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Abstract

This paper examines the effects of zero trade on the estimation of the gravity model

using both simulated and real data with a panel structure, which is different from the

more conventional cross-sectional structure. We begin by showing that the usual log-

linear estimation method can result in highly deceptive inference when some observations

are zero. As an alternative approach, we suggest using the poisson fixed effects estimator.

This approach eliminates the problems of zero trade, controls for heterogeneity across

countries, and is shown to perform well in small samples.

JEL Classification: F10; F15; C15; C23.

Keywords: Gravity model of trade; Poisson regression model; Panel data; Monte Carlo

simulation.

1 Introduction

The gravity model of trade has been widely used to estimate the impact of various policy is-

sues, including preferential trade agreements, currency unions, and border effects. The model

has a long tradition in social sciences where it has been used to model, for example, migra-

tion. In economics, the model has become very popular due to its success in explaining trade
∗Previous versions of this paper were presented at the 2006 spring meeting of the Midwest International

Economics Group and at a seminar at Lund University. The authors would like to thank conference and

seminar participants, and in particular Yves Bourdet, Joakim Gullstrand, Mark Taylor, and one anonymous

referee for many valuable comments and suggestions. Westerlund gratefully acknowledges financial support

from the Jan Wallander and Tom Hedelius Foundation, research grant number W2006-0068:1. Wilhelmsson

gratefully acknowledges financial support from Stiftelsen för främjande av ekonomisk forskning vid Lunds

universitet and Sparbanksstiftelsen Färs & Frosta.
†Corresponding author: Department of Economics, Lund University, P. O. Box 7082, S-220 07 Lund,

Sweden. Telephone: +46 46 222 8670, Fax: +46 46 222 4118, E-mail address: joakim.westerlund@nek.lu.se.
‡Lund University and Norwegian Institute of International Affairs.
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flows among countries. Some critique for the lack of theoretical underpinnings has emerged

but much progress has been made and now the gravity model rests on a solid theoretical

foundation. Instead, the focus has shifted towards the estimation techniques used.

The gravity model has traditionally been estimated using cross-sectional data. However,

this has been shown to generate biased results since heterogeneity among the countries is

typically not controlled for in an appropriate way, see Cheng and Wall (2005), and Cheng

and Tsai (2008). To mitigate this problem, researchers have turned towards panel data,

which have the advantage that they permit more general types of heterogeneity. For example,

consider estimating the impact of currency unions on trade while controlling for country-pair

propensity to trade. For a single cross-section, these controls can only depend on observed

country-pair attributes such as common language, and estimates can thus be biased if there

is additionally an unobserved component to the propensity to trade. With panel data, such

unobserved heterogeneity can be readily controlled for by means of a country-pair fixed effects

model, which is more general than both the pooled cross-sectional and country specific fixed

effects panel data models.

The single most popular approach to estimating the gravity model using panel data is

to first make it linear by taking logarithms and then to estimate the resulting log-linear

model by the fixed effects least squares (LS). However, although simple to implement, this

approach is problematic because the log-linearized model is not defined for observations with

zero trade. Moreover, even though the proportion of observations with zero trade may vary

somewhat depending on, among other things, the size of the sample, it is usually quite

significant, suggesting that the proper handling of these zeros is potentially very important.

Another problem is that the LS estimator of the log-linearized model may be both biased and

inefficient in the presence of heteroskedasticity.

Two of the most common approaches to handle the presence of zero trade are to either

simply discarding the zeros from the sample, or to add a constant factor to each observation

on the dependent variable. The first strategy is correct as long as the zeros are randomly

distributed. However, if the zeros are not random, as is usually the case, then this induces

a selection bias. This problem is often ignored in applied work, but could be handled by

using sample selection correction. In a recent contribution, Helpman et al. (2008) propose

a theoretical model rationalizing the zero trade flows and suggest estimating the gravity

equation with a correction for the probability of countries to trade. To estimate the model
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they apply a two-step estimation technique similar to sample selection models. However,

in order to implement the new estimator, the researcher needs to find a suitable exclusion

restriction for identification of the second stage equation, which can be quite difficult. The

problem with bias and inefficiency in the presence of heteroskedasticity has been largely

ignored by applied researchers.

