a

linear regression model in transformed variables can be consistently estimated

with microaggregated data.

4 Asymptotics

Theorem 1 states that we can consistently estimate any moment E[h(X)]

from the transformed microaggregated data in the same way as we would

estimate E[h(X)] from the non-microaggregated data. We now give condi-

tions under which the estimator constructed from the microaggregated data

11
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is asymptotically as efficient as the corresponding estimator constructed from

the non-aggregated data. It is possible to prove even more: The two estima-

tors are asymptotically equivalent under certain conditions, in the sense that

√
n( 1

n

∑n
i=1 h(x̃i) − 1

n

∑n
i=1 h(xi)) tends to zero in probability with n → ∞.

There are two sets of conditions that we need, one concerning the transforma-

tion function h, the other one concerning the distribution of X. The conditions

on h are stronger than the corresponding conditions for Theorem 1.

H (Conditions on the transformation function h):

H1∗: Same as H1. As to notation, let Dk = (dlk, duk), where dlk and/or duk may

be finite or infinite.

H2∗: The function h(x) has continuous partial derivatives on D denoted by

h′
k(x) :=

∂

∂x(k)
h(x(1), . . . , x(p)), k = 1, . . . , p.

H3∗: For each k = 1, . . . , p, let Ck = [clk, cuk] ⊂ Dk be a finite closed interval lying

in Dk, where cuk > 0 (clk < 0) if duk = ∞ (dlk = −∞). Suppose there are

functions hk(x
(k)), k = 1, . . . , p, of the following form:

hk(x
(k)) =





hlk(x
(k)) for dlk < x(k) < clk

C for clk ≤ x(k) ≤ cuk

huk(x
(k)) for cuk < x(k) < duk ,

12
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where C is a positive constant and

hlk(x
(k)) =





alk(−x(k))mlk if dlk = −∞

alk(x
(k) − dlk)

−mlk if dlk > −∞ ,

huk(x
(k)) =





auk(x
(k))muk if duk = ∞

auk(duk − x(k))−muk if duk < ∞

with some positive constants alk, auk, mlk, and muk, such that

|h′
r(x)| ≤

p∑

k=1

hk(x
(k)), r = 1, . . . , p.

Remark 2: The bounding functions hk(x
(k)) of Condition H3∗ increase like

power functions when x(k) approaches the boundaries of Dk. They are mono-

tone near these boundaries, while they are constant in the middle region Ck.

F (Condition on the distribution of X):

Let Fk be the distribution function of X(k). Then, with mlk and muk from

Assumption H,

lim
n→ ∞

[
1 − Fk

(
−n

1
4(mlk+1)

)]n
= 1 if dlk = −∞ ,

lim
n→ ∞

[
1 − Fk

(
dlk + n

− 1
4mlk

)]n
= 1 if dlk > −∞ ,

lim
n→ ∞

[
Fk

(
n

1
4(muk+1)

)]n
= 1 if duk = ∞ ,

lim
n→ ∞

[
Fk

(
duk − n

− 1
4muk

)]n
= 1 if duk < ∞ .

Remark 3: While the conditions on hk bound the growth of h′(x) when x(k)

approaches the boundaries of Dk, the conditions on the distribution of X

describe how fast the distribution function Fk(x
(k)) tends to 0 or 1 when

x(k) approaches the boundaries of Dk. The stronger hk(x
(k)) grows at the

13
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boundaries of Dk (i.e., the larger the numbers mlk and muk are), the faster

Fk(x
(k)) has to go to its limits 0 or 1.

Theorem 2 Suppose an i.i.d. sample x1, . . . , xn of a random vector X has

been microaggregated. If the transformation function h and the distribution

functions of X(k) satisfy conditions H and F , respectively, then

plimn→ ∞
1√
n

[
n∑

i=1

h(x̃i) −
n∑

i=1

h(xi)

]
= 0 . (1)

PROOF. See Appendix.

