On measuring speculative and hedging activities in futures markets from volume and open interest data
Pardo, Angel; Lucia, Julio Jesus

Empfohlene Zitierung / Suggested Citation:

Nutzungsbedingungen:
Mit der Verwendung dieses Dokuments erkennen Sie die Nutzungsbedingungen an.

Terms of use:
This document is made available under the “PEER Licence Agreement”. For more Information regarding the PEER-project see: http://www.peerproject.eu This document is solely intended for your personal, non-commercial use. All of the copies of this documents must retain all copyright information and other information regarding legal protection. You are not allowed to alter this document in any way, to copy it for public or commercial purposes, to exhibit the document in public, to perform, distribute or otherwise use the document in public. By using this particular document, you accept the above-stated conditions of use.

Diese Version ist zitierbar unter / This version is citable under:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-251090
On measuring speculative and hedging activities in futures markets from volume and open interest data

Journal: Applied Economics
Manuscript ID: APE-06-0726.R1
Journal Selection: Applied Economics
Date Submitted by the Author: 30-Jul-2007
Complete List of Authors: Pardo, Angel; University of Valencia, Financial Economics
Lucia, Julio; University of Valencia, Financial Economics
JEL Code: G10 - General < G1 - General Financial Markets < G - Financial Economics
Keywords: speculation, hedging, futures markets
On measuring speculative and hedging activities in futures markets from volume and open interest data

Julio J. Lucia and Angel Pardo*

First version: November 2006
This (second) version: July 2007

Abstract
This paper provides a critical assessment of the line of research that measures speculative and hedging activities in futures markets from volume and open interest data. It makes several contributions. First, a detailed theoretical analysis of the measures proposed in the previous literature as proxies for speculative activity clarifies the circumstances in which they fail, as well as the assumptions that have to be made, when they are used as intended. Second, we propose a new way of combining the volume and the open interest figures, which provides additional information regarding the type of trading activity that takes place in the market on a given date. Finally, we analyse empirically the basic statistical properties of all the ratios when they are applied to real data for some of the stock index futures contracts most actively traded in the world. This empirical analysis shows the diverse behaviour of the ratios when they are applied to a common sample of real data, which confirms our previous theoretical findings. Our contributions should be taken into account when any of the measures is used as a proxy for the relative importance of speculative demand in empirical analyses.

Julio J. Lucia
Department of Financial Economics, Avda de los Naranjos s/n, Facultad de Economía, University of Valencia, 46022 Valencia, Spain.
e-mail: julio.j.lucia@uv.es

Angel Pardo
Department of Financial Economics, Avda de los Naranjos s/n, Facultad de Economía, University of Valencia, 46022 Valencia, Spain.
e-mail: angel.pardo@uv.es

* Corresponding author: angel.pardo@uv.es
1. Introduction

In the literature of derivative markets, market participants are traditionally classified as either hedgers or speculators. In conventional terms, hedgers engage in derivative trading so as to manage a risk exposure. Thus, a necessary condition to be a hedger is to have a spot (or forward) commitment that involves a risk exposure. On the contrary, speculators trade derivatives without such risk exposure and thus they are outright position-takers (this group of traders includes the so-called day traders, who hold their positions for less than one trading day). The understanding of the trading purposes that underlie the trading behaviour of market participants may shed some light on a variety of important theoretical discussions and practical issues.¹

This paper contributes to the line of research that tries to identify who trades futures from objective market activity data that is readily available in every derivative market in the world, namely, the volume of trading and the open interest.² The daily trading volume simply accounts for the amount of trading activity that has taken place in a specific contract on a trading date. On the contrary, the daily open interest figure determines the number of outstanding contracts at the end of a trading day; i.e. the number of contracts that have been entered into but not yet liquidated. Since the seminal papers by Rutledge (1979), Leuthold (1983) and Bessembinder and Seguin (1993), there is a convention that the daily trading volume primarily proxies movements in speculative activity, whereas the daily open interest variable captures hedging activities in futures and options markets, since open interest excludes by definition all intraday positions.

¹ For instance, the distinction between hedging and speculation lies at the core of the long-lasting controversy regarding the Keynes’ “normal backwardation hypothesis” in futures markets. Also, in practice, it is widely accepted that both hedgers and speculators are needed for a contract to reach a true success.