In this paper, we explore and extend upon an idea first pointed out by Wooldridge (2002),

namely that the fixed effects panel poisson maximum likelihood (ML) estimator can be applied

also to continuous variables. We therefore propose estimating the gravity model directly from

its non-linear form by using the poisson ML estimator. Since this removes the need to

linearize the model by taking logarithms, the problem with zero trade disappears. A similar

approach has recently been proposed by Silva and Tenreyro (2006), who also use the poisson

ML estimator. However, they use cross-sectional data, and focus mainly on the issue of

heteroskedasticity. Our approach is more general in the sense that it permits one to get

rid of the problems of zero trade and heteroskedasticity while simultaneously taking care of

the bias caused by country specific heterogeneity, which cannot be accomplished when using

cross-sectional data.

Our simulation results suggest that the new estimation method is superior to the conven-

tional approach of applying LS to the log-linearized model. In particular, it is shown that the

conventional approach is likely to result in severe bias and misleading inference even if the

fraction of observations with zero trade is very small. On the other hand, the poisson ML

estimator generally performs very well with only small bias and size distortion. Therefore,

since the poisson ML estimator is becoming increasingly available using standard statistical

software packages, these results suggest that it should be a valuable tool for econometric

analysis of the gravity model. As an empirical illustration, we consider the trade effects of

the 1995 European Union (EU) enlargement.

The remainder of this paper is organized as follows. Section 2 briefly outlines the gravity

model and the problems of zero trade. Section 3 then presents the Monte Carlo simulations,

while Section 4 contains the application. Section 5 concludes.

2 The problem of zero gravity

Let Mijt denote the bilateral trade between countries i = 1, ..., n and j = 1, ..., n with i 6= j at

time t = 1, ..., T , as measured by the imports of country i from country j. For convenience,
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the total number of observations per time period, which is given by n(n − 1), is henceforth

denoted by N .1 A common empirical formulation of the gravity model for bilateral trade

includes the GDP levels of the two countries, Yit and Yjt say, as well as Dijt, a dummy

variable representing for example some contiguity, common language or free-trade agreement

effect. This formulation of the gravity equation can be written algebraically as

λijt = E(Mijt|Yit, Yjt, Dijt) = exp(γDijt)Y
β1
it Y β2

jt . (1)

Because only a very limited amount of heterogeneity between the country pairs is allowed

in the parametrization of the regression function, conventional cross-section estimates of the

gravity model are generally biased. With panel data, on the other hand, we can easily permit

for such heterogeneity by means of N country-pair specific effects, denoted αij . These effects

may be different depending on the direction of trade and enters (1) multiplicatively in the

following fashion

E(Mijt|Yit, Yjt, Dijt, αij) = exp(αij + γDijt)Y
β1
it Y β2

jt = exp(αij)λijt.

This implicitly defines the following regression

Mijt = exp(αij)λijt + eijt,

which can be written equivalently as

Mijt = exp(αij)λijtvijt, (2)

where eijt is a mean zero disturbance that is independent of the regressors, and where vijt =

1 + eijt/ exp(αij)λijt is a heteroskedastic disturbance term with E(vijt|Yit, Yjt, Dijt, αij) = 1.

Moreover, since αij will generally be correlated with the explanatory variables, random effects

estimation of (2) will be inconsistent. To circumvent this, it is common to treat αij as fixed.

Suppose for a moment that Mijt is strictly positive. One of the most common approaches

to estimate the regression in (2) is to first make it linear by taking logarithms, which yields

ln(Mijt) = αij + ln(λijt) + ln(vijt) = αij + γDijt + β1 ln(Yit) + β2 ln(Yjt) + ln(vijt). (3)

Since the model is now linear, it is readily estimable using LS. However, this is only possible

as long as Mijt is nonzero, which is not always the case. Indeed, a common feature of trade
1Note that since each country is both an exporter and an importer in a bilateral trade relation, each country

pair is observed twice. The number of observations is therefore twice the number of country pairs.
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data is that the bilateral trade can sometimes be zero. Although this poses no problem

when estimating the gravity model based on its multiplicative form in (2), as the logarithm

is defined only for positive outcomes, the log-linear regression in (3) is no longer admissible.

A common solution to this problem is to drop all observations with zero trade, and then

to estimate (3) based on the resulting truncated sample. However, although this approach

certainly eliminates the zeros, it simultaneously induces a bias to the LS estimator, which is

why truncating the sample should be avoided as a matter of practice.