Assuming that the estimator 1
n

∑n
i=1 h(xi) of E[h(X)] is asymptotically normal

with asymptotic variance σ2
h/n, the asymptotic equivalence of 1

n

∑n
i=1 h(x̃i) and

1
n

∑n
i=1 h(xi) implies that 1

n

∑n
i=1 h(x̃i) is also asymptotically normal with the

same asymptotic variance:

√
n

(
1

n

n∑

i=1

h(x̃i) − E[h(X)]

)
n→ ∞−→ N(0, σ2

h) . (2)

Thus the estimator with microaggregated data is (asymptotically) just as ef-

ficient as the estimator with the original data.

Example 3: Let p = 1 and (suppressing the index k = 1) let X ∼ N(µ, σ2)

and h(x) = xr, r ∈ Z+. The estimator 1
n

∑n
i=1 h(xi) then estimates the r-th

moment of X. With microaggregated data the estimator is 1
n

∑n
i=1 h(x̃i). We

show that the conditions of Theorems 1 and 2 are satisfied. First note that

D = (−∞, ∞). Obviously, h(x) is continuously differentiable and |h(x)| is

monotone for x > 0 as well as for x < 0. Also E(Xr) exists. By Theorem 1,

1
n

∑n
i=1 x̃r

i is a consistent estimator of E(Xr).

As to the conditions of Theorem 2, first note that obviously H is satisfied with

mu = ml = r − 1. F is also satisfied because (assuming w.l.o.g. µ = 0 and

14
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σ2 = 1)

lim
n→ ∞

[
Φ(n

1
4r )
]n

= 1 ,

see Schmid et al. (2007). Similarly,

[
1 − Φ(−n

1
4r )
]n

=
[
Φ(n

1
4r )
]n n→ ∞−→ 1 .

Thus, by Theorem 2, 1
n

∑n
i=1 x̃r

i is an asymptotically normal estimator of E(Xr)

with the same asymptotic variance as 1
n

∑n
i=1 xr

i .

Example 4: Let X be lognormally distributed, i.e., log(X) ∼ N(µ, σ2) and let

h(x) = (log(X))r, r ∈ Z+. (Again p = 1 and the index k = 1 is suppressed).

The estimator 1
n

∑n
i=1 h(xi) then estimates the r-th moment of log(X). We

show that the conditions of Theorems 1 and 2 are satisfied.

First note that the domain of log(X) is D = (0, ∞) and the support of X

coincides with D. Obviously, h is continuously differentiable. In addition,

|h(x)| = | log(x)|r is monotone for 0 < x < 1 and for x > 1. Also, E[h(X)]

exists. Thus Theorem 1 can be applied showing that 1
n

∑n
i=1(log(x̃i))

r is a

consistent estimator of E[(log(X))r].

To verify the conditions for Theorem 2, first note that dl = 0 and du = ∞. As

|h′(x)| = r| log(x)|r−1x−1,

|h′(x)| ≤ max
x≥1

|h′(x)| = r(r − 1)r−1e1−r =: a for x ≥ 1 (3)

and

|h′(x)| < rx−r for 0 < x < 1 (4)

because | log(x)| < 1
x

for 0 < x < 1. Thus, condition H is satisfied with

mu = 0 and ml = r. Without loss of generality we may assume X to be
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standard log-normally distributed, i.e., log(X) ∼ N(0, 1). Then (with mu = 0)

F
(
n

1
4(mu+1)

)
= Φ

(
1
4
log(n)

)
=: Φ(bn) .

Now, Φ(b) > 1 − 1√
2π

1
b
e− 1

2
b2 for any b > 0 and, in particular, for b = bn,

see Durrett (1991), Theorem (1.3). Let an := n√
2πbn

e− 1
2
b2n . Then, since an =

4n√
2π log(n)

e− 1
32

log2(n) → 0 for n → ∞, we have (1 − an

n
)n → e0 = 1, and hence

[Φ(bn)]n → 1. Thus
[
F
(
n

1
4(mu+1)

)]n
→ 1

for n → ∞. Similarly (with dl = 0 and ml = r)

[
1 − F

(
dl + n

− 1
4ml

)]n
=
[
1 − F

(
n− 1

4r

)]n

=
[
1 − Φ

(
− 1

4r
log(n)

)]n
=
[
Φ
(

1
4r

log(n)
)]n → 1 .