² Another way of approaching this issue has been the elaboration of surveys aimed at clarifying the type of use (if any) made by a target group of potential users of derivatives. Finally, another source of information that has been used by a number of researchers of the US futures markets is the CFCT Commitments of Traders reports. This approach has been put into question many times from diverse perspectives (for instance, see Peck, 1982, and Ederington and Lee, 2002).
taken by day traders, most of whom are inspired by speculative motives. In essence, the
distinction between speculative and hedging positions is assumed to lie in the length of the
holding period. Interestingly, there is compelling empirical evidence available that seems to
confirm that hedgers tend to hold their futures market positions longer than speculators.3

Based on these general ideas, García et al. (1986) and ap Gwilym et al. (2002) proposed
to combine both series of data into specific ratios, which were claimed to reflect more accurately
the relative importance of the speculative behaviour in the market. Since then, other authors have
used the proposed ratios as a proxy of the relative importance of the speculative demand in
derivatives markets for empirical analyses with diverse objectives (see Hagelin (2000), Corkish,
Holland and Vila (1997) and Kim (2005), among others).4 Additionally, the ratios facilitate the
comparisons across different contracts (defined by both their underlying assets and their time-to-
maturity periods).

This paper is aimed at providing a critical assessment of this approach. It makes several
contributions. First, a detailed theoretical analysis of the measures proposed in the previous
literature as proxies for speculative activity clarifies the circumstances in which they fail, as well
as the assumptions that have to be made, when they are used as intended. Second, we propose a
new way of combining the volume and open interest figures, which not only helps to understand
the drawbacks of the usual ratios as measures of speculation activity, but also provides additional
information regarding the type of trading activity that takes place in the market on a given date.
Finally, we analyse empirically the basic statistical properties of all the ratios when they are
applied to real data for some of the stock index futures contracts most actively traded in the
world. This empirical analysis shows the diverse behaviour of the ratios when they are applied to

3 Ederington and Lee (2002), for instance, in their study of the energy market show that while floor traders were the
most active, turning over 19% of their positions each day, the refiners’ turnover was only 9%. Also, Wiley and
daigler (1998, pp. 99-100) show that, at least for financial futures, on average, commercials keep their positions
significantly longer than do the non-commercials (under the classification of the CFCT Commitment of Traders).
4 Several authors have combined the volume and open interest figures in empirical analyses with other purposes. For
example, Black (1986) applied both variables in order to measure the success or failure of futures contracts. The
volume to open interest ratio has also been used as measure of liquidity by Holland and Vila (1997).
a common sample of real data. This result should be taken into account when any of them is used as a proxy for the relative importance of speculative demand in empirical analyses.

2. Speculative-Hedging Demand Ratios

2.1. Definitions and basic relationships

All the ratios defined below are based on two observable variables: the volume of trading and the open interest. The (daily) trading volume counts the number of contracts that have been traded in a trading day. However, the open interest counts the number of contracts outstanding at the end of a trading day. The open interest thus equals the number of outstanding long positions (or equivalently, short positions) at the end of a day. The open interest in a given contract increases whenever neither of the two traders involved in a contract trade is closing out a position. It decreases whenever both parties are closing out a position. Finally, it remains the same provided that only one of the two traders is closing out a position (i.e. one trader replaces another, or takes his position).

To be precise, the volume of trading, denoted V_t, is thus a flow variable measured over period t, whereas the open interest, OI_t, is a stock variable measured at the end of period t. The change in the open interest over period t can be written: $\Delta OI_t = OI_t - OI_{t-1}$ (by convention, $\Delta OI_1 = OI_1$, with $t = 1$ being the first trading day). Thus, ΔOI_t is a difference of two stock variables and it is defined over period t.

In this section, every observational period t (with $t = 1, 2, \ldots, T$) is considered to be a trading day (i.e. a day when the market is open for trading in a given futures contract). This implies that $V_t \geq 0$ and $OI_t \geq 0$, for every t. Also, notice that $\Delta OI_t \in [-V_t, V_t]$. In words, the maximum value of the change in the open interest over a period is given by the value of the
volume of trading over the same period (this happens when the parties involved in every contract traded over the period have all taken new positions in those contracts). Also, the minimum value of the change in the open interest is minus the trading volume (this happens when all the parties involved in every contract traded over the period have closed out positions that had been taken in previous periods).

