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Irrationality in English Auctions�

Ricardo Gonçalvesy

Universidade Católica Portuguesa (Porto) and Universidade de Aveiro

September 2006

Abstract

This paper explores the e¤ects of a particular form of irrational behaviour by participating
bidders in a common value English auction. We allow bidders to update their expected val-
uation of the good as the current price increases, assuming that their opponents always play
the symmetric Nash equilibrium. When only one bidder adopts this type of behaviour, it is
ambiguous whether the �nal auction price is higher or lower than at the symmetric equilibrium.
However, when both bidders behave irrationally, the �nal auction price is never lower than the
symmetric equilibrium provided bidders �match�their strategies.
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1 Introduction

Thus far, models of common value1 English auctions have focused almost exclusively on rational

bidders leading to Nash equilibria: each bidder plays the best response to his opponent�s strategy

and makes a positive ex post pro�t in equilibrium. Milgrom and Weber�s (1982) important paper

has focused on the symmetric equilibrium of this type of auction, whereas Bikhchandani and Riley

(1991), following Milgrom�s (1981) seminal results, have focused on the many asymmetric equilibria.

Those theoretical results are questioned by a number of experimental studies2. For example, Avery

and Kagel (1997) �nd that in a signi�cant percentage of English auctions (around 30%) the winning

bidder loses money because all bidders use aggressive and non-Nash equilibrium bidding strategies3.

A common feature in experimental studies of English auctions is the nature of the alternative

bidding rule (apparently) used by bidders. Levin et al. (1996) demonstrate that the bidding

strategy that is best at explaining the data is a signal averaging rule, in essence a weighted average

between a bidder�s own signal and the last drop out price. Although this signal averaging rule

yields (theoretically) the same average price as the Nash equilibrium strategy, it is not a Nash

equilibrium. Furthermore, in their experiments, Levin et al. �nd that most auctions4 were a¤ected

by overbidding: �nal auction prices were signi�cantly higher than predicted by symmetric Nash

equilibrium bidding and ex post pro�ts were consequently lower.

Avery and Kagel conclude that the bidding strategy with more predictive power is also a

�statistical�bidding rule5: a bidder appears to combine his own signal and the expected value of

his opponent�s signal, using the commonly known prior signal distribution. Again, such a bidding

rule is not a Nash equilibrium. Bidders with signal realisations below the average of the prior

distribution will overbid (compared to the Nash prediction), whereas bidders with signals above

the average will underbid. Additionally, under that rule, the winning bidder will fall prey to the

winner�s curse and lose money with positive probability6.

The experimental results in Gonçalves and Hey (2007) also suggest a �statistical�bidding rule

as the most likely bidding function: bidders combine their own signal and the expected value of their

opponent�s signal using the prior signal distribution given the signal ranking, which was common

knowledge before the start of each auction. This rule is equivalent to Avery and Kagel�s bidding

1As well as private values.
2See Kagel (1995) for an overview of the experimental literature.
3This does not depend on bidders�experience; the percentage of auctions yielding negative pro�ts for the winner

is not signi�cantly reduced as each bidder gains experience by participating in more auctions.
4With the exception of auctions with �superexperienced bidders�.
5That they de�ne as expected value bidding.
6The probability that both bidders have a signal realization below the distribution average and overbid compared

to the Nash equilibrium prediction is 0.25 (Avery and Kagel assume the independent uniform distribution).
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rule once account is taken of the additional information bidders had: the knowledge of the signal

ranking. And this rule is also not a Nash equilibrium. As in Avery and Kagel, Gonçalves and Hey

�nd systematic overbidding compared to the symmetric Nash equilibrium that results in lower ex

post pro�ts7.

A common aspect of these alternative bidding rules is that they induce overbidding and the

winner�s curse: if all bidders adhered to those rules, �nal average prices would be at least as high as

predicted by (symmetric) Nash bidding. Those rules also generate negative pro�ts for the winner in

a signi�cant number of auctions. This paper proposes an English auction model (with two bidders)

that attempts to explain these facts. In particular, the model incorporates the main feature of those

alternative bidding rules: we assume that bidders may choose a bidding strategy based on their

own signal and the expected value of their opponent�s signal, which they will try to infer as the

auction price increases. However, we also assume that bidders behaving in this way will incorrectly

believe that their opponent will always play the symmetric Nash bidding strategy. These are the

two main characteristics of what we consider to be an �irrational�bidder. We show that if a bidder

is �irrational�, his bidding strategy is more aggressive than the symmetric Nash bidding function.

We study two possibilities. First, we allow only one bidder to behave �irrationally�. From

the auctioneer�s point of view, and with no further assumptions, the expected auction price may

be higher or lower than the symmetric equilibrium depending on who holds the highest signal.

However, and as a special case, we show that if the signal distribution is highly a¢ liated, the

auctioneer�s revenues are maximised at the symmetric equilibrium, a result that is similar in nature

to those obtained by Bikhchandani and Riley (1991) and Avery (1998).

Second, we allow both bidders to behave �irrationally�. In this case, there may exist multiple

equilibria, including a mixed strategy equilibrium where both bidders bid aggressively with positive

probability. This mixed strategy is an equilibrium because each bidder bene�ts from playing ag-

gressively (an expected auction price lower than at the symmetric equilibrium) but faces a cost: the

expected loss associated with the the probability that their opponent is playing aggressively as well

(which implies an expected auction price higher than at the symmetric equilibrium). Depending

on the probability distribution of the signals, other equilibria may exist, including pure strategy

symmetric and asymmetric equilibria.

