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REGRESSION DENSITY ESTIMATION USING SMOOTH ADAPTIVE
GAUSSIAN MIXTURES

MATTIAS VILLANI, ROBERT KOHN, AND PAOLO GIORDANI

Abstract. We model a regression density flexibly so that at each value of the covariates the

density is a mixture of normals with the means, variances and mixture probabilities of the

components changing smoothly as a function of the covariates. The model extends existing

models in two important ways. First, the components are allowed to be heteroscedastic

regressions as the standard model with homoscedastic regressions can give a poor fit to

heteroscedastic data, especially when the number of covariates is large. Furthermore, we

typically need fewer components, which makes it easier to interpret the model and speeds up

the computation. The second main extension is to introduce a novel variable selection prior

into all the components of the model. The variable selection prior acts as a self-adjusting

mechanism that prevents overfitting and makes it feasible to fit flexible high-dimensional

surfaces. We use Bayesian inference and Markov Chain Monte Carlo methods to estimate

the model. Simulated and real examples are used to show that the full generality of our

model is required to fit a large class of densities, but also that special cases of the general

model are interesting models for economic data.

Keywords: Bayesian inference, Markov Chain Monte Carlo, Mixture of Experts, Nonpara-

metric estimation, Splines, Value-at-Risk, Variable selection.

JEL: C11, C50.

1. Introduction

Nonlinear and nonparametric regression models are widely used in statistics (Ruppert,

Wand and Carroll, 2003), and are increasingly used in econometrics (Li and Racine, 2007).

Our article considers the general problem of nonparametric regression density estimation, i.e.

estimating the predictive density of the response variable at all points in the covariate space,

while making relatively few assumptions about its functional form and how that functional

form changes across the space of covariates. This is an important problem in empirical
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economics, e.g. in the analysis of financial data where accurate estimation of the left tail

probability is often the final goal of the analysis (Geweke and Keane, 2007), but also in

many other areas, such as machine learning, where the predictive density is typically highly

nonlinear and multimodal (Bishop, 2006).

Our approach generalizes the popular finite mixture of Gaussians model (McLachlan and

Peel, 2000; Früewirth-Schnatter, 2006) to the regression density case. The model extends

the Mixture-of-Experts (ME) model (Jacobs, Jordan, Nowlan and Hinton (1991); Jordan

and Jacobs (1994)), which has been frequently used in the machine learning literature to

flexibly model the mean regression. The ME model is a mixture of regressions where the

mixing probabilities are functions of the covariates, leading to a partitioned covariate space

with stochastic (soft) boundaries. A generalization of the ME model, the Smoothly Mixing

Regression (SMR), was recently introduced in econometrics and used for regression density

estimation by Geweke and Keane (2007).

The early machine learning literature used SMRs with many simple component regressions

(constant or linear). Some recent statistical/econometric literature takes the opposite ap-

proach of using a small number of more complex component regressions. The most common

approach is to use basis expansion methods (polynomials, splines) to allow for nonparametric

component regressions, see e.g. Wood, Jiang and Tanner (2002) and Geweke and Keane

(2007). One motivation of the few-but-complex approach comes from a growing awareness

that mixture models can be quite challenging to estimate and interpret, especially when the

number of mixture components is large (Celeux, Hurn and Robert (2000), Geweke (2007)).

It is then sensible to make each of the components very flexible and to use extra components

only when they are required.

Jiang and Tanner (1999a,b) prove that a smooth mixture of sufficiently many (generalized)

linear regressions can approximate essentially any function or a single density in the expo-

nential family with a constant dispersion parameter. Similarly, it is expected that the SMR

should in principle be able to fit heteroscedastic data if the number of component regressions

is large enough, but it is unlikely to be the most efficient model for that situation. Simulations

in Section 4 show that the SMR model can have difficulties in modelling heteroscedastic data,

and that its predictive performance quickly deteriorates as the number of covariates grows.

If the component regressions themselves are heteroscedastic, we clearly need fewer of them.

Our article generalizes the SMR model by using Gaussian heteroscedastic regression com-

ponents with the three parts of each component, i.e. the means, variances and the mixing

probabilities, functions of the covariates. In the most general form of our model each of these

three parts is modelled flexibly using spline basis function expansions. We take a Bayesian

approach to inference with a prior that allows for variable selection among the covariates in
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the mean, variance and mixing probabilities. When using splines, the centering of the spline

basis functions (knots) are therefore determined automatically from the data as in Smith and

Kohn (1996), Denison, Mallick and Smith (1998) and Dimatteo, Genovese and Kass (2001).

This is particularly important in soft partition models as it allows the estimation method to

automatically downweight or remove basis functions from a regression in the region where

the component regression has small probability. Such basis functions are otherwise poorly

identified and may cause instability in the estimation. Moreover, since variable selection

typically reduces the effective number of parameters at each iteration, it helps to make the

Metropolis-Hastings (MH) steps computationally tractable. The variable selection prior we

use for the component means and variances is novel because it takes into account the mixing

probability of a component regression when deciding whether to include a basis function in

that component. The variable selection prior is very effective at simplifying the model and

in particular allows us to reach the linear homoscedastic model if such a model is warranted.

The empirical illustrations on real and simulated data in Section 4 show that each aspect of

our model may be necessary to obtain a satisfactory and interpretable fit of the predictive

distribution. We use the cross-validated log of the predictive density for model comparison

and for selecting the number of components in the model to reduce sensitivity to the prior.

Early Bayesian analyses of finite Gaussian mixtures are given in Diebolt and Robert (1994)

and Escobar and West (1995). The first Bayesian paper on smooth mixtures is Peng, Ja-

cobs and Tanner (1996) who used the random walk Metropolis algorithm to sample from

the posterior. Wood et al. (2002) and Geweke and Keane (2007) propose more elaborate

extensions of this model and devise more efficient inferential algorithms. Leslie, Kohn and

Nott (2007) propose a model of the conditional regression density using a Dirichlet Process

(DP) mixture prior whose components do not depend on the covariates. Green and Richard-

son (2001) discuss the close relationship between finite mixture models and DP mixtures. A

more detailed discussion of these estimators is given in Section 2. An alternative approach to

regression density estimation is given by De Iorio, Muller, Rosner and MacEarchen (2004),

Dunson, Pillai and Park (2007) and Griffin and Steel (2007) who use a dependent DP prior.

An attractive feature of this prior is that different partitions of the data can have differing

numbers of components. To carry out the inference we develop efficient MCMC samplers that

compare favorably to existing MCMC samplers for the special case of smooth homoscedastic

mixtures.

2. Smooth Adaptive Gaussian Mixtures

2.1. The model. Regression density estimation entails estimating a sequence of densities,
one for each covariate value, x. A single density can usually be modelled adequately by a
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finite mixture of Gaussians. For example, the simulations in Roeder and Wasserman (1997)

suggest that mixtures with less than 10 components can model even highly complex univariate

densities. To extend the basic mixture of Gaussians model to the regression density case we

need to make the transition between densities smooth in x. We propose that the means,

variances and the mixing probabilities of the mixture components vary smoothly across the

covariate space according to the Smooth Adaptive Gaussian Mixture (SAGM) model

(2.1) yi|(si = j, vi, wi) ∼ N [α0jvi, σ
2
j exp(δ

0
jwi)], (i = 1, ..., n, j = 1, ...,m),

where si ∈ {1, ...,m} is an indicator of component membership for the ith observation, vi
is a p-dimensional vector function of covariates for the conditional mean of observation i

with coefficients αj that vary across the m components, and wi is an r-dimensional vector

of covariates for the conditional variance of observation i. The responsibility of component j

for the ith observation is modelled by a multinomial logit mixing function

(2.2) Pr(si = j|zi) = πj(zi; γ) =
exp(γ0jzi)Pm
k=1 exp(γ

0
kzi)

,

where zi is a q-dimensional vector function of covariates for observation i, and γ1 = 0 for iden-

tification. The three sets of terms, vi, wi, and zi can be (high-dimensional) basis expansions

(polynomials, splines etc.) of other predictors. For example, basis expansion in the mixing

function gives us the flexibility to vary the number of effective mixture components quite

dramatically across the covariate space. In the case of splines, let κvk, κ
w
k and κzk denote the

position of the kth knot in the mean, variance and mixing functions, respectively. We denote

the original vector of covariate observations from which the terms (vi, wi, zi) were constructed

by xi.

Bayesian inference for the parameter in the mixture components and the parameters in the

mixing function are discussed in Section 3. We determine the number of mixture components,

m, using an out-of-sample equivalent to the marginal likelihood, see Section 3.4 for details.

Many of the models in the nonparametric literature are special cases of the SAGM model

in (2.1) and (2.2). For m = 1, SAGM reduces to the heteroscedastic spline regression in

Ruppert et al. (2003). The model in Wood, Jiang and Tanner (2002) is the special case

with δj = 0 and σj = σ, for j = 1, ...,m. The model in Geweke and Keane (2007) is

obtained if we set δj = 0 for all j, and use polynomial expansions of the covariates. Both

Wood et al. and Geweke and Keane (2007) use a multinomial probit mixing function with

an identity covariance matrix for the random utilities. This means that the component

probabilities must be computed by very time-consuming numerical integration. Both these

articles use cleverly designed MCMC schemes where the πj need not be evaluated in the

posterior sampling, but evaluating predictive densities/likelihoods is still computationally
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very demanding (Geweke and Keane, 2007). This is clearly a drawback compared to the

multinomial logit mixing function used in the SAGM, where the component probabilities are

available in closed form. The model in Leslie et al. (2007) is a heteroscedastic regression with

a nonparametric modelling of the disturbances using a Dirichlet process mixture prior. This

can be viewed as a special case of the SAGM model with δj = δ for all j, mixing probabilities

that do not depend on x, and means and (log) variances of the component that differ by

constants for all x. Bishop’s (2006) mixture density network is a related model in the neural

network field. The mixture density network model is more restrictive than the SAGM, see

Bishop (2006) for details.

We will also allow for automatic variable selection in all three sets of covariates. Let V
denote a p×m matrix of zero-one indicators for the mean covariates in v. If the element in

row k, column j of V is zero, then the coefficient on the kth v-covariate in the jth component
is zero (αkj = 0); if the indicator is one, then αkj is unrestricted. This is best viewed as

a two-component mixture prior for αkj with one of the components degenerate at αkj = 0.

Similarly, letW (r×m) and Z (q×m) denote the variable selection indicators for the variance
and mixing functions, respectively.