García et al. (1986) suggested that the total volume of contracts traded in a period relative to the size of open positions at the end of the period reflects (the relative importance of) the speculative behaviour in a given contract. The volume-to-open-interest ratio \(R_1 \), henceforth, is defined as:

\[
R_1_t \equiv \frac{V_t}{OI_t}
\]

If it is multiplied by 100 it is interpreted as a percentage per period (one trading day). \(R_1 \) can take any positive real number, including zero, and takes the value plus infinity whenever the open interest equals zero. The ratio is undetermined when \(V_t = OI_t = 0 \).

Ap Gwilym et al. (2002) modified the relative measure mentioned above. They considered that the daily change in open interest reflects more accurately the activity of hedgers than the level of open interest, because the daily change informs of net positions being opened and/or closed each day and held overnight. For this reason, they proposed calculating a new speculative ratio as the volume divided by the absolute value of the change in the open interest. To be precise, the ratio of volume to absolute change in open interest (denoted \(R_2 \)) is defined as:

\[
R_2_t \equiv \frac{V_t}{|\Delta OI_t|}
\]

It is dimensionless, and if it is multiplied by 100 it is interpreted as a percentage. It can take any strictly positive real number (it takes the value plus infinity whenever the change in the open interest equals zero). The ratio is undetermined when \(V_t = \Delta OI_t = 0 \).
Finally, we define the ratio of the change in open interest to volume (or \(R_3 \), henceforth), which will help us to clarify the drawbacks of using the above-mentioned ratios as speculation-hedging measures. It is defined by the following formula:

\[
R_3 = \frac{\Delta OI_t}{V_t}.
\]

This ratio has no dimension, and can take any value ranging from \(-1\) to \(+1\), \(R_3 \in [-1, +1] \). To see why this must be the case, recall that the change in the open interest over period \(t \) is bounded below by \(-V_t\) and above by \(V_t\). A positive number indicates that the number of opened positions is greater than the number of liquidated positions. A negative number indicates just the opposite. The ratio is undetermined when \(V_t = \Delta OI_t = 0 \).

2.2. Comparison of the ratios as speculation-hedging measures

Broadly speaking, when the ratios \(R_1 \) and \(R_2 \) are used as measures of speculative and hedging activity, it is assumed that an increase (a decrease) in the volume of trading relative to the open interest indicates that there is either an increase (a decrease) in the activity of the speculators or a decrease (an increase) in the activity of hedgers. In other words, in both cases, the distinction between speculative and hedging positions lies in the length of the positions’ holding period. This general assumption underlies the analysis of any of the three ratios, when used as relative speculation measures. Additionally, recall that, roughly speaking, the lower the relative importance of the speculative demand is, the lower the value of the \(R_1 \) and \(R_2 \) ratios and the higher the value of \(R_3 \) should be. This would imply a positive correlation between \(R_1 \) and \(R_2 \) as well as a negative correlation between any of these two ratios and the \(R_3 \). Finally, notice that these basic relationships can be blurred by the fact that, since the ratios are computed...
in a different way, they are not expected to respond exactly in the same way to the behaviour of
the main component variables (volume and open interest).

Seeing as the three ratios are considered as measures of the relative importance of the
speculative activity in a futures contract, a detailed analysis of them is now carried out. A
simulated example of the daily trading activity in a fictitious market will help to clarify the main
issues of our exposition (see Table I). The example covers the relevant possible cases with
respect to the main variables that enter into the ratios’ formulas (see the second column).

To begin with, consider the circumstances under which the ratios defined above do not
provide a value that could be meaningfully used as a proxy for the relative importance of
speculation. These include the cases when either the ratios are undetermined or they take an
infinite value. Recall that indeterminacies occur when \(V_t = OI_t = 0 \) for \(R_{1t} \) (this would happen on
the third day in the example in Table I, if no contract were traded on this date), and when \(V_t =
\Delta OI_t = 0 \) for both \(R_{2t} \) and \(R_{3t} \) (this happens on the fourth day in the example). These
circumstances will mostly occur in reality during the first days of trading of any given contract,
and they can be avoided altogether by considering only those days with a strictly positive volume
of trading in empirical analyses. Provided that \(V_t > 0 \), however, the ratio \(R_{1t} \) can provide an
infinite value when the open interest becomes zero (day two in the example), while the same
happens to \(R_{2t} \) when the daily change in the open interest is zero (days 7 and 8 in the example).
The first case is expected to take place mostly during the first days of trading of a contract,
whereas the second could occur more frequently much later, however.\(^5\) Again, for empirical
purposes, these circumstances must be avoided by restricting the sample of data accordingly.

