Do horses like vodka and sponging? On market manipulation and the favourite-longshot bias
Winter, Stefan; Kukuk, Martin

Empfohlene Zitierung / Suggested Citation:

Nutzungsbedingungen:

Terms of use:
This document is made available under the "PEER Licence Agreement " For more Information regarding the PEER-project see: http://www.peerproject.eu This document is solely intended for your personal, non-commercial use. All of the copies of this documents must retain all copyright information and other information regarding legal protection. You are not allowed to alter this document in any way, to copy it for public or commercial purposes, to exhibit the document in public, to perform, distribute or otherwise use the document in public.

By using this particular document, you accept the above-stated conditions of use.
Do Horses Like Vodka and Sponging? On Market Manipulation and the Favorite-Longshot Bias

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Applied Economics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>APE-07-0721</td>
</tr>
<tr>
<td>Journal Selection:</td>
<td>Applied Economics</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>05-Oct-2007</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Winter, Stefan; University of Bochum</td>
</tr>
<tr>
<td>JEL Code:</td>
<td>C72 - Noncooperative Games < C7 - Game Theory and Bargaining Theory < C - Mathematical and Quantitative Methods</td>
</tr>
<tr>
<td>Keywords:</td>
<td>C72 - Noncooperative Games < C7 - Game Theory and Bargaining Theory < C - Mathematical and Quantitative Methods</td>
</tr>
</tbody>
</table>
Do Horses Like Vodka and Sponging? – On Market Manipulation and the Favorite-Longshot Bias

Stefan Winter
Chair of Human Resource Management
University of Bochum
Universitätsstraße 150
D-44780 Bochum
Germany
stefan.winter@rub.de

Martin Kukuk
Chair of Econometrics
University of Wuerzburg
Sanderring 2
D-97070 Wurzburg
Germany
martin.kukuk@mail.uni-wuerzburg.de

Abstract:
One of the most striking empirical patterns of horse race betting markets is the favorite-longshot bias: Bets on favorites have dramatically higher expected returns than bets on longshots. The literature offers a couple of different, though not mutually exclusive, explanations based on risk preferences and probability perceptions. This article adds a new possible explanation: The favorite-longshot bias may be the rational answer of an honest audience to a simple, but highly lucrative cheating opportunity of insiders. We provide anecdotal evidence that the type of cheating we model here really takes place. What is more, by employing a large scale German data set we are able to demonstrate that the pattern of the favourite-longshot bias changes as the opportunity of cheating vanishes. The changes we observe are in accord with the cheating model we suggest.
1. Introduction

One of the main findings of empirical racetrack research is the favorite-longshot bias (FLB). Empirically it is found that bets on longshots on average lose much more money than bets on favorites (e.g. Griffith 1949; Weitzman 1965; Ali 1977; Williams and Paton 1997; Jullien and Salanié 2000). While the probability that the longshot will win is well below that of the favorite its payoff is of course higher. But as it turns out, it is not high enough to fully compensate for the lower probability of winning. Empirical studies have shown that the FLB exists in North America (e.g. Snyder 1978), the UK (e.g. Bruce and Johnson 2000), Australia (e.g. Tuckwell 1983), and Germany (Winter and Kukuk 2006). The FLB seems to be a stable phenomenon over time. The empirical literature documents no relevant timing effect, since the FLB has been found as early as 1949 by Griffith (1949) as well as late as 2006 by Winter and Kukuk (2006).

While earlier studies dealt mainly with pari-mutuel markets, the FLB has later also been found with respect to bookmaker odds as well (Dowie 1976; Tuckwell 1983; Henery 1985, Williams/Paton 1997; Jullien/Salanié 2000; Bruce/Johnson 2000, Law/Peel 2002). All studies mentioned above concentrate only on win bets.

The literature has offered a variety of explanations of the FLB. These range from risk-loving betting strategies of rational, purely financially motivated gamblers at the one extreme to betting as a pure consumption activity with a higher consumption value of betting on longshots. A more recent approach is to explain the FLB by information deficiencies. If for example there are noise traders backing horses evenly, while informed traders back only the good horses, then the longshots will be backed by too much money given their true chances of winning and the favorites are underbet. Especially the risk-love and the misperception models have triggered much empirical work. Especially recent evidence is more in favor of the misperception explanation.

However, neither analytical nor any empirical work seems to be available on the likely effects of cheating by manipulation of a race’s outcome. This paper is a first effort in this direction. The main finding is that the FLB may be a rational response of uninformed outsiders to a very simple but eventually highly lucrative cheating opportunity of insiders. We provide anecdotal evidence that the modus operandi of cheating we model below really is put to use at times.
We then present evidence that the pattern of the FLB changes significantly when the opportunity of cheating is absent.

The paper is organized as follows. In Section 2 the main explanations for the FLB offered in the literature so far are reviewed. Section 3 outlines the simple model of cheating and derives the empirically testable hypotheses. Section 4 reviews some anecdotal evidence on race manipulation in general and some examples for the cheating technique we discuss here. We then show that the pattern of the FLB in a large scale German data set depends on the existence vs. non-existence of cheating opportunities. Some caveats of our theoretical as well as empirical results are discussed in Section 5. Section 6 concludes.

2. Explanations of the FLB

The literature offers a variety of explanations for the FLB. One of the most prominent explanations of the FLB suggested in the theoretical literature is the assumption of homogenous bettors with a preference for risk. Bettors can then be represented by Mr. Avmart, the average man at the race track (Weitzman 1965) and the market outcome can be derived from this man’s equilibrium behavior. In a mean-variance framework of expected utility the FLB has even been shown to be the equilibrium market outcome (Quandt 1986). Market data has then been employed to estimate the utility function of a representative bettor. Of course, when the FLB was present in the data, the representative bettor showed a preference for risk indeed (see e.g. Ali 1977; Jullien/Salaniè 2000).

