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Abstract

This paper studies a discrete-time single-server queue with finite and
infinite buffer where the users have the option to leave the queue upon
arrival (balking). We consider two variants of the model in accordance
with the balking policies. Firstly, all the arriving customers balk with a
constant probability. Secondly, arriving customers increase their balking
probabilities as more customers join the system. Specifically, we find the
ergodicity condition and closed form expressions for the stationary distri-
bution of the system size, of the waiting/spending time in the FCFS sys-
tem and of the unfinished work. The mathematical model is applied in or-
der to resolve several real-life problems in the economic field; in this sense,
practical applications in the secondary and tertiary sector are shown. We
also develop a cost model to determine the buffer capacity that minimizes
certain cost function and give some numerical examples.

Keywords: Balking; Discrete-time queue; Ergodicity; Markov chain;
Optimal control; Practical applications; Unfinished work; Waiting/spend-
ing time.

1 Introduction

Recently, different continuous-time queueing systems have been applied to a
wide class of economic activities, including dynamic market process [22], labor
market [19], holdups in markets with frictions [2], manufacturing and computer
systems [17], multiproduct monopoly [21], hospitals [24], manufacturing context
[26], job shop environment [12] and repair shops [23]. However, the discrete-
time systems are more appropriate than their continuous-time counterparts for

∗Her work is supported by the MEC through the project MTM2005-01248.
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modelling diverse productive processes, since the basic units in these systems
are digital such as machine cycle time. The analysis of discrete-time queueing
models has received considerable attention in the scientific literature over the
past years, in view of its applicability in the study of many computer and com-
munication systems in which time is slotted, see [7, 14, 25, 28] and the references
therein. Another important application stems from the secondary and tertiary
sector since, for example, the current production systems of numerous facto-
ries operate on a discrete-time basis where events can only happen at regularly
spaced epochs. Nonetheless, despite the wide applications in the aforementioned
areas, no work seems to have been done concerning these last applications. That
is why this paper makes efforts to fill this space and proposes a new approach
modelling some economic activities in discrete-time.

On the other hand, in many queueing situations an arriving customer may
balk, so there exists literature devoted to the design and applications of such
models [1, 3, 15, 16, 18, 20, 27, 29]. Intuitively, the introduction of the balking
assumption makes the system less congested than if it was not present, thus the
existence of balking provides a mechanism to control an excessive congestion
at the system. There exist another queueing models where the customers can
leave the system before completing his service, for instance, queues with negative
customers [4, 5], disasters [4] or impatient customers [8]. Unlike what happens
in our model, in the case of negative arrivals or disasters, the abandonments
are generated by external causes. Our system could be thought as a related
model with impatient customers; however, the balking supposition involves an
automatic system abandonment upon arrival at the system, whereas impatience
means to take the abandonment decision after some random time.

Several continuous-time queueing models with balking have been discussed
during the last years. Nevertheless, to the best of our knowledge, the only work
about balking in discrete-time can be found in [16], where the authors regard
a discrete-time multi-server queue with balking and reneging under arbitrary
initial conditions and finite waiting space. This work studies a discrete-time
single-server queue with finite and infinite buffer, in which arriving customers
balk with a certain probability: in a case constant and in the another one
depending on the number of customers in the system upon arrival. Moreover,
certain economic activities can be modelled by this queueing system; specifically,
two examples are shown in the secondary and tertiary sector. Besides, a cost
model is developed to determine the optimal buffer size in order to minimize
the steady-state expected cost per unit time.