A natural alternative approach in situations such as this, when the model cannot be log-

linearized, is to estimate it from its multiplicative form directly. In so doing, note that the

fixed effects conditional mean can be written as

λijt = exp(αij + γDijt + β1 ln(Yit) + β2 ln(Yjt)), (4)

which is known as the exponential regression function. This regression follows naturally from

the multiplicative form of (1) and ensures that λijt is nonnegative, which is very convenient

as trade cannot be negative. Thus, the conventional additive regression in (3) is likely to be

unsatisfactory here as it cannot ensure the nonnegativity of trade.

The estimation of (4) has been studied by Hausman et al. (1984), who consider the special

case when the data are measured in nonnegative integers. They propose using a version of

the conventional poisson ML estimator, which is modified to account for the fixed effects. In

so doing, the authors eliminate the fixed effects by conditioning on
∑T

t=1 Mijt, a sufficient

statistic for αij , which in our case yields the following log-likelihood function

ln(L) =
n∑

i 6=j

T∑

t=1

Γ(Mijt + 1)−
n∑

i6=j

T∑

t=1

Mijt ln

(
T∑

s=1

λijs

λijt

)
,

where Γ is the gamma function. As noted by the authors, given that the regression in (4) is

correctly specified, consistency of the resulting fixed effects poisson ML slope estimator follows

directly by standard ML theory, see for example Gourieroux et al. (1984).2 The Hausman

et al. (1984) poisson conditional ML estimator is the same as the poisson ML estimator
2As long as (4) holds the poisson estimator works, see for example Wooldridge (2002) and Winkelmann

(2008). In fact, neither (4) nor the maximization of the log-likelihood function require that the dependent

variable is a count. It could be a binary variable or, as in our case, a nonnegative continuous variable. This

property of the estimator has been used by Silva and Tenreyro (2006). The interpretation of the estimated

coefficients is similar to the interpretation of the coefficients in the log-linear model. That is, the estimated

coefficient reflects the elasticity of the dependent variable with respect to the relevant independent variable.

In the case of an dummy variable, the estimated coefficient provides a reasonable approximation for small

estimated values, see Winkelmann (2008) for a more elaborative discussion.
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in a model with individual specific constants, which in turn is equivalent to the moment

estimator in a model where the fixed effects are replaced by 1
T

∑T
t=1 Mijt/

1
T

∑T
t=1 λijt, the

ratio of within group means. Alternative estimators of the fixed effects poisson model include

the quasi-differenced generalized method of moments estimator and the pre-sample mean

estimator that replaces the fixed effects by the pre-sample mean of the dependent variable,

see for example Blundell et al. (2002) for a detailed discussion.3

Having estimated the slopes, an estimate of the fixed effects can be obtained by simply

replacing λijt in
∑T

t=1 Mijt/
∑T

t=1 λijt by its ML estimate. Note that this gives an estimate

of exp(αij), not of αij , which is unidentified in the fixed effects formulation of the model.

In order to identify αij , a random effects assumption is needed. But such assumptions are

generally not satisfied in practice, and so we only consider the fixed effects specification.

Although the poisson ML estimator is consistent, valid inference requires the correct

specification of both the conditional mean and variance, which necessitates that

λijt = var(Mijt|Yit, Yjt, Dijt). (5)

However, note that the validity of (4) and (5) does not require the data to be poisson distrib-

uted. In fact, Mijt does not have to be an integer at all. This suggests that we can use the

fixed effects poisson ML to estimate the gravity model. Since this estimator does not require

Mijt to be nonzero, it is expected to produce better results than LS in panels where some

trade flows are zero. Moreover, if it is consistency that we are interested in, then (5) does

not have to hold either, so the data do not have to be equidispersed. In the next section, we

elaborate on this point.

3 Monte Carlo study

In this section, we investigate the small-sample properties of the LS and ML estimators in the

presence of zero observations through Monte Carlo simulations. The data generating process

used for this purpose is given by

Mijt = exp(αij + γDijt + βYijt)vijt, (6)

3Another possibility is to use the zero inflated poisson (ZIP) model. But so far it seems that the estimation

of this model with fixed effects has not yet been analyzed in the literature. In fact, Winkelman (2008) points

out that the properties of the fixed effects poisson ML estimator does not carry over to the ZIP model, and

that the estimation of this model is still an open issue.
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where αij = γ = β = 1 for simplicity. Since Yijt is usually positive in applied work, we set

Yijt ∼ U(0, 1). Moreover, if we let τij ∼ U(0, 1) denote the location of the break, then the

dummy variable Dijt, representing for example a preferential trade agreement, is such that

Dijt = 1 if t > τijT and zero otherwise.