\(^5\) For a real example of the importance of this second possibility, see Table II in the next section.
Next, we will consider some important specific drawbacks of each ratio, assuming that they are used as intended, i.e. as measures of the relative importance of the speculative activity in a contract. Firstly, consider the \(R_{1t} \) ratio. The main inconvenience of it is that it relates a flow variable that refers to a specific day \(t \), \(V_t \), to a stock variable measured at the end of the same day, \(OI_t \), whose value does not depend exclusively on the behaviour of traders on such a date. Accordingly, the behaviour of the ratio depends not only on the behaviour of traders on the observational day but also on the whole past history of the contract up to the same day. That is why in the example in Table I, for instance, the \(R_{1t} \) ratio takes the same value in four consecutive days (days 5 to 8), regardless of the quite different trading behaviour of traders during those days. Hence, \(R_{1t} \) turns out to be inadequate for following speculation activity of traders over time.

Secondly, consider the \(R_{2t} \) ratio. It avoids the problem mentioned above by replacing the open interest at the end of the day, used by the \(R_{1t} \) ratio, with the change in the open interest during the day. \(R_{2t} \) is able to discriminate between day trades (short-term speculation), which are reflected in the volume of trading but not in the daily change in the open interest, and the newly taken positions that are held overnight, which equally modify the trading volume and the change in the open interest (as an example of this, \(R_{2t} \) takes the value 1 on days 3 and 5 in Table I, because on these days all the traded contracts imply newly taken positions that are held overnight). Additional day trades would clearly imply a larger value for \(R_{2t} \). Again, this is related to the main assumption that underlies the use of the ratio \(R_{2t} \) as a speculative measure, i.e. speculators do not hold open positions overnight. Nevertheless, consider what happens if all the contracts traded in a given day are due to day trades (this is the case on day 7 in the example). Then, as mentioned above, \(R_{2t} \) takes an infinite value, which implies that this day must be excluded from the analysis.
Additionally, R_{2t} fails to properly account for a couple of circumstances that may occur, which limits its application as a speculative measure unless the researcher is willing to accept two additional assumptions. First, due to the absolute value function that accompanies the change in the open interest, R_{2t} is not able to discriminate between positive changes in the open interest (when the newly taken positions that are held overnight outnumber the liquidation of old positions) and negative changes (when the opposite case takes place). This implies that when R_{2t} is interpreted as a speculation measure, both cases are assimilated. In other words, it is assumed that all the changes in the open interest, either positive or negative, imply that the opening of new positions outnumber the liquidation of old positions (that is why, in the example in Table I, R_{2t} takes the same value, one, in days 3 and 5, which are days with all newly taken positions, as well as in day 6, which is a day with all liquidating positions). Notice that this drawback can be circumvented by taking out the absolute value function from the ratio. This is what is done in R_{3t} (that is why it takes a different value on days 3 and 5, on one side, and on day 6, on the other, in the example in Table I). Thus, when the liquidation of long term positions outnumbers the opening of new positions this is considered as an increase in the speculative activity (a reduction in the relative importance of the hedging activity) by this ratio.

Second, R_{2t} is unable to discriminate between day trades and those transactions that simply imply that one agent is substituted for another in their old long term position. The same happens to R_{3t}, (that is why each ratio takes the same value on day number 7 and day number 8 in the example).\footnote{Also, notice that R_{2t} takes an infinite value in purely subrogating days.} This implies that both ratios assimilate any surrogation to day trades (increasing the importance of the speculation or reducing the importance of long term trading). In other words, when used as speculation measures, both ratios assume that any surrogation is a day trade. Unfortunately, there is no way of discriminating between both circumstances from volume and open interest data only.
3. Empirical analysis of speculation-hedging measures

3.1. Data description

For the empirical analysis, we have selected three of the most actively-traded stock index futures contracts in the world. The stock index futures contracts considered are: the Standard & Poor’s 500 futures contract (S&P 500), the Nikkei 225 futures contract (Nikkei) and the Eurex DAX Index futures contract (DAX). All the contracts considered have several common features: they have well-developed spot markets as well as a remarkable tradition in trading stock index futures contracts; futures prices are quoted in index points, and the value of the contracts is the futures price times a multiple (this is USD 250 for S&P 500, JPY 1,000 for the Nikkei, and EUR 25, for the DAX); finally, all contracts have deliveries in the usual March-June-September-December quarterly cycle, and all of them are settled in cash.