This shows that condition F is satisfied as well. Thus Theorem 2 can be ap-

plied showing that 1
n

∑n
i=1(log(x̃i))

r is an asymptotically normal estimator of

E[(log(X))r].

5 Simulations and application example

We start with a simulation study on the quadratic regression

Y = 5 · X2 + ǫ , (5)

where X and ǫ are independent and standard normally distributed each. The

slope parameter β = 5 can be expressed as a continuously differentiable func-

tion of the moments E[Y · X2] and E[(X2)2]. Now suppose that Y and X have

both been microaggregated with group size K = 3, and that the quadratic
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transformation has to be applied to the data values of X after microaggrega-

tion. Then Theorem 1 guarantees the consistent estimation of E[Y · X2] and

E[(X2)2] from the data (see Examples 1 and 2), and thus also the consistent

least squares estimation of β. Moreover, due to Theorem 2, application of

the delta method guarantees the asymptotic normality and efficiency of the

least squares estimator of β computed from the microaggregated data. It is

straightforward to extend these results to the case of a multiple polynomial

regression. Table 1 shows the estimation results for n = 300 and 100 simula-

tion runs. The similarities between the least squares estimator based on the

non-aggregated data and the least squares estimator based on the transformed

microaggregated data are obvious.

Our next example is the method-of-moments estimator of the shape and scale

parameters of a Gamma distributed random variable X. Denote the shape

parameter by α and the scale parameter by β. It is well known that the

method-of-moments estimators computed from an i.i.d. sample x1, . . . , xn are

α̂ = m2
1/(m2 − m2

1) and β̂ = (m2 − m2
1)/m1, where m1 :=

∑n
i=1 xi/n and m2 :=

∑n
i=1 x2

i /n are the first and second empirical moments of X. Since we have

shown in Theorem 1 that the corresponding empirical moments computed from

a microaggregated data set x̃1, . . . , x̃n converge a. s. to m1 and m2 as n → ∞,

estimation of α and β based on the microaggregated data yields asymptotically

the same values as estimation based on the original data. Table 2, where the

estimation results of a simulation study with 100 simulation runs are shown,

confirms this result (n = 300, K = 3, α = 0.5, β = 2).

Our third example concerns the maximum likelihood estimation of the scale
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parameter c of a Levy distribution with density function

f(x) =

√
c

2π

e−c/(2x)

x3/2
. (6)

The score function of a Levy distributed i.i.d. data sample x1, . . . , xn is given

by

∂l

∂c
(x1, . . . , xn) =

n

2c
−

n∑

i=1

1

2xi

. (7)

As the maximum likelihood estimator ĉ :=
[∑n

i=1(1/xi)/n
]−1

is a consistent

estimator of c,
[∑n

i=1(1/x̃i)/n
]−1

is also consistent (which is guaranteed by

Theorem 1 and the monotonicity of h(x) = 1/x). Table 3, where the estimation

results of a simulation study with 100 simulation runs are shown, confirms this

result (n = 300, K = 3, c = 2).

Our final example is an analysis based on the data of the 2004 cost structure

survey of enterprises of the mining and manufacturing industry in Germany

(KSE). This survey is carried out regularly by the German Federal Statistical

Office. As the data obtained from this survey contain comprehensive informa-

tion on the German industry, they form an important basis for the national

accounts of Germany. Also, they are a typical example of an officially collected

data set that has to be anonymized before dissemination. The 2004 KSE data

have been obtained from n = 16 099 companies with 20 or more employees.

Following the approach of Fritsch and Stephan (2003) and Ronning et al.

(2005), we estimate a linear model of the form

log(Y ) = γ0 +
5∑

j=1

βj log(X(j)) + ǫ , (8)

where Y is an adjusted gross output of the companies and the regressors

X(1), . . . , X(5) are various cost factors. Model (8) corresponds to a logarith-

mized Cobb-Douglas production function whose production elasticities are
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equal to the coefficients β1, . . . , β5. As the least squares estimator of Model (8)

from a microaggregated data set with variables Y, X(1), . . . , X(5) is based on

the first and second moments of log(Y ), log(X(1)), . . . , log(X(5)), Theorem 1

applies (see Example 1), assuming that the regressor variables are (at least

approximately) lognormally distributed.