Our results show that the auctioneer receives a higher expected price than at the symmetric

equilibrium provided both bidders play symmetrically (i.e. provided bidders �match�their strate-

gies). Bikhchandani and Riley argue that it may be reasonable for symmetric bidders to behave

symmetrically in one period games and therefore we would expect the auctioneer to bene�t from
7 In Gonçalves and Hey, 19% of all auctions resulted in negative pro�ts for the winner, but the average pro�t

earned by bidders was positive (although lower than under Nash bidding).
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bidders�irrationality in single period auctions.

In a related paper, Eyster and Rabin (2005) propose the concept of �cursed equilibrium�, where

a player in a Bayesian game believes with probability � that his opponents do not act in accordance

with the private information they have (i.e. they do not act rationally). If � = 0; then all players

are perfectly rational and the relevant equilibrium concept is that of Bayesian Nash equilibrum;

however, if � > 0 then all players believe with positive probability that they are playing against

not-fully rational players, and the relevant equilibrium concept is that of an �-cursed equilibrium.

In the context of common value English auctions, Eyster and Rabin show that seller revenue is

increasing with � and that if a su¢ cient number of bidders participate in the auction, the winner

incurs the winner�s curse and loses money. Our results partly corroborate these �ndings, but in our

setup bidders may not only be �cursed�but may also choose �how cursed� they want to be (the

probability of behaving irrationally). If both bidders behave irrationally with positive probability,

they will overbid compared to the Nash equilibrium prediction and increase seller�s revenue. They

do not, however, expect to lose money.

The background of the model is presented in the next section, together with previous theoretical

results. Section 3 analyses the case with only one irrational bidder and section 4 the case with two

irrational bidders. Section 5 concludes. An appendix to the paper (available on the JEBO website)

contains an illustrative example.

2 The English auction model

2.1 De�nitions

We focus on a common value English auction where two symmetric risk neutral bidders compete for

the purchase of one single indivisible good. We adopt the Japanese variant of the English auction

used by Milgrom and Weber, where the price increases continuously and interested bidders must

depress a button as long as they are interested in the good. When all but one bidder release the

button, the auction �nishes. The price, the number of bidders and the drop-out prices of all bidders

are displayed for all to see. A strategy for a given bidder in this auction game, as explained by

Milgrom and Weber, must specify, for any price level, whether he should remain active or quit given

all the information available. In a model with only two bidders, such a strategy entails selecting a

single number: the price at which that bidder will release the button and let his opponent win.

We assume the auctioneer has a reservation price of 0: The common value of this good, V; is

ex ante unknown to both bidders. However, each bidder receives a signal xi 2 [0; x] ; i = 1; 2; of

this value before the auction starts, which is known only to himself. In particular, we assume that

each bidder�s valuation takes the form Vi = V = v (x1; x2) = x1+x2; 8i. This particular functional
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form (called the Wallet Game) has been used by Klemperer (1998), and because it is so simple to

work with, it provides valuable and intuitive insights into other valuation functions.

The signals are assumed to be a¢ liated and to have a joint density function f (x1; x2) that

is symmetric and continuous. A¢ liation roughly means that the two signals are nonnegatively

correlated. Milgrom and Weber show that in this particular case a¢ liation requires only that

gXj jXi (xj jxi) satis�es the Monotone Likelihood Ratio Property (MLRP), where gXj jXi (xj jxi) is
the conditional density of Xj given Xi. This implies that for all x0j > xj ; and x

0
i > xi :

gXj jXi

�
xj

���xi�
gXj jXi

�
xj

���x0i� �
gXj jXi

�
x0j

���xi�
gXj jXi

�
x0j

���x0i� : (1)

2.2 Equilibria (symmetric and asymmetric)

Milgrom and Weber show that there exists a symmetric equilibrium of the English auction in

which each bidder i�s strategy, S (xi) ; is to remain active until the posted price reaches S (xi) =

v (xi; xi) = 2xi (see also Klemperer). This symmetric equilibrium is unique (Levin and Harstad

(1986). However, Milgrom has shown the existence of a continuum of asymmetric equilibria. Let

h (:) be an increasing and surjective function8. Then, the following strategies are equilibrium bid

functions of this model:

S1 (x) = v (x; h (x)) = x+ h (x)

S2 (x) = v
�
h�1 (x) ; x

�
= h�1 (x) + x: (2)

Each function h (:) will lead to a di¤erent asymmetric equilibrium, and hence there exists a

continuum of asymmetric equilibria. In particular, one can see how each asymmetric equilibrium

departs from the symmetric equilibrium. If h (x) > x; 8x; then bidder 1 will be playing an aggressive
asymmetric strategy, S1 (x) ; because S1 (x) > S (x) : Given this, bidder 2 will then play a passive

asymmetric strategy, S2 (x) because S2 (x) = v
�
h�1 (x) ; x

�
< S (x) : 9 ;10

2.3 De�nition of �irrationality�

Suppose bidder 2 is playing his symmetric equilibrium strategy and remains active in the auction

until the price reaches S (x2) = v (x2; x2) = 2x2. Let p denote the current price. Knowing that

8A function is surjective if its target coincides with its range.
9Note that if h (x) > x; 8x; this implies that x > h�1 (x) ; 8x:
10For more details on asymmetric equilibria, see Milgrom (1981), Bikhchandani and Riley (1991) or Klemperer

(1998).
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bidder 2 is playing the symmetric equilibrium strategy gives bidder 1 the following information: at

any price p; he knows that S (X2) � p; or X2 � S�1 (p) = p=2: In the symmetric equilibrium, this
additional information released during the auction has no value and both bidders ignore it; given

that bidder 2 is bidding up to S (x2) ; bidder 1�s best reply is to bid up to S (x1) : If x1 < x2; bidder

1 drops out at p = S (x1) and loses the auction. Even though he knows that the good is worth

more than p = S (x1) but less than S (X2) ; this brings him no advantage in subsequent bidding.