The disturbance vijt is key in this data generating process. In particular, it is assumed

that vijt is a log-normally distributed variable with mean one and variance σ2
ij . We have two

variance cases. In the case 1, σ2
ij = 1, which implies that

var(Mijt|Yijt, Dijt) = exp(αij + γDijt + βYijt)2,

while in case 2, σ2
ij = 1/ exp(αij + γDijt + βYijt) so that

var(Mijt|Yijt, Dijt) = exp(αij + γDijt + βYijt).

Thus, we expect the LS estimator to perform relatively well in case 1, while we expect the

poisson ML estimator to perform relatively well in case 2, as condition (5) is now satisfied.4

In both cases, we generate data by drawing 1, 000 panels, each consisting of N observations

on each of the T time series.

The results are organized according to the two cases described above. In each case,

we want to examine the effect of zero observations in the data. Both the LS and poisson

ML estimators are considered.5 The former is implemented using both truncated data and

ln(Mijt +1) as dependent variable. However, note that since Mijt > 0 in this data generating

process, the log-linear model is no longer inadmissible. Hence, to be able to study the effect

of truncating the sample we use a positive truncation threshold parameter, which is such that

the fraction of truncated observations is exactly δ. For brevity, we only report the mean bias

and the size of a nominal 5% level t-test of the null hypothesis that the parameter of interest

is equal to its true value versus the alternative that it is not.6

Besides the LS and poisson ML estimators, we also experimented with the negative bi-

nomial ML estimator of Hausman et al. (1984), which relaxes condition (5). But since the
4Other values of σ2

ij produced very similar results and are thus not reported.
5The poisson ML estimator is implemented using the GAUSS optimization library OPTMUM. We use the

BFGS gradient algorithm with numerical derivatives. The standard errors of the estimated parameters are

computed based on the conventional Hessian method, which generally worked best in the simulations. The

truncated LS is used to start up the estimation.
6We also simulated the power of the t-tests. However, since the size of the LS based tests turned out to be

heavily distorted, with rejection frequencies close to 100% in most experiments, power is not very interesting,

and the results are therefore not reported.
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performance was so unsatisfactory, the results are not included here but are available from the

corresponding author upon request. The panel version of the quasi-ML estimator discussed

in Gourieroux et al. (1984) also performed very poorly, and was therefore removed.7 Another

possibility is to treat the zeros as a sample selection issue, and to estimate the model using

an estimator that eliminates the selectivity bias. We tried the Kyriazidou (1997) estimator,

which is a popular two-step procedure to difference out both the bias and fixed effects. How-

ever, as with the negative binomial and quasi-ML estimators, the results from this estimator

were very poor, and were therefore removed.8

The results reported in Table 1 for the LS and poisson ML estimators can be summarized

as follows. First, as expected, LS estimation with ln(Mijt + 1) as the dependent variable

generally produces very poor results. In particular, it is seen that the estimators of γ and β

both suffer from substantial downwards bias, which do not show any tendency to vanish as

the sample size increases. Moreover, the results of the size of the t-tests suggest that inference

based on this estimation method is likely to be highly deceptive. In fact, with this method,

we always end up rejecting the null hypothesis. Thus, based on these results, we recommend

not using LS estimation based on ln(Mijt + 1).

Second, the results on the truncated LS estimator are mixed. At one end of the scale, we

have case 1 when there is no truncation, in which the performance, both in terms of bias and

size accuracy, is very good. At the other end, we have the case when δ > 0, in which Table

1 shows that the performance is poor, and that the problems with bias and size distortion

are highly potent, even for a truncation as small as 10%. Apparently, the truncation makes

the LS estimator both downwards biased and unfit for inference. Thus, from an empirical

point of view, it seems highly unlikely that the truncated LS is able to deliver any meaningful

results at all.

In addition to the problems associated with truncating the data, Table 1 points to another

important shortcoming with the truncated LS estimator. In particular, it seems as that the

heteroskedasticity in case 2 induces both severe size distortions as well as a sizeable bias that

persists even in large panels.
7The quasi-ML estimator only requires that the conditional mean in (4) is correctly specified, and does not

make use of (5), see for example Gourieroux et al. (1984) and Wooldridge (2002).
8We used the T = 2 version of the Kyriazidou (1997) estimator, which is relatively easy to compute, but

preliminary results suggest that the poor performance extends also to the case when T > 2. Also, for this

experiment, the data generating process was adapted so as to fit the sample selection setting of Kyriazidou

(1997).
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Although this may appear somewhat counterintuitive at first, as pointed out by Silva

and Tenreyro (2006), it is actually a direct consequence of the well-known Jensen inequality.