While Quandt (1986) focuses on a mean-variance framework, others have argued that bettors may have a positive preference for skewness (see e.g. Bird et al. 1987, Golec and Tamarkin 1998, Cain et al. 2002). Since returns on longshots are most highly skewed, longshots would be backed disproportionately, again resulting in the FLB.

Another idea to explain the FLB is to assume that bettors do not mainly follow financial goals. Here, gambling boils down to a consumption activity like spending money on an opera ticket. If this would be true, then it would be futile to discuss risk preferences in this context. In this line of argument it has been suggested that bettors may primarily play for fun and that it is more fun to bet on longshots (Thaler and Ziemba 1988). The authors suggest that “bragging rights” can only be earned by picking a longshot correctly.
On the supply side of the bookmaker market, it has been argued that bookmakers face the strongest price competition for bets on favorites but are less constrained for longshots. They are therefore able to shorten longshots’ odds disproportionately, resulting in the FLB (Henery 1985). Bookmakers in contrast to organizers of pari-mutuel markets are financially endangered by inside traders. They are extremely vulnerable by positive inside information on longshots. They therefore shorten longshots’ odds even more (Shin 1991, 1992, 1993). The incidence of insider activity is well documented in bookmaker markets (e.g. Crafts 1985, Cain et al. 2001). The strategic pricing decision of bookmakers is only a partial explanation of the FLB, though, since the bias is present in pari-mutuel markets as well.

Another explanation is that bettors simply overestimate the probability of winning for longshots (Thaler and Ziemba 1988). This could be considered a Kahneman-Tversky (1979) type of (erroneous?) probability weighting (Hurley and McDonough 1995). This explanation has been criticized on the grounds that races are frequent and data availability is good, offering a sound opportunity to update beliefs and arrive at correct estimates (Sauer 1998). Still, Jullien and Salanié (2000) found a Kahneman-Tversky type of utility concept to fit their data better than rank-dependent utility or expected utility models. This latter result is corroborated by Snowberg and Wolfers (2006).

Another type of explanation of the FLB assumes that there are at least two different types of bettors. For example, Sobel and Raines (2003) use pari-mutuel data from UK greyhound races. Their prior is that the better informed bettors gamble more regularly, bet more on exotic bets and their average bet is higher as compared to more casual bettors. Casual bettors are expected to gamble especially at weekends, while the serious bettors gamble more evenly over the week. Sobel and Raines (2003, p. 375, Table 1) show that attendance is indeed much higher at weekend races, that at weekends more of the total betting volume is bet on simple bets and that the average bet is lower. What is more, they find that the percentage of money wagered on the favorites is lower at weekends, suggesting that the casual gamblers spend too much money on longshots. This composition effect even leads to a reversal of the FLB at weekday races. It is found that the longshots perform much better than the favorites and that the extreme longshots even provide for a positive average return (Sobel and Raines, 2003, 379, Table 3). Since this market outcome is presumably driven by informed bettors, they exhibit risk averting behavior. Almost no bias is found at weekends. When it comes to
combined bets, the subjective calculation of winning probabilities becomes quite complex. When confronted with the combined bets, even informed bettors may not be able to do these calculations correctly. Indeed, it is found that for combined bets the usual FLB occurs. Sobel and Raines (2003, 382) conclude that the cause of the FLB is rather due to a lack of understanding than to a preference for risk. So the FLB is expected to occur whenever the audience is dominated by casual gamblers or when bets become too complicated. Coleman (2004) suggests that there may not only be better informed bettors but rather risk averse insiders with even positive expected returns from gambling. These insiders are confronted with a larger group of risk loving gamblers who back longshots and have negative expected returns. Both papers, Sobel and Raines (2003) as well as Coleman (2004) suggest that the FLB may vanish or be even reversed as the composition of the betting population changes from more to less outsiders or uninformed bettors.

Information problems are also at the heart of a transaction costs argument (Hurley and McDonough, 1995). They suggest that as transaction cost like the track take and costs of acquiring information on horses’ capabilities increase, betting will become less informed. This results in underbet favorites and overbet longshots, i.e. the FLB. The information costs argument is empirically supported by Williams and Paton (1997). The information costs as well as the transaction costs arguments are backed by Smith et al. (2006).

In a sense, the cheating explanation offered below is in the tradition of the misperceptions and information problems explanations. The difference it that those models just assume that there are given informational problems while the cheating model assumes that the informational problems are intentionally “produced” by a cheater. The advantage of the latter approach is that the conditions under which cheating and therefore informational problems may occur can be identified quite easily.

3. The simple model of cheating

Assume that there are \(n \) horses in a race with given, objective probabilities of winning, denoted by \(p_i, i = 1, \ldots, n \). Probabilities are common knowledge and fully reflect the horses’ true capabilities. However, these probabilities may be subject to manipulation by an insider like a jockey or a trainer. In what follows, it is assumed that collusion of insiders is not
feasible, so that each insider is restricted to manipulate only her own horse and eventually bet accordingly. What is more, it is assumed that there will be only one cheat per race at most so that cheaters can ignore the behavior of other potential cheaters. The model is further restricted to analyze only cheats that make horses slower. This is not to say that there are no manipulations of horses intended to make them faster. But making them slower is likely to be performed easier and harder to detect. Slowing a horse down may therefore be an extremely comfortable way of earning money without raising to much concern. However, even if the cheater would be able to guarantee that her horse, say horse j, will not win, there are no “not-win” bets available at the tracks or at the bookmakers. Direct exploitation of reduced winning probabilities such is impossible. But eventually there are now win bets on other horses which have positive expected returns. We will derive sufficient conditions under which profitable betting opportunities occur.