Given bidder 2�s strategy, S (x2) ; winning the auction is only possible if he deviates from S (x1)

and continues bidding. However, winning in such circumstances would yield a negative payo¤:

v (x1; x2)� S (x2) = x1 + x2 � 2x2 < 0:
The concept of �irrationality�used in this paper is based on this information released throughout

the auction. First, we assume that an �irrational�bidder attempts to estimate his opponent�s signal

given all the information available to him in the auction: his own signal and the current price. This

estimate is used to inform his strategy. Second, we assume that in doing so he presumes his

opponent is playing the symmetric equilibrium strategy. Such an irrational bidder is e¤ectively

trying to outsmart his opponent by �estimating� his signal and thus obtaining a more accurate

estimate of the good�s true value. However, in doing so he does not anticipate that his opponent�s

best reply may no longer be the symmetric equilibrium strategy that formed the basis of his

estimate.

The bidding strategy chosen by such an �irrational bidder�would be computed in the following

way. Bidder 1 knows that at any price p; with both bidders still active, S (X2) � p or, equivalently,
X2 � S�1 (p) = p=2: At this price, bidder 1 updates his expectation of bidder 2�s signal, assuming
he is playing the symmetric equilibrium strategy, S (X2). Let �2 (p; x1) be the expectation by

bidder 1 of bidder 2�s signal, given that bidder 2 is active at a price of p and given bidder 1�s own

signal:

�2 (p; x1) = E
�
X2jX2 � S�1 (p) ; X1 = x1

�
=

Z x

p=2
x2:gX2jX1 (x2jx1) dx1Z x

p=2
gX2jX1 (x2jx1) dx1

; (3)

where �2 (p; x1) is nondecreasing in both arguments
11. Let SA (x1; p) = x1+�2 (p; x1) be bidder

1�s asymmetric and irrational strategy. The irrational strategy is a function of the posted price, p:

11�2 (p; x1) is obviously nondecreasing in p: Milgrom and Weber show that for a¢ liated variables, �2 (p; x1) is also
nondecreasing in x1 (Theorem 5).

6
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When bidders decide which strategies to play (before the auction starts), p is not known. Hence,

given x1; there exists a price level p = p� such that

p� = x1 + �2 (p
�; x1) : (4)

Let SA (x1) = p� be bidder 1�s asymmetric strategy, which is now only a function of x1. The

above equation is equivalent to

SA (x1) = x1 + �2 (SA (x1) ; x1) (5)

where

�2 (SA (x1) ; x1) = E

�
X2jX2 �

SA (x1)

2
; X1 = x1

�
: (6)

Note how this strategy is constructed. Firstly, bidder 1 makes use of the additional information

released during the auction, that is, he Bayesian updates his estimate of X2 (his opponent�s signal)

by inverting the current price, p (he irrationally assumes that his opponent always plays the sym-

metric equilibrium strategy). Then, he (irrationally) uses this information to compute his bidding

strategy. However, this strategy must be decided before the auction starts (at a time when p is not

available). Hence, he calculates the price p� at which his strategy would no longer be consistent with

his irrational behaviour: the point at which his expectation of the value of the good conditional

on all the information available is equal to the price he would pay if he happened to win at that

particular point. At a price p lower than p�; x1 + �2 (p; x1) > p; which implies that at a price p,

bidder 1 expects a positive payo¤ if he wins the auction. The highest price at which his expected

payo¤ is not negative is p�:

It is important to stress the departures from a model with fully rational bidders incorporated in

our analysis. Rationally, this bidder should not use the Bayesian estimate of his opponent�s signal

in his bidding strategy, which is irrelevant at the symmetric equilibrium. We assume that this

bidder believes this information to be relevant. This is our �rst departure from rationality. Second,

in computing this estimate, bidder 1 assumes his opponent is playing the symmetric equilibrium

strategy: In reality, if bidder 1 deviates from his symmetric equilibrium strategy, bidder 2�s best

response is also to deviate. By making this assumption, the Bayesian estimate of bidder 2�s signal

is always given by equation (3), even when bidder 2 is playing some other strategy. This is the

second departure from the rational model.

An �irrational�bidder makes two mistakes. First, he is trying to outsmart his opponent, but in

doing so he is asking himself the wrong question. Instead of asking himself �What is the value of

7
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the good conditional on my winning the auction?�(which would lead to the symmetric equilibrium

outcome), he is asking �What is the value of the good conditional on my opponent being active at

a given price p?�. Second, asking the latter question, he is erroneously inferring the value of the

good by assuming his opponent never deviates from the symmetric equilibrium.

We can show that this �irrational�strategy is always aggressive (i.e. SA (x1) � S (x1) ; 8x1).

Proposition 1 For any probability distribution over [0; x] ; SA (:) � S (:) (i.e. the �irrational�

bidder�s strategy is at least as aggressive as the symmetric equilibrium strategy).