We would like to emphasize that many problems encountered in economics will not re-

quire the full flexibility of the SAGM model. Linear components or a single nonparametric

component may be sufficient, as in the US stock returns example in Section 4.4. Variable

selection in principle simplifies the SAGM model to the required flexibility, but it may be

a good strategy to remove unnecessary model features from the outset, at least to simplify

posterior sampling and interpretation. There are two additional restrictions on the model

that we have found very useful in practice. First, we may restrict the heteroscedasticity to

be the same across components: δ1 = · · · = δm = δ. The model will often be flexible enough

even under this restriction, especially when the variance and/or the mixing function are non-

parametric. Second, we may restrict the covariate selection indicators to be the same across

components. That is, either a covariate has a non-zero coefficient in all of the components or

its coefficient is zero for all components. Our posterior sampling algorithms handle all these

restrictions. These two restrictions also allow us to interpret parts of the model without

additional identifying assumptions (see the next paragraph and the US stock return example

in Section 4.4).

Mixture models have well known identification issues, e.g. the likelihood is invariant with

respect to permutations of the components in the mixture (label switching), see e.g. Celeux

et al. (2000), Jasra, Holmes and Stephens (2005) and Früewirth-Schnatter (2006). We are

mainly interested in the predictive density p(y|x) for which label switching is neither a con-
ceptual or a numerical problem (Geweke, 2007). On the few occasions that we interpret the
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mixture components, we identify the model with order restrictions on a subset of the compo-

nents’ parameters or by other restrictions (e.g. common variance function). Order restrictions

should be used on parameters that are expected to differ appreciably between components,

so this choice is problem specific. The inefficiencies in the MCMC due to order restrictions

described in Celeux et al. (2000) were not manifested in our empirical applications in Sec-

tion 4. Jasra, Holmes and Stephens (2005) surveys other ways of solving the identification

problem.

In many applications interest centers on the first derivative of the mean function E(y|x)
with respect to the covariates. Ruppert et al. (2003, Sec. 6.8) give several examples, including

the question of whether or not labor income eventually declines at older ages (the derivative

of the mean function becomes negative). It is easy to show that the first derivative of the

SAGM mean function, E(y|x) =
Pm

j=1 πj(z)α
0
jv, is of the form

(2.3)
∂

∂x
E(y|x) =

Pm
j=1 πj(z)

∙µ
∂z

∂x

¶0 h
γj −

Pm
g=1 πg(z)γg

i
α0jv +

µ
∂v

∂x

¶0
αj

¸
.

The form of the matrices ∂z/∂x and ∂v/∂x is typically simple, see Ruppert et al. (2003,

p. 153-154) for explicit matrix expressions for some commonly used spline functions. With

linear components, ∂z/∂x and ∂v/∂x are simply selection matrices that extract subsets of

covariates from x. The MCMC draws can be used in the usual way to obtain the posterior

distribution of the first derivative. We return to the first derivative in Section 4.2, where it

is used to define the persistence in a nonlinear time series model.

We use the following notation. Let Y = (y1, ..., yn)
0 be the n-vector of responses, and

X = (x1, ..., xn)
0 the n× px dimensional covariate matrix. The covariates are standardized to

have zero mean and unit variance to simplify the prior elicitation. Let V = (v1, ..., vn)0,W =

(w1, ..., wn)
0 and Z = (z1, ..., zn)0 be the n×p, n× r and n× q dimensional matrices of covari-

ates expanded from X. Let s = (s1, ..., sn)0 denote the n-vector of component indicators for

the full sample. Furthermore, define the p×m matrix of mean coefficients, α = (α1, ..., αm),

and similarly the r ×m matrix δ = (δ1, ..., δm) with heteroscedasticity parameters. The cor-

responding disturbance variances are collected in σ2 = (σ21, ..., σ
2
m)

0. Define γ = (γ02, ..., γ
0
m)

0

to be the q(m− 1) vector of multinomial logit coefficients.

2.2. The prior distribution and variable selection. We adopt a Bayesian approach to
inference with a prior that decomposes as

p(α, σ2, δ, γ, s,V,W,Z) = p(α, σ2,V | γ)p(δ,W|γ)p(γ,Z, s).

The conditioning on γ in the priors for (α, σ2,V) and (δ,W) comes from our specific variable
selection prior described below. Consider first p(α, σ2,V | γ). We assume a priori that the
coefficients are independent between components. Let V = (V1, ...,Vm), where Vj contains the
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variable selection indicators for the jth component. Let αVj and αVcj denote the subvectors

of αj with non-zero coefficients and zero coefficients, respectively. The prior for component j

is

σ2j ∼ IG(ψ1, ψ2)

αVj |Vj, σ2j ∼ N(0, τ 2ασ
2
jI)(2.4)

where IG denotes the inverse Gamma distribution with shape parameter ψ1 and scale parame-

ter ψ2, and αVcj |Vj is identically zero. The exact choice of prior hyperparameters is discussed
below. The prior in (2.4) assumes that the elements of αVj are a priori independent. An

alternative is to use a g-prior with covariance matrix τ 2αjσ
2
j(V

0V )−1. Whether an independent

prior or a g-prior is preferred for nonparametric regression models is still an open question,

see e.g. the discussion in Denison, Holmes, Mallick and Smith (2002, p. 80-81), and clearly

the answer depends also on the choice of basis for the spline. An additional complication with

using the g-prior for regression mixtures is that V 0V is a global measure of precision while re-

gression components are typically local in covariate space. The matrix V 0V may therefore be

a poor representation of the precision for an individual regression component. A better choice

would be V 0
jVj, where Vj is the covariate matrix for the observations allocated to component

j. This prior is obviously conditional on the component allocation, which in turn would make

the elements of s dependent in the full conditional posterior, even if we condition on all other

model parameters. This greatly complicates the posterior sampling of s, so this prior will

not be used here. Our preferred approach is to standardize and demean the covariates, and

assume prior independence between regression coefficients. This compromise is likely to work

well across a large variety of data sets. We obtained slightly better performance (in terms

of fit and MCMC convergence) when the covariates are standardized to the interval [−1, 1],
rather than to a unit standard deviation.

The prior for variable inclusion/exclusion has a novel form to deal with a problem that

has gone unnoticed in the literature on smooth mixtures. An a priori positioning of a knot

at location κ in covariate space runs the risk that one of the components may have very

low probability in the neighborhood of that point (πj(κ; γ) ≈ 0 for at least some j). The
coefficient for the knot of the component is then poorly estimated, or may even be unidentified.

This may not necessarily have a large impact on the fit (since πj is small), but keeping the

coefficients of these knots unrestricted makes the MCMC algorithms a lot less efficient and

complicates interpretation. To deal with this problem, we use the prior

(2.5) Vkj|γ ∼ Bern[ωαπj(κ
v
k; γ)], (k = 1, ..., p; j = 1, ...,m),
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where Bern() denotes the Bernoulli distribution, 0 ≤ ωα ≤ 1, and Vkj are assumed to be a
priori independent conditional on γ. Note how the prior inclusion probability decreases as

the components’s responsibility for the knot decreases. In the limit where the jth component

has zero responsibility for κvk, that knot is automatically excluded from component j with

probability one. The variable indicators for covariates other than those generated by the

knots have prior Bern(ωα). It is possible to estimate ωα as in Kohn, Smith and Chan (2001)

with an extra MH step.

The prior on the variance function is essentially of the same form as the prior on the mean

function:

δWj |Wj ∼ N(0, τ 2δI)

Wkj|γ ∼ Bern[ωδπj(κ
w
k ; γ)], (k = 1, ..., r, j = 1, ...,m).

The variance function has so far been parametrized as σ2j exp(δ
0
jwi). In the important special

case when δ1 = · · · = δm = δ, we draw the (σ21, ..., σ
2
m) and δ in separate blocks in the posterior

sampling algorithm in Section 3. But when either m = 1 or when the δj are not equal across

components, it is more efficient for the posterior sampling to parametrize the variance function

as exp(δ̄0jw̄i), where w̄ = (1, w), δ̄j = (δ0, δj), and δ0 = lnσ2j , because then only δ̄j is sampled

and there is no additional (σ21, ..., σ
2
m) block. We will use the prior δ0 ∼ N(μδ0, τ

2
δ0
), with μδ0

and τ 2δ0 chosen so that σ
2
j = exp(δ0) has the same mean and variance as in the IG(ψ1, ψ2)

prior above.1 It is not crucial for the posterior sampling algorithms to have a prior for δ̄j in

multivariate normal form, but it is convenient and the above formulation has the additional

advantage that the prior is always specified by eliciting the mean and degrees of freedom of

σ2j .

The prior on the mixing function decomposes as

p(γ,Z, s) = p(s|γ,Z)p(γ|Z)p(Z).

The variable indicators in Z are assumed to be iid Bern(ωγ). The prior on γ is assumed to

be of the form

γZ |Z ∼ N(0, τ 2γI),

and γZc = 0 with probability one. Finally, p(s|γ,Z) is given by the multinomial logit model
in (2.2).

The user needs to specify the prior hyperparameters ψ1, ψ2, τα, τ δ, τγ, ωα, ωδ and ωγ. It

is clearly impossible to have a prior that can handle every conceivable data set. Nevertheless,

it is our experience that the following prior is reasonable for a wide range of problems in

1Some algebra shows that τ2δ0 = ln[(ψ1−1)/(ψ1−2)] and μδ0 = ln[ψ2/(ψ1−1)]− τ
2
δ0
/2 imply the same mean

and variance for σ2 as in the IG(ψ1, ψ2) distribution.
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economics, at least as a good starting point for more carefully elicited problem-specific priors.

Our default prior choice for the prior inclusion probabilities is ωα = ωδ = ωγ = ω = 0.5 for a

linear variable and ω = 0.2 for knots. It should be noted that while ω is important for the

absolute level of the posterior inclusion probability of a particular variable or knot, it has no

effect on the relative importance of variables/knots and typically does not matter very much

for the predictive density. The smoothing parameters τα, τ δ and τγ are all set to 10. The

original variables are standardized to the interval [−1, 1], so these choices give diffuse, but
proper, priors. Again, this choice clearly affects the absolute posterior inclusion probabilities,

but typically has little bearing on the model’s predictive density. Finally, our default prior for

the σ2j is mildly data-based, with the degrees of freedom ψ1 set to 3, and ψ2 is implicitly set

so that the prior expected values of σ2j is μ, a pre-specified constant. We use three different

ways to compute μ depending on our prior beliefs about the relationship between y and the

v-covariates: i) Weak or no relationship - μ is set equal to the variance of y in the training

sample, ii) Strong linear relationship - μ is set equal to the residual variance from a linear

regression on the v-covariates, and iii) Strongly non-linear relationship - Divide the data into

m clusters (by k-means clustering), fit a linear regression in each cluster and set μ equal to

the smallest residual variance in all clusters. The smallest residual variance is chosen because

it is much worse to have μ substantially larger than any of the σ2j than it is to set μ much

smaller than all σ2j . The reason is that the left tail of the inverse gamma density dies off very

quickly so that setting μ too high is likely to lead to severe overestimation of the smallest σj.

For most problems in economics, options i) or ii) are sufficient, and the difference between

the two is minor.