We start by introducing the notation. Let b_i be the amount of money wagered on horse i by outsiders. Normalize betting volume so that $\sum_{i=1}^{n} b_i = 1$. Thus, b_i is the percentage of the betting pool wagered on horse i. The pay out q to the winning bets is the total pool of wagers minus the track take, i.e. $q = (1-t)\sum_{i=1}^{n} b_i$. Since $\sum_{i=1}^{n} b_i = 1$ by definition q just becomes $q = (1-t)$. Since the pay out must be shared proportionally by those who bet on the winning horse, the pay out ratio, i.e. the amount of money paid back for each unit wagered on the winning horse is given by the gross odds O, which for horse k are simply calculated as

$$O_k = \left(1-t\sum_{i=1}^{n} b_i\right)/b_k = (1-t)/b_k$$

(1)

The total profit of the bets on the winning horse is given by $r_k = b_k O_k - b_k = q - b_k$. The expected profit R_i of the bets on horse i is thus $p_i q - b_i = p_i (1-t) - b_i$ before manipulation.

Let P_i be the winning probability of horse i after the chances of horse j eventually have been manipulated. The expected profit R_i then becomes $R_i = P_i (1-t) - b_j$. Even after manipulation the sum of all expected profits must be minus one times the track take, i.e. $\sum_{i=1}^{n} R_i = \sum_{i=1}^{n} [P_i (1-t) - b_j] = -t$

Proposition 1: If $b_j > t$ and $P_j = 0$ there exists an $i, \ i = 1, \ldots, n; i \neq j$, so that $R_i > 0$.
Proof: Assume \(b_j > t \) and \(P_j = 0 \). Since
\[-t = \sum_{i=1}^{n} [P_i(1-t) - b_j] = P_j(1-t) - b_j + \sum_{i=1,i\neq j}^{n} [P_i(1-t) - b_j] \text{ and } P_j = 0 \] one obtains:
\[
\sum_{i=1,i\neq j}^{n} [P_i(1-t) - b_j] = b_j - t > 0 \quad (2)
\]

However, if it is now assumed that \(R_i \leq 0 \) for all \(i, \ i=1,...,n; i \neq j \), then
\[
\sum_{i=1,i\neq j}^{n} [R_i] = \sum_{i=1,i\neq j}^{n} [P_i(1-t) - b_j] \leq 0, \text{ contradicting (2). This proves that at least one of the } R_i \text{'s must be strictly positive.}
\]

Now, let a win bet on horse \(k \) have positive expected returns, i.e. \(R_k = P_k(1-t) - b_k > 0 \). Outsiders have already wagered the finite amount \(b_k \) on horse \(k \). An additional, infinitely small bet on horse \(i \) will have no effects on the odds so that the additional bet also has positive expected returns. This proves that the downward cheat \(P_j = 0 \) offers profit opportunities for the cheater. The profit opportunities for the cheater improve as the betting volume increases. This is because higher betting volume diminishes the effects of additional bets on the odds. At high volume, the cheater could also bet high stakes without reducing the expected returns of her bets by lowering the odds.

Proposition 1 just proves that there will be a betting opportunity with positive expected returns. It does not guarantee that the cheater will be able to make a profit irrespective of the race’s outcome. If the cheater is highly risk averse, profits in a given race can not be guaranteed, and cheating opportunities are rare, she may still refrain from cheating. However, it turns out that when the conditions of Proposition 1 hold, i.e. \(b_j > t \) and \(P_j = 0 \), the cheater can construct a portfolio of bets with a positive profit guarantee.

Proposition 2: If \(b_j > t \) and \(P_j = 0 \) there exists a portfolio of bets that guarantees a positive profit.

Proof: Assume a bettor wants to bet an amount of money on horse \(i \) so that if \(i \) wins she will get one unit of money in return. The amount bet on horse \(i \) thus can be interpreted as the price for playing a binomial bet that pays 1 if the horse wins and 0 otherwise.
Given the money wagered by the outsiders, the price π_i of such a bet on horse i is simply:

$$\pi_i = \frac{b_i}{1-t}$$ \hfill (3)

If the bettor buys these binomial bets on all horses except j, then she has to pay the sum of all prices, i.e. $\Pi = \sum_{i=1, i \neq j}^{n} \pi_i = \sum_{i=1}^{n} \pi_i - \pi_j$. Feeding in (3) yields:

$$\Pi = \sum_{i=1, i \neq j}^{n} \pi_i = \frac{\sum_{i=1}^{n} b_i}{1-t} - \frac{b_j}{1-t}$$ \hfill (4)

Since by definition $\sum_{i=1}^{n} b_i = 1$ one obtains

$$\Pi = \frac{1-b_j}{1-t}$$ \hfill (5)

It follows $\Pi < 1$ since $b_j > t$ by assumption. What is more, $P_j = 0$ and thus one of the horses covered by the portfolio Π must win. The portfolio’s payoff will be 1 irrespective of which horse wins and the price of the portfolio is less than one. If only marginal amounts of money are additionally invested in this portfolio, the prices of the binomial bets will not change and therefore the additional portfolio will be profitable. This completes the proof.

While proposition 2 proves that a profitable marginal portfolio exists, it leaves open to question what a guarantee portfolio would yield in absolute figures, given that the cheater maximizes her minimum guaranteed profit.

Proposition 3: Maximization of the guaranteed profit d yields a profit of at least $d = (b_j - t)^2$.

Proof of Proposition 3:
Let B_i be the amount of money wagered on horse i by the cheater. Betting on all horses except j, her profit if k wins will be:

$$r_k = B_k \left(1 - t\right) \frac{1 + \sum_{i=1, i \neq j}^{n} B_i}{b_k + B_k} - \sum_{i=1, i \neq j}^{n} B_i$$

(6)

Since the profit shall be guaranteed, it must be independent of k, i.e. $r_k = c > 0$ for all $i=1,..,n; i \neq j$, where c is some constant. Since $r_k = r_l = c$ for all $k,l \neq j$ it follows:

$$r_k = B_k \left(1 - t\right) \frac{1 + \sum_{i=1, i \neq j}^{n} B_i}{b_k + B_k} - \sum_{i=1, i \neq j}^{n} B_i = B_l \left(1 - t\right) \frac{1 + \sum_{i=1, i \neq j}^{n} B_i}{b_l + B_l} - \sum_{i=1, i \neq j}^{n} B_i = r_l$$

(7)

