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On the Stability of Cournot Equilibrium when
the Number of Competitors Increases

Tönu Puu1
1CERUM, Umeå University, SE-90187 Umeå, Sweden.

Abstract

This article reconsiders whether the Cournot equilibrium really be-
comes a perfect competition equilibrium when the number of competitors
goes to inÞnity. It has been questioned whether the equilibrium remains
stable with an increasing number of Þrms. Contraindications were given
for linear and for isoelastic demand functions. However, marginal costs
were then taken as constant, which means adding more potentially inÞnite-
sized Þrms. As we want to compare cases with few large Þrms to cases with
many small Þrms, the model is tuned so as to incorporate capacity limits,
decreasing with an increasing number of Þrms. Then destabilization is
avoided.

1 Introduction
An intriguing question in microeconomics has been whether an increase in the
number of competitors in a market always deÞnes a path from monopoly, over
duopoly, oligopoly, and polypoly using Frisch�s term (see Frisch 1933), to perfect
competition. There are two different issues involved: (i) the Cournot equilib-
rium (see Cournot 1838) must have the competitive equilibrium as its limit, and
(ii) the increasing number of competitors must not destabilize that equilibrium
state. As a rule the Þrst question is responded to in the affirmative, whereas
there have been raised serious doubts about the second; examples are Palan-
der (1939), Theocharis (1959), Agiza (1998), and Ahmed and Agiza (1998).
Theocharis pointed out that an oligopoly system with n competitors, producing
under constant marginal cost, and facing a linear demand function, would be
only neutrally stable for 3 competitors and unstable for 4 and more competitors.
This paradox has never been resolved, and is normally associated with the name
of Theocharis.
The argument is very simple. With a linear demand function, the total

revenue function for each competitor becomes quadratic in the supply of the
Þrm itself and linear in the supplies of the competitors. Differentiating the
proÞt function to obtain the marginal proÞt condition and solving for the Þrm�s
own supply as a function of the supplies of the competitors (for the reaction
function) results in a linear function with the constant slope −1

2 . Hence, the n
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by n Jacobian matrix, whose eigenvalues determine the stability of the Cournot
point, has the constant −1

2 in all off-diagonal elements, and 0 in the diagonal
elements.
Accordingly, the characteristic equation factorizes intoµ

λ− 1
2

¶n−1µ
λ+ (n− 1) 1

2

¶
= 0,

so, the system has n − 1 eigenvalues λ1,...(n−1) = 1
2 , and one eigenvalue λn =

− (n− 1) 12 . This last eigenvalue causes the trouble: For n = 3 we have λ3 = −1,
for n = 4 we have λ4 = −3

2 < −1, and so forth.
Theocharis�s argument was in fact proposed 20 years earlier by Palander

(p. 237), who wrote: �as a condition for an equilibrium with a certain num-
ber of competitors to be stable to exogenous disturbances, one can stipulate
that the derivative of the reaction function f 0 must be such that the condition
|(n− 1) f 0| < 1 holds. If this criterion is applied to, for instance, the case with
a linear demand function and constant marginal costs, the equilibria become un-
stable as soon as the number of competitors exceeds three. Not even in the case
of three competitors will equilibrium be restored, rather there remains an endless
oscillation�.
It is difficult to say to what extent Palander�s argument was widely known,

but he had already presented a substantial part of it at a Cowles Commission
conference in 1936.
Linear reaction functions (arising with linear demand functions) are easy to

use in the argument because their slopes are constant, so one does not need to be
concerned about the argument values in the Cournot equilibrium point. Linear
functions are, of course, globally a problem, because, to get things proper, one
has to state them as piecewise linear in order to avoid negative supplies and
prices, but neither Palander nor Theocharis were concerned with anything but
local stability.
However, the same properties were shown to hold by Agiza (1998), and

Ahmed and Agiza (1998) for a nonlinear (isoelastic) demand function and,
again, constant marginal costs, suggested by the present author, Puu (1991).
The model was originally suggested as a duopoly, Puu (1991), and then as a
triopoly Puu (1996), and the focus was on the global complex dynamics and the
bifurcations it gave rise to. Now the derivatives of the reaction functions are
no longer constant but vary with the coordinates, and hence with the location
of the Cournot point. However, it can easily be shown that if we assume the
Þrms to be identical, then the problem of local stability becomes almost as sim-
ple as with linear demand functions. With n competitors, the derivative of the
reaction functions in the Cournot point, the off-diagonal element in the Jaco-
bian matrix, becomes - (n−2)(n−1)