The rest of the paper is organized as follows. The mathematical model is
described in the next section. Section 3 provides some examples of real systems
which can be modelled by our queue. Section 4 investigates the stationary distri-
bution and the stability condition of the model under study. Waiting/spending
time in the FCFS system is analysed in Section 5. Section 6 shows the stationary
distribution of the unfinished work. Section 7 develops a cost model to deter-
mine the optimum buffer capacity. Finally, in Section 8, some numerical results
are presented to illustrate the effect of the parameters on several performance
characteristics.
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2 The mathematical model

We consider a discrete-time queueing system where the time axis is divided into
intervals of equal length, called slots. It is assumed that all queueing activities
(arrivals and departures) occur at the slot boundaries, and therefore they may
occur at the same time. For mathematical clarity, we will suppose that the
departures occur at the moment immediately before the slot boundaries and
the arrivals occur at the moment immediately after the slot boundaries; that
is, we will discuss the model only for the early arrival system policy (details on
this and related concepts can be found in [11, 14]).

We assume that the system conforms to the following assumptions:

• Customers arrive according to a Bernoulli process with probability p , thus
p is the probability that a customer arrives at a slot and p̄ = 1− p is the
probability that an arrival does not take place in a slot.

• If the system is free at the instant of an arrival, the service of the arriving
customer commences immediately and the customer leaves the system
after service completion.

• If the arrival finds the system busy, the arriving customer either with a
probability rk , when the system size is k , joins the waiting line in order
to be served (persistent customer), or with complementary probability
abandons the system forever without service (non-persistent customer).

• The balking probability is 1 − rk if there are k customers in the system
upon arrival.

• We will study two cases separately: the case of a fixed rk = r (constant rate
policy) and the case of rk = rk (discouraged rate policy) where 0 ≤ r ≤ 1 .

• It is always assumed that services can begin only at slot boundaries and
their durations are integer multiples of a slot duration.

• Service times are independent and geometrically distributed with prob-
ability s̄ = 1 − s , where s is the probability that a customer does not
conclude his service in a slot.

• It is supposed that the buffer capacity is N . We consider two cases singly:
an infinite bufferN =∞ and a finite buffer 2 ≤ N <∞. For a finite buffer,
an arriving customer who finds the system completely full is lost.

It appears reasonable to assume, in certain situations, that the balking prob-
ability is constant and is not dependent on the system length; such situations
may arise when the system length is not observable by the customer and he has
no knowledge of the system length. It is also logical to suppose that the balking
probability increases as more customers enter the system; in fact, if the system
size increases, then the waiting time is higher and the arrivals are discouraged
to wait in order to receive their services. It is obvious that we introduce the
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balking probabilities as a mechanism to control the level of internal congestion
in the system. It should be pointed out that the discouraged rate policy is more
intelligent and rational than the constant one, since the first discipline has more
information concerning the queueing system.

In Figures 1 and 2, the system is depicted for an infinite and finite buffer,
respectively.

p

rk

persistent
customer

rk1-

Bernoulli
arrivals

non - persistent customer

server

Geo (s)

1

infinite buffer

23k k-1

k-1customers

Figure 1: Mathematical model for the queueing system with infinite buffer.

p

rk

persistent
customer

rk1-

Bernoulli
arrivals

non - persistent customer

server

Geo (s)

1

finite buffer (N)

23k k-1

k-1customers

N+1   N

Figure 2: Mathematical model for the queueing system with finite buffer.

In order to avoid trivial cases, we assume 0 < p < 1 and 0 < s < 1 . The
traffic intensity is given by ρ = p/s̄ .

At time m+ (the instant immediately after the m-th slot), the system can
be described by the random variable Xm , which designates the number of cus-
tomers in the system (including the one in service, if any).

To conclude this section it should be pointed out that if r = 1 , arriving
customers always decide to enter the system in order to receive their service,
hence we obtain a well-known special case: the classical discrete-time single-
server queue with geometrical arrivals and service times. In the particular case
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r = 0 , arriving customers only enter the system when their waiting time in the
buffer is zero, i.e., when the system is totally empty (it is an extreme case of
impatience).

3 Practical applications

This section gives two examples of productive processes which can be modelled
as a discrete-time single-server queue with balking.