Proof. SA (:) = p� is obtained from equation (4). Let p = �x1; where � � 0: To prove this

proposition, we need to show that SA (:) = p� � S (:) = 2x1: Hence, we have to show that any

p = �x1 with � 2 [0; 2) cannot satisfy equation (4).
Under the assumptions outlined above, note that �2 (p; x1) � p=2 for any p: Under the (con-

servative) assumption that �2 (p; x1) = p=2 12, when � 2 [0; 2) ; equation (4) does not hold with
equality:

p < x1 + p=2

�x1 < x1 + �x1=2

�x1 < 2x1: (7)

Hence, under our most conservative assumption, the lowest � that satis�es equation (4) is � = 2:

This implies that SA (:) = p� � S (:) = 2x1 (i.e. the asymmetric strategy used by an �irrational�
bidder is at least as aggressive as the symmetric strategy).

If the irrational bidder�s strategy, SA (:) ; is aggressive (Proposition 1), then following Milgrom

(1981) and Bikhchandani and Riley (1991), we can show that

Proposition 2 (Milgrom) The best response to SA (:) � S (:) is Sa (:) � S (:) :

Proof. From Section 2.2 and the seminal result by Milgrom, we know that SA (x) = v (x; h (x)) �
v (x; x) = S (x) if and only if h (x) � x; 8x: The best response to SA (x) is Sa (x) = v

�
x; h�1 (x)

�
:

Hence, if h (x) � x; x � h�1 (x), and the best response is always less aggressive than the symmetric
strategy: Sa (x) � S (x) :

From Proposition 1, we know that the particular asymmetric strategy to be played by an

�irrational� bidder 1 is always aggressive (i.e. SA (:) � S (:) ; 8x). This implies that h (x1) =
12 If �2 (p; x1) > p=2; our result is strenghtened.

8

Page 8 of 20 



Ac
ce

pt
ed

 M
an

us
cr

ip
t

�2 (x1) � x1; 8x1: Consequently, the best response to SA (:) � S (:) by bidder 2 is a passive

strategy, Sa (:) � S (:) : This implies that x2 � h�1 (x2) = ��12 (x2) :

Given that the aggressive strategy takes the form SA (x1) = x1 + �2 (x1) ; the passive strategy

will be Sa (x2) = x2+��12 (x2) ; where ��12 (:) is the inverse function of �2 (:) ; given in equation (6).

Thus, under the model assumptions, an �irrational�bidder will always bid at least as aggressively

as in the symmetric equilibrium and his opponent more passively. Hence, �irrationality� is an

implicit and credible threat of aggressive bidding, as shown in Propositions 1 and 2.

3 Asymmetric equilibrium with one �irrational�bidder

Let "i be the probability that bidder i chooses the aggressive bidding strategy associated with

irrationality or, alternatively, the probability that bidder i is �irrational�. Conversely, (1� "i) is
the probability that bidder i is rational. Assuming that only one bidder can be irrational, say

bidder 1, would he choose "1 > 0? We can show that when "2 = 0 (bidder 2 is rational), bidder 1

plays the aggressive strategy with probability 1 (i.e. "�1 = 1) for probability distributions that lead

to a su¢ ciently asymmetric pair of strategies. De�ne

C = E
�
2Y2 � ��12 (Y1)� ��12 (Y2)

�
(8)

where Y1 = max [X1; X2] is the �rst order statistic and Y2 = min [X1; X2] is the second order

statistic.

Proposition 3 When "2 = 0, bidder 1 plays SA (:) with probability "�1 = 1 for probability distribu-

tions such that C > 0: Otherwise, bidder 1 plays SA (:) with probability "�1 = 0:

Proof. Suppose x1 > x2. If bidder 1 plays "1 = 0 (the symmetric equilibrium), he wins and

makes a pro�t in equilibrium:

U11f"1=0; x1>x2g = x1 + x2 � S (x2)

= x1 � x2: (9)

If he plays "1 = 1, he wins and his payo¤ is

U11f"1=1; x1>x2g = x1 + x2 � Sa (x2)

= x1 � ��12 (x2)

� x1 � x2: (10)

9

Page 9 of 20 



Ac
ce

pt
ed

 M
an

us
cr

ip
t

Note that because his signal is the highest, he wins in both cases and receives a higher payo¤

when he plays aggressively because his opponent drops out at a lower price, Sa (x2) � S (x2) :
If, on the other hand, x1 < x2; and bidder 1 plays "1 = 0; he loses and receives a 0 payo¤, but if

he plays "1 = 1; he may win the auction because of his aggressive strategy. Conditional on winning

(i.e. conditional on SA (x1) > Sa (x2)), his payo¤ is

U11f"1=1; x1<x2; SA(x1)>Sa(x2)g = x1 + x2 � Sa (x2)

= x1 � ��12 (x2) (11)

which may be higher or lower than 0.13. Ex ante, before knowing the signal and using the

symmetric distribution of the signals, his expected payo¤ from playing the symmetric equilibrium

is

E
�
U11f"1=0g

�
=
1

2
E [X1 �X2jX1 > X2]

=
1

2
E [Y1 � Y2] : (12)

Ex ante, bidder 1 faces a 1=2 probability of holding the highest signal (the signal distribution is

symmetric, thus Pr [X1 = max (X1; X2)] = 1=2) and winning the auction at the symmetric equilib-

rium. With probability Pr [X1 = min (X1; X2)] = 1=2, he holds the lowest signal and loses at the

symmetric equilibrium, leaving him with a pro�t of 0:

His expected payo¤ from playing aggressively14 is

E
�
U11f"1=1g

�
=
1

2
E
�
X1 � ��12 (X2)

��X1 > X2�+ 1
2
E
�
X1 � ��12 (X2)