1
2 , and we get eigenvalues λ1,...(n−1) =

n−2
n−1

1
2 and

λn = − (n− 2) 12 , so it is now the case n = 4 that is neutrally stable, whereas
n = 5 and higher become unstable.
The assumption of identical Þrms also eliminates a problem that does not

arise in the isoelastic case, but in many others, such as, the multiple intersection

2
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points of the reaction functions, studied by Palander and Wald (see Palander
1939 and Wald 1936; see also Puu and Sushko 2002, pp. 111-146).
The result that the Cournot equilibrium becomes destabilized by an increas-

ing number of competitors is a bit uncomfortable as it is against economic
intuition. The paradox, as we will see, is due to the fact that the cases com-
pared with few and many competitors have not been posed properly. In both
the Theocharis and the Agiza cases, the Þrms are assumed to produce with
constant marginal costs. But here lies the problem. Any Þrm producing with
constant marginal cost is potentially inÞnitely large as there are no diminishing
returns at all. We do not just want to add more large Þrms to the market;
we want to compare cases with few large Þrms to cases with many small Þrms.
This is impossible to model without introducing capacity limits, a fact on which
already Edgeworth insisted (see Edgeworth 1897).
The present author tried his hands on introducing production cost functions

with capacity limits twice before, in Puu and Norin (2003) and Puu and Ruiz
(2006), but still focusing on two and three competitors and the global dynamics.
Further, the cost function used made marginal cost dependent on the capacity
limit and would not easily lend itself to the discussion of what happens when just
the number of competitors increases. In the present setup another cost function,
which also has a foundation in basic microeconomics, is therefore proposed.

2 The Model

2.1 Price and Revenue

As in Puu (1991), Puu (1996), Puu and Norin (2003), and Puu and Ruiz (2006),
an isoelastic demand function is assumed.1 Its inverse reads:

p :=
RPi=n
i=1 qi

, (1)

where p denotes market price, the qi denote the supplies of the n competitors,
and R denotes the sum of the (constant) budget shares that all the consumers
spend on this particular commodity. It can be normalized to unity without loss
of generality, but we prefer to keep it because it clariÞes the interpretation of
some conditions later.2

1An isoelastic demand function was also used to study the stability conditions for a general
Cournot oligopoly by Chiarella and Szidarovszky (2002). They assumed a general type of cost
functions with increasing marginal cost, but no capacity limits. Their very neat analysis,
however, dealt with a model cast as a differential equation system, not as an iterated map,
which is in focus of the present analysis. Further, they stated the general stability conditions,
but did not deal with the effect of an increase in the number of competitors.

2Recall that an ioselastic demand function always results when the consumers maximize

utility functions of the Cobb-Douglas type, for the j:th consumer:
!
Dj
1

"αj1 · !Dj
2

"αj2 · ...,
subject to the budget constraint yj = p1D

j
1 + p2D

j
2 + ..., where the pk denote the prices of

the commodities and Dj
k denote the quantities demanded. The well-known outcome of this

3
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2.1.1 Some DeÞnitions

In order to make the formulas succinct we also deÞne total market supply,

Q :=
i=nX
i=1

qi, (2)

and residual market supply,
Qi := Q− qi. (3)

Using (2) and (3) in (1), we obtain price as

p =
R

Qi + qi
,

and total revenue for the i:th competitor as

Ri =
Rqi

Qi + qi
; (4)

whence the marginal revenue function

dRi
dqi

=
RQi

(Qi + qi)
2 . (5)

Note that the maximum total revenue obtainable for any Þrm according to (4)
is R (obtained for Qi = 0). This also holds for the aggregate of all Þrms.

2.2 Cost Functions

As for cost, assume

Ci := ci
u2i

ui − qi , (6)

where ui denotes the capacity limit for the i:th competitor, and ci denotes
the initial marginal production cost. If we calculate lim

qi→0
Ci = ciui, we realize

that the product represents Þxed cost. Hence, given any scaling factor ci for
marginal production cost, the Þxed costs increase with production capacity,
which is satisfactory for intuition. On the other hand there is no limit for Ci, as
ui →∞, because the Þxed costs tend to become inÞnite, even though marginal
costs approach a constant value. Note that (6) only makes sense for 0 < qi ≤ ui.
constrained maximization is pkD

j
k = α

j
ky

j (i.e., that each consumer spends the Þxed share αjk
of income yj on the k:th commodity). Obviously demand for each consumer then is reciprocal

to price (i.e., Dj
k =

α
j
k
yj

pk
). As we are concerned with only one market, we can drop the

commodity index k and sum over all the different consumers, obtaining aggregate demand as

D =
#
j D

j =
!
j α

jyj

p
= R

p
. Obviously, R =

#
j α

jyj represents the sum over all consumers

of their expenditures on this commodity. In (1) we substituted total supply
#i=n
i=1 qi for total

demand, but this is an equality that has to hold in equilibrium.