Simplifying yields:

$$\frac{B_k}{b_k + B_k} = \frac{B_l}{b_l + B_l}$$

(8)

This system of equations for all $k,l \neq j$ can only hold if the cheater’s bets B_i equal the outsiders’ bets b_i multiplied by a positive constant v, i.e. $B_i = vb_i$ for all $i \neq j$. In that case (6) can be rewritten to

$$r_k = B_k \left(1 - t\right) \frac{1 + \sum_{i=1, i \neq j}^{n} B_i}{b_k + B_k} - \sum_{i=1, i \neq j}^{n} B_i$$

$$= vb_k \left(1 - t\right) \frac{1 + v \sum_{i=1, i \neq j}^{n} b_i}{b_k + vb_k} - v \sum_{i=1, i \neq j}^{n} b_i$$

(9)

Substitution of $\sum_{i=1, i \neq j}^{n} b_i = 1 - b_j$, simplifying, and dropping subscript k gives:

$$r = \frac{(1 - t)(v + v^2 (1 - b_j))}{1 + v} - v(1 - b_j)$$

(10)

The function $r = r(v)$ is continuous since v is positive and it is differentiable to any degree. The f.o.c. for an optimized multiplier v is:
\[
\frac{dr}{dv} = \frac{(b_j - t - 2tv + 2b_jtv)}{1 + v} + \frac{(tv - btv + tv^2 - b_jtv^2)}{(1 + v)^2} = 0
\]
(11)

The solutions of equation (11) are \(v_1 = \left[\sqrt{b_j(1-t)}\right]\left[\sqrt{t(1-b_j)}\right]^{-1} - 1 \) and \(v_2 = -\left[\sqrt{b_j(1-t)}\right]\left[\sqrt{t(1-b_j)}\right]^{-1} - 1 \). Because \(b_j > t \) by assumption, simple algebra shows that \(v_1 \) is positive while \(v_2 \) is obviously negative. Since \(v \) must be positive, only \(v_1 \) is a feasible solution. Indeed, \(r(v_1) \) must be a maximum. This follows from the observation that \(dr/dv = b_j - t > 0 \) at \(v = 0 \). Thus \(r \) is increasing as one moves from \(v = 0 \) to \(v_1 \). It can not be decreasing in between since \(r \) is continuous and has no other positive extremum but \(v_1 \). Therefore \(v_1 \) characterizes a maximum.

Lemma 1: \(r(v) \geq 0 \) for \(0 \leq v \leq (b_j - t)/(t - t_b) \)

Proof of Lemma 1:

\(r(v) = 0 \) has one obvious solution at \(v = 0 \). Simple algebra shows that \(v = (b_j - t)/(t - t_b) \) is the only other solution. Since \(dr/dv = b_j - t > 0 \) at \(v = 0 \) and \(r(v) \) is continuous it immediately follows that \(r(v) \geq 0 \) for \(0 \leq v \leq (b_j - t)/(t - t_b) \).

Q.e.d.

Let \(r(y) = d \) for some \(y \) satisfying \(0 < y < (b_j - t)/(t - t_b) \). So \(d \) is positive and is a lower bound for the profit the cheater would be able to obtain. Let \(y = b_j/t - 1 \). Again, simple algebra shows that \(0 < y < (b_j - t)/(t - t_b) \). Feeding in \(v = y \) in equation (10) and simplifying yields:

\[
r(y) = (b_j - t)^2
\]
(12)

Since \(r(y) \) is a lower bound for the cheater’s guaranteed profit, the proof is completed.
Next, we introduce a simple stylized version of the favorite-longshot bias. We start by observing that if \(p_i = b_i \) for all \(i \) and if there is no cheating, then betting would be totally unbiased and all bets would have the same expected returns. Ignoring exact patterns the FLB just means that \(p_i > b_i \) for the favorites and \(p_j < b_j \) for the longshots. Now assume that the outsiders’ betting strategy is given by \(b_i = p_i + z(p_i - 1/n) \) for all \(i \). The parameter \(z \) is a bias measure where \(z < 0 \) produces a favorite-longshot bias, \(z = 0 \) represents unbiased betting, and \(z > 0 \) implies a reversed favorite-longshot bias. In order to guarantee non-negative bets and bets of 1 at most, \(z \) must satisfy
\[
z \in \left[\frac{p}{(p - 1/n); (1 - \overline{p})/(\overline{p} - 1/n)} \right],
\]
where \(p \) is defined as the minimum of all \(p_i \)’s, while \(\overline{p} \) is the respective maximum and it is assumed that not all probabilities are equal.

By Proposition 3 we have the cheater’s minimum profit being \(d = (b_j - t)^2 \). It follows \(dd/db_j = 2b_j - 2t \). This derivative is strictly positive since by assumption \(b_j > t \). The more money wagered on horse \(j \), the more profitable it becomes to cheat. Now assume that the objective winning probability of the cheater’s horse \(j \) also satisfies \(p_j > 1/n \), i.e. the horse has a higher than average winning probability. This assumption is not hard to justify since only in races with a very small number of runners could a horse attract a percentage of total betting volume in excess of the percentage of the track take and at the same time have a probability of winning that is below average. Given the outsiders’ betting strategy and holding the objective winning probabilities constant, the betting volume on horse \(j \) is \(b_j = p_j + z(p_j - 1/n) \). Therefore \(db_j/dz = p_j - 1/n \). The derivative is strictly positive by assumption. If the betting volume on horse \(j \) increases in \(z \) and the cheater’s profits increase in the betting volume, the cheater’s profits also increase in \(z \). So if one moves from the favorite-longshot bias via unbiased betting to a reversed longshot bias, the profit opportunity of the cheater increases. Since all profits of the cheater stem from the outsiders’ bets, outsiders as a group lose less money when a favorite-longshot bias is present and lose more if it isn’t. They lose most if there is a reversed favorite-longshot bias. The implication is that the FLB may be an equilibrium response of outsiders to the possibility of being taken for a ride on the back of the cheater’s horse.