3. MCMC sampling for the SAGM model

3.1. Algorithms. We use MCMC methods to sample from the joint posterior distribution

of the model parameters. With a model as elaborate as the SAGM, it is crucial to use a very

efficient posterior sampling algorithm. The algorithms presented here draw the model coeffi-

cients and do variable selection in tandem. We have experimented with several algorithms,

and we now outline two efficient algorithms, leaving the details to Appendix A and B.

The first algorithm is a Metropolis-within-Gibbs sampler that draws parameters using the

following four blocks: i) α, σ2 and V, ii) δ and W, iii) γ and Z, and iv) s = (s1, ..., sn).

Sampling the first block is straightforward since, conditional on s and δ, the model reduces

to m independent linear (spline) regressions with known heteroscedasticity. Since δ is known

we can easily transform the regressions to be homoscedastic and apply the sampling method

of Smith and Kohn (1996) to draw α, σ2 and V. The full conditional posteriors of (δ,W) and
(γ,Z) are both non-standard and cannot be sampled directly. The next section describes
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a general method that generates highly efficient MH proposals for these parameter blocks.

Finally, the elements of s are independent conditional on the model parameters and can

therefore be drawn simultaneously.

The second algorithm simulates from the joint posterior using the following marginal-

conditional decomposition

p(α, σ2, γ, s, δ|Y,X) = p(α, σ2|Y,X, γ, s, δ)p(γ, s, δ|Y,X).
This is possible since α and σ2 can be integrated out once we condition on s, and hence

p(γ, s, δ|Y,X) is available in closed form. One can then sample from p(γ, s, δ|Y,X) by a
three-block Metropolis-Hastings algorithm and subsequently use these draws to generate from

p(α, σ2|Y,X, γ, s, δ) by direct simulation. This simulation is straightforward and details of

sampling from p(γ, s, δ|D) are given in Appendix B. We present the algorithm for a fixed set of
covariates, but the extension to covariate selection is exactly as for the Gibbs sampler if V,W
and Z are simulated in the (γ, s, δ)-block. Following Liu, Wong and Kong (1995) we refer

to this approach as a collapsed algorithm. Collapsed algorithms, where some parameters are

integrated out, are typically more efficient than pure Gibbs sampling (Liu, Wong and Kong,

1995). The main drawback is that the n elements of s are no longer conditionally independent

once α, σ2 are integrated out, and therefore cannot be drawn simultaneously. This means that

a single update of s requires computing marginal likelihoods for nm Gaussian regressions and

makes the collapsed scheme very time consuming for moderate and large n. Fortunately, the

change from one marginal likelihood computation to the next consists of a simple re-allocation

of a single observation from one component to another and we use rank-one Choleski updates

to speed up the computations as described in Appendix B. This is typically too slow anyway

and we consider using a MH step for drawing s to further speed up computing time of

the collapsed sampler. A MH step reduces computations from an O(nm) operation to a

O(2ns) operation, where ns is the number of observation for which we propose a change of

si, as it is unnecessary to compute marginal likelihoods for observations whose allocations

are unchanged. We consider two different kinds of proposals: i) proposing s from the mixing

function, and ii) adaptive proposals from the empirical distribution of s. Nott and Kohn

(2005) prove that this type of adaptation produces draws that converge in distribution to the

target distribution.

3.2. Variable dimension Newton proposals. We now describe a general method for con-
structing tailored proposal densities for the Metropolis-Hasting algorithm with variable selec-

tion. The method was introduced by Gamerman (1997) for generalized linear models within

the exponential family, and extended by Nott and Leonte (2004) to handle variable selection.

Their algorithm is presented here in a more general setting which is not restricted to the
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exponential family. We first briefly sketch the algorithm without variable selection. Let θ be

a vector of parameters with a non-standard posterior density p(θ|y) of the form

p(θ|y) ∝ p(y|θ)p(θ) =
nY
i=1

p(yi|ϕi)p(θ),

where ϕi = Xiθ and Xi is a covariate matrix for the ith observation. As an example, if

θ = δ is the vector of parameters in the SAGM variance function, then ϕi = w0iδ. Note that

p(θ|y) may be a conditional posterior density and the algorithm can then be used as a step

in a Metropolis-within-Gibbs algorithm. Assume also that the gradient and Hessian of the

log posterior are available in closed form, or that numerical derivatives are computationally

practical. We can use Newton’s method to iterate K steps from the current point θc toward

the mode of p(θ|y), to obtain θ̂ and the Hessian at θ̂. Note that θ̂ may not be the mode but is
typically close to it already after a few Newton iterations, so setting K = 1, 2 or 3 is usually

sufficient. This makes the algorithm very fast. Moreover, we can speed up the algorithm by

computing the gradient and Hessian on a (random) subset of the data in each iteration. The

Hessian can also be replaced with its expected value

E

∙
∂2 ln p(θ|y)

∂θ∂θ0

¸
in the Newton iterations. This typically improves numerical stability, with only a slightly

worse approximation of p(θ|y). The proposal is now drawn from the multivariate t-distribution
with ζ > 2 degrees of freedom:

θp|θc ∼ t

"
θ̂, −

µ
∂2 ln p(θ|y)

∂θ∂θ0

¶−1 ¯̄̄̄¯
θ=θ̂

, ζ

#
,

where the second argument of the density is the covariance matrix.

Consider now the variable selection case. The p-dimensional parameter vector θ is then

augmented by a vector of binary covariate selection indicators J = (j1, ..., jp), and we propose

θ and J simultaneously using the following decomposition

g(θp,Jp|θc,Jc) = g1(θp|Jp, θc)g2(Jp|θc,Jc),

where θp and Jp are the proposed iterates, θc,Jc are the current iterates, g2 is the proposal

distribution for J and g1 is the proposal density for θ conditional on Jp. The Metropolis-

Hasting acceptance probability is

a[(θc,Jc)→ (θp,Jp)] = min

µ
1,
p(y|θp,Jp)p(θp|Jp)p(Jp)g1(θc|Jc, θp)g2(Jc|θp,Jp)

p(y|θc,Jc)p(θc|Jc)p(Jc)g1(θp|Jp, θc)g2(Jp|θc,Jc)

¶
.

The proposal density at the current point g1(θc|Jc, θp) is a multivariate t-density with mode

θ̂R and covariance matrix equal to the negative inverse Hessian evaluated at θ̂R, where θ̂R is
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the point obtained by iterating K steps with the Newton algorithm, this time starting from

θp. A simple way to propose Jp is to randomly pick a small subset of Jp and then always

propose a change of the selected indicators (Metropolized move). This proposal can be refined

in many ways, using e.g. the adaptive scheme in Nott and Kohn (2005), where the history of

J -draws is used to adaptively build up a proposal for each indicator. It is important to note
that θc and θp may now be of different dimensions, so the original Newton iterations no longer

apply. We will instead generate θp using the following generalization of Newton’s method.

Let Xic denote the matrix of included covariates at the current draw (i.e. selected by Jc), and

let ϕic = Xicθc denote the corresponding functional. Also, let ϕip = Xipθp denote the same

functional for the proposed draw, where Xip is the matrix of covariates in the proposal draw.

We exploit the idea that when the parameter vector θ changes dimensions, the dimensions

of the functionals ϕic = Xicθc and ϕip = Xipθp stay the same, and the two functionals are

expected to be quite close. A generalized Newton update is

(3.1) θk+1 = A−1k (Bkθk − gk), (k = 0, ...,K − 1),

where θ0 = θc, and

gk =
nX
i=1

X 0
ip

∂ ln p(yi|ϕi)

∂ϕi

+
∂ ln p(θ)

∂θ

Ak =
nX
i=1

X 0
ip

∂2 ln p(yi|ϕi)

∂ϕi∂ϕ
0
i

Xip +
∂2 ln p(θ)

∂θ∂θ0

Bk =
nX
i=1

X 0
ip

∂2 ln p(yi|ϕi)

∂ϕi∂ϕ
0
i

Xic +
∂2 ln p(θ)

∂θ∂θ0
,

all evaluated at θ = θk. For the prior gradient this means that ∂ ln p(θ)/∂θ is evaluated at θk,

including all zero parameters, and that the subvector conformable with θk+1 is extracted from

the result. The same applies to the prior Hessian (which does not depend on θ however, if the

prior is Gaussian). After the first Newton iteration the parameter vector no longer changes

in dimension, and the generalized Newton algorithm in (3.1) reduces to the original Newton

algorithm. The proposal density g1(θp|Jp, θc) is again taken to be the multivariate t-density

in exactly the same way as in the case without covariate selection. Once the simultaneous

update of the (θ,J )-pair is completed, we make a final update of the non-zero parameters in
θ, conditional on the previously accepted J , using the fixed dimension Newton algorithm.

3.3. Comparison of MCMC algorithms. We now compare five MCMC algorithms for
the SAGM: i) the Gibbs sampler in Appendix A (Gibbs), ii) Collapsed-Full, the collapsed

sampler where si is drawn directly from its posterior conditional on γ, s−i, δ, but with α and σ2

integrated out, iii) Collapsed-Mixing, where each si is proposed from the mixing function, iv)
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Collapse-Adaptive, and v) Auxiliary, where the parameters in the mixing function are sampled

conditional on auxiliary unobserved utilities as in Geweke and Keane (2007). The Geweke-

Keane approach is very elegant and fast (roughly 4-5 times faster than the Gibbs sampler

in Appendix A), but introducing auxiliary variables comes at the cost of inferior mixing

(Holmes and Knorr-Held, 2006; Del Moral, Doucet and Jasra, 2007). It should be noted that

the Geweke-Keane approach is based on the probit mixing function, but it typically gives a

nearly identical predictive density as the one obtained with the logit mixing function. Villani,

Kohn and Giordani (2007) computes the inefficiency factors for all the above mentioned

algorithms for the LIDAR data set, which is often used for evaluating non-parametric fitting

methods (see e.g. Ruppert et al., 2003). They find that the introduction of auxiliary variables

inflates the inefficiency factors for the parameters in the mixing function, and that some of

that inefficiency spills over to other model parameters.

Mixture models can have several local maxima in the likelihood function, even excluding

label switching issues. A slowly mixing posterior sampling algorithm would then not only

sample the posterior inefficiently, but also be more likely to get stuck in a local maximum.

To learn more about this, we simulated SAGM data and recorded how fast the different

sampling algorithms converged to a neighborhood in the vicinity of the global posterior mode.