4
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For higher output we just get another branch of the hyperbola (6), which lacks
any economic meaning. In Fig. 1 we display some examples of shapes for the
cost function family (6), assuming ui = 1, 2, 3, 4, 5 all distinguished in different
shade. As we see, in each case the ui value establishes a vertical asymptote,
at the approach of which total cost goes to inÞnity. We also see that the Þxed
costs, ciqi (i.e., the vertical axis intercepts), are different for the different cost
functions, higher the higher the capacity assumed. On the other hand the cost
functions increase less sharply with output the higher the capacity limit. As a
consequence, each of the Þve cost functions has its own range of outputs where
it is most favourable, as indicated by the vertical line segments in Fig. 1.
There is one more fact to the cost function (6) worth mentioning: It contains

a long-run cost function. Suppose production capacity ui to be subject to
choice in the long run. Differentiating (6) with respect to ui, we readily obtain
∂Ci
∂ui

= ci
ui(ui−2qi)
(ui−qi)2 , so as long as the Þrm produces less than half of its capacity

limit, it would be advantageous to choose a lower capacity, if it produces more
than half, it would be advantageous to choose a higher capacity. The best choice
of capacity is at twice the actual level of production ui = 2qi, obtained putting
the derivative equal to zero. Using this in (6), we obtain the linear long-run
cost function C∗i = 4ciqi. It is shown in Fig. 1 as tangent (i.e., an envelope),
to all the short-run cost functions. In the present discussion we take capacities
as Þxed, but once we want to discuss the entry of a new Þrm on the market, or
restructuring an old one, the cost function family assumed is very convenient.3

We also easily obtain marginal production cost:

dCi
dqi

= ci
u2i

(ui − qi)2
(7)

Further, lim
qi→0

dCi
dqi

= ci for any ui, and lim
ui→∞

dCi
dqi

= ci for any qi, so, any marginal

cost function starts off with ci for zero production, and when the capacity limit

3 Is is worth mentioning that this type of cost function, which can look ad hoc, can be
derived from a CES production function: q =

$
k−ρ + l−ρ

%−1/ρ. It is not restrictive to write
this in symmetric form. For econometric use (see Arrow et al. 1961), it may be good to have
as many parameters to vary as possible, but for analysis it is good to reduce their number by
a simple linear change of scale.
In what follows we assume ρ > 0. Normally, ρ < 0 is assumed (i.e., with the isoquants

meeting the axes), though Arrow et al. brießy also discuss the opposite case. They claim that
the isoquants then go asymptotically to the axes, which is wrong; the asymptotes are located
at distance from the axes in the positive quadrant.
This fact is exactly what one can use to obtain a short run cost function with capacity limit.

In addition we only need to revive the "putty/clay" ideas from growth theory of the 70s (see
Johansen 1972). However, we presently do not assume that both capital stock and manpower
are Þxed, just the Þrst through some act of investment.
Denoting capital rent and wage rate r, w as usual, we get the cost function in the long run

C∗ =
$
rρ/(ρ+1) +wρ/(ρ+1)

%(ρ+1)/ρ
q, and in the short run C = k

&
r +wq/

!
k
ρ − qρ

"1/ρ'
where k denotes the Þxed capital stock. It is obvious that with ρ > 0, short run marginal
cost is topologically equivalent to the assumed cost function (i.e., obtained for ρ = 1, where
ci = w and ui = k).

5
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Figure 1: Total cost functions for different capacity limits.

goes to inÞnity, the marginal cost remains at this constant value ci for any
production level. Like the total cost functions the marginal cost functions go
to inÞnity at the asymptote, though they all start at the same vertical axis
intercept ci. In Fig. 2 just one case of a marginal cost function is shown.