However, even if this explanation is valid, then there may still be other forces at work in favor of the FLB. This has to be taken into account when proposing empirical tests of the cheating
model. Still, appropriate controls may be available. The profitability of cheating hinges on the assumption that the percentage of money wagered on horse j exceeds the track take. If there is a race with no horse meeting this condition, outsiders must not be concerned with cheating. Therefore, in races with all horses having odds of $O_i \geq (1-t)/t$, there will be no such cheating. If the possibility of cheating is perceived as being important, the FLB should be weaker in such races as compared to the other races. To check this conjecture is the main goal of our empirical section below. However, there will likely be a strong negative correlation between the percentage of money wagered on the single horses and the number of horses in a race. So while there is less cheating in bigger races, it may at the same time become more difficult for bettors to estimate winning probabilities correctly. The one effect may therefore offset the other when it comes to the FLB. It would thus be appropriate to control for the number of runners in the field.

The cheating model has not explicitly taken into account techniques of detecting and punishing cheaters. It is highly likely that cheating is easier when other good horses are around. Suppose an extreme scenario with all horses but that of the potential cheater having only three legs. Outsider betting on her horse will be heavy but cheating by not winning will be definitely detected. On the other hand, if there are other horses around also attracting heavy betting, not winning will hardly be considered a cheat. Therefore, cheating will be less likely with highly different odds, and will be more likely with at least one horse being in the odds range of the potential cheater. Since odds are known, this conclusion can also be tested.

The cheating story also suggests some patterns of organizational responses to the threat of cheating. Organizers of pari-mutuel betting markets have at least three techniques to deter cheating. The first is to invest in detection technology. The second is to improve the composition of races so that all horses in a race attract non-trivial fractions of the total pool, thereby reducing the probability of single horses attracting more than the take. The third is to increase the number of runners per race. Since cheating is most profitable at high betting volume, one would expect a positive correlation between the total betting volume and the number of runners. If the composition technique is used one would observe a negative correlation of betting volume and variance of betting fractions across horses. Investments in detection technology on the other hand should be expected only at tracks that regularly attract high betting volume. One therefore would expect cross track investments in detection technology to be positively correlated with cross track betting volume.
4. Empirical evidence

Before we present our own evidence based on betting market data we briefly review some direct anecdotal evidence on cheating. For reasons of better readability we document the sources we used in the appendix. Manipulation of races does not seem to be a contemporary invention. As Higgins (2006) notes, one ancient writer reported that manipulation of a chariot horse could be punished by crucifixion in Rome.

Overall, the anecdotal evidence on race manipulation is dominated by reports on doping intended to make horses run faster. Besides some drugs only known to specialist, there were cases of horses given cocaine, morphine, strychnine, or nowadays even Viagra. The use of so-called ‘speedballs’ and heroin was quite common in the US after the 1933 legalization of pari-mutuel betting. It was estimated that about 50% of all horses had a stimulant or anesthetic administered before the races at that time (Higgins 2006). Anabolic steroids were also used but only some time ago since they are easy to detect nowadays. Ethorphine, also known as ‘elephant juice’, is a tranquilizer that if applied correctly is very stimulating and has produced some scandals especially in the 1980s. Since some horses seem to be quite nervous before races, they are eventually treated with tranquilizers or they are even given vodka to calm them down. Then there is caffeine, EPO, ACE, and Beta Blockers. ‘Blue Magic’ (propantheline bromide) helps to relax muscles and increase the blood flow and is suspected to have been used mainly in harness horse racing. Butazolidin and other pain killers like snake-venom make injured horses perform better.

When it comes to slow horses down, there is much less material available. Higgins (2006) relates the story of a stable lad having been hanged on Newmarket Heath in 1812 for poisoning a horse with arsenic. One more recent technique is that of “sponging”: sponges are put in the horse’s nostrils to make breathing harder. Without getting enough air, horses will of course slow down. What is more, sponges can not be detected by doping tests based on the horse’s saliva, urine or blood. Slowing down horses by application of forbidden substances also seems to have taken place. Another technique of cheating is to exchange horses. Though we were able to identify only one case, there may have been other undetected cases of exchanged horses. By exchanging one horse for another, the audience may think to bet on a favourite while the horse actually running is a look-alike longshot. A funny technique, since
one obviously can not ask a horse its name. From an ethical point of view exchanging horses may be considered the least problematic of all cheating techniques since at least no harm is done to the horses.

Though we restrict our analysis to a static one time cheat it may be noted that slowing a horse down could offer a further dynamic advantage to the cheater: The audience starts to perceive the horse of being of inferior quality and stops to bet on it. By abandoning the negative doping or other slowing down techniques the horse suddenly becomes fast again, offering new profitable betting opportunities to the cheater.

While the anecdotal evidence on pure slowing down cases is rather scarce, the scarceness can have two different explanations. One is that this type of cheating just does not happen very often. The other explanation would be that if clever administered it is almost impossible to detect. For example, a horse may not receive a proper amount of training or it is just not fed enough before a race. No doping test will ever detect such techniques.

Last but not least, there seem to have been some successful attempts of race fixing. To fix a race means to fully determine the outcome of a race. Fixing thus is only possible by collusive behavior of all participants. Race fixing proves most profitable if the favorites are made to lose and the longshots are made to win. So race fixing is just a collusive combination of slowing some horses down and speeding others up. Given its collusive character, it is not surprising that a lot of fixing cases became known. They seem to be quite common all over the world.

To summarize, anecdotal evidence on simply slowing horses down is rather scarce. That scarceness may be due to the fact that slowing down is a rare event. It may also be due to the fact that slowing down can be easily administered, is hard to detect, and does not require collusive efforts. In the latter case, i.e. if slowing down is done more often, an informationally efficient betting market could eventually provide some better clues than a search for anecdotal evidence. So betting market data is what we check next.

We employ a large scale data set of betting data on some 300,000 horses running in 35,608 races run at 13 different German tracks between January 2000 and March 2004. Data were provided by TROT-ONLINE, an Internet-based information broker for German pari-mutuel
harness horse races. For a more detailed description of the data set see Kukuk and Winter (2006).