We generated 25 data sets of size n = 200 from a SAGM(3) model with two covariates

(sampled uniformly in the unit plane). For each data set we ran all five posterior samplers five

times each, every time with a new seed for the random number generator. The parameters

in the data generating model are α1 = (0, 0, 0)0, α2 = (0, 1, 1)0, α3 = (0,−1,−1)0, σ =

(0.05, 0.05, 0.05)0, γ2 = (10,−10)0 and γ3 = (0, 10)0. The mixing function parameters are

intentionally chosen to quite sharply separate the three regression components. We define

the posterior mode region as the region in parameter space where the difference in log posterior

from the log posterior at the mode is smaller than 10. The posterior mode is taken to be the

parameter draw with highest posterior density over all 25 runs of the algorithms for a given

data set. As mentioned above, we need to resort to numerical integration to compute the

probit mixing probabilities in the Geweke-Keane model. This is extremely time-consuming in

a simulation study, so we take a short-cut and use the logit mixing function when evaluating

the predictive density of the Geweke-Keane model. We verified that the results are very

similar to using a probit mixing function, and the generous definition of the posterior mode

region (difference in the log posterior is smaller than 10 units) makes sure that the Geweke-

Keane sampler is not falsely classified as non-converging as a result of this approximation,

and vice versa.

Columns 2-5 in Table 1 (under the heading ’separated components’) report the percentage

of posterior sampling runs that had not yet visited the posterior mode region after a certain
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number of MCMC iterations. No burn-in is used here. It is clear that the first four samplers

converge quickly to the right region, but that the auxiliary sampler gets stuck in a minor mode

for a long time, and in 3.52% of the runs it does not reach the posterior mode region in 10,000

draws. The two last columns in Table 1 report the percentage of mis-classified observations

after 10,000 draws (using the posterior mode classification rule) and the computing time of

the algorithm. The auxiliary sampler is almost five times faster than the Gibbs sampler.

We repeated the simulations above, this time with αj = (0, 0, 0)
0 for all j, σ = (5, 1, 0.1)0

and γ2 = (−1, 0, 0)0 and γ3 = (1, 0, 0)
0. This model is a scale mixture of three normals that

generates heavy tailed data. Here the components are not at all separated. The lower portion

of Table 1 gives the results. In this setting, all five algorithms perform well, almost all runs

reached the posterior mode region already after 500 draws. The Gibbs sampler failed to

converge in one of the runs. Collapse-Adapt has an impeccable performance: all runs reach

the posterior mode region in less than 100 draws. The classification problem was naturally

much more difficult with completely overlapping components, and misclassification rate are

indeed larger.

Our preferred algorithm is the Gibbs sampler which is used in the rest of the article. It

provides the best balance of efficiency and computing time, especially for large data sets and

when the time to evaluate the predictive density is also taken into consideration.

3.4. Model Comparison. The marginal likelihood is typically used in Bayesian model com-
parisons, see e.g. Früewirth-Schnatter (2006) for a discussion of estimators in mixture models.

It is well known however that the marginal likelihood is very sensitive to the choice of prior,

especially when the prior is not very informative, see e.g. Kass (1993) for a general discussion

and Richardson and Green (1997) in the context of density estimation. By sacrificing a subset

of the observations to update/train the vague prior we remove much of the dependence on

the prior, and obtain a better assessment of the predictive performance that can be expected

for future observations. To deal with the arbitrary choice of which observations to use for

estimation and model evaluation, we use B-fold cross-validation of the log predictive density

score (LPDS):

B−1
BX
b=1

ln p(ỹb|ỹ−b, x),

where ỹb = (yn+1, ..., yn+nb) contains the nb observations in the bth test sample and ỹ−b =

(y1, ..., yn) denotes the remaining observations. If we assume that the observations are inde-

pendent conditional on θ, then

p(ỹb|ỹ−b, x) =
Z Q

i∈Tb p(yi|θ, xi)p(θ|ỹ−b)dθ,
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Separated components
Sampler > 500 > 1000 > 2500 > 10000 % Misclassified CPU time sec.
Gibbs 2.35 0.00 0.00 0.00 6.01 22.26
Collapse-Full 3.52 1.17 0.00 0.00 5.48 252.43
Collapse-Mixing 4.70 0.00 0.00 0.00 5.56 31.20
Collapse-Adapt 1.17 1.17 0.00 0.00 5.51 58.12
Auxiliary 92.94 63.52 23.52 3.52 6.77 4.56

Scale mixture
Sampler > 100 > 500 > 1000 > 10000 % Misclassified CPU time sec.
Gibbs 4.80 2.40 1.60 0.80 15.56 22.26
Collapse-Full 0.80 0.80 0.80 0.00 15.71 252.43
Collapse-Mixing 4.00 0.00 0.00 0.00 15.84 31.20
Collapse-Adapt 0.00 0.00 0.00 0.00 15.77 58.12
Auxiliary 39.20 1.60 0.80 0.00 16.20 4.56

Table 1. Simulations from a two-covariate SAGM(3) with two different para-
meter settings: a) separated components (upper half of the table) and b) scale
mixture of normals (lower half of the table). The table displays the propor-
tion of full simulation runs that needed more than a certain number of MCMC
iterations to reach the posterior mode region. The last two columns give the
percentage of misclassified observations from a posterior mode classification
rule and the computing time. The Collapse-Adapt sampler starts adapting
after 500 initial draws with the Collapse-Full algorithm.

where Tb is the index set for the observations in ỹb, and the LPDS is easily computed by

averaging
Q

i∈Tb p(yi|θ, xi) over the posterior draws from p(θ|ỹ−b).
Cross-validation is less appealing in a time series setting, and a more natural approach is

to use the most recent observations in a single test sample. Moreover, for time series data it

is typically false that the observations are independent conditional on the model parameters,

so that the above estimation approach cannot be used. An MCMC estimate of the LPDS of

a time series can instead be based on the decomposition

p(yT+1, .., yT+T∗|y1, .., yT ) = p(yT+1|y1, .., yT ) · · · p(yT+T∗|y1, .., yT+T∗−1),

with each term in the decomposition

p(yt|y1, .., yt−1) =
R
p(yt|y1, .., yt−1, θ)p(θ|y1, .., yt−1)dθ,

estimated from a posterior sample of θ’s based on data up to time t − 1. The problem is

that this requires T ∗ − T complete runs with the MCMC algorithm, one for each term in

the decomposition, which is typically very time-consuming. In the situation where T is fairly
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large compared to T ∗, we can approximate the LPDS by computing each term p(yt|y1, .., yt−1)
using the same posterior sample based on data up to time T . We evaluate the accuracy of

this approximation in the US inflation and US stock returns examples in Sections 4.2 and

4.4.

One way to calibrate the LPDS is to transform a difference in LPDS between two competing

models into a Bayes factor. One can then use the well-known rule-of-thumb for Bayes factors

of Jeffreys (1961) to assess the strength of evidence. We note however that the original Bayes

factor evaluates all the observations, whereas the cross-validated LPDS is an average over

the B test samples. The Bayes factor is therefore roughly B times more discriminatory than

the LPDS; this is the price paid by the LPDS for using most of the data to train the prior.

Other authors have proposed summing the log predictive density over the B test samples (see

Geisser and Eddy (1979) for the case with B = n, and Kuo and Peng (2000) for B < n),

which would multiply any LPDS difference by a factor B. We choose not to do so as the

LPDS can then no longer be calibrated by Jeffreys scale of evidence.

4. Empirical illustrations

In this section we analyze three real data sets, and study the performance of the SAGM in

a simulation study. Unless otherwise stated, the reported results were generated from 10, 000

draws after discarding 2, 000 burn-in draws. We use ten degrees of freedom in multivariate-t

Newton-based proposal densities for δ and γ. The proposals for δ were generated with K = 1

Newton step with a Hessian equal to its expected value, whereas K = 3 Newton steps seemed

to be a better default value for γ. At every iteration of the algorithm, the probability of

updating a given variable selection indicator was set to 0.2. The component allocation is

initialized with the k-means clustering algorithm with m clusters. The remaining parameters

of the model were initialized with GLS estimates conditional on the initial component allo-

cation. All computations were performed using uncompiled Matlab 7.6.0 code on a HP6910

laptop with an Intel 2 GHz processor and 3GB of RAM memory.

4.1. Inverse problem. Our first example is based on an a inverse problem in robotics dis-

cussed by Bishop (2006). Suppose that for a given y, x = y + 0.3 sin(2πy) + u, where u is

U(0, 1). We generate 1000 values of xi by taking the yi to be equally spaced on [0, 1] and the

ui independent and uniform. The resulting data set is plotted in the left column of Figure

1. From an econometrician’s point of view, the data are highly non-standard, and are used

here to demonstrate some features of the SAGM model. We wish to estimate the density of

p(y|x). This is a challenging regression density estimation problem as the density p(y|x) is
heteroscedastic and multimodal for some x.
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The extreme features of this data set makes it necessary to depart from the default prior

in Section 2.2 along one dimension. The rapidly changing shape of Bishop’s data over the

covariate space requires very large mixing function coefficients, and the default prior with

τγ = 10 shrinks too much. We therefore set τγ = 1000, but keep all other aspects of the

default prior (with the third option for specifying the prior mean of σ2j). We used truncated

quadratic splines (see e.g. Ruppert et al., 2003) with 20 equally spaced knots in the mean,

variance and mixing function. This means that the SAGM model is very richly parametrized

even if we assume a common variance function. As an example, the SAGM(3) model has

3 · 22 = 66 mean parameters, 3 + 21 = 24 variance parameters and 22 · 2 = 44 parameters in
the mixing function, summing up to a total of 134 parameters, plus all the variable selection

indicators. The variable selection indicators in the mixing function are restricted so that the

coefficient of a knot is either unrestricted in all components, or zero in all of them. It takes

roughly 24 minutes with the Gibbs sampler to generate a posterior sample with 2,000 burn-in

draws followed by an additional 10,000 draws. The average MH acceptance probability is

73% for δ and 34% for γ. The reason for the relatively low acceptance probability for the

multinomial logit parameters is the extremely sharp separation of the components in this

example, giving an asymmetric posterior for γ. The sampling is very efficient: the mean

inefficiency factors (IF) for the α, σ2, δ and γ, were 2.54, 11.75, 4.77 and 17.05, respectively

(the maximal IFs for each group of parameters were 9.44, 14.96, 12.64, 75.73).

Figure 1 displays the simulated Bishop data, the estimated 95% Highest Posterior Density

(HPD) intervals in the predictive distribution, the mixing function and the predictive standard

deviation (dashed line is the truth) as a function of x for four different models. The seemingly

odd behavior of the intervals at points in covariate space where the number of modes of

the density is changing (e.g. at x ≈ 0.27) is an artifact of the HPD interval construction,

the actual predictive densities are well behaved. The first row displays the results for the

nonparametric SAGM with a single component, which clearly is not flexible enough. The

SAGM(3) model in the second row of Figure 1 does a very good job in capturing the data.