2.3 ProÞt Maximum and the Reaction Function

As proÞts are the difference between total revenue Ri and total cost Ci (i.e.,
Πi = Ri − Ci) the necessary condition for proÞt maximum is that d

dqi
Πi = 0

(i.e., that marginal revenue dRi
dqi

be equal to marginal cost dCi
dqi
). From (5) and

(7) we thus get
RQi

(Qi + qi)
2 = ci

u2i

(ui − qi)2
, (8)

or given that all variables and constants are nonnegative,
√
RQi

Qi + qi
=
√
ci

ui
ui − qi . (9)

Note that we always deal with a proÞt maximum, as d2

dq2i
Πi =

d2Ri
dq2i

− d2Ci
dq2i

,

where d2Ri
dq2i

= −2 RQi

(Qi+qi)
3 < 0 and d2Ci

dq2i
= 2 cu2

(ui−qi)3 > 0, whence d2

dq2i
Πi < 0.

The proÞt function is convex for the variable ranges we consider, so we do
not even need to substitute for the appropriate qi from the condition (9). In

6
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Figure 2: Marginal cost and marginal revenues for different residual supplies,
with proÞt areas.

Fig. 2 we illustrate one marginal cost function and a family of marginal revenue
functions for different residual supplies, Qi = 1.5, to 5.5, with step 0.5, the curve
sinking as the residual supply increases. As we see, positive proÞts result when
Qi < 4.0, and, as indicated by the shaded areas representing successive proÞt
increments, they increase the smaller the residual supply by the competitors is.
From (9) we can easily solve for the optimal value of qi, the supply of the i:th

competitor, as a function of Qi, the residual supply of all the other competitors.
This is Cournot�s reaction function:

q0i = fi (Qi) := ui

√
RQi −√ciQi√
RQi +

√
ciui

. (10)

Note that we anticipate considerations of dynamics by putting a dash on the
optimal value q0i, as is usual in dynamical systems when we do not want to
burden the notation with explicit time indices. As we know from (2) and (3),
Qi =

Pj=n
j=1 qj−qi, so from all the qi we can calculate all the Qi at any time, and

then use (10) to calculate the q0i and so also Q
0
i. In this way the n-dimensional

system is advanced step by step to obtain its orbit.
Note that from (10) we always have q0i < ui because the quotient

√
RQi−√ciQi√
RQi+

√
ciui

is always less than unity. Further, of course, negative outputs make no sense, so
we should make sure that (10) does not return a negative q0i. To this end Qi ≤ R

ci

7
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must hold, so we should write q0i = max (fi (Qi) , 0) in stead of (10). However,
we still have another constraint for the applicability of (10) to consider: The
proÞt must be positive; otherwise in the long run the competitor will drop out
and produce nothing, and, as we will soon see, this constraint is always at least
as strong as the condition for nonnegativity of output, Qi ≤ R

ci
. This fact also

implies that the curved reaction function (10) is not just replaced by the axis
where it would otherwise cut the axis; it as a rule drops down to the axis. Our
true reaction function is hence not just non-smooth, it also has a discontinuity.
ProÞts are, as we know, Πi = Ri − Ci, so, from (4) and (6),

Πi =
Rqi

Qi + qi
− ci u2i

ui − qi . (11)

Substituting for optimal reaction from (10), we next get maximum proÞt

Π∗i = ci
R− ciui − 2√ci

√
RQi

ui +Qi
,

which is nonnegative if R− ciui − 2√ci
√
RQi ≥ 0, or, given, ciui < R, if

Qi ≤ (R− ciui)2
4Rci

. (12)

As we have seen, Þxed cost is ciui, whereas R is the maximum obtainable
revenue. It is hence clear that if the Þxed costs alone are larger than any
obtainable revenue, there can never be any positive proÞts.
Hence, we reformulate the map (10) as

q0i = Fi (Qi) :=

(
ui
√
RQi−√ciQi√
RQi+

√
ciui

Qi ≤ (R−ciui)2
4Rci

0 Qi >
(R−ciui)2
4Rci

. (13)

It remains to show that (12) is more restrictive than the nonnegativity con-
dition Qi ≤ R

ci
stated above. The assertion is true when

R

ci
− (R− ciui)

2

4Rci
=
(R+ ciui) (3R− ciui)

4Rci
> 0.

As ciui < R < 3R, this is certainly true, and we can content ourselves with just
stating positivity of proÞts as a branch condition in (13).