The take at German tracks is between 20% and 30%, depending on the track and the type of bet offered. It is higher than in most other countries, where the take is typically less than 20%. This difference is due in part to the high German federal tax on horse bets, which alone is already 16.67%. Straight win bets typically trigger the lowest take, while the take for combined bets is typically highest. We have no specific information on the take for the individual races.

We classify horses with respect to their favorite or longshot statuses according to the odds prevailing in the betting market. We thus simply define the favorite as the horse with the lowest odds. In that case, any horse that is ranked first in the odds is the favorite by definition, and no two horses in a race can be in the same category. One can break eventual ties in the odds by randomly assigning the respective ranks to the horses. We can then calculate the average odds across races for each rank and then use these rankings to calculate the winning probabilities implied by the odds, which we can compare to the average empirical winning probability of that specific rank. Table 1 presents the results for the win bets.

Table 1: Probabilities and returns for win and show bets (taken from Kukuk and Winter 2006)

<table>
<thead>
<tr>
<th>Odds category</th>
<th>Average Odds</th>
<th># Races</th>
<th># Winners</th>
<th>Probability of Winning</th>
<th>Return (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.99</td>
<td>0 (35608)</td>
<td>16231</td>
<td>0.456</td>
<td>0.409 °</td>
</tr>
<tr>
<td>2</td>
<td>2.85</td>
<td>0 (35608)</td>
<td>7828</td>
<td>0.220 °</td>
<td>0.215 °</td>
</tr>
<tr>
<td>3</td>
<td>5.29</td>
<td>1 (35608)</td>
<td>4574</td>
<td>0.128 °</td>
<td>0.135 °</td>
</tr>
<tr>
<td>4</td>
<td>8.86</td>
<td>34 (35607)</td>
<td>2789</td>
<td>0.078 °</td>
<td>0.090 °</td>
</tr>
<tr>
<td>5</td>
<td>14.34</td>
<td>328 (35573)</td>
<td>1826</td>
<td>0.051 °</td>
<td>0.060 °</td>
</tr>
<tr>
<td>6</td>
<td>23.56</td>
<td>2019 (35245)</td>
<td>1156</td>
<td>0.033 °</td>
<td>0.041 °</td>
</tr>
<tr>
<td>7</td>
<td>39.01</td>
<td>5998 (33226)</td>
<td>704</td>
<td>0.021 °</td>
<td>0.028 °</td>
</tr>
<tr>
<td>8</td>
<td>61.43</td>
<td>10012 (27228)</td>
<td>349</td>
<td>0.013 °</td>
<td>0.019 °</td>
</tr>
<tr>
<td>9</td>
<td>87.58</td>
<td>8882 (17216)</td>
<td>146</td>
<td>0.008 °</td>
<td>0.015 °</td>
</tr>
<tr>
<td>10</td>
<td>123.92</td>
<td>7210 (8334)</td>
<td>67</td>
<td>0.008 °</td>
<td>0.011 °</td>
</tr>
<tr>
<td>11</td>
<td>146.88</td>
<td>627 (1124)</td>
<td>7</td>
<td>0.006 °</td>
<td>0.011 °</td>
</tr>
<tr>
<td>12</td>
<td>126.29</td>
<td>252 (497)</td>
<td>4</td>
<td>0.008 °</td>
<td>0.010 °</td>
</tr>
<tr>
<td>13</td>
<td>151.92</td>
<td>55 (245)</td>
<td>1</td>
<td>0.004 °</td>
<td>0.009 °</td>
</tr>
<tr>
<td>14</td>
<td>194.55</td>
<td>32 (190)</td>
<td>2</td>
<td>0.011 °</td>
<td>0.007 °</td>
</tr>
<tr>
<td>15</td>
<td>218.16</td>
<td>23 (158)</td>
<td>0</td>
<td>0.000 °</td>
<td>0.006 °</td>
</tr>
<tr>
<td>16</td>
<td>880.92</td>
<td>26 (135)</td>
<td>0</td>
<td>0.000 °</td>
<td>0.002 °</td>
</tr>
<tr>
<td>17</td>
<td>926.46</td>
<td>42 (109)</td>
<td>0</td>
<td>0.000 °</td>
<td>0.001 °</td>
</tr>
<tr>
<td>18</td>
<td>922.30</td>
<td>65 (67)</td>
<td>0</td>
<td>0.000 °</td>
<td>0.001 °</td>
</tr>
<tr>
<td>19</td>
<td>169.05</td>
<td>2 (2)</td>
<td>0</td>
<td>0.000 °</td>
<td>0.005 °</td>
</tr>
</tbody>
</table>

Notes: ° Odds rank; favorites ranked lowest. We break ties in the odds by order of appearance in data set. Alternative random selection does not change results.
For Peer Review

16

As can be inferred from the return column in Table 1, the FLB is strongly present in German harness horse racing.

We now divide the data into two subsets. Subset 1 is the set of races in which slowing down the favorite and betting on all other horses according to the betting strategy described in propositions 2 and 3 of Section 3 would have been profitable. Subset 2 is the set of races in which slowing down the favorite would not have been profitable. Since we have no information on the actual track takes, we employ the midrange of the 20\% to 30\% interval of actual takes. This corresponds to a cut point of 3.0 for the odds. Therefore, all races that include at least one horse with odds of 3.0 or lower define subset 1 and all races that have all horses with odds of more than 3.0 define subset 2.