The entire sample of data used in this paper consists of the daily figures of trading volume and open interest for the futures contracts with the three underlying indexes mentioned above and with maturity dates in the months of March, June, September and December between March 2000 and December 2006. Thus, the sample comprises the trading activity data of 84 (3 times 28) futures contracts. Based on this data, the three ratios (R_1, R_2 and R_3) were computed daily for each one of the 84 contracts (to avoid indeterminacies, only those days with a strictly positive volume of trading were considered; in other words, every observational period t refers to an actual trading day). Finally, for homogeneity and liquidity reasons, we decided to concentrate on ratios for the first-to-maturity and the second-to-maturity series of futures contracts. To this aim, we constructed two series of ratios. The first one was made up of the ratios for the nearby futures contract. The second series took the ratios for the next futures contract. In the end, the observational period runs from 10 December 1999 to 15 December 2006, both for the first-to-
delivery series and for the second-to-delivery series. Table II summarizes the liquidity features of both the nearby and the next futures contract series. It also reports the number of observations (trading days) included in every series.\(^7\)

[TABLE II ABOUT HERE]

3.2. Empirical comparison of speculation-hedging measures

Now, we perform a comparative analysis of two series for each of the three speculative-hedging ratios in order to test if they provide similar information when applied to real data. The mean, median and variation coefficient of the daily ratios are reported independently for the first and second to maturity series in Table III.

[TABLE III ABOUT HERE]

Several comparisons can be carried out based on the summary statistics reported in Table III. To begin with, the mean values of the ratios for the first and the second-to-maturity series can be compared. The contracts with the longest time to maturity show the lowest mean values of \(R_{1t}\) and \(R_{2t}\), as well as the highest mean values of \(R_{3t}\). Both results could be interpreted in the same way: the first-to-maturity contracts seem to attract more speculation activity (i.e. the second-to-maturity contracts seem to be used more for hedging activities than the first-to-maturity contracts).

\(^7\) The last trading day for the S&P 500 and the Nikkei futures contracts is earlier than the final settlement date. Therefore, data of volume of trading and open interest are available for every trading day. However, this is not the case for DAX futures contracts. Hence, in the DAX case, the ratios cannot be computed on the last trading day. For that reason, we assumed that all the positions that remained open are closed on the last trading day (i.e. \(OI_{\text{F}} = 0\)).
The mean values of the ratios can also be compared across underlying indexes. For the first maturity, both R_1 and R_2 ratios take their lowest values for the S&P 500 underlying index, while the R_3 ratio takes its highest value for the DAX index. Also, for the second maturity, both R_1 and R_2 take their lowest values for the Nikkei index, while R_3 takes its highest value for the S&P 500 index. Thus, according to the R_1 and R_2 ratios, the futures contracts on the S&P 500 and Nikkei index attracted the lowest speculative demand, respectively, for the nearby and the next futures contracts, among all the indexes considered. The R_3 ratio, however, provides different results indicating that the Nikkei and the S&P 500 futures contracts are used more for hedging activities for the first and second to maturity futures contracts, respectively.

Next, we test formally whether the three ratios offer similar information about the evolution of speculation/hedging demand over time. To be precise, for each underlying index, we perform a comparison of the ordering over time that is implied by the daily values taken by each pair of ratios. To this aim, we have calculated the Spearman cross correlation coefficient that takes into consideration the ranks of the values of two series for each trading day. Table IV reports the pair-wise cross-correlation coefficients between the speculation-hedging demand ratios.