��X1 < X2�
=
1

2
E
�
Y1 � ��12 (Y2)

�
+
1

2
E
�
Y2 � ��12 (Y1)

�
: (13)

Hence, bidder 1�s best strategy is to play aggressively (SA (x1)) with probability "�1 = 1 if

E
�
U11f"1=1g

�
> E

�
U11f"1=0g

�
: (14)

From equations (12) and (13), this inequality is satis�ed for probability distributions such that

C = E
�
2Y2 � ��12 (Y1)� ��12 (Y2)

�
> 0: (15)

13 If Sa (x2) is not very asymmetric, then it will be close to S (x2) ; and hence ��12 (x2) would be close to x2; in this
case, the payo¤ could be negative.
14This follows from Proposition 2.
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Such distributions generate a su¢ ciently asymmetric pair of strategies. For probability distri-

bution that do not satisfy this inequality, bidder 1 plays aggressively with probability "�1 = 0 and

we obtain the symmetric equilibrium of Milgrom and Weber.

In this setup, is the auctioneer better o¤ than at the symmetric equilibrium? The expected

auction price in the symmetric equilibrium is equal to the expectation of the second highest bidder�s

strategy:

E
�
P1f"1="2=0g

�
= E [S (Xi)jXi < Xj ]

= E [S (Y2)]

= 2E [Y2] ; (16)

but for probability distributions such that bidder 1 plays "�1 = 1 and the equilibrium strategies

are (SA (x1) ; Sa (x2)), the expected price depends on who holds the highest signal. With probability

1=2 bidder 1 holds the highest signal and wins the auction. In this case, the expected price is equal

to the expectation of bidder 2�s equilibrium strategy:

E
�
P1f"1=1; "2=0g

�
= E [Sa (X2)jX1 > X2]

= E
�
X2 + �

�1
2 (X2)

��X1 > X2�
= E

�
Y2 + �

�1
2 (Y2)

�
; (17)

but with probability 1=2 bidder 2 holds the highest signal and the expected price is equal to

the expectation of the lowest bidding strategy (drop out price):

E
�
P1f"1=1; "2=0g

�
= min [E [SA (X1)jX1 < X2] ; E [Sa (X2)jX1 < X2]] : (18)

As we will show later (section 4.1), ex ante the bidder playing Sa (:) always expects to lose the

auction15. Hence, the above equation becomes

E
�
P1f"1=1; "2=0g

�
= min [E [SA (Y2)] ; E [Sa (Y1)]]

= E [Sa (Y1)]

= E
�
Y1 + �

�1
2 (Y1)

�
: (19)

15Because the auctioneer has the same information as the bidders before the auction starts (i.e. knowledge of the
signal distribution), he also expects this bidder to lose.
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Given these two expressions (equations (17) and (19)), it is ambiguous whether the auc-

tioneer expects a higher price than in the symmetric equilibrium. In the �rst case, 2E [Y2] �
E
�
Y2 + �

�1
2 (Y2)

�
; which means that with probability 1=2 the auctioneer would (weakly) prefer the

symmetric equilibrium. However, 2E [Y2] could be higher or lower than E
�
Y1 + �

�1
2 (Y1)

�
; which

makes the auctioneer�s preference generally dependent on the particular distribution we assume.

Although this is generally true, the following result holds:

Proposition 4 When the variables X1 and X2 are highly a¢ liated, the expected price in the sym-

metric equilibrium is unambiguously higher than the expected price in the asymmetric equilibrium

with one �irrational� bidder, and the auctioneer is clearly worse o¤.

Proof. When X1 and X2 are highly a¢ liated, the joint density f (x1; x2) assigns very high

probabilities to realisations of X1 and X2, which are close to one another. Hence, with highly

a¢ liated variables, the di¤erence between the �rst order statistic and the second approaches 0 :

(E [Y1]� E [Y2]) ' 0: (20)

For such a¢ liated distributions, bidder 1 always plays "�1 = 1 because equation (15) is satis�ed:

C = E
�
2Y2 � ��12 (Y2)� ��12 (Y2)

�
> 0: In the symmetric equilibrium, the expected price for

the auctioneer becomes E
�
P1f"1="2=0g

�
= E [S (Y2)] ' E [S (Y1)] ' 2E [Y1] : In the asymmetric

equilibrium, with probability 1=2 bidder 1 holds the highest signal. The expected price is

E
�
P1f"1=1; "2=0g

�
= E

�
Y2 + �

�1
2 (Y2)

�
' E

�
Y1 + �

�1
2 (Y1)

�
: (21)

With probability 1=2 bidder 2 holds the highest signal. The expected price is

E
�
P1f"1=1; "2=0g

�
= E

�
Y1 + �

�1
2 (Y1)

�
: (22)

Now note that the expected price in the symmetric equilibrium is at least as high as in the

asymmetric equilibrium

E
�
P1f"1="2=0g

�
' 2E [Y1] � E

�
P1f"1=1; "2=0g

�
' E

�
Y1 + �

�1
2 (Y1)

�
(23)

because E [Y1] � E
�
��12 (Y1)

�
; and the auctioneer weakly prefers the former.

This result is not a general one and is speci�c to distributions that result in high a¢ liation

between the random variables. The intuition for this result is that in this case the bidder who

12
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sets the price becomes su¢ ciently less aggressive relative to the symmetric equilibrium, and this

unambiguously reduces seller�s revenue16.