To appreciate this, consider the data generating process in (6) where E(vijt|Yijt, Dijt) =

1. The LS estimator of the parameters in the log-linear model (3) are consistent only if

E(ln(vijt)|Yijt, Dijt) = 0. However, although ln(E(vijt|Yijt, Dijt)) = 0, by the Jensen equality,

E(ln(vijt)|Yijt, Dijt) 6= 0. Indeed, since E(vijt|Yijt, Dijt)2 = 1 in our case, by using the

properties of the log-normal distribution, we have that

E(ln(vijt)|Yijt, Dijt) = ln
(

1
1 + σ2

ij

)
,

which is not equal to zero unless of course σ2
ij is zero too. As a result, the LS estimator in

(3) will generally be biased.

Third, except possibly for case 1 when there is no truncation, the results show that the

poisson ML consistently outperforms the other estimators in terms of bias. In fact, by looking

at Table 1, it would appear as that the bias is practically nonexisting even for as small panels

as T = 10 and N = 500, which correspond approximately to 10 time series observations for

23 countries. We also see that the size is very close to the nominal 5% level in case 2 but

that it is distorted in case 1, which is partly expected since condition (5) is not satisfied in

this case.

One possibility to get rid of the distorted standard errors of the ML estimator is to use

the bootstrap. This approach has become very popular in applied work, and it will therefore

be used in this paper. The particular algorithm used is taken from Cameron and Trivedi

(1998), who make a very simple proposal, in which the dependent and independent variables

are resampled in pairs.9 Some simulations of the resulting bootstrapped t-statistic based on

100 bootstrap replications are reported in Table 2. As expected, we see that the size of the

bootstrapped test generally lies much closer to the 5% level than the size of the asymptotic

test. Also, the t-statistics appear to be well centered around zero.

In summary, we find that the poisson ML show smaller bias than the two LS estimators

considered and, at the same time, maintain relatively good size properties in small samples.

Since the poisson ML with bootstrapped standard errors is now readily available through

existing software packages such as STATA, it should be considered a feasible alternative to

estimation by LS.
9Another possibility is to use the wild bootstrap, see Cameron and Trivedi (1998) for a discussion.
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4 An application to the 1995 EU enlargement

We have shown that log-linear LS estimation of the gravity model yields biased results. In

this section, we demonstrate these findings by estimating the trade effects of the adhesion of

Austria, Finland and Sweden to the EU in 1995. The sample that we use for this purpose cover

the period 1992 to 2002 and consists of import data for EU and other developed countries from

all trade partners except oil exporting countries and formerly planned economies in Central

and Eastern Europe, as defined in Direction of Trade Statistics (International Monetary Fund,

2005). The GDP and population data comes from World Development Indicators (World

Bank, 2005).

The estimated gravity equation can be written as

Mijt = exp(αij + µt + γ1Dit + γ2Djt + γ3Dijt)Y
β1
it Y β2

jt Nβ3
it Nβ4

jt vijt, (7)

or equivalently in its log-linear form

ln(Mijt) = αij + µt + γ1Dit + γ2Djt + γ3Dijt + β1 ln(Yit) + β2 ln(Yjt)

+ β3 ln(Nit) + β4 ln(Njt) + ln(vijt), (8)

where Mijt denotes the nominal imports of country i from country j, Yit and Yjt denote the

real GDP of the two countries, and Nit and Njt denote their population. The fixed effects

αij capture all types of unobserved country-pair specific heterogeneity that is constant over

time, while the time effects µt capture all forms of time-varying heterogeneity that is shared

among the country pairs.

The dummy variables Dit, Djt and Dijt are key in this model. The variable Dit equals

one if country i is a member of the EU at time t while country j belongs to the rest of the

world. The second dummy variable Djt equals one if country j is a member of the EU while

i belongs to the rest of the world. Similarly, Dijt equals one if both i and j are members

of the EU at time t. In other words, the three dummy variables take the value one for EU

imports from the rest of the world, EU exports to the rest of the world and intra-EU trade,

respectively.