Tables 4 and 5 show the estimation results obtained from the transformed orig-

inal data and from the transformed microaggregated data (IR with group size

K = 3). As expected, we see that IR has virtually no effect on the coefficient

estimates of Model (8) and their estimated standard deviations.

6 Summary and conclusion

Microaggregation by individual ranking (IR) is a disclosure control technique

which is generally considered to have a relatively small impact on the utility

of an anonymized data set. In this paper we have shown analytically that

IR has indeed favorable properties with respect to the estimation of statisti-

cal models: Any arbitrary moment which is defined as the expectation of a

function h of a set of random variables can be consistently estimated from

the microaggregated data by using the standard empirical moment estima-

tors. Moreover, we did not assume the variables under consideration to be

continuous. Thus, mixed moments between a microaggregated continuous and

a non-microaggregated discrete variable can be estimated, as well as moments

purely based on microaggregated continuous variables.

A further important result is the proof of asymptotic normality of the moment

estimators based on the microaggregated data. This follows from the fact that

the moment estimators are asymptotically equivalent to the corresponding
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moment estimators computed from the non-aggregated data. Moment estima-

tors with microaggregated and with the original data are thus equally efficient

asymptotically. These results have been derived under suitable regularity con-

ditions concerning the behavior of the transformation function h and of the

distribution at the border of the domain of h. The simulation studies and data

examples presented in Section 5 show that the asymptotic theory derived in

this paper is already applicable when sample sizes are relatively small, i.e.,

when n ≥ 300.

It should finally be pointed out that the favorable properties of the IR method

go hand in hand with a relatively weak protection effect of IR, at least if no

additional disclosure control procedures have been employed (there is generally

a trade-off between analytic potential and protection effect of a disclosure

control technique). However, as stated in Section 1, several statistical offices

have used IR in combination with other disclosure control techniques to create

safe public-use and scientific-use files. In particular, application of IR may be

appropriate if the discrete variables in a data set (which serve as the main

identifiers for attackers and data snoopers) are suitably anonymized by means

of disclosure control techniques for discrete data. An overview of such methods

is given in Willenborg and de Waal (2001). Also, the protection effect of IR

can be enhanced if the group sizes Kk are taken sufficiently large. In this

context, it is important to note that our asymptotic results do not depend

on Kk. The consistency and asymptotic normality properties of the moment

estimators based on the microaggregated data are not affected by the choice

of the group size. Other microaggregation methods, such as distance-based

microaggregation techniques (Domingo-Ferrer and Mateo-Sanz (2002), Laszlo

and Mukherjee (2005), Domingo-Ferrer et al. (2006)) or microaggregation by
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a sorting variable (Mateo-Sanz and Domingo-Ferrer (1998), Domingo-Ferrer

and Torra (2001)), are generally considered to be more effective in protecting

confidential data than the IR method. However, the analytic potential of data

sets that have been masked by means of these methods seems to be limited

(though partially retrievable, at least for the case of microaggregation with a

sorting variable, see Schmid et al. (2007)).

While analyzing the protection effect of IR clearly is beyond the scope of this

paper, we suggest that in those cases where the application of IR to an econo-

metric data set sufficiently reduces disclosure risk, IR should be applied, since

the method guarantees that many standard estimation techniques result in

valid econometric findings.
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Appendix

Proof of Theorem 1:

Let Bk be finite closed intervals such that Ck ⊂ Bk ⊂ Dk, k = 1, . . . , p, and let

B = B1 × · · · × Bp. Choose Bk such that
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E[hk(X
(k))IB̄k

(X(k))] < ǫ , (9)