3.1 Secondary sector

This subsection applies the model under consideration to the industrial sector.
The production system operates in the following way. It is considered a manu-
facturing plant in which the production process is divided into several phases.
We will concentrate our attention on a specific stage, as appears in Figure 3.
Customers are components or products that pass by different jobs on consecutive
machines.

1-rk

buffer

��������������������

gate

�
�
�
�

�������

�������������

rk

machine

buffer

machine

Figure 3: Industry.

Customers are transported in a conveyor belt with regularly spaced parti-
tions (which, for example, move every thirty seconds). Each division of the con-
veyor belt contains a component/product with probability p and consequently
the arrivals follow a Bernoulli process. In addition, a buffer is opposite the
machine (server) in a lower level, which impedes empty positions in the waiting
line (see Figure 3).

The components are processed on a first-come-first-served (FCFS) basis. If
the machine is empty at the moment of an arrival, the service begins immediately
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and the corresponding component/product leaves the system after concluding
his service. When the system is busy, customers with a probability rk , if the
system size is k , join the buffer (see the left-hand side of Figure 3). On the
other hand, if the queue in front of the machine is “too occupied” (right-hand
side of Figure 3), a gate prevents the passage to the waiting line; in this case,
the customers with a probability 1 − rk abandon the studied system forever
without receiving service (non-persistent customers) and pass to another phase
of the productive process.

Components/products may be distinct and consequently manufactured at
different times, that is, service times are not deterministic. For instance, a
service finishes with probability s̄ each half minute (if the duration of a slot is
thirty seconds).

3.2 Tertiary sector

The mathematical model described in section 2 allows to analyse problems that
take place in activities of the services sector. In this subsection the previous
queueing system has been applied to a particular attraction of an amusement
park, as you can see in the enlargement of Figure 4.

���
���
���
���

rk

1-rk

attraction

buffer

trainenlargement

attraction

Figure 4: Amusement park.

A train with as many carriages as attractions covers all the amusement park
so every five minutes, for example, an only carriage stops at each of the at-
tractions. The group of people who get off the carriage in each attraction (for
instance, one or twenty persons) will be called a visitor. In the attraction under
study, a carriage arrives empty or busy each five minutes (the duration of a slot)
with probabilities p̄ and p , respectively. When the attraction is unoccupied, the
visitor will join the attraction immediately. Otherwise, based on the character-
istics of the queue, the visitor will choose either to stay in the carriage or to
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alight in order to enter the attraction. That is, when the attraction is occupied,
there are two possible situations.

(a) If the visitor has knowledge of the system length, he will join or leave
the attraction (system) depending on the waiting time. In this case, the
balking probability increases as more visitors enter the system, that is,
it is an increasing function of the system size (discouraged rate policy).
Two different possibilities are assumed: a finite queue if there is a limited
space, or an infinite queue when the extension is so large that it may be
considered infinite.

(b) If the visitor does not know the system size, the balking probability will
be fixed (constant rate policy). For example, when there is an opaque
fence with a gate and some instructions about the attraction. Like in the
previous assumption, the buffer can be regarded finite or infinite.

We assume that visitors arrive at the attraction through a single waiting line
and are served in order of arrival (FCFS). An only visitor can be served in each
attraction and his service time is a multiple of five minutes. Every five minutes,
the attraction concludes with probability s̄. Once the visitor is served leaves
the attraction (system).

4 System size

This section studies the stationary distribution of the system size and its ergod-
icity condition, and it also links our discrete-time model to the continuous-time
one.

It can be readily shown that {Xm , m ∈ N} is the one-dimensional Markov
chain of our queueing system, whose state space is {0, 1, 2, . . . , N + 1} . One of
the main objectives is to find the stationary distribution

πk = lim
m→∞

P [Xm = k] , k = 0, . . . , N + 1

of the Markov chain {Xm , m ∈ N} . The state space and one-step transitions
are illustrated in Figure 5.