The rest of the world is defined as all countries in the sample that are not members of the

EU at any given time in the sample. This enables us to identify the effect of the enlargement

on the trade of new EU members as opposed to the effect of changes in the size of the rest of

the world. To appreciate this, note that if the rest of the world also included new members,

10
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the dummy variable Dit would capture not only the import effect on the new members but

also the effect of the change in the composition of the rest of the world, as the imports from

the new members to the old ones would no longer be classified as imports from the rest of

the world. A similar argument applies to the construction of Djt.

A consequence of this definition of the rest of the world is that, since fixed effects absorb

all heterogeneity that is constant over time, the trade effect for countries that have been

members of the EU for the whole sample period cannot be identified. Thus, the dummy

variables capture only the effect on countries that have changed their EU status at least one

time. That is, the dummy variables capture the effect of the Austrian, Finnish and Swedish

accession to the EU. Specifically, γ1 measures the trade diversion or changes in EU imports

from the rest of the world. Similarly, γ2 measures the effect on EU exports to the rest of the

world, sometimes called export diversion. Finally, γ3 measures trade creation, resulting from

the increased intra-EU trade following the enlargement.

Economic integration should increase trade between countries integrating. Thus, we ex-

pect the trade creation, as measured by γ3, to be positive. This effect can be separated into

pure trade creation, or increased trade due to lower prices on imports from the other countries

in the EU, and trade diversion, which implies a shift in imports from more efficient producers

in the rest of the world to less efficient producers within the EU. A negative sign on γ1 would

thus indicate trade diversion. Similarly, export diversion occurs if exports to the rest of the

world decreases as a result of the integration process, but exports could also increase. The

expected sign of γ2 is therefore ambiguous.

The empirical results are contained in Table 3. It is seen that the enlargement of the

EU induced significant trade diversion but no trade creation. This absence of trade creation

is, however, not surprising since the new members were part of a free trade area with the

EU prior to the membership. When joining the EU, the new members implemented the

Common External Tariff, which changed the tariffs on their imports from the rest of the

world. Note that the trade diversion effect is rather large in comparison to the trade creation

effect. Although counterintuitive at first, one should keep in mind that several countries with

preferential access to the EU market, such as those that joined the EU in 2004, have been

excluded from our sample, so trade might have been diverted away from suppliers on the

world market to suppliers with preferential access to the EU market. Moreover, taken as a

fraction of total trade, the diversion effect is probably quite small since the estimation results
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only capture the effect on imports to Austria, Sweden and Finland and not changes in the

total imports of the EU.

Even though the number of zeros is comparatively small in our sample, only 10%, when

comparing the results obtained from the various estimators, we see that the difference can be

substantial. In particular, for the GDP and population variables, the poisson ML estimates

are typically larger than their LS counterparts. This finding is well in line with the Monte

Carlo evidence suggesting that both LS estimators are downwards biased. Moreover, while

the truncated LS estimator indicates that changes in GDP of importing countries does not

effect imports, the ML estimator gives a more plausible estimate close to unity.

It should also be mentioned that the LS estimates of the GDP and population parameters

appear to be rather unstable, and to a large extent dependent on the time period used, which

is probably due to the fact that these variables seem to be quite highly correlated. On the

other hand, the corresponding LS estimates of the effects of trade liberalization appear to be

very robust, and show almost no variation between time periods. Similarly, all ML estimates

seem vary robust to changes in the time period.

For the dummy variables, the differences are less marked. In particular, although the sign

and significance of the estimates do not differ much, the magnitude of the estimates varies

quite substantially. The LS estimator indicates that the trade diversion is twice as large as

implied by the ML estimator and, while the LS estimate of the trade creation effect is slightly

negative, it is positive for the ML estimator.

In summary, the results presented in this section highlight the importance of using appro-

priate estimation techniques to be able to draw correct inference.

5 Conclusions

The gravity model has become a standard tool for evaluating policies affecting trade and it

is widely used to assess the effects of preferential trade agreements and currency unions or to

calculate trade potential, among other things. It is well known that the gravity model should

be estimated by panel data to mitigate the bias due to failure to fully control for country

heterogeneity. A very popular way to accomplish this is to first linearize the model by taking

logarithms and then to apply the conventional fixed effects LS estimator.