Firstly, as far as the first maturity is concerned, it is not possible to reach a general conclusion with respect to either the sign or the significance of the cross correlation coefficients. Secondly, the results for the second maturity are somewhat different, however. On one hand, the correlation coefficients R_1-R_2 provide again a diversity of results. On the other hand, the cross correlation coefficients for R_1-R_3 are positive and significant whereas the cross correlations between R_2 and R_3 are all negative and significant.
Overall, no general comparative conclusion can be reached. Furthermore, the result of the positive cross correlation coefficients for $R_1 - R_3$ is particularly relevant to the aim of this paper since, if both ratios provided similar information on the evolution of the relative importance of speculative activity, a significant and negative cross-correlation between them should be found. These results do not come as a surprise: they are simply the consequence of the disadvantages of using the R_1 and R_2 ratios for discriminating between speculating and hedging that were pointed out in the previous section. Nevertheless, the negative cross correlations between R_2 and R_3 indicate that both ratios provide similar information regarding the evolution of the relative importance of the hedging demand over time in the second-to-maturity contracts, despite the fact that R_2 is not able to discriminate between newly taken positions that are held overnight and the liquidation of old positions. This seemingly contradictory result is due to the fact that the majority of days that comprise the second-to-maturity sample are in fact days with R_3 strictly greater than zero, i.e. days during which the number of newly taken positions that are held overnight is greater than the number of liquidated positions. Indeed, the percentages of such days over the total sample are, respectively, 82%, 63% and 75% for futures on S&P 500, Nikkei 225 and DAX.

In summary, the results in Table IV remind us of the dangers of using the R_1 and R_2 ratios for analysing the evolution of the speculative-hedging demand during the last weeks of the life of a futures contract, since these days are usually characterized by the cancellation of positions, which are mistakenly taken to be newly-taken long-term positions by these ratios. Furthermore, they also suggest that the use of the R_1 ratio for analysing longer to maturity contracts (second maturity) should be avoided. Finally, the high correlation between R_2 and R_3 when applied to longer to maturity contracts indicates that both ratios provide closer results in this case. This conclusion, however, does not take into account that R_2 cannot be calculated when the open interest remains the same as the day before, and this may be an important
limitation for empirical analyses. A zero change in the daily open interest happens rarely in the first maturity but, as we can see in Table II, the percentages of occurrence are relevant in the second maturity.8

Interestingly, other authors who have previously used the R_1t and R_2t ratios when analyzing speculative-hedging demand have obtained contradictory results as well. For instance, ap Gwilym et al. (2002) applied alternatively both ratios to the analysis of the speculative-hedging demand for the FTSE 100, Long Gilt and Short Sterling futures contracts. The comparison of their results for each ratio across underlying assets turned out to be inconclusive (see ap Gwilym et al., 2002, p. 12). This was expected given our previous theoretical analysis and confirms its empirical importance.

4. Final remarks

In this paper we make a critical assessment on hedging-speculative demand measures obtained from volume and open interest data. The main attraction of these measures, compared to other alternatives, is that they are based on data that is available in every organized derivatives market.

This advantage comes at the expense of several assumptions that are carefully explained for the first time in this paper. Broadly speaking, under this approach for measuring the relative importance of the speculative/hedging activities in a certain futures contract, the distinction between speculative and hedging positions is based on the length of the holding period. Thus, any position held for a long period of time is considered to be a hedging position regardless of its objective and other related aspects such as the existence of a spot commitment. Additionally,

8 As reported in Yang et al. (2004) and Yang et al. (2005), the open interest series is typically nonstationary (or integrated of order one), which suggests that only the first difference of open interest would be appropriate. By contrast, the volume series is still stationary while it is highly autocorrelated. Thus, R_3, may also be motivated from the perspective of time series analysis. We thank an anonymous referee for bringing this point to our attention.
arbitrage positions are considered to be non-speculative positions. Though some available
empirical evidence clearly suggests that hedgers tend to hold their positions for longer periods
than speculators, which could (at least partially) sustain this approach, the problem lies in the a
priori definition of the holding period to discriminate between speculative and hedging activities.
To be precise, the main assumption that underlies the use of the ratios previously defined in the
literature as speculative measures is that speculators do not hold open positions overnight. In
other words, these ratios concentrate on the day-trade speculation.

Additionally, we show that the traditional hedging-speculative measures present some
specific theoretical drawbacks (i.e. specific assumptions that are made to use the measures as
intended) that make them inappropriate at least under some circumstances. For one thing, the
volume-to-open-interest ratio turns out to be inadequate for following the behaviour of traders
over time, since its behaviour does not depend solely on the behaviour of traders on the
observational day but also on the whole past history of the contract up to that day. The ratio of
volume to absolute change in open interest assumes that all the changes in the open interest,
regardless of them being positive or negative, imply that the opening of new positions outnumber
the liquidation of old positions.

We proposed a new related measure which circumvents some of the drawbacks of the
previous measures. In particular, it discriminates between those days when the newly taken
positions that are held overnight outnumber the liquidation of old positions and those when the
opposite case takes place. A careful examination of this measure, however, reveals that the
degree of speculation in derivatives markets cannot be neatly determined, since it is impossible
to discriminate between day trades and subrogating trades from volume and open interest data
only.