The Kolmogorov equations for the distribution πk are

π0 = p̄ π0 + s̄ p̄ π1

π1 = p π0 + [s̄ p+ s p̄+ s p (1− r1)]π1 + [s̄ p̄+ s̄ p (1− r1)]π2

πk = s p rk−1 πk−1 + [s̄ p rk−1 + s p̄+ s p (1− rk)]πk +

+[s̄ p̄+ s̄ p (1− rk)]πk+1 , k = 2, . . . , N

πN+1 = s p rN πN + (s̄ p rN + s)πN+1 if N <∞

and the normalization condition is
∑N+1

k=0 πk = 1 . The solution of these equilib-
rium equations is presented in the following theorems, whose proofs are easily
obtained proceeding by recurrence.
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Theorem 1 (Constant rate discipline) The Markov chain {Xm , m ∈ N}
is ergodic if and only if ρ r δN,∞ < 1 and its stationary distribution is given by
the formulae:

π0 =
p̄ (1− ρ r) (1− p r)N

[p̄+ ρ (1− r)] (1− p r)N − ρ (ρ s r)N+1

πk =
ρk (s r)k−1 (1− ρ r) (1− p r)N−k+1

[p̄+ ρ (1− r)] (1− p r)N − ρ (ρ s r)N+1
, k = 1, . . . , N + 1 .

Theorem 2 (Discouraged rate discipline) The Markov chain {Xm , m ∈
N} is ergodic if and only if ρ δr,1 δN,∞ < 1 and its stationary distribution is
given by the formulae:

π0 =

{

1 +

N+1
∑

k=1

ρk sk−1 r
(k−1) k

2

∏k−1
j=0 (1− p rj)

}−1

πk =
ρk sk−1 r

(k−1) k

2

∏k−1
j=0 (1− p rj)

{

1 +
N+1
∑

l=1

ρl sl−1 r
(l−1) l

2

∏l−1
i=0 (1− p ri)

}−1

, k = 1, . . . , N + 1 .

Let us remark that if r < 1 , in case of infinite buffer and discouraged rate,
the system is always ergodic independently of the parametric values. This fact
was expected since as the system size increases, the effective rate of entrance di-
minishes, which constitutes a mechanism to impede an overloaded and unstable
system.

We must emphasize the importance of finding the ergodicity hypothesis,
which is related to the term “propagation of chaos” [6]. Although chaotic
systems obey certain rules that can be described by mathematical equations,
chaos theory shows the difficulty of predicting their long-range behaviour. This
queueing system could be tackled in an alternative way using the chaos the-
ory [6, 10, 13]; specifically, we should follow the two crucial steps given by
Borovkov [6]. Of course, when the parametric values tend to the ergodicity con-
dition, the system becomes unstable and tends to the disintegration. Further-
more, although the system is always ergodic under a finite buffer, it is seriously
disturbed-unbalanced when the parametric values approach the ergodicity con-
dition of the corresponding model under an infinite buffer (see the maxima of
the graphics in Figure 8).

Remark 1 (Relation to the continuous-time system) This remark anal-
yses the relation between our discrete-time model and its continuous-time coun-
terpart.

We consider the continuous-time single-server balking queueing system where
customers arrive according to a Poisson process with rate λ . The balking oper-
ation is exactly the same than in discrete-time. Service times are independent
and exponentially distributed with mean µ−1 . Interarrival and service times are
assumed to be mutually independent.
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If time is divided into intervals of length ∆ ∈
(

0,min
{

1

λ
, 1
µ

})

, the previous

continuous-time system can be approximated by our discrete-time model choosing
the parameters as follows: p = λ∆ and s = 1− µ∆ .

• For the constant rate policy, we have:

lim
∆→0

π0 =
1− λ

µ
r

1 + λ
µ
(1− r)− λ

µ

(

λ
µ
r
)N+1

lim
∆→0

πk =
λ

µ

(

λ

µ
r

)k−1

lim
∆→0

π0 , k = 1, . . . , N + 1 .