Note its highly nonlinear mixing function. The SAGM(3) model is again fitted in the third

row of Figure 1, but with the knots excluded in the mixing function (the mean and variance

are still nonparametric). The terrible fit of this model clearly demonstrates the importance of

a flexible mixing function. Finally, the last row of Figure 1 again analyzes the SAGM(3) with

nonparametric mean, variance and mixing function, but this time without knot selection. As

expected, this model is very adaptive, but the fit is too wiggly, as is most clearly seen in the

variance function. Note also that a smaller smoothing parameter (τγ) is not a solution here

as that would not give us enough flexibility in the regions where it is needed. Estimating τγ
will not help either.
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4.2. US Inflation. Our second application is a nonlinear time series model for quarterly US
inflation during 1952Q1-2004Q4. It has been documented that both the volatility and the

persistence of US inflation seem to increase with the level of inflation (see e.g. Christiano and

Fitzgerald, 2003), and there is some economic theory to support these findings (Akerlof et al.,

2000). Here we show that a SAGM model of inflation with lags of inflation as covariates is

able to generate these features. A SAGM generalization of the AR(k) process is of the form

yt|(st = j, yHt ) = c(j) +
Pk

i=1 ρ
(j)
i yt−i + εt

var(εt|st = j, yHt ) = σ2j exp(
Pk

i=1 δ
(j)
i yt−i),(4.1)

where yHt = (yt−1, ..., yt−k)
0. The latent allocation variables st follow the multinomial logit

model in (2.2) with yHt as covariates. The mean function is similar to the SETAR and STAR-

type models in the nonlinear time series literature, see e.g. Teräsvirta (2006) for a recent

overview. Our methodology allows the errors to be heteroscedastic, and we jointly select the

subset of variables that define the thresholds (variable selection in the mixing function) and

estimate the locations of the smooth thresholds.

This is an example where we are interested in interpreting the components, so we identify

the model using an order restriction on the mean coefficient for xt−1. A very similar predictive

density was also obtained without identifying restrictions. We estimate a 2-component SAGM

with k = 4 lags. The model with separate δ’s in the two components had only a marginally

better LPDS than the model with a common variance function on a test sample with the last

10 years of data, so we present results for the common variance model. We used separate

variable selection in the mean, variance and mixing function with the prior

p(k) =

(
0.5k if lag 1, .., k − 1 are in the model
0 otherwise.

We expect a fairly strong linear relation between inflation and at least some of its lags, so

we use the second type of default prior for the σ2j , see Section 2.2. Computing time with

the Gibbs sampler was 176.54 seconds for 2, 000 burn-in draws followed by 10, 000 additional

draws used for inference. All variable selection indicators were updated in each iteration of

the Gibbs sampler.

Table 2 reports the results from the SAGM(2) with four lags.2 First, the posterior sam-

pling is very efficient with only 4 out of 21 parameters having inefficiency factors above 10.

2The (out-of-sample) LPDS on the last 10 years of data for the SAGM(2) model is −65.663 (numerical
standard error 0.071. The LPDS estimate is −65.451 if we update the posterior at every observation). The
same model with m = 1 gives −65.737 (n.s.e. 0.053. The LPDS is −64.803 with sequential updating of the
posterior), and the LPDS of the usual homoscedastic AR(4) is −67.583 (n.s.e. 0.084. The LPDS is −66.448
with sequential updating of the posterior). This suggest that heteroscedasticity is a more important feature
of the model than the change in mean dynamics, at least in the latter part of the sample.
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The inefficiency factors for the parameters in the variance function are all small. Figure 2

displays the cumulative estimates of the posterior inclusion probabilities over the MCMC

iterations. Convergence is rapid given the fairly small number of observations in the data

set. The first lag in the mean of the first component (ρ(1)1 ) is highly significant with a large

coefficient (remember that the data are standardized, see below for a more interpretable per-

sistence measure), whereas all lags in the mean of the second component have small posterior

inclusion probabilities. There is strong support for heteroscedasticity in the data; the pos-

terior inclusion probability for xt−1 in the variance function is 0.945. The estimation results

in Table 2 also suggest that lag 2, 3 and 4 are essentially redundant in the mean, variance

and mixing function3. We will therefore for simplicity continue the graphical analysis using

the model with k = 1. Note that the SAGM model is not additive for m > 1 (because of

the non-linear logit mixing function), so having only a single lag in the model simplifies the

graphical analysis. We can then, for example, graph the predictive density of xt as a function

of xt−1 without making the difficult choice of conditioning values for the other lags.

The upper left subgraph of Figure 3 displays the fit of a SAGM(2) with one lag. The

estimated model is clearly heteroscedastic (the posterior inclusion probability of xt−1 in the

variance function is 0.936). The predictive mean has an interesting kink just above zero infla-

tion, suggesting that inflation persistence varies with the level of inflation (see also the mixing

functions in the upper right part of Figure 3). A more formal measure of the persistence is

given by the first derivative of the mean function with respect to yt−1 (Kapetanios, 2007).

Using (2.3), this persistence measure is

π1(yt−1)ρ
(1) + π2(yt−1)ρ

(2) + π1(yt−1)π2(yt−1)γ
(2) [E(yt|yt−1, st = 2)−E(yt|yt−1, st = 1)] ,

where γ(2) is the mixing function coefficient on yt−1 for the second component. The posterior

distribution of this persistence measure is shown in Figure 3. The mean persistence is roughly

zero when inflation is negative or near zero (posterior inclusion probability of xt−1 in the low

persistence component is 0.277), it then increases quite rapidly in the region 0%−3% inflation
to finally settle down around 0.9 when inflation is above 4%. In models with more than one

lag, persistence can be defined as the modulus of the largest eigenvalue of the companion

matrix with the usual AR coefficients replaced by the corresponding derivatives of the mean

function (Kapetanios, 2007).

3The (out-of-sample) LPDS on the last 10 years of data with k = 1 is −66.755 (n.s.e. 0.042. The LPDS is
−66.843 when the posterior is updated sequentially). This is close to the LPDS from the model with k = 4.
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Parameter Mean Stdev. Post. Incl. IF
σ1 1.498 0.515 − 2.800
c(1) 3.809 0.569 − 1.463

ρ
(1)
1 7.045 1.512 1.000 2.165

ρ
(1)
2 0.240 0.966 0.356 2.060

ρ
(1)
3 0.614 1.098 0.284 1.287

ρ
(1)
4 −0.000 0.099 0.001 1.075
σ2 1.226 0.349 − 17.71
c(2) 2.164 1.603 − 15.398

ρ
(2)
1 0.297 2.814 0.345 19.149

ρ
(2)
2 0.118 1.169 0.056 1.474

ρ
(2)
3 0.058 0.526 0.015 2.802

ρ
(2)
4 −0.000 0.042 0.000 0.996
δ1 0.866 0.759 0.945 7.283
δ2 0.409 0.682 0.309 2.363
δ3 0.004 0.076 0.006 0.984
δ4 0.000 0.016 0.000 0.988
γ0 −4.488 2.636 − 68.902
γ1 −7.518 6.416 0.797 36.448
γ2 0.315 2.078 0.122 7.567
γ3 0.007 0.500 0.007 2.173
γ4 0.001 0.115 0.000 1.947
MH acc. prob. δ 91.26%
MH. acc. prob. γ 81.26%

Table 2. US Inflation data. Summaries of the posterior distribution for the
SAGM(2) with k = 4 lags.

1 5 100
τα −64.464 −65.277 −66.532
τ δ −65.572 −65.698 −65.161
τγ −65.334 −65.395 −65.954

Table 3. US Inflation data. Exploring the sensitivity of the LPDS to changes
in the prior hyperparameters. Each number in the table is the LPDS for a
prior with τα, τγ or τ δ changed one at a time from the default prior setting
τα = τγ = τ δ = 10.

Finally, Table 3 reports the sensitivity of the LPDS on the last 10 years of the data with

respect to the prior hyperparameters τα, τγ and τ δ. The LPDS is not sensitive to these prior

hyperparameters, except possibly for τα.
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4.3. Simulated heteroscedastic data. Jiang and Tanner (1999b) prove that the class of
hierarchical smooth mixtures of generalized linear models, which includes the SMR as a

special case, can approximate any density in the exponential family with (Sobolev) smooth

mean function, but constant dispersion parameter. The approximation rate is O(m−4/s) in

Kullback-Leibler divergence, where m is the number of components in the mixture and s is

the number of covariates. The rate of approximation thus deteriorates quite rapidly as the

number of covariates grows. This is a very interesting theoretical result, but it does not take

into account that the estimation uncertainty increases with m. The approximation rate of

an estimated SMR could therefore be dramatically lower than the Jiang-Tanner bound, or it

could even fail to correctly approximate the density for any m. Moreover, as pointed out by

Jiang and Tanner (1999b), the theoretical rate is not necessarily optimal. Finally, Jiang and

Tanner’s target density class does not include the Gaussian heteroscedastic regression.

We therefore investigate by simulation how well an estimated SMR can capture het-

eroscedastic data in finite samples, and in particular how this ability depends on the number

of covariates. Data were generated from a single zero mean linear heteroscedastic compo-

nent with 1, 2, 3 and 5 covariates. The covariates were generated uniformly in the hypercube

[−1, 1]p. The heteroscedasticity parameters were set to δ = (−2,−1, 0, 1, 2) in the model
with 5 covariates, δ = (−2,−1, 0) in the model with 3 covariates, δ = (1,−1) in the model
with two covariates and δ = 1 in the model with a single covariate. We used σ = 0.1 in all

simulations. For each model we generated 25 data sets, each with a 1000 observations, and

then fitted SMR and SAGM models with linear components. To simplify the comparisons of

strength of evidence with the real data examples later in this section we use cross-validation

(see Section 3) here even if we know the true DGP. The prior with τα = τ δ = τγ = 10 and

ψ1 = ψ2 = 0.01 was used for all models. Variable selection was not used for simplicity. Both

the SMR and SAGM models were fitted with one to five components.

Figure 4 displays box plots of the difference in 5-fold cross-validated LPDS between the

SMRmodels with a given number of components and the estimated SAGM(1) model. The test

samples thus contain 200 observations. With a single covariate the predictive performance of

the SMR models with m ≥ 3 is fairly close to that of SAGM(1). As the number of covariates
grows, the SMR model has increasing difficulty in fitting the data, relative to the SAGM(1)

model, and it seems that its predictive performance cannot be improved by adding more than

five components. There are already some signs of overfitting with five components. Even

with two covariates the evidence is decisively in favor of the SAGM(1) model (Jeffreys, 1961).

We also simulated data from a model with 10 covariates (not shown), and the results followed

the same trend: the performance of the SMR relative to the SAGM(1) was much inferior to

the case with five covariates.
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We also investigated the consequences of fitting a SAGM model when the true DGP

is an SMR model. Two hundred and fifty datasets were simulated from a five-covariate

SMR(2) model with the coefficients in α generated independently from the N(0, 1) distri-

bution (i.e. a new α for each data set). The gating coefficients in the DGP were fixed to

γ = (1, 1,−1, 2, 0, 0). We then fitted the SMR(2) and SAGM(2) models using 5-fold cross-
validation exactly as above. The SMR(2) had a higher LPDS than the SAGM(2) in 91.6%

of the generated data sets, but the differences in LPDS were typically very small. A 95%

interval for the difference in LPDS between the two models (LPDSSAGM -LPDSSMR) ranged

from −1.368 to 0.366, with a median of −0.640. Note also that variable selection could have
been used to exclude covariates in the variance function of SAGM, which should have further

reduced the gap.