In Figure 1 the average return of the first ten favorite categories are plotted against the log of the corresponding average odds. For subset 1 a clear FLB is obtained whereas the 2321 races in subset 2 (for categories 6 to 10 we have 2318, 2296, 2157, 1673, and 975 races, respectively) at least the first seven categories show only a slightly negative slope. Testing for equal returns of two subsequent categories (see note 7 of table 1) in subset 1 highly significant differences result for the first four favorite categories and moderate significance for the following four categories. In subset 2 only the peak of category 3 is significant.
Figure 1: Log-odds/return profiles for races with at least one odd less than 3 (subset 1) and races with all odds greater than or equal to 3 (subset 2)

Since it is more likely to observe all odds being larger than 3 in races with more horses in a next step we consider only races with a given number of horses and divide them into the two subsets as above. The resulting average returns of the different favourite categories are illustrated in Figure 2 for races with exactly 10 horses. Again we observe a FLB for subset 1 comprehending 6256 races with significantly falling average returns in the first four categories. For subset 2 it even looks like a reversed FLB in the first six categories where again only the difference in returns of categories 2 and 3 is significant. Categories 7 to 10 exhibit falling returns. Analyzing races with 7, 8, or 9 horses, respectively, the results also show a FLB for subset 1 and no clear FLB but a more erratic behavior due to lower number of races in the respective subsets 2. Using other cutting point odds for separating the two subsets we get similar results which for some values are less pronounced. This may reflect the fact that the track take differs among different German tracks.
The results on an aggregate level show that the favorite horses are underbet if at least the lowest odd is below 3 resulting in a FLB as suggested by our theoretical analysis of section 3. However, these aggregate results could be driven by some sort of selection process. We therefore consider the favorite with the lowest odd in each race and analyze her winning probability as a function of the share of the betting pool being wagered on the favorite \(b_1 \), the difference to the share of the second favorite \(b_1-b_2 \), the number of horses in the race, and two dummy indicators for \(b_1 \) being greater than a given threshold and the difference \(b_1-b_2 \) being greater than 2, respectively. We run a binary probit regression and allow for non-linearities in betting share and also for the difference in betting shares. The estimation results are recorded in Table 2. Note that the marginal effects and not the parameter estimates are reported.

Table 2: Binary probit estimates for dependent variable winning of first favorite

| Term | Marginal eff. df/dx | Std.Err. | z | P>|z| | x-bar |
|---------------------------|----------------------|-----------|---------|------|---------|
| I[(b₁-b₂)>2] * | -.0248461 | .0108869 | -2.28 | 0.023| .38166 |
| I[b₁>2.5] * | .030491 | .0132367 | 2.31 | 0.021| .161269 |
| b₁ | 4.453453 | 1.297419 | 3.43 | 0.001| .408812 |
| b₁² | -6.676461 | 3.107343 | -2.15 | 0.032| .179334 |
| b₁³ | 4.270006 | 2.412985 | 1.77 | 0.077| .084027 |
| (b₁-b₂) | -.4264324 | .167398 | -2.55 | 0.011| .19501 |
| (b₁-b₂)² | 2.404268 | .8477782 | 2.84 | 0.005| .05887 |
| (b₁-b₂)³ | -2.307615 | 1.135549 | -2.03 | 0.042| .022083 |
| # of horses | -.002376 | .0021222 | -1.12 | 0.263| 8.44578 |

Figure 2: Log-odds/return profiles for races with exactly 10 horses
As expected the favorite’s share of the betting pool is positively linked to the likelihood of winning. The relationship is first concave up to the inflection point at $b_1 = 0.52$ and then convex. The influence of the difference is estimated to be non-monotonic. It is falling up to about $(b_1 - b_2) = 0.1$ and then increasing until 0.59. Thus, for about one third of the sample having differences below 0.1 a small increase in this variable (implying an increase in the odds of the second favorite) the chances of winning decrease. Additional to this effect we find that if the odds between the first and the second favorite differ by more than 2 the favorite’s probability of winning the race is significantly smaller by about 2.5 percentage points. If the lowest odd in the race is 2.6 or more the winning probability increases by 3 percentage points. According to section 3 this estimated odds threshold translates into a track take of 27.8% which corresponds to the finding of Winter and Kukuk (2006, tables 6a, 6b). In other specifications using a dummy indicator for odds greater than 2.5 and 2.8, respectively, we find similar but slightly less significant results whereas for 2.7 and 2.9, respectively, the parameter estimate is only significant at a significance level of 15%. Other specifications including weekday dummies, dummies for the number of horses in the race, the size of the betting pool, and the prize money as explanatory variables did not obtain significant parameter estimates. For the latter two variables this finding might be due to the fact that we do not observe those variables for all races.

5. Some caveats

One obvious caveat of our analysis is that we employ only a partial model. We have therefore not provided a complete proof that the FLB is an equilibrium response of outsiders. Rather, we have only identified some arguments in favor of the FLB being an equilibrium response. For example, our discussion leaves open why then outsiders should at all bet fractions on single horses in excess of the track take when this betting behavior triggers cheating. The answer may be that by not doing so, betting on favorites could become a positive expected return activity. Insiders thus could profit by just backing their favorite horses and cease cheating. But then outsiders as a group could lose even more as compared to the cheating situation. So while we have not yet developed a complete equilibrium model of cheating, we
feel that the technique of cheating we discuss here could be an equilibrium activity of insiders and that a more pronounced FLB could be an equilibrium response of outsiders.

The next problem worth mentioning is that we introduced an artificial, linearized version of the FLB. This approach simplified the description of the bias by making it depend on just one parameter z. This in turn enabled us to demonstrate the profit opportunity of the cheater to increase in z, implying that the existence of the FLB tends to protect the outsiders. But what we found empirically was not that the FLB unequivocally diminishes but rather that its pattern changes. It changes to a diminished bias across the favorite categories but becomes steeper as one approaches the longshots. This in turn implies that our stylized description of the FLB may not have been appropriate in the first place. Still, the difference in the patterns of the FLB we found across subsamples 1 and 2 are striking. This change of patterns suggests that the cheating model has its merits but that other factors like biased probability estimates especially for longshots also may play a role.