• For the discouraged rate policy, we obtain:

lim
∆→0

π0 =

{

1 +

N+1
∑

k=1

(

λ

µ

)k

r
(k−1) k

2

}−1

lim
∆→0

πk =

(

λ

µ

)k

r
(k−1) k

2 lim
∆→0

π0 , k = 1, . . . , N + 1 .

These stationary probabilities can be checked since this continuous-time system
is a special case of a birth-death process with state-dependent arrivals and de-
partures [9].

5 Waiting/spending time in the FCFS system

This section presents the stationary distribution of the waiting/spending time
in the FCFS system of an arriving customer.

Firstly, we define the waiting timeW (measured in slots) in the FCFS system
in the m+1-th slot as the time that a customer would wait in the corresponding
system with FCFS discipline if he arrived in the m+ 1-th slot.

Theorem 3 The stationary distribution of the waiting time W in the FCFS
system is given by:

P [W = 0] = π0 + s̄ π1

P [W = j] =

min{j,N+1}
∑

k=1

(

j − 1

k − 1

)

s̄k sj−k+1 πk +

+

min{j+1,N+1}
∑

k=2

(

j − 1

k − 2

)

s̄k sj−k+1 πk , j ≥ 1 .

Proof: The waiting time of a customer who arrives in the m+ 1-th slot will be
zero if Xm = 0 or (Xm = 1 and the current service finishes in the m+1-th slot).
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Let us remember that the remaining service time follows a geometrical dis-
tribution with probability s̄ due to the memoryless property of the geometrical
law.

If Xm = k ≥ 1 and the current service does not conclude in the m + 1-th
slot, the waiting time will be the sum of k − 1 complete service times plus the
remaining service time of the customer currently being served; then the waiting
time will be the sum of k independent and geometrically distributed random
variables with parameter s̄ .

If Xm = k ≥ 2 and the current service ends in the m+1-th slot, the waiting
time will be the sum of k − 1 complete service times, that is, the waiting time
will be the sum of k − 1 independent geometrical distributions with parameter
s̄ . ¤

We now define the spending time S (measured in slots) in the FCFS system
in them+1-th slot as the time that a customer would spend in the corresponding
system with FCFS discipline if he arrived in the m+1-th slot. It is equal to the
waiting time in the m+ 1-th slot plus the service time of the arriving customer
in the m+ 1-th slot.

Theorem 4 The stationary distribution of the spending time S in the FCFS
system is given by:

P [S = j] = s̄ sj−1 (π0 + s̄ π1) + (1− δj,1)

min{j−1,N+1}
∑

k=1

(

j − 1

k

)

s̄k+1 sj−k πk +

+(1− δj,1)

min{j,N+1}
∑

k=2

(

j − 1

k − 1

)

s̄k+1 sj−k πk , j ≥ 1 .

The proof of this theorem follows the steps given in the proof of the previous
theorem.

6 Unfinished work

This section finds the stationary distribution of the unfinished work, that is, the
stationary distribution of the remaining number of slots needed to empty the
system of all the customers present. Specifically, the unfinished work U (mea-
sured in slots) immediately after the m+1-th slot is the sum of the service times
of all customers in the queue and the remaining service time of the customer
being served at that time. It is equal to the waiting time in the m + 1-th slot
plus the service time of a possible arrival in the m+ 1-th slot.
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Theorem 5 The stationary distribution of the unfinished work U is given by:

P [U = 0] = p̄ (π0 + s̄ π1)

P [U = j] = p s̄ sj−1 (π0 + s̄ π1) +

+(1− δj,1)

min{j−1,N+1}
∑

k=1

(1− δk,N+1) p rk

(

j − 1

k

)

s̄k+1 sj−k πk +

+

min{j,N+1}
∑

k=1

[1− (1− δk,N+1) p rk]

(

j − 1

k − 1

)

s̄k sj−k+1 πk +

+(1− δj,1)

min{j,N+1}
∑

k=2

p rk−1

(

j − 1

k − 1

)

s̄k+1 sj−k πk +

+

min{j+1,N+1}
∑

k=2

(1− p rk−1)

(

j − 1

k − 2

)

s̄k sj−k+1 πk , j ≥ 1 .