4 Equilibrium with two �irrational�bidders

It is perhaps more interesting to analyse a setup where both bidders are allowed to play aggressive

strategies. Hence, we now allow both bidders to play "i � 0: Notice that if bidder 1 chooses to bid
aggressively (by playing "1 � 0) and his opponent�s reply is also to bid aggressively with positive
probability ("2 � 0); whoever wins the auction may end up paying a higher price than at the

symmetric Nash equilibrium:17

4.1 The auction game

The game is symmetric, so we can focus on bidder 1�s strategy choice. In the auction game, bidder

1 can bid aggressively (A) or not aggressively (NA). His payo¤ depends on what bidder 2 does. If

bidder 1 plays NA ("1 = 0) and 2 plays NA ("2 = 0) as well, the payo¤s are those of the symmetric

equilibrium. If bidder 1 plays NA but his opponent plays A, then we have the setup of section 3:

Finally, both bidders may play A, that is, bidder 1 plays SA (x1) and bidder 2 plays SA (x2) :

Before we present the payo¤matrix, note that if x1 > x2; SA (x1) > SA (x2) ; which implies that

when both bidders play aggressively, the bidder holding the highest signal always wins, although

the price may be di¤erent from that in the symmetric equilibrium. To prove this, remember that

SA (x1) = x1 + �2 (x1) and SA (x2) = �1 (x2) + x2: A¢ liation implies that �i (:) is increasing in

its argument18, and hence if x1 > x2; this implies �2 (x1) > �1 (x2) ; which in turn implies that

SA (x1) > SA (x2) :

Bidder 1 will win at the symmetric equilibrium if x1 > x2; which happens with probability 1=2:

In this case, and conditional on winning the auction, the payo¤matrix for bidder 1 is given in Table

1. However, also with probability 1=2; bidder 1 loses at the symmetric equilibrium (x1 < x2), in

which case the payo¤ matrix is given by Table 2.

If bidder 1 plays NA and bidder 2 plays A, bidder 1�s payo¤depends on which is biggest: Sa (x1)

or SA (x2) : Before receiving the signals,

E [Sa (X1)] = E
�
X1 + �

�1
2 (X1)

�
� E [SA (X2)] = E [SA (X1)] = E [X1 + �2 (X1)] ; (24)

16 I thank an anonymous referee for this observation.
17When both bidders are �irrational�, both bid aggressively and both assume their opponents are playing the

symmetric equilibrium strategies. This leads to higher expected prices in the auction.
18See Theorem 5 in Milgrom and Weber.
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Bidder 2
NA A

Bidder 1 NA x1 � x2
�
x1 � �1 (x2) ; if Sa (x1) > SA (x2)
0; if Sa (x1) < SA (x2)

A x1 � ��12 (x2) x1 � �1 (x2)

Table 1: Bidder 1�s payo¤ matrix when x1 > x2

Bidder 2
NA A

Bidder 1 NA 0 0

A x1 � ��12 (x2) 0

Table 2: Bidder 1�s payo¤ matrix when x1 < x2

which means that bidder 1 never expects to win when he plays NA and bidder 2 plays A. The

ex ante payo¤ of playing NA when bidder 2 is also playing NA is given by equation (12) and the

ex ante payo¤ of playing A when bidder 2 is playing NA is given by equation (13). Finally, the ex

ante payo¤ of playing A when bidder 2 is also playing A is given by

E
�
U11f"1="2=1g

�
=
1

2
E [X1 � �1 (X2)jX1 > X2]

=
1

2
E [Y1 � �1 (Y2)] : (25)

We summarize the ex ante payo¤ matrix for bidder 1 in Table 3.

4.2 Equilibria

Let C be de�ned as in equation (8) and de�ne

D = E [Y1 � � (Y2)] : (26)

Using the ex ante expected payo¤s (see Table 3), we can show that:

Proposition 5 For probability distribution such that C > 0, and D > 0, the dominant strategy

equilibrium of the game is for both bidders to play A with probability "�i = 1; if C < 0, and D < 0,

the dominant strategy equilibrium is for both bidders to play NA with probability (1� "�i ) = 1:

Bidder 2
NA A

Bidder 1 NA 1
2E [Y1 � Y2] 0

A 1
2E
�
Y1 + Y2 � ��12 (Y1)� ��12 (Y2)

�
1
2E [Y1 � �1 (Y2)]

Table 3: Bidder 1�s ex ante payo¤ matrix

14

Page 14 of 20 



Ac
ce

pt
ed

 M
an

us
cr

ip
t

For probability distributions such that only C > 0 is satis�ed (thus D < 0); there are two

pure-strategy Nash equilibria (bidder i plays A and bidder j plays NA) and one (symmetric) mixed

strategy Nash equilibrium, where "� = C
C�D :

For probability distributions such that only D > 0 is satis�ed (thus C < 0), there are two pure-

strategy Nash equilibria (bidder 1 and bidder 2 both play NA or both play A), and one (symmetric)

mixed strategy Nash equilibrium, where "� is given by the expression above.

Proof. The signal distribution is symmetric, which implies that E
�
��12 (:)

�
= E

�
��11 (:)

�
=

E
�
��1 (:)

�
: From Proposition 3, we know that for distributions such that C > 0, bidder 1 strictly

prefers to play A. Looking at Table 3, it is easily checked that if D > 0; the dominant strategy

equilibrium for both bidders is to play A. Conversely, if those inequalities are reversed, then the

dominant strategy equilibrium is to play NA.

If C > 0 is satis�ed, but D < 0; inspection of Table 3 will show that when bidder 1 plays A,

bidder 2�s best reply is to play NA, and bidder 1�s best reply to bidder 2�s strategy (NA) is also

to play A. Therefore, this pair of strategies is a Nash equilibrium (symmetry tells us that bidder 1

playing NA and bidder 2 playing A is also a Nash equilibrium).