4.4. US stock returns. Our final example revisits the analysis of the distribution of returns
to the S&P500 stock market index in Geweke and Keane (2007). Our data set contains 4646

daily returns from January 1, 1990 to May 29, 2008 (the sample in Geweke and Keane

(2007) ends in the last trading day of the 1990’s). The response variable is Return: yt =

100 ln(pt/pt−1), where pt is the closing S&P500 index on day t. A time plot of the variable

Return is given in the upper left subgraph of Figure 5.
Geweke and Keane (2007) conduct an out-of-sample evaluation of the conditional distrib-

ution of Return where the SMR model outperforms the popular t-GARCH(1,1) and several
other widely used models for volatility in stock return data. One of our aims is to see if

the SAGM can improve on the SMR by more effectively capturing the heteroscedasticity in

Return using the heteroscedastic component so that the mixture can concentrate more heavily
on modelling the fat tails and skewness.

We begin with the two predictors used by Geweke and Keane (2007): RLastDay yt−1 and
CloseAbs95, a geometrically declining average of past absolute returns (1−ϕ)

P∞
s=0 ϕ

s |yt−2−s|,
with ϕ = 0.95.4 We later add seven additional covariates to the model. Our model compari-

son criterion is an out-of-sample LPDS evaluation of the data in the period between January

1, 2000 and May 29, 2008, giving us 2528 observations for estimation and 2118 observations

for predictive evaluation. We evaluate the LPDS using the posterior distribution of the model

parameters available just before the start of the evaluation sample, with no additional poste-

rior updating as we go through the evaluation sample. Evidence to support the accuracy of

this approximation is given below. We report results from the model where the heteroscedas-

ticity is common to all components as it outperformed the model with separate δ in terms of

the LPDS. We do not expect a mean relation between the returns and the predictors, so the

4As in Geweke and Keane (2007), we use 10 years of data before the start of our sample to initialize the
geometric averages.
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mean of each component is restricted to be constant, as in Geweke and Keane (2007) and

much of the literature on stock market data, and we use the first type of prior for the σ2j .

We generated 30, 000 draws from the posterior, and used the last 25, 000 draws for inference.

This was sufficient for convergence of the estimates of the model parameters, the posterior

inclusion probabilities and the LPDS.

Preliminary analysis suggests that the log variance of Return is strongly related to CloseAbs95,
but that this relationship is nonlinear. A logarithmic transformation of CloseAbs95 makes
the relationship linear, however. This suggests that it may be sufficient to model the mixture

components as simple linear (heteroscedatic) regressions once CloseAbs95 enters the model in
logarithmic form. To investigate this more formally we compared the predictive performance

of the following three models: i) a SAGM(1) with linear components in the original variables,

ii) a SAGM(1) with linear components in RLastDay and the logarithm of CloseAbs95 and
iii) a SAGM(1) in the original variables with the components modelled very flexibly as two-

dimensional thin plate spline surfaces. Separate spline surfaces, each with 20 knots in R2,
were used in the variance and gating functions in the spline model. The locations of the knots

were chosen by the algorithm in Appendix C. The LPDS is −2997.67 for the first model,
−2983.86 for the second model, and finally −2984.92 for the third model, suggesting that lin-
ear components do as well as fully nonparametric components, but only if CloseAbs95 enters
in logarithmic form. The results are also a testimony to the strength of the spline surface

model since it is apparently able to automatically find the correct transformation without any

model specification search prior to the estimation. Based on these results, we will continue

the analysis with linear components and CloseAbs95 entering in logarithmic form.
The upper part of Table 4 reports the LPDS for the SMR and SAGM models with 1-5

linear components in the two covariates RLastDay and (log) CloseAbs95. The SMR improves
its predictive performance quite rapidly as we go from one to three components, where it

seems to level off so that more than three or four components do not seem to improve the

model. It is clearly possible to improve on the SAGM(1) by adding more components, and

the maximal LPDS is obtained with four components. There is more than a 12 unit difference

in LPDS between the best SAGM and the best SMR.

The results are insensitive to the exact choice of prior hyperparameters. As an example, the

LPDS of the SAGM(3) model for the prior with τγ = τ δ = 1 is −2954.075, and for the prior
τγ = τ δ = 100 it is −2952.33, which are very close to the LPDS of −2953.64 for the default
prior. It is clear that the large estimation sample with 2528 observations has reconciled these

three very different priors.
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Two covariates
Model m = 1 m = 2 m = 3 m = 4 m = 5
SMR −3360.41

(0.46)
−2990.44

(0.98)
−2962.45

(0.61)
−2959.39

(0.68)
−2960.95

(0.83)

SAGM −2984.31
(0.17)

−2957.03
(0.31)

−2953.64
(0.64)

−2946.68
(0.74)

−2949.39
(0.73)

Nine covariates
Model m = 1 m = 2 m = 3 m = 4 m = 5
SMR −3360.41

(0.46)
−2966.74

(0.77)
−2930.07

(0.76)
−2937.21

(0.78)
−2941.28

(0.94)

SAGM −2921.99
(0.45)

−2909.09
(0.82)

−2892.35
(0.56)

−2894.69
(0.77)

−2903.31
(0.943)

Table 4. SP500 data. Evaluating the LPDS of the models on the observations
from January 1, 1990 to May 29, 2008. The posterior distribution of the model
parameters are updated only once at the end of the training sample. All models
have linear components. Numerical standard errors are given in parenthesis.

Two covariates
Model m = 1 m = 2 m = 3 m = 4 m = 5
SMR −3327.24 −2992.42 −2962.02 −2955.12 −2958.62
SAGM −2984.26 −2957.54 −2948.49 −2948.81 −2947.72

Nine covariates
Model m = 1 m = 2 m = 3 m = 4 m = 5
SMR −3327.24 −2964.56 −2924.81 −2921.45 −2925.62
SAGM −2920.84 −2907.53 −2891.33 −2888.28 −2888.52

Table 5. SP500 data. Evaluating the LPDS of the models on the observations
from January 1, 1990 to May 29, 2008. The posterior distribution of the model
parameters is updated every 100th trading day. All models have linear compo-
nents.

The LPDS reported so far is computed with no additional posterior updating after the end

of the estimation sample. As argued in Section 3.4, this practice results in an approximation

when applied to time series data, and we now report the accuracy of this approximation in

some detail. Table 5 recomputes the LPDS in Table 4, but this time updating the posterior

every 100th trading day. A comparison of Tables 4 and 5 shows that the LPDS with sequen-

tially updated posterior are remarkably similar to the ones obtained from a single posterior

update. The largest discrepancy is observed for the SMR(1) model, here the LPDS changes
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quite substantially when the posterior is sequentially updated. This reflects the instability

in fitting a fixed variance model to a time series with a clear volatility clustering. We also

computed the LPDS for the SMR(1) and the SAGM(1) models when the posterior was

updated every 10th trading day, yielding −3325.08 and −2984.33, respectively. These are
essentially the same LPDS estimates as for the posterior updated every 100th trading day.

In summary, the LPDS for this data set is accurately computed without sequential posterior

updating, with the exception of the poorly fitting SMR(1) model.

Figure 6 displays contour plots of the posterior mean of the predictive standard deviation

(SD) as a function of the two covariates. The full data set was used in the estimation. The

estimated SD changes a lot as more components are added to the SMR model, whereas in the

SAGMmodel the SD is stabler as more components are added. This suggests that the SD can

be captured quite well with a single heteroscedastic component. It takes five homoscedastic

components to come close to the SD function of the SAGM(1) model.

The difference in interpretation between the SMR and SAGM models is clearly revealed

in Figure 7, which depicts the posterior mean of the mixing function in the SMR(3) (left

column) and the SAGM(3) (middle column) are plotted. A scatter of the covariates are

overlaid in the upper right subplot. An order restriction on the σj was used for identification.

The SMR components in Figure 7 have been ordered by their variances in descending order

from top to bottom, and it is clear that the SMR is using the components to capture the

heteroscedasticity in the data (compare with Figure 6). The interpretation of the SAGM

model is quite different, with a global component (component no. 1) focusing on capturing

the heteroscedasticity. The other two components are more local and take care of the heavy

tails. Note also that the mixture weights for the SAGM components are mainly determined

by RLastDay. The third column of Figure 7 displays the mixing function from the SAGM

model with splines surfaces fitted in the original (untransformed) covariates, from which it

is clear that this model picks up something very similar in spirit to the SAGM with linear

components. The LPDS of the SAGM(3) with spline surface components is approximately 6

LPDS units lower than the model with linear components.

The different modelling of the tails in the SMR and SAGM models has important con-

sequences for the stock trader which we now explore through Value-at-Risk (VaR) analysis.

Figure 8 displays contour plots of the 1% quantile of the predictive distribution. As for the

predictive SD, the VaR varies a lot more across the number of components in the SMR than

it does for the SAGM. But there are larger differences between the SAGM models in Figure

8 than between the SAGM models in Figure 6. This suggests that while one heteroscedas-

tic component is enough to capture the variance of the S&P500, additional components are

needed to model the heavy tails.
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We now consider the effect of adding seven additional covariates to the model: RLastWeek
and RLastMonth, a moving average of the returns from the previous five and 20 trading days,
respectively. The variable CloseAbs80, the same variable as CloseAbs95 but with ϕ = 0.80, is

also added to the covariate set. We also included the square root of (1−ϕ)
P∞

s=0 ϕ
sy2t−2−s, for

ϕ = 0.80 and 0.95 (CloseSqr80 and CloseSqr95). Finally, we included a measure of volatility
that has been popular in the finance literature: (1− ϕ)

P∞
s=0 ϕ

s(ln p
(h)
t−1−s − ln p

(l)
t−1−s), where

p
(h)
t and p

(l)
t are the highest and lowest values of the S&P500 index at day t. Intuitively,

this measure should carry more information on the volatility than changes in closing quotes,

and indeed this has been shown theoretically and empirically (Alizadeh, Brandt and Diebold,

2002). We consider both ϕ = 0.8 (MaxMin80) and ϕ = 0.95 (MaxMin95). Following our
analysis of the two-covariate model, all variables except RLastDay, RLastWeek and RLastMonth
enter the linear components in logarithmic form. The lower part of Table 4 presents the LPDS

from this extended model. The first thing to note is the substantial boost in predictive power

resulting from the additional covariates, for both the SMR and the SAGM. Second, the best

SAGM(3) is now as much as 37 LPDS units better than the best SMR. This follows the

same pattern as the simulations in Section 4.3: SAGM’s performance on heteroscedastic data

relative to the SMR improves with the dimension of the covariate space. It is also interesting

to note that SAGM(1) is now 9 LPDS points better than the best SMR, and the computing

time of the SAGM(1) is less than a third of the computing time for the SMR(3). We also

note that there are now some signs of over-fitting for large m with the larger covariate set,

especially for the SMR. Finally, a comparison of the lower parts of Tables 4 and 5 shows

again that our conclusions are not altered when the posterior is sequentially updated in the

estimation of the LPDS.