Still another problem lies in the lack of control for other cheating incentives. For example, Fernie and Metcalf (1999) suggested that a jockey believed to have underperformed may lose future employment opportunities. However, jockeys approaching their retirements may not be concerned with their labor market reputation any more and could therefore feel stronger inclinations to cheat. So a control for future employment opportunities would be appropriate. What is more, we have not even controls for the incentive contracts of the jockeys covered by our data. A jockey that receives a high fraction of the prize money may be less inclined to slow his horse down than a jockey getting rather flat pay. On the other hand, a jockey’s incentive for not winning should depend on the combination of compensation for winning and profit opportunities in the betting market. While we have data on the total betting volume at the tracks under observation, there are additional betting opportunities offered by bookmakers for which we have no information. This implies that we can not properly estimate the profit opportunities offered by cheating combined with betting simultaneously around the world.
6. Conclusion

The model presented in this paper suggests that the FLB may be a rational response of uninformed outsiders to simple cheating opportunities by insiders. While the FLB may be induced by other forces as well, the FLB should be expected to be more pronounced in races offering a cheating opportunity as opposed to other races.

We found anecdotal evidence of market manipulation taking place all over the world. Horse doping, “sponging”, and race fixing seem to be quite common techniques of manipulation and the evidence suggests that some of these activities are unequivocally due to profit opportunities in the betting markets. While we found little direct anecdotal evidence of horses made to run slower, our betting market analysis showed a different picture. We found the pattern of the FLB to change significantly as the opportunity of cheating is removed. Our finding suggests that slowing horses down is a realistic option for insiders and that outsiders act accordingly.

On the other hand it should be remembered that the model presented above is only a first effort to understand the possible effects of cheating. It is only one technique of cheating that has been analyzed while there may be a whole array of other cheating opportunities. The anecdotal evidence provided here indeed suggests that more theoretical work on cheating techniques should be worthwhile. Especially models of horse doping to make them faster and models of race fixing should be interesting.

There are also interesting empirical questions that remain unanswered. For example, we were not able to control for additional incentives to cheat nor were we able to control for countervailing incentives not to. Last but not least we think that it should be worthwhile to have a closer look at the dynamics of cheating. As suggested above, making a good horse slower in one race improves its win bet profitability in the next. It should therefore be interesting to watch out for conspicuous patterns of a given horse’s performances over time. However, this approach would require individual identification of horses, jockeys, and maybe trainers. And it would require data sets that are much larger than ours to have enough individuals that can be followed over time. Maybe the data set used by Snowberg and Wolfers (2006) would meet these criteria.

Appendix
A) Sources of information on drugs used in horse doping

http://www.horsesport.org/mcp/PDFS/ProhibitedSubstances.pdf

B) Sources of information on unusual drugs like vodka, Viagra, and baking powder

http://www.research.uky.edu/odyssey/spring98/sponging.html
http://www.castelligasse.at/Politik/Doping/doping.htm

C) Sources of information on horses manipulated to run faster

C1: Horses having manipulated with ACP in Plumpton, England, 2001 and 2002
http://news.bbc.co.uk/sport2/hi/other_sports/horse_racing/1959450.stm#
http://www.findarticles.com/p/articles/mi_qn4158/is_20010202/ai_n14364521
http://www.findarticles.com/p/articles/mi_qn4158/is_20010202/ai_n14364521

C2: Former jockey and trainer was claimed to have doped 23 horses in 1990; 10-year disqualification
http://news.bbc.co.uk/sport2/hi/other_sports/horse_racing/2491017.stm

C3: One of Australia's most respected trainers being investigated for the alleged use of illegal anabolic steroids in 45 cases, 1999.
http://www.abc.net.au/am/stories/s37898.htm

C4: A horse owned by gentleman jockey George Herbert Bostwick was found to have been stimulated for a race and won it, USA 1933.
http://www.time.com/time/magazine/article/0,9171,753989,00.html

C5: Horse was manipulated with a bicarb stomach drench, England, 2004

D) Sources of information on horses manipulated to run slower
D1: Favorite horse delivered unexpected poor racing result. As a consequence a doping
control for negative doping was administered with no result till now, Germany, 2006
http://www.abendblatt.de/daten/2006/09/05/606907.html

D2: Sponges found in the nostrils of different horses; USA, 1997.

D3: The veterinary found a sponge in the nostril of a horse which finished 3rd, USA, 1933.
http://www.time.com/time/magazine/article/0,9171,753989,00.html

D4: Officials failed to catch the person who placed sponges in the nasal passages of eight
horses, USA, 1999.
http://www.research.uky.edu/odyssey/spring98/sponging.html

D4: Jockey was blackmailed to hold his horse back and finished fourth. Germany, 1999.

E) Sources of information on race fixing schemes

E1: Jockeys suspended and fined for race fixing. USA, 2006.
http://www.usatoday.com/sports/horses/2006-04-03-meadowlands-arrests_x.htm
http://www.boston.com/sports/other_sports/horse_racing/articles/2006/04/03/police_suspect_race_fixing_at_meadowlands/
http://www.boston.com/sports/other_sports/horse_racing/articles/2006/04/12/five_suspended_in_race_fixing_case/

E2: Bookmaker was informed by jockeys that their horses would not win. England, 2006.
http://www.thehra.org/doc.php?id=41656

E2: Bookmaker was informed by jockeys that their horses would not win. England, 2006.
http://www.thehra.org/doc.php?id=41656

E3: Group of jockeys sentenced for race fixing over a couple of years, USA, 2001.
E4: One horse was exchanged for another. England, 1974.
http://news.bbc.co.uk/sport2/hi/other_sports/horse_racing/2295403.stm
http://archives.tcm.ie/irishexaminer/2004/09/02/story269069470.asp

E5: The Mafia fixed races for many years by positive and negative doping and collaborating with jockeys. Italy, 1990s.

E6: Other sources of information on race fixing activities
http://sport.guardian.co.uk/horseracing/comment/0,,2016749,00.html
http://www.thehra.org/doc.php?id=44468
http://www.usatoday.com/sports/horses/2006-12-20-tampa-bay-downs_x.htm
http://www.sptimes.com/2006/12/20/Sports/Seven_jockeys_are_ban.shtml

REFERENCES