2.4 Properties of the Reaction Functions

The reaction functions q0i = fi (Qi) as stated in (10) contain one positive square
root term of Qi and one negative linear term of Qi in the numerator. The
denominator does not count; it is always positive and just scales everything
down when Qi increases, so it has no importance at all for the qualitative
picture of the reaction function. Due to the combination of positive lower order

8
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Figure 3: Reaction functions for two identical competitors and varying Þxed
costs.

term with negative higher order term, the result is a unimodal shape, starting
in the origin, having a unique maximum, and then dropping down to the axis.
Before that, at the point Qi =

(R−ciui)2
4ci

, there is a discontinuity, where the
function drops down to the axis (because proÞts cease to be positive) as stated
in (13).
In addition to this we want to know the slope (i.e., the derivative of (10)).

A straightforward calculation gives us

dfi
dQi

=

√
ciui
2

R (ui −Qi)− 2√ciui
√
Qi¡√

RQi +
√
ciui

¢2√
RQi

. (14)

The numerator is zero at the maximum point, and the discontinuity can occur
either before or after this maximum point. A straightforward calculation shows
that this depends of whether ciui < R

3 or ciui >
R
3 . We may recall that ciui

represents the Þxed cost.
It is useful to note that

lim
Qi→0

dfi
dQi

=∞.
Hence, all reaction functions start at the origin with an inÞnite slope. As all
reaction functions intersect in the origin, it is good to know that this equilibrium
point is totally unstable. Fig. 3 illustrates a family of reaction functions for
the case of two identical competitors, assuming different Þxed costs ciui for the

9
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Þrms. As we see, for lower Þxed costs the reaction functions intersect in the
q1 = Q2, q2 = Q1-plane. For higher Þxed costs, no intersection exists, and
hence no Cournot equilibrium.

3 Cournot Equilibrium

3.1 The General Case

For the equilibrium point in the general case we would just identify qi = q0i =
Fi (Qi) according to (13), or rather, qi = q0i = fi (Qi) according to (10) if we are
just interested in Cournot equilibria where all Þrms stay active. In addition, we
use Q :=

Pi=n
i=1 qi from (2) and Qi := Q− qi from (3). The resulting algebraic

system of 2n+1 equations in the variables qi, Qi, and Q, is well deÞned, but it
is too awkward to provide any closed form solutions.

3.2 The Case of Identical Firms

Therefore we simplify by assuming the n Þrms to be identical. The only distin-
guishing properties of the Þrms are the initial marginal costs ci and the capacity
limits ui, so let us put all marginal costs equal:

ci = c (15)

and further
ui =

1

n
U (16)

where U denotes the total capacity of the whole industry. In this way the
individual capacities as well become equal, but they decrease with the number
of competitors. We can see what happens when n increases, so that a given
total capacity is shared among more numerous Þrms. Fig. 3 illustrates the case
for two competitors (i.e., a duopoly).
Obviously, the identical Þrms produce equal quantities in Cournot equilib-

rium, so

qi =
1

n
Q (17)

and
Qi =

n− 1
n

Q (18)

Using (15)-(18) to substitute for ci, ui, qi, and Qi in the optimum condition
(8), and simplifying, we obtain

n− 1
n

R

Q
=

cU2

(U −Q)2 (19)

as an equation in the aggregate output Q alone. Once we have solved for Q,
we can get all the individual variables qi and Qi from (17)-(18). The explicit

10
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Figure 4: Areas of destabilization of the Cournot equilibrium, and positive
proÞts in the n, cU -plane.

solution to (19) is a bit lengthy:

Q = U

µ
1 +

1

2R (n− 1)
µ
ncU −

q
n2 (cU)2 + 4n (n− 1)R (cU)

¶¶
. (20)

3.3 Positivity of ProÞts in the Cournot Point

Our next issue is to specify the conditions for the proÞts of the Þrms to be
positive in the Cournot equilibrium for our case of identical Þrms. It is easiest
to substitute for ci, ui, qi, and Qi directly in (11) and simplify to obtain

Πi =
1

n

µ
R− cU2

U −Q
¶
,

or, using (20),

Πi =
1

n

Ã
R− 1

2
cU − 1

2

r
c2U2 + 4

n− 1
n

RcU

!
. (21)

11
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It is obvious that Πi ≥ 0 as long as
cU ≤ n

2n− 1R. (22)

As ciui denotes the Þxed cost for the individual Þrm, cU can be interpreted
as the Þxed cost of the whole industry. This must not exceed the right hand side,
which depends on the number of competitors alone. It equals 2

3R in duopoly,
3
5R in triopoly, and decreases uniformly with increasing n, approaching the limit
1
2R as n → ∞. The condition for nonnegative proÞts is hence more restrictive
the larger the number of competitors. In Fig. 3 we already saw duopoly cases
where proÞts are positive in Cournot equilibrium, as well as cases where they
are not.
From (21) we also see that lim

n→∞Πi = 0, which means that individual proÞts
go to zero when the number of competitors increases.