In order to obtain the (symmetric) mixed strategy equilibrium, we have to �nd the value of "1

that maximises his ex ante payo¤ in Table 3. Hence, bidder 1 must solve

max
"1
E [U1] = (1� "1) (1� "2)

1

2
E [Y1 � Y2] + "1 (1� "2)

1

2
E
�
Y1 + Y2 � ��1 (Y1)� ��1 (Y2)

�
+

+ "1"2
1

2
E [Y1 � � (Y2)] : (27)

The �rst order condition is

@E [U1]

@"1
= � (1� "2)E [Y1 � Y2]+(1� "2)

1

2
E
�
Y1 + Y2 � ��1 (Y1)� ��1 (Y2)

�
+"2

1

2
E [Y1 � � (Y2)] ;

(28)

which is set equal to zero and rearranged to yield

"�2 = E

�
2Y2 � ��1 (Y1)� ��1 (Y2)

2Y2 � ��1 (Y1)� ��1 (Y2)� Y1 + � (Y2)

�
=

C

C �D: (29)

Bidder 1 will be indi¤erent between playing A or NA when bidder 2 plays "�2: The problem for

bidder 2 is similar, and using the symmetry of the signal distribution, we conclude that a mixed

strategy equilibrium exists such that "�1 = "
�
2 = "

�: It is easily checked that "� < 1:
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Finally, for probability distributions such that D > 0 but C < 0; inspection of Table 3 will

show that having both bidders playing A or NA are Nash equilibria of the auction game. For such

distributions, the (symmetric) mixed strategy of equation (29) is also a Nash equilibrium. In such

an equilibrium, 0 < "� < 1:

Depending on the signal distribution, the auction game may or may not have more than one

Nash equilibrium. Unlike the simpli�ed scenario of section 3, this raises the question of which

equilibrium might realistically be played. Without further assumptions, it is not possible to predict

which equilibrium would be more likely to be played. Allowing both bidders to play the irrational

and aggressive strategy clearly enlarges the set of possible equilibria in the auction game.

It is worth pointing out that this equilibrium (as the equilibrium of Proposition 3, when only

one bidder is �irrational�) is based on ex ante expected pro�ts (i.e. before the signal realisations

become known to bidders). Whilst this may look like an inappropriate approach, we believe it is

not19. If expected pro�ts are calculated after the signals arrive, this would only a¤ect the results

in so far as the expected value of an opponent�s signal (or any function of that signal) would have

to be calculated using the density of Xj conditional on the observed value of xi; and not the prior

distribution (both bidders know their own signal as well as the signal distribution, but they do

not know who holds the highest signal). Di¤erent results could well be obtained in such a setup,

but if the auctions are repeated, bidders are likely to become increasingly reliant on their prior

distribution and not the particular signal realisation of a particular auction: they know that signals

will sometimes be high but sometimes be low. If a pattern of behaviour (rational or irrational)

is to emerge from such repeated auctions, then it is likely that that pattern is based on the prior

distribution, not the conditional distribution.

4.3 Expected price for the auctioneer

When two �irrational�bidders play aggressively with probability "i; we will show that the auctioneer

is better o¤ than at the symmetric equilibrium provided bidders �match�their strategies (i.e. both

play A with the same probability "�), and this result holds for any probability distribution. From

Proposition 5, the only equilibrium obtained that does not imply �matching� strategies is the

equilibrium in which bidder i plays A and bidder j plays NA. In that case, we are back to the

ambiguous result of section 3.

There are three possible cases of matching strategies. Firstly, when both bidders play the

symmetric equilibrium (both play NA with probability (1� ")), the expected price is E [P ] =
2E [Y2] (see equation (16)). Secondly, when both bidders play aggressively (both play A with

19This objection was raised by an anonymous referee.
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probability "), the expected price is

E [P ] = E [Xi + � (Xi)jXj > Xi]

= E [Y2 + � (Y2)] : (30)

Thirdly, when one bidder plays A and his opponent plays NA (with probability " (1� ")), the
auctioneer expects the bidder playing Sa (:) to lose the auction, whether he holds the highest signal

or not (see equation (24)). In this case, the expected price is

E [P ] =
1

2
E
�
Y1 + �

�1 (Y1)
�
+
1

2
E
�
Y2 + �

�1 (Y2)
�
: (31)

Hence, for the matching strategies equilibria, the expected price for the auctioneer is given by

E [P (")] = (1� ")2 2E [Y2] + 2" (1� ")
�
1

2
E
�
Y1 + �

�1 (Y1)
�
+
1

2
E
�
Y2 + �

�1 (Y2)
��
+

+"2E [Y2 + � (Y2)] ; (32)

which can be simpli�ed to

E [P (")] = 2E [Y2] +
�
E
�
Y1 + �

�1 (Y1) + �
�1 (Y2)� 3Y2

��
"+

+
�
E
�
2Y2 + � (Y2)� Y1 � ��1 (Y1)� ��1 (Y2)

��
"2: (33)

Proposition 6 For any probability distribution, the expected price with two �irrational�bidders is

always at least as high as the expected price at the symmetric equilibrium provided bidders �match�

their strategies.

Proof. We need to show that for any equilibrium value of "� (i.e. for any value of " which

results in a Nash equilibrium, with both bidders �matching� their strategies), the expression of

equation (33) is always at least as high as the expression of equation (16).