P(X(k) ∈ B̄k) < ǫ, k = 1, . . . , p , (10)

for some preassigned ǫ > 0, B̄k being the complement of Bk in Dk. This

is possible because of Assumption H4. Let Bk := {i : x
(k)
i ∈ Bk } and let

Gk(i) be the set of all indices j such that x
(k)
i and x

(k)
j belong to the same

microaggregation group for X(k). We shall prove that

lim
n→ ∞

∣∣∣∣∣
1

n

n∑

i=1

h(x̃i) − 1

n

n∑

i=1

h(xi)

∣∣∣∣∣ = 0 a. s. (11)

Now ∣∣∣∣∣
1

n

n∑

i=1

h(x̃i) − 1

n

n∑

i=1

h(xi)

∣∣∣∣∣ ≤ S1 + S2 + S3 ,

where

S1 :=
1

n

∑

i:Gk(i)⊂Bk
k=1,...,p

|h(x̃i) − h(xi)| ,

S2 :=
1

n

p∑

k=1

∑

i:Gk(i)⊂B̄k

|h(x̃i) − h(xi)| =:
p∑

k=1

S2k ,

S3 :=
1

n

p∑

k=1

∑

i:Gk(i) 6⊂Bk
Gk(i) 6⊂B̄k

|h(x̃i) − h(xi)| =:
p∑

k=1

S3k .

We start with S1. Because xi ∈ B as well as x̃i ∈ B for all i such that

Gk(i) ⊂ Bk for k = 1, . . . , p, we have, by Assumption H2,

S1 ≤ 1

n
H ′ ∑

i:Gk(i)⊂Bk
k=1,...,p

p∑

k=1

∣∣∣x(k)
i − x̃

(k)
i

∣∣∣

≤ 1

n
H ′

p∑

k=1

∑

i:Gk(i)⊂Bk

∣∣∣x(k)
i − x̃

(k)
i

∣∣∣

≤ 1

n
H ′

p∑

k=1

∑

i:Gk(i)⊂Bk

| |Gk(i)| |

≤ 1

n
H ′

p∑

k=1

Kk | | Bk| | ,
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where | |Gk(i)| | is the range of the x
(k)
j belonging to group Gk(i) and | | Bk| | is

the length of the interval Bk. The last inequality follows because there are Kk

elements in each Gk(i). The last term converges to 0 as n → ∞, so

S1 < ǫ (12)

for sufficiently large n.

The sum S3 is a borderline case: For each k there are at most two aggregation

groups Gk(i) for which Gk(i) 6⊂ Bk and Gk(i) 6⊂ B̄k. (On rare occasions, there

may be only one group such that some x
(k)
i in this group lie to the left of Bk

and some to the right of Bk, but such a group can be treated in a similar way

as the other ones). Let Gk denote the set of indices that belong to these two

groups (Gk may be empty). There are at most 2Kk indices in Gk. Now

S3k =
1

n

∑

i∈Gk

|h(x̃i) − h(xi)|

≤ 1

n

∑

i∈Gk

p∑

l=1

(
hl(x̃

(l)
i ) + hl(x

(l)
i )
)

by Assumption H3. As to the term hl(x̃
(l)
i ), we have

hl(x̃
(l)
i ) ≤ Hl +

n∑

j=1

hl(x
(l)
j ) IB̄l

(x
(l)
j ) ,

where Hl = maxx(l)∈Bl
hl(x

(l)). This is because either x̃
(l)
i ∈ Bl and then

h(x̃
(l)
i ) ≤ Hl or hl(x̃

(l)
i ) > Hl and then x̃

(l)
i ∈ B̄l, and, because of the monotonic-

ity property of hl, there is at least one x
(l)
j ∈ B̄l such that hl(x̃

(l)
i ) ≤ hl(x

(l)
j ).

Consequently, hl(x̃
(l)
i ) ≤ ∑n

j=1 hl(x
(l)
j ) IB̄l

(x
(l)
j ). As there are at most 2Kk in-

dices in Gk, we have

1

n

∑

i∈Gk

hl(x̃
(l)
i ) ≤ 2Kk

n
Hl +

2Kk

n

n∑

j=1

hl(x
(l)
j ) IB̄l

(x
(l)
j ) .