In this paper, we argue that this approach is likely to be very misleading with severely

biased estimates and t-statistics. There are two reasons for this. Firstly, since trade cannot
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be zero in the log-linearized model, all zeros must either be discarded or replaced by some

arbitrary positive value, which induces a sample selection bias. Secondly, the heteroskedas-

ticity inherent in the log-linear formulation of the gravity model can render the LS estimates

both biased and inefficient. By contrast, being based on the gravity model in its original

non-linear form, the fixed effects poisson ML estimator does not suffer from these weaknesses

and is therefore expected to yield more accurate results.

Our assertion is verified by means of Monte Carlo simulations and illustrated via an

application to the 1995 EU enlargement. The simulations show that the performance of the

log-linear approach is likely to be so poor that it may not even be meaningful to interpret

the results. On the other hand, the poisson ML estimator performs well with only a very

small bias and good size accuracy in most cases. Still, in some data generating processes, the

results show that the estimated standard errors can be downward biased. To alleviate this, we

suggest using bootstrapped standard errors. The empirical application points to a significant

difference between the estimators with respect to both the main explanatory variables and

the trade effects of the 1995 EU enlargement, thus underlining the importance of using the

proper estimation technique.

To conclude, we recommend not estimating the gravity model from its log-linear form.

Instead, we propose estimating the model directly from its non-linear form using the fixed

effects poisson ML estimator with bootstrapped standard error. Our proposal provide re-

searchers with a simple framework for analyzing the gravity model while at the same time

avoiding potential bias due to zero trade. This, together with the fact that the poisson ML

estimator can now be implemented using many standard statistical software packages such as

STATA, makes our proposal definitely seem worthwhile.
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Table 2: Simulation results for the bootstrapped ML t-test.

Case 1 Case 2

N T t(γ̂ml) t(β̂ml) t∗(γ̂ml) t∗(β̂ml) t(γ̂ml) t(β̂ml) t∗(γ̂ml) t∗(β̂ml)

Size at the 5% level
500 10 23.8 33.4 9.2 10.0 5.8 4.0 10.2 7.4

1000 10 25.2 31.4 10.4 9.6 4.6 5.8 10.0 7.2
500 20 28.4 33.2 7.6 9.6 5.0 6.6 7.8 10.0

1000 20 26.4 39.4 8.4 10.6 6.4 4.8 8.2 6.6

Mean
500 10 0.0 −0.1 0.0 −0.1 0.1 0.0 0.1 0.1

1000 10 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
500 20 0.0 −0.1 0.0 0.0 0.1 0.0 0.1 0.0

1000 20 0.1 0.0 0.1 0.0 0.0 −0.1 0.0 −0.1

Standard deviation
500 10 1.7 2.1 1.2 1.2 1.0 1.0 1.2 1.1

1000 10 1.8 1.9 1.2 1.2 1.0 1.0 1.2 1.1
500 20 1.8 2.1 1.1 1.2 1.0 1.1 1.1 1.1

1000 20 1.8 2.2 1.1 1.2 1.0 1.0 1.1 1.1

Notes: The values t(γ̂ml) and t(β̂ml) refer to the conventional asymptotic ML t-tests, while
t∗(γ̂ml) and t∗(β̂ml) refer to thir bootstrapped counterparts. See Table 1 for an explanation
of the remaining features of the table.
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Table 3: Empirical estimation results.

Estimator LS LS poisson ML
Dependent variable ln(Mijt) ln(Mijt + 1) Mijt

β1 −0.091 0.229∗∗∗ 0.931∗∗∗

(0.191) (0.062) (0.173)
β2 1.438∗∗∗ 0.820∗∗∗ 1.483∗∗∗

(0.084) (0.039) (0.110)
β3 4.055∗∗∗ 1.765∗∗∗ 2.471∗∗∗

(0.612) (0.267) (0.629)
β4 −1.275∗∗∗ −0.979∗∗∗ −0.580

(0.190) (0.074) (0.357)
γ1 −0.403∗∗∗ −0.211∗∗∗ −0.232∗∗∗

(0.046) (0.016) (0.074)
γ2 0.000 0.102∗∗∗ 0.041

(0.032) (0.023) (0.047)
γ3 −0.002 0.033∗ 0.035

(0.025) (0.018) (0.034)

No. of country-pairs 2719 2748 2719
No. of observations 32487 35600 35256

Notes: The numbers within the parantheses are the robust LS standard
errors or the bootstrapped poisson ML standard errors. The superscripts
(∗∗∗), (∗∗) and (∗) denote significance at the 1%, 5% and 10% levels,
respectively.
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