Furthermore, by using data on some of the most important equity index futures traded in
the world, we perform a comparative analysis for each of the three speculative-hedging ratios in
order to test if they provide similar information when applied to real data. In general, our results warn against using traditional measures for analysing either the first or the second-to-delivery contracts.

Acknowledgements

Financial support provided by the Instituto Valenciano de Investigaciones Económicas (IVIE), Cátedra Finanzas Internacionales-Banco Santander, as well as the Spanish DGICYT and FEDER (under the projects CGL2006-06367/CLI and SEJ2006-15401-C04-04/ECON) is gratefully acknowledged.

References

Table I. Illustrative Trading Activity Example

This table simulates the trading activity for a sequence of consecutive days in a fictitious futures market. In columns 3 to 6, each one of the nine traders involved in the example is represented by a distinctive capital letter, from A to I. In columns 3 and 4, each one of the capital letters indicates a single contract, which is negotiated by a trader as indicated. In columns 5 and 6, each capital letter indicates a position in one contract, held at the end of a day by a trader as indicated. The activity of the final (eleventh) day has been split in two: the first row registers the activity resulting from the trading activity, and the second represents the cancellation of outstanding positions by the clearing house, once the final settlement has taken place. V_t stands for volume of trading (in number of contracts), O_I is the open interest, ΔO_I is the change in the open interest, and R_1, R_2, and R_3 are the three ratios defined in the main body of the text.

<table>
<thead>
<tr>
<th>Day</th>
<th>Circumstance</th>
<th>Trading Buyer</th>
<th>Trading Seller</th>
<th>Outstanding Long</th>
<th>Outstanding Short</th>
<th>V_t</th>
<th>O_I</th>
<th>R_1</th>
<th>R_2</th>
<th>R_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>AA</td>
<td>BB</td>
<td>AA</td>
<td>BB</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>$V =</td>
<td>\Delta O_I</td>
<td>$ $O_I = 0$</td>
<td>BB</td>
<td>AA</td>
<td>2</td>
<td>0</td>
<td>2/0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>3</td>
<td>$V =</td>
<td>\Delta O_I</td>
<td>$ $\Delta O_I > 0$</td>
<td>AAA</td>
<td>BBB</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>$V > 0$ $\Delta O_I = 0$</td>
<td>AAA</td>
<td>BBB</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0/0</td>
<td>0/0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>$V =</td>
<td>\Delta O_I</td>
<td>$ $\Delta O_I > 0$</td>
<td>CCA</td>
<td>BDB</td>
<td>AAACCA</td>
<td>BBBBBBB</td>
<td>3</td>
<td>6</td>
<td>1/2</td>
</tr>
<tr>
<td>6</td>
<td>$V =</td>
<td>\Delta O_I</td>
<td>$ $\Delta O_I < 0$</td>
<td>BB</td>
<td>AA</td>
<td>ACCA</td>
<td>BBDB</td>
<td>2</td>
<td>4</td>
<td>1/2</td>
</tr>
<tr>
<td>7</td>
<td>$V > 0$ $\Delta O_I = 0$</td>
<td>EF</td>
<td>FE</td>
<td>ACCA</td>
<td>BBDB</td>
<td>2</td>
<td>4</td>
<td>1/2</td>
<td>2/0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>$V > 0$ $\Delta O_I = 0$</td>
<td>AG</td>
<td>CC</td>
<td>AAAG</td>
<td>BBDB</td>
<td>2</td>
<td>4</td>
<td>1/2</td>
<td>2/0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>$V =</td>
<td>\Delta O_I</td>
<td>$ $\Delta O_I < 0$</td>
<td>GGGA</td>
<td>DDDB</td>
<td>AAGGGG</td>
<td>BDBDDD</td>
<td>4</td>
<td>6</td>
<td>2/3</td>
</tr>
<tr>
<td>10</td>
<td>$V =</td>
<td>\Delta O_I</td>
<td>$ $\Delta O_I < 0$</td>
<td>HDD</td>
<td>IGG</td>
<td>AAGGH</td>
<td>BBDI</td>
<td>3</td>
<td>5</td>
<td>3/5</td>
</tr>
<tr>
<td>11</td>
<td>Before closing Time</td>
<td>I</td>
<td>H</td>
<td>AAGG</td>
<td>BBDD</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>After Closing Time</td>
<td>BBDD</td>
<td>AAGG</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table II. Liquidity of the first and second to delivery futures contracts

This table presents the daily average volume and the daily average open interest, both measured in number of contracts. The number of observations appears in parentheses below. The last two columns show the percentage of days in which the open interest is the same in two consecutive days.