Take the equilibrium value of "� in the mixed strategy equilibrium (equation (29)), and the

de�nitions of C and D from equations (8) and (26) respectively. The expression in equation (33)

becomes:

E [P (")] = 2E [Y2] + (E [Y1 � Y2 � C]) "+ (C �D) "2; (34)

which after substituting " = C
C�D becomes
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E [P (")] = 2E [Y2] + (E [Y1 � Y2])
C

C �D
= 2E [Y2] + (E [Y1 � Y2]) ": (35)

This implies that in the mixed strategy equilibrium, the expected price for the auctioneer is

always at least as high as at the symmetric equilibrium because 0 < "� < 1 (Proposition 5) and

E [Y1 � Y2] � 0 by the de�nition of the order statistics.
If both bidders play NA (" = 0), the symmetric equilibrium strategies are played and the

expected price is given by equation (16).

If both bidders play A (" = 1), then the expected price is given by equation (30), which is at

least as high as that obtained at the symmetric equilibrium (see Proposition 1).

The expanded auction game, which allows both bidders to compute their bidding strategies

�irrationally�and play them with positive probability may have multiple Nash equilibria, depending

on the probability distribution of the signals. One of those Nash equilibria is the pure strategy

asymmetric equilibrium where one bidder plays A and his opponent plays NA (see section 3).

Without further assumptions, it is not possible to predict how likely it is for this equilibrium to be

played. However, it appears implausible that symmetric bidders would end up in this equilibrium

of the expanded auction game. As Bikhchandani and Riley argue, it is more �natural� to expect

symmetric bidders to bid symmetrically.

5 Conclusion

Looking at experimental evidence of English auctions20, we have noticed a behavioral pattern: not

only is the Nash equilibrium bid function apparently not used by subjects, but the bid function

with more predictive power is not a Nash equilibrium. Levin et al. point out that the Nash bidding

function may not be as intuitive as economists believe, and therefore other (more intuitive) bidding

rules could emerge naturally in experiments. Avery and Kagel expected more experienced bidders

to learn from their mistakes (and from the winner�s curse) and hence to converge towards Nash

bidding as the experiment approached the end. They found very weak support for this claim. The

�natural�rules that emerge in experiments seem to be fairly robust over time.

In this paper, we have proposed an extension to Milgrom and Weber�s model that attempts to

explain these �ndings. We have analysed the e¤ects of introducing a particular type of irrationality

in the English auction model. We assume an irrational bidder updates the estimate of his opponent�s

signal as the auction price increases. Moreover, we assume such a bidder believes his opponent is
20Levin et al. (1996), Avery and Kagel (1997) and Gonçalves and Hey (2006).
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playing the symmetric Nash equilibrium strategy (i.e. he does not consider that his opponent�s

strategy may no longer be a best reply). This irrationality assumption (i) contributes towards

explaining overbidding and the winner�s curse in experimental auctions and (ii) provides testable

predictions for further experiments.

We �rst looked at the possibility of having only one bidder behaving irrationally, and second,

and more interestingly, of having both bidders behaving irrationally. In both cases, bidders choose

to behave irrationally with positive probability. In this latter case, there may exist multiple Nash

equilibria of the auction game. Nevertheless, we have shown that the expected price for the auc-

tioneer is higher than at Milgrom and Weber�s symmetric equilibrium provided bidders �match�

their strategies, which appears to be a plausible assumption given the symmetry of bidders. In

these equilibria, neither bidder expects to lose money, although ex post they may realise that they

did.

We believe our conclusions have some empirical support. A large percentage (almost 30% in

Avery and Kagel and 19% in Gonçalves and Hey) of experimental auctions result in negative pro�ts

for the winner. Additionally, �nal auction prices in Gonçalves and Hey are some 22% higher than

predicted by the symmetric Nash equilibrium; in Avery and Kagel, �nal prices were 16% higher

than predicted. Conversations with subjects in Gonçalves and Hey show that bidders understood

perfectly that they would only receive money by winning auctions, and this may have triggered

aggressive bidding and the winner�s curse in a substantial proportion of cases.

Eyster and Rabin�s application of the concept of �cursed equilibrium�to common value auctions,

allowing bidders to believe with positive probability that they are playing against irrational bidders,

is also an attempt to explain Avery and Kagel�s results. They suggest that bidders in those auctions

were indeed �cursed� with very high probability (probability 1 and 0.75 for inexperienced and

experienced bidders respectively). This result is not totally satisfactory: under Eyster and Rabin�s

setup, any outcome (including the symmetric Nash equilibrium) could be justi�ed21. By contrast,

our model allows for experimental testing by predicting that bidders may, with some probability,

play an aggressive strategy, depending on the signal distribution. Therefore, under our setup, it

is possible to choose two or three signal distributions (say, uniform or normal) and calculate the

respective aggressive (irrational) strategies that bidders would use if they behaved as we predict,

as well as the probabilities that they would do so. In e¤ect, our model predicts a particular value

of � (how cursed bidders are) for each signal distribution, and the validity of this prediction can

21 In fact, Eyster and Rabin�s conclusions are similar to Avery and Kagel�s, suggesting that bidders used the prior
distribution of signals to aid the estimation of the common value instead of playing the symmetric Nash equilibrium
strategy. The latter de�ne this to be expected value bidding (which is not a Nash equilibrium), whereas the former
demonstrates that this could be an �-cursed Bayesian-Nash equilibrium.
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be experimentally tested against the symmetric Nash equilibrium and non-equilibrium statistical

bidding rules. This is the next natural step of the approach suggested in this paper.
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