The first term on the right-hand side converges to zero and the last term con-
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verges, with probability 1, to 2 Kk E[hl(X
(l))IB̄l

(X(l))], which is less than 2 Kk ǫ

by Assumption (9). We have a similar bound for 1
n

∑
i∈Gk

hl(x
(l)
i ) (just replace

Kk with 1) and so, with some constant C1, S3k < C1 ǫ a. s. for sufficiently

large n. Hence, with some constant C2,

S3 < C2 ǫ (13)

a. s. for sufficiently large n.

Finally consider S2. By Assumption H3,

S2k ≤ 1

n

∑

i:Gk(i)⊂B̄k

p∑

l=1

(
hl(x̃

(l)
i ) + hl(x

(l)
i )
)
. (14)

Let us pause for a moment and let us first finish the proof for the univariate

case (p = 1). The result will be used to prove the multivariate case. To simplify

the notation, let us suppress the index k = 1. Since G(i) ⊂ B̄ and h(xj) is

monotone on each side of B̄,

h(x̃i) ≤
∑

j∈G(i)

h(xj) .

Because each set G(i) has K indices and because G(i) ⊂ B̄ implies xi ∈ B̄, it

follows that

1

n

∑

i:G(i)⊂B̄

h(x̃i) ≤ K

n

∑

i:G(i)⊂B̄

h(xi) ≤ K

n

∑

xi∈B̄
h(xi) =

K

n

n∑

i=1

h(xi) IB̄(xi) .

(15)

The last term converges to K E[h(X)IB̄(X)] as n → ∞. By similar arguments,

the second sum in (14) is bounded by a term that converges to E[h(X)IB̄(X)].

Hence S2 is bounded by a term that converges to (K + 1) E[h(X)IB̄(X)],

which is less than (K + 1) ǫ by Assumption (9). This shows that, for p = 1,

S2 < (K + 1) ǫ a. s. for sufficiently large n. Together with (12) and (13) it

follows that the whole sum S converges to 0 a. s. Thus, in the univariate case,
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limn→ ∞
1
n
h(x̃i) = E[h(X)] a. s. (Note that we did not use Assumption H4 in

the proof for the univariate case, but rather the weaker Assumption H4′).

Now let us continue with the multivariate case. The inequality in (14) implies

S2k ≤ 1

n

p∑

l=1

∑

i∈B̄k

(
hl(x̃

(l)
i ) + hl(x

(l)
i )
)

=
p∑

l=1

(
1

n

n∑

i=1

hl(x̃
(l)
i )IB̄k

(x
(k)
i ) +

1

n

n∑

i=1

hl(x
(l)
i )IB̄k

(x
(k)
i )

)
. (16)

Considering the first sum in (16), we have by the Cauchy-Schwartz inequality

that

1

n

n∑

i=1

hl(x̃
(l)
i )IB̄k

(x
(k)
i ) ≤

√√√√1

n

n∑

i=1

h2
l (x̃

(l)
i )

√√√√1

n

n∑

i=1

IB̄k
(x

(k)
i ) .

From what we have just proved for the univariate case (replacing h with h2
l ),

the first square root converges to
√

E[h2
l (X

(l))]. The second square root con-

verges to
√

E[IB̄k
(X(l))], which is less than ǫ by Assumption (10). As the same

can be said of the second sum in (16), it follows that S2k < C3 ǫ and hence

S2 < C4 ǫ

a. s. for n sufficiently large.

Summing up, we have for sufficiently large n that

∣∣∣∣∣
1

n

n∑

i=1

h(x̃i) − 1

n

n∑

i=1

h(xi)

∣∣∣∣∣ < C ǫ a. s. (17)

with some constant C. This proves (11).

Proof of Corollary 1:

We use the notation of the proof of Theorem 1. The data vector xi is now

equal to xi = (x
(1)
i , x

(2)
i ). The partial sum S1 is treated as before, so we only

need to consider S2 and S3. Let S2 = S21 + S22 as in the proof of Theorem 1.
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For S21 we have that

S21 =
1

n

∑

i:G1(i)⊂B̄1

|h(x̃i) − h(xi)|

≤ 1

n

∑

i:G1(i)⊂B̄1

|h(x̃i)| +
1

n

∑

i:G1(i)⊂B̄1

|h(xi)| .