<table>
<thead>
<tr>
<th></th>
<th>Average Volume per day (Number of observations)</th>
<th>Average OI per day</th>
<th>Days with no change in OI (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First</td>
<td>Second</td>
<td>First</td>
</tr>
<tr>
<td>S&P 500</td>
<td>60,172.43</td>
<td>16,305.42</td>
<td>518,782.65</td>
</tr>
<tr>
<td></td>
<td>(1760)</td>
<td>(1755)</td>
<td></td>
</tr>
<tr>
<td>Nikkei</td>
<td>46,289.12</td>
<td>1,518.66</td>
<td>230,767.45</td>
</tr>
<tr>
<td></td>
<td>(1721)</td>
<td>(1440)</td>
<td></td>
</tr>
<tr>
<td>DAX</td>
<td>9,3023.61</td>
<td>6,119.29</td>
<td>221,909.33</td>
</tr>
<tr>
<td></td>
<td>(1747)</td>
<td>(1747)</td>
<td></td>
</tr>
</tbody>
</table>
Table III. Speculation-hedging demand ratios

This table reports the mean, median and variation coefficient (standard deviation divided by the mean value) for the speculation-hedging demand ratios \(R_1, R_2,\) and \(R_3\), for the daily series of the first and second to maturity futures contracts, for each underlying index (S&P500, Nikkei and DAX).

<table>
<thead>
<tr>
<th></th>
<th>(R_1)</th>
<th>(R_2)</th>
<th>(R_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Median</td>
<td>Var. Coef.</td>
</tr>
<tr>
<td>S&P 500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.148</td>
<td>0.118</td>
<td>0.770</td>
</tr>
<tr>
<td>Median</td>
<td>0.104</td>
<td>0.058</td>
<td>1.106</td>
</tr>
<tr>
<td>Var. Coef.</td>
<td>88.344</td>
<td>19.291</td>
<td>5.902</td>
</tr>
<tr>
<td>Nikkei</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.191</td>
<td>0.198</td>
<td>0.327</td>
</tr>
<tr>
<td>Median</td>
<td>0.030</td>
<td>0.004</td>
<td>2.094</td>
</tr>
<tr>
<td>Var. Coef.</td>
<td>92.171</td>
<td>20.141</td>
<td>8.400</td>
</tr>
<tr>
<td>DAX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.453</td>
<td>0.406</td>
<td>0.602</td>
</tr>
<tr>
<td>Median</td>
<td>0.174</td>
<td>0.056</td>
<td>0.103</td>
</tr>
<tr>
<td>Var. Coef.</td>
<td>125.839</td>
<td>36.239</td>
<td>4.714</td>
</tr>
</tbody>
</table>
Table IV. Pair-wise cross-correlation coefficients for the ratios

This table reports the Spearman’s rank-order correlation coefficients between any two speculation-hedging demand ratios (R_1, R_2, and R_3) for the series of the first and second to maturity contracts, for each underlying index (S&P500, Nikkei and DAX). ρ stands for the Spearman’s rank cross-correlation coefficient, p-value is the critical significance probability level (null hypothesis: correlation equal to zero), and $N.\text{obs.}$ is the number of observations. * (**) denotes significance at the 5% (1%) level.

<table>
<thead>
<tr>
<th></th>
<th>First Maturity</th>
<th>Second Maturity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$R_1 - R_2$</td>
<td>$R_1 - R_3$</td>
</tr>
<tr>
<td></td>
<td>ρ</td>
<td>p-value</td>
</tr>
<tr>
<td>S&P 500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ</td>
<td>-0.233(**)</td>
<td>0.000</td>
</tr>
<tr>
<td>p-value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N.\text{obs.}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nikkei</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ</td>
<td>-0.005</td>
<td>0.821</td>
</tr>
<tr>
<td>p-value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N.\text{obs.}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ</td>
<td>0.066(**)</td>
<td>0.007</td>
</tr>
<tr>
<td>p-value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N.\text{obs.}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>