3.4 Stability of the Cournot Point

From (14), with substitutions for ci, ui, qi, and Qi from (15)-(18) and reorga-
nizing, we obtain

dfi
dQi

=
1

2

√
cU
R− n

³
n−1
n

Q
UR

´
− 2
q

n−1
n

Q
UR

√
cUq

n−1
n

Q
UR

µ
n
q

n−1
n

Q
UR+

√
cU

¶2 , (23)

where from (20), after a slight rearrangement,

n− 1
n

Q

U
R =

n− 1
n

R+
1

2

Ã
cU −

r
(cU)2 + 4

n− 1
n

R (cU)

!
. (24)

It may be noted that (23) only depends on n, n−1n
Q
UR, for which we can substi-

tute from (24), on cU , which we identiÞed as the total Þxed cost of the industry,
and, of course R, which is a parameter. Further (24) depends only on n and on
cU . The Þnal expression for dfi

dQi
, obtained through eliminating n−1

n
Q
UR, is too

long to write in one equation, but it hence depends on n and cU alone.
For our further considerations the expression (n−1) dfidQi

is crucial. This, like
dfi
dQi

itself, ultimately depends on cU and on n alone. It is always negative, so a
destabilization can only occur when

(n− 1) dfi
dQi

= −1.

Using this equality, with proper substitutions from (23) and (24), we get an
implicit function between cU and n, which has a hyperbola shape. The lowest
value of cU we can obtain is when n→∞. Therefore note that as n→∞, then
(n−1)
n → 1, and so (24) can be written

Q

U
R = R+

1

2

µ
cU −

q
(cU)

2
+ 4R (cU)

¶
,
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whereas from (23)

lim
n→∞(n− 1)

dfi
dQi

= −1
2

√
cUq
Q
UR

.

Substituting from the previous equation we get the numerical inÞmum value for
cU = 4

3R. The other asymptote is for n = 4, when cU → ∞. This last fact
implies that we can never get a destabilization of the Cournot point for any
aggregate Þxed cost unless the number of competitors is at least Þve.
Let us now write the characteristic equation. Recall that the derivatives of

the reaction functions in Cournot equilibrium dfi
dQi

are all equal, and enter in the
off diagonal elements of the Jacobian matrix. The characteristic equation isµ

λ+
dfi
dQi

¶n−1µ
λ− (n− 1) dfi

dQi

¶
= 0. (25)

Obviously there is a destabilization when (n − 1) dfidQi
= −1. If n = 2 and

dfi
dQi

= −1, there is a co-dimension 2 bifurcation with λ1 = − dfi
dQi

= 1 and

λ2 = (n− 1) dfidQi
= −1. If n > 2, then λn always bifurcates before λ1 = ...λn−1

do. However, as we know, the lowest possible value of total Þxed costs for
destabilization is cU = 4

3R and is obtained for an inÞnite number of Þrms.
This is deÞnitely higher than the highest value for total Þxed cost for which
we can have positive proÞts, which, as we saw, stipulated cU < kR, where
k = n

2n−1 ∈
£
2
3 ,

1
2

¢
, depending on the number of competitors.

Fig. 4 (where we normalized maximum consumer expenditures to unity,
R = 1) illustrates the facts. The destabilization area in the upper right corner
assumes a large number of competitors n, or a very high total Þxed cost, cU .
Anyhow, there is an inÞmum asymptote at cU = 4

3 . On the other hand, we
see how the distance between destabilization area and the positive proÞt area,
which is enormous for few competitors, shrinks when their number increases.
But the areas stay disjoint and never intersect.

3.5 Conclusion

By conclusion, if the Cournot equilibrium (with positive proÞts) exists, it cannot
be destabilized in an economy with identical Þrms. We can also note that whereas
lim
n→∞(n− 1)

dfi
dQi

remains negative, we always have lim
n→∞

dfi
dQi

= 0. The fact that

the Þrms in the limit do not react to marginal changes of the residual supply is
an indication that we are approaching a competitive equilibrium. Finally, as we
saw above, proÞts are eliminated as the number of competitors goes to inÞnity.
Hence, everything indicates that the Cournot equilibrium seamlessly goes over
into a competitive equilibrium. The capacity limits introduced, at least in the
present class of cost functions, eliminate the problem of destabilization observed
in previous studies due to an increasing number of competitors. This is the point
of the present paper.
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