Consider the first sum. By the modified assumption H3 and by the Cauchy-

Schwartz inequality,

1

n

∑

i:G1(i)⊂B̄1

|h(x̃i)| ≤ 1

n

∑

i:G1(i)⊂B̄1

h1(x̃
(1)
i )h2(x̃

(2)
i )

≤
√√√√ 1

n

∑

i:G1(i)⊂B̄1

h2
1(x̃

(1)
i )

√√√√1

n

∑

i:G1(i)⊂B̄1

h2
2(x̃

(2)
i )

≤
√√√√K1

n

n∑

i=1

h2
1(x

(1)
i )IB̄1

(x
(1)
i )

√√√√1

n

n∑

i=1

h2
2(x̃

(2)
i ) .

The last inequality follows from similar arguments that led to (15), but with h2
1

in place of h. The first radicand converges to K1 E[h2
1(X

(1))IB̄1
(X(1))], which is

less than K1 ǫ by assumption, and the second one to E[h2
2(X

(2))] by Theorem 1.

Thus 1
n

∑
i:G1(i)⊂B̄1

|h(x̃i)| < C5 ǫ a. s. for sufficiently large n. The other parts

of S2 can be treated in the same way, yielding S2 < C6 ǫ a. s. for sufficiently

large n. In a similar way we can show that S3 < C7 ǫ and thus S ≤ C8 ǫ a. s.

for sufficiently large n. This completes the proof.

Proof of Theorem 2:

We need some preliminary definitions. Let Bk = Bk(n) = [blk(n), buk(n)] be

closed finite intervals depending on n and B = B1 × · · · × Bp be the correspond-

ing p-dimensional rectangle. (Note that B is not the same as the rectangle B

used in the proof of Theorem 1). Let blk = blk(n) and buk = buk(n) be the

following functions depending on whether the boundaries of D are finite or

infinite:
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blk =





−n
1

4(mlk+1) if dlk = −∞

dlk + n
− 1

4mlk if dlk > −∞ ,

(18)

buk =





n
1

4(muk+1) if duk = ∞

duk − n
− 1

4muk if duk < ∞ .

(19)

Note that Bk is contained in Dk and converges to Dk for n → ∞. Let n

be large enough so that Ck ⊂ Bk(n) for all k ∈ {1, . . . , p}. It follows from

Assumption H3∗ that hk(x
k) ≤ C+huk(buk)+hlk(blk) for xk ∈ Bk, r = 1 . . . , p,

(see Remark 2), and thus

|h′
r(x)| ≤ p C +

p∑

k=1

{huk(buk) + hlk(blk)} for x ∈ B . (20)

Let An be the event that 1√
n

|∑n
i=1 h(x̃i) − ∑n

i=1 h(xi)| > ǫ and let Bn be the

event that xi ∈ B for all i = 1, . . . , n (and hence also x̃i ∈ B for all i). We

have to prove that limn→ ∞ P(An) = 0 for all ǫ > 0. Now

P(An) ≤ P(An ∩ Bn) + P(B̄n) .

We want to prove that P(An ∩ Bn) → 0 as well as P(B̄n) → 0. First consider

the event An ∩ Bn. Under this event (using a Taylor series approximation with

x∗
i = tx̃i + (1 − t)xi, 0 < t < 1, and using (20)),

ǫ <
1√
n

n∑

i=1

|h(x̃i) − h(xi)| ≤ 1√
n

n∑

i=1

p∑

r=1

|h′
r(x

∗
i )| |x̃(r)

i − x
(r)
i |

≤ 1√
n

[
pC +

p∑

k=1

{huk(buk) + hlk(blk)}
]

n∑

i=1

p∑

r=1

|x̃(r)
i − x

(r)
i |

≤ 1√
n

[
pC +

p∑

k=1

{huk(buk) + hlk(blk)}
] p∑

r=1

Kr(bur − blr) . (21)
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Now, by (18) and (19),

1√
n

hlk(blk) =





alkn
− 1

4
− 1

4(mlk+1) if dlk = −∞

alkn
− 1

4 if dlk > −∞ ,

(22)

1√
n

huk(buk) =





aukn
− 1

4
− 1

4(muk+1) if duk = ∞

aukn
− 1

4 if duk < ∞ .