The results from the variable selection for the best fitting nine-variable SAGM(3) are

quite clear.5 The following three variables were the only ones to attain a posterior inclusion

probability larger than 0.5 in the variance function: RLastMonth (1.000), MaxMin95 (1.000),
RLastDay (0.947), where the actual posterior inclusion probabilities are in parenthesis. In
the mixing function, only the two covariates RLastDay (1.000) and RLastWeek (0.999) exceed
the 0.5 threshold. It is interesting to note that MaxMin95 is crowding out the otherwise
very important CloseAbs95 from the variance function, thereby supporting its theoretically

superior information content. Figure 9 displays the cumulative MCMC estimates of the

posterior inclusion probabilities as a function of the number of iterations. These estimates

begin to settle down already after 10, 000 draws, and are very stable after 30, 000 draws (this

is even truer if the first 5, 000 draws are discarded as burn-in). Perhaps more importantly,

5Since we are using a common variance function for all components and common variable inclusion indicators
in the mixing function, we can directly interpret the results from the variable selection without any additional
identifying assumptions.
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multiple runs with different seeds to the random number generator produced very similar

results.

To give an idea of the numerical precision in the estimates of the nine-variable SAGM(3)

model, we report that the mean inefficiency factor (IF) for the parameter blocks α, σ2, δ

and γ, were 18.87, 27.49, 21.40 and 35.66, respectively (the maximal IFs for each groups of

parameters were 44.34, 39.96, 69.85 and 61.53). We experimented also with different numbers

of Newton steps in the proposal for the mixing function parameters. With one, two and three

Newton steps computing time was roughly 19, 21 and 24 minutes, respectively (for 12,000

iterations), and the corresponding mean acceptance probability in the γ-step was 61.2, 71.4

and 72.5 percent. The IFs were not notably larger in the one-step algorithm compared to the

three-step algorithm. A single Newton step was sufficient for the δ-proposal, as the acceptance

probability for the nine-variable SAGM(3) was as high as 90%.

Finally, we completed the revision of this article in the midst of the financial crisis in the fall

of 2008, and decided to evaluate the predictive performance of the SMR and SAGM models

during this turbulent period. The data are specifically marked out in Figure 5, where it is

seen that predicting the distribution of Return during this period is a matter of extrapolating
outside the estimation sample. Table 6 reports the LPDS of Return from May 30, 2008 until
October 28, 2008, a total of 106 observations. The models were estimated using data up to

May 29, 2008, and the posterior was not updated sequentially. From Table 6 we see that

the best SAGM model is roughly 11 (two covariate case) and 15 (nine covariate case) LPDS

points better than the best SMR model, a huge difference considering that we only used

106 observations to evaluate the LPDS. The relatively poor performance of the SMR in this

extrapolation exercise comes from the fact that the SMR essentially models the variance by

a step function, see Figure 6, but the variance in the data continues to grow out-of-sample,

see e.g. the scatter plot of Return vs MaxMin95 in Figure 5. Note also that SAGM(1) does
better than the best SMR model, especially in the nine-variable model.

5. Conclusions

A general model is presented, with accompanying Bayesian MCMC methodology, that can

be used to flexibly and accurately model a wide range of regression densities p(y|x), with
limited user input. Analysis of real data and evidence from simulation experiments showed

that our extension with heteroscedastic mixture components can be crucial when the data

are heteroscedastic. This was shown to be especially true when the model included more

than a couple of covariates. We proposed a Bayesian variable selection procedure with a

novel prior that allows us to automatically reduce the model’s complexity, to determine the
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Two covariates
Model m = 1 m = 2 m = 3 m = 4 m = 5
SMR −535.35 −337.00 −282.78 −255.03 −256.01
SAGM −254.65 −243.82 −247.39 −246.77 −244.30

Nine covariates
Model m = 1 m = 2 m = 3 m = 4 m = 5
SMR −535.35 −333.11 −267.13 −253.05 −248.47
SAGM −238.30 −235.05 −236.78 −234.59 −233.34

Table 6. SP500 data. Evaluating the LPDS of the models on the observations
fromMay 30, 2008 to October 28, 2008. The posterior distribution of the model
parameters is based on the data up toMay 29, 2008, and not updated thereafter.
All models have linear components. The n.s.e. of the SAGM models ranges
from 0.05 to 0.18, the n.s.e. for the SMR models are between 0.37 and 0.96.

optimal location of the spline knots, and to investigate the importance of covariates in the

mean, variance and mixing functions.

Like any data augmentation approach to MCMC sampling, our approach is time-consuming

for very large data sets. We showed that data sets with at least 5,000 observations are certainly

manageable, and we have successfully applied the SAGM model to a data set with more than

20,000 observations, but data sets with more than 50, 000 observations or so may be too

onerous. The algorithms may be speeded up by computing the gradient and Hessian matrix

in the Newton proposals on a subset of the data, but additional algorithmic development in

this area will be useful.

Appendix A. The Gibbs sampler

We now describe the updating steps of the sampling schemes in detail. We make use of

the following transformation from a heteroscedastic regression to a homoscedastic one:

(Y, V )→ (GδY,GδV ) = (Ỹ , Ṽ ),

where Gδ = diag[exp(−δ0w1/2), ..., exp(−δ0wn/2)]. The Jacobian of this transformation is

|Gδ| = exp(−δ0
P

wi/2). The extension to the case where δ is different for each component

is immediate. We use the following notation. Let nj denote the number of observations

allocated to the jth component for a given s, and Vj the nj × p submatrix containing the

rows of V corresponding to those observations. Zj, Wj and Yj are analogously defined.

Updating α, σ2 and V
Conditional on s and δ, we can integrate out α and σ2 to show that the Vj are independently
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distributed, and that

(A.1) p(Vkj = 1|V−k,j, Y,X, s, δ) ∝
¯̄̄
Ṽ 0
j Ṽj + τ−2αj Hα

¯̄̄−1/2µdj
2
+ ψ2j

¶−(nj+2ψ1j)/2
,

where Ṽj is the covariate matrix for the jth component assuming the presence of the kth

covariate, V−k,j is Vj with Vkj excluded, dj = Ỹ 0
j Ỹj − Ỹ 0

j Ṽj(Ṽ
0
j Ṽj + τ−2αj Hαj)

−1Ṽ 0
j Ỹj is the

residual sum of squares of the regression of Ỹj on Ṽj.

The non-zero elements of α and the elements in σ2 can now be generated conditional on V
from

σ2j |Vj, s, δ, Y,X ∼ IG

µ
nj + pj + 2ψ1j − 1

2
,
dj + 2ψ2j

2

¶
αVj |σ2j ,Vj, s, δ, Y,X ∼ N(μαj ,Ωαj),

where αVj contains the pj non-zero coefficients in αj, Ω−1αj = σ−2j (Ṽ
0
j Ṽj + τ−2αj Hα), μαj =

σ−2j Ωαj Ṽ
0
j Ỹj. Note that Ṽj and Ỹj, andHα are now assumed to be conformable with the current

draw of V, so that for example Ṽj contains only the covariates with non-zero coefficients.
Updating δ and W

We describe the case with a fixed set of covariates, the extension to variable selection is

immediate from Section 3.2. The full conditional posterior of the variance function parameters

is of the form

p(δ|σ2, α, Y,X) ∝ p(Y |δ, σ2, α,X)p(δ) = |Gδ| p(Ỹ |δ, σ2, α,X)p(δ)

∝ exp(−δ0
P

wi/2)
nY
i=1

exp

∙
− 1

2σ2si
(ỹi − α0si ṽi)

2

¸
exp

µ
−τ

−2
δ

2
δ0Hδδ

¶
.

The full conditional posterior of δ is of non-standard form, and we use the K-step Newton

proposal to generate from it. The gradient and Hessian are given by

∂ ln p(δ|·)
∂δ

=
1

2

mP
j=1

W 0
j(ηj − ιnj)−Hδδ

∂2 ln p(δ|·)
∂δ∂δ0

= −1
2

mX
j=1

Wj diag(ηj)W
0
j −Hδ,

where ηj = σ−2si (Ỹj − Ṽjαj)
2. It is also possible to replace the Hessian with its expected value

E

∙
∂2 ln p(δ|·)
∂δ∂δ0

¸
= −1

2
W 0W

in the Newton iterations. The case where the δ’s differ across components is handled in

exactly the same way since the δj are independent conditional on s.
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Updating γ and Z
γ and Z are updated using the K-step Newton method. We first describe the case without

variable selection. The full conditional posterior of the multinomial logit parameters γ =

(γ02, ..., γ
0
m)

0 is of the form

(A.2) p(γ|s,X) ∝ p(s|X, γ)p(γ) =

µ
nQ
i=1

exp(γ0sizi)Pm
k=1 exp(γ

0
kzi)

¶
exp

Ã
−
τ−2γ
2

mP
j=1

γ0jHγγj

!
,

which is a non-standard density, so we use a MH step with Newton proposals to draw γ. The

gradient is of the form
∂ ln p(γ|·)
∂ vec γ

= vec[Z 0(D − P )−Hγγ],

where D is an n ×m matrix where the ith row is zero in all positions except in position si

where it is unity, and P is the n×m matrix of component probabilities Pr(si = j|zi, γ). The
Hessian consists of (m− 1)2 blocks of q × q matrices of the form

∂2 ln p(γ|·)
∂γj∂γ

0
u

=

(
Z 0[Iq ⊗ Pj(Pu − ιn)]Z −Hγ , if j = u

Z 0[Iq ⊗ PjPu]Z, if j 6= u

where Pj is the jth column of P . The matrix P is evaluated at the value of γ at the kth

iteration of the Newton algorithm. To handle covariate selection in the gating function we

can apply the generalized K-step Newton algorithm in Section 3.2. The matrix Ak in (3.1)

is block-diagonal with blocks of the form

Ak,ju =

(
Z 0j[Iq ⊗ Pj(Pu − ιn)]Zu −Hγ,ju , if j = u

Z 0j[Iq ⊗ PjPu]Zj, if j 6= u
,

where Zj contains the selected covariates for γj in the kth iteration of the Newton algorithm,

and Zu contains the selected covariates for γu. The matrix P is evaluated at the value

of γ at the kth iteration of the Newton algorithm. The matrix Bk and the vector gk in

(3.1) are defined analogously. Note that when the prior for V depends on the value of the
mixing function at the knots (see Section 2.2), then the conditional posterior of γ equals the

expression in (A.2) multiplied byYm

j=1

Yp

k=pv+1
Bern[Vkj|ωαπj(κk; γ)].