Proof: If Xm = 0 or (Xm = 1 and the current service finishes in the m + 1-th
slot):

• if an arrival occurs in the m+1-th slot (with probability p), the unfinished
work will be the service time of the arriving customer.

• if an arrival does not occur in the m+ 1-th slot (with probability p̄), the
unfinished work will be zero.

If Xm = k ≥ 1 and the current service does not conclude in the m + 1-th
slot:

• if a customer enters the system in the m + 1-th slot (with probability
(1 − δk,N+1) p rk), the unfinished work will be the sum of k complete
service times plus the remaining service time of the customer currently
being served; then the unfinished work will be the sum of k+1 independent
and geometrically distributed random variables with parameter s̄ .

• if a customer does not enter the system in the m+ 1-th slot (with proba-
bility 1− (1− δk,N+1) p rk), the unfinished work will be the sum of k − 1
complete service times plus the remaining service time of the customer
currently being served; then the unfinished work will be the sum of k in-
dependent and geometrically distributed random variables with parameter
s̄ .

If Xm = k ≥ 2 and the current service ends in the m+ 1-th slot:

• if a customer joins the system in them+1-th slot (with probability p rk−1),
the unfinished work will be the sum of k complete service times, that is, the
unfinished work will be the sum of k independent geometrical distributions
with parameter s̄ .
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• if a customer does not join the system in them+1-th slot (with probability
1− p rk−1), the unfinished work will be the sum of k− 1 complete service
times, that is, the unfinished work will be the sum of k − 1 independent
geometrical distributions with parameter s̄ .

¤

7 Optimal control

In practice of designing concrete systems (computer and communication net-
works, manufacturing systems,. . . ), a question arises to the manager: How is
the buffer size chosen to minimize the cost function? This type of matters mo-
tivates that the optimal control of the buffer size is investigated in this section.

We develop a steady-state expected cost function per unit time, in which N
is a decision variable. Our aim is to determine the optimum value of the control
parameter N , say N∗, so that this function is minimized. The following costs
are considered:

C1 ≡ holding cost per unit time per customer in the waiting line,

C2 ≡ cost incurred per unit time for keeping the server idle,

C3 ≡ cost per unit time per balked customer,

C4 ≡ cost per unit time per lost customer.

The performance measures, such as the expected number of customers in
the system µs and the expected number of customers in the queue µq , can be
obtained from the steady-state probabilities and are given by:

µs =
N+1
∑

k=1

k πk , µq =
N+1
∑

k=2

(k − 1)πk .

Since the probability that a customer balks in the system is 1− rk if the system
size is k = 1, . . . , N , the balking probability is given by:

α =

N
∑

k=1

(1− rk)
πk

1− π0 − πN+1
.

Using the definitions of each cost element listed above, the total expected
cost function per unit time is given by:

C(N) = C1 µq + C2 π0 + C3 α+ C4 πN+1 .

We now carry out a sensitivity analysis on the optimum value N ∗ based
on changes in specific values of the system parameter r under the two balking
disciplines. The following cost elements are used:

C1 = 2 euros/slot , C2 = 1 euro/slot , C3 = 3 euros/slot , C4 = 4 euros/slot.

12
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The lightest cases (C1 and C2) are due to the costs induced per buffer size and
per maintaining the server inactive, respectively; albeit holding customers in
the buffer is costlier than having an unoccupied server (C2 < C1) . The highest
costs (C3 and C4) are presented when a customer does not receive his service,
though it is less serious when the omission of the service is a decision of the
customer (C3 < C4) . Obviously, the values of the costs can change as function
of the decisor priorities.

The analytical study of the behaviour of the expected cost function is an