(23)

From (18), (19), (22), and (23) it is clear that the product terms that arise

from evaluating (21) take the form

n− 1
4

− 1
4(m+1) n

1
4(m′+1) ≤ n− 1

4(m+1) , n
1

4(m+1) n− 1
4 = n− m

4(m+1) ,

n− 1
4m n

− 1
4

− 1
4(m′+1) , n− 1

4m n− 1
4

with positve real numbers m and m′. As all product terms go to zero with

n → ∞, (21) also tends to zero with n → ∞. Hence P(An ∩ Bn) → 0.

Next consider B̄n. We have

P(B̄n) ≤
p∑

k=1

P
(

max
i=1,...,n

x
(k)
i > buk

)
+

p∑

k=1

P
(

min
i=1,...,n

x
(k)
i < blk

)

=
p∑

k=1

(
1 − [F (buk)]

n + 1 − [1 − F (blk)]
n
)

.

With blk and buk from (18) and (19) we have, by condition F , [F (buk)]
n → 1

and [1 − F (blk)]
n → 1 for n → ∞ . Thus P(B̄n) → 0 and hence P(An) → 0.
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Tables

Min. 1st Qu. Median Mean 3rd Qu. Max.

Original data 4.904 4.978 5.009 5.008 5.032 5.157

Microaggregated data 4.902 4.987 5.011 5.017 5.049 5.155

Table 1
Simulation study on quadratic regression - summary statistics of the 100 least
squares estimates of β in Model (5). The standard deviations of the least squares
estimates, multiplied with

√
n =

√
300, were 0.792 (original data) and 0.855 (mi-

croaggregated data).
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Estimates of α

Min. 1st Qu. Median Mean 3rd Qu. Max.

Original data 0.372 0.468 0.510 0.514 0.561 0.729

Microaggregated data 0.394 0.479 0.517 0.520 0.564 0.729

Estimates of β

Min. 1st Qu. Median Mean 3rd Qu. Max.

Original data 1.324 1.757 1.972 1.966 2.167 2.676

Microaggregated data 1.320 1.736 1.945 1.938 2.105 2.622

Table 2
Simulation study on the shape and scale parameter estimation of a gamma dis-
tribution - summary statistics of the 100 method-of-moments estimates (α = 0.5,
β = 2).
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Min. 1st Qu. Median Mean 3rd Qu. Max.

Original data 1.710 1.900 2.002 2.012 2.124 2.375

Microaggregated data 1.712 1.905 2.012 2.018 2.134 2.377

Table 3
Simulation study on maximum likelihood estimation of the scale parameter c of a
Levy distribution - summary statistics of the 100 maximum likelihood estimates
(c = 2).
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β1 β2 β3 β4 β5

non-aggregated data 0.426 0.313 0.065 0.131 0.046

IR (log trafo after MA) 0.426 0.313 0.065 0.131 0.046

Table 4
Least squares estimates of Model (8) obtained from the 2004 KSE data. The abbre-
viation ”MA” stands for ”microaggregation”. The coefficient estimates have been
rounded to two decimal places, so the results obtained from the non-aggregated data
are not exactly the same as the results obtained from the microaggregated data.
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σβ1 σβ2 σβ3 σβ4 σβ5

non-aggregated data 0.0021 0.0036 0.0015 0.0023 0.0027

IR (log trafo after MA) 0.0021 0.0036 0.0015 0.0023 0.0027

Table 5
Estimated standard deviations of the least squares estimates of Model (8) obtained
from the 2004 KSE data. The abbreviation ”MA” stands for ”microaggregation”.
All estimates have been rounded to two decimal places, so the results obtained from
the non-aggregated data are not exactly the same as the results obtained from the
microaggregated data.
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