A similar factor should be used for W when the δ’s differ across components.

Updating s

The component indicator, si (i = 1, ..., n) are independent conditional on the other model

parameters, and can therefore be drawn simultaneously. The full conditional posterior of si
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is

p(si = j|Y,X, σ2, α, γ, δ) ∝ p(Y |X, σ2, α, δ, γ, si = j)p(si = j|Z, γ)

∝ σ−1j exp

∙
− 1

2σ2j
(ỹi − α0j ṽi)

2

¸
exp(γ0jzi), (i = 1, ..., n, j = 1, ...,m).

Appendix B. The collapsed sampler

We present the algorithm for a fixed set of covariates, but the extension to covariate

selection is the same as for the Gibbs sampler if V,W and Z are simulated in the (γ, s, δ)-

block.

Updating γ

This step is the same as the γ-step in the Gibbs sampler.

Updating δ

This MH step is similar to the corresponding step in the Gibbs sampler. The proposal is

now obtained by taking K Newton steps toward the mode of p(δ|α = α̂, σ2 = σ̂2, Y,X, s, γ),

where α̂ and σ̂2 are the posterior mean of α and σ2 conditional on the current values of s and

δ. Conditional on α = α̂, σ2 = σ̂2, this step is directly analogous to the δ-step in the Gibbs

sampling algorithm, except that the posterior density function in the MH acceptance ratio

is now a product of m marginal likelihoods (since we have integrated out α and σ2), one for

each expert.

Updating s

When we integrate out α and σ2, the component indicators, si (i = 1, ..., n) are no longer

independent. It is straightforward to show that the conditional posterior of si is of the form

p(si = j|Y,X, s−i, γ, δ) ∝
Ã

mY
j=1

p(Yj|Xj, s, γ, δ)

!
p(si = j|X, γ)

∝ exp(γ0sizi)
mY
j=1

¯̄̄
Ṽ 0
j Ṽj + τ−2αj Hα

¯̄̄−1/2µdj
2
+ ψ2j

¶−(nj+2ψ1j)/2
,(B.1)

where s−i denotes s with the ith element deleted, and dj = Ỹ 0
j Ỹj−Ỹ 0

j Ṽj(Ṽ
0
j Ṽj+τ

−2
α Hαj)

−1Ṽ 0
j Ỹj

is the residual sum of squares of the regression of Ỹj on Ṽj. Note how the marginal likelihood

p(Y |X, s, γ, δ) factors as a product of m marginal likelihoods, one for each component. We

refer to p(Y |X, s, γ, δ) as the marginal likelihood and p(Yj|Xj, s, γ, δ) as component j’s mar-

ginal likelihood. p(Yj|Xj, s, γ, δ) can be efficiently computed as follows. Let Rj be the upper
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triangular Choleski factor of Ṽ 0
j Ṽj + τ−2αj Hα. Then¯̄̄

Ṽ 0
j Ṽj + τ−2αj Hα

¯̄̄−1/2
=
¯̄
R0jRj

¯̄−1/2
=

µ
pQ

i=1

r
(j)
ii

¶−1
,

where r(j)ii is the ith diagonal element of Rj. Moreover, dj = Ỹ 0
j Ỹj−a0jaj, where aj = R

0−1
j Ṽ 0

j Ỹj.

aj is thus efficiently solved from the system of equations Rjaj = Ṽ 0
j Ỹj by back-substitution.

Note, however, that we need to compute the marginal likelihood p(Y |X, s, γ, δ) in (B.1)

nm times for a single update of all component allocations. Fortunately, the change from

one computation to the next consists of a simple re-allocation of a single observation from

one component to another. For example, computing p(si = j|Y,X, s−i, γ, δ) requires that we

move the ith observation from its current allocation with component j∗ to component j. This

requires modifying the Choleski factors from Ṽ 0
j∗Ṽj∗ + τ−2α

j∗
Hα to Ṽ 0

j∗Ṽj∗ + τ−2α
j∗
Hα − ṽiṽ

0
i (i.e.

removing observation i from component j∗, which is called a downdate of the Choleski with

ṽi) and from Ṽ 0
j Ṽj + τ−2αj Hα to Ṽ 0

j Ṽj + τ−2αj Hα + ṽiṽ
0
i (i.e. adding observation i to component

j∗, which is called an update of the Choleski with ṽi).

Even with sequential Choleski updating, the updating of s can be slow when m and n are

large. One way to improve the speed of the algorithm is to sample s using the Metropolis-

Hasting algorithm. There are two important advantages to this approach: i) we only need

to evaluate p(si = j|Y,X, s−i, γ, δ) for the observations where we propose a change (i.e. if

observation i is proposed to stay with the same component as before, then the acceptance

probability is unity), and ii) whenever a change of component allocation is proposed we

only need to evaluate p(si = j|Y,X, s−i, γ, δ) at the current and proposed allocations. If nc
denotes the number of observations where a change is proposed, then a draw of the vector

s has been reduced from an O(nm) operation to an O(2nc) operation, which is typically a

substantial reduction since in the typical case nc << n. There are many ways to propose

s. Among them is to propose from the mixing function p(si = j|zi, γ), where γ is the

most recently accepted draw of the gating function coefficients. Another option is to use an

adaptive scheme where si is proposed from the empirical distribution of past allocations (after

generating a suitable number of draws to build up the empirical distribution). Nott and Kohn

(2005) prove that this type of adaptation produces draws that converge in distribution to the

target distribution. It is also possible to combine the different updating schemes in a hybrid

sampler where the schemes are selected at random with fixed selection probabilities. For

example, with a (small) probability θ we go through all observations and sample s directly

from p(si = j|Y,X, s−i, γ, δ), and with probability 1− θ we sample s using an MH step. This

combined strategy reduces the possibility of getting stuck in a local mode because of a poorly

chosen MH proposal kernel.
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Appendix C. An algorithm for knot placement

Let xi denote the p-dimensional covariate vector for the ith unit in the sample. Let

dA(xi, xj) = [(xi − xj)
0A−1(xi − xj)]

1/2 denote the Mahalanobis distance in p-space, where A

is a positive definite matrix. A Mahalanobis -ball around x̃ in Rp is defined to be the set

{x ∈ Rp: dA(xi, xj) ≤ }. The following algorithm determines the knot locations for a given

global radius > 0 and local radius shrinkage factor α.

Algorithm C.1.
0. Form X = (x01, ....x

0
n)
0. Compute S =

Pn
i=1(xi − x̄)(xi − x̄)0, where x̄ is the sample

mean.

1. Compute the mean x̄ of X.

2. Find the observation xc in X that is closest to x̄ according to the Mahalanobis distance

dS(·, ·).
3. Form a Mahalanobis -ball around xc. Let nc denote the number of observations in X

that belong to this -ball .

4. Locally adapt the radius to c = /(nc)
α.

5. Place a knot at the observation that is closest to the mean of the observations in the

c-ball in step 4.

6. Remove the observations that belong to the c-ball in step 4 from X.

7. Repeat steps 1-6 until X is empty.

The radius shrinkage factor α determines the extent to which regions of high density are

given more knots compared to lower density regions; α = 1/p is a good choice. A root-finding

algorithm can be used to search for the global radius that gives exactly a pre-specified

number of knots.
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Figure 1. Inverse problem data. The first column displays the data and the
95 percent HPD intervals in the predictive density for four different SAGM
models. The second and third columns present the posterior mean and 95
percent probability intervals for the mixing and predictive standard deviation
function, respectively, for the same four SAGM models.
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Figure 2. US inflation data. Cumulative estimates of the posterior inclusion
probabilities as a function of the number of MCMC iterations. The burn-in
iterates are included in the figure.
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Figure 3. US inflation data. The upper left graph displays the data with
the 68 and 95 percent HPD intervals in the predictive density of the SAGM(2)
model with one lag. The other graphs depict the posterior distribution of the
mixing probabilities, the persistence and the predictive standard deviation.
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Figure 4. Simulated heteroscedastic data. Box plots of the difference in 5-
fold cross-validated log predictive density score (LPDS) between the estimated
SAGM(1) model and the SMRmodel as a function of the number of components
in the SMR model. Each test sample contains 200 observations.



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

40 MATTIAS VILLANI, ROBERT KOHN, AND PAOLO GIORDANI

1990 1995 2000 2005
−10

−5

0

5

10

Return

Time

R
et

ur
n

−10 −5 0 5 10
−10

−5

0

5

10

Return vs RLastDay

R
et

ur
n

RLastDay

−20 −10 0 10
−10

−5

0

5

10

Return vs RLastWeek

R
et

ur
n

RLastWeek
−30 −20 −10 0 10 20

−10

−5

0

5

10

Return vs RLastMonth

R
et

ur
n

RLastMonth

−1 −0.5 0 0.5 1
−10

−5

0

5

10

Return vs CloseAbs95

R
et

ur
n

CloseAbs95
−1 −0.5 0 0.5 1 1.5

−10

−5

0

5

10

Return vs CloseSqr95

R
et

ur
n

CloseSqr95

−0.5 0 0.5 1 1.5
−10

−5

0

5

10

Return vs MaxMin95

R
et

ur
n

MaxMin95

Figure 5. Graphical display of the S&P500 data from January 1, 1990 to May
29, 2008 (blue lines and circles) and May 30, 2008 to October 28, 2008 (red
lines and crosses). The subgraph in the upper left position is a time series plot
of Return, the remaining graphs are scatter plots of Return against a covariate.
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Figure 6. U.S. stock return data. Contour plots of the posterior mean of
the predictive standard deviation for the SMR (left) and SAGM (right) as
a function of the two covariates RLastDay (horizontal axis) and CloseAbs95
(vertical axis) for different number of components in the mixture.
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Figure 7. U.S. stock return data. Contour plots of the posterior mean of the
mixing function as a function of the two covariates RLastDay (horizontal axis)
and CloseAbs95 (vertical axis). The left column depicts the mixing function for
the SMR(3), the middle column for the SAGM(3) with linear components, and
the rightmost column displays the results for the SAGM(3) with nonparametric
spline surfaces.
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Figure 8. U.S. stock return data. Contour plots of the posterior mean of the
1% predictive quantile for the SMR (left) and SAGM (right) as a function of
the two covariates RLastDay (horizontal axis) and CloseAbs95 (vertical axis) for
different number of components in the mixture.
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Figure 9. U.S. stock return data. Cumulative estimates of the posterior inclu-
sion probabilities in the variance function (top) and mixing function (bottom)
as a function of the number of MCMC iterations. No burn-in was removed in
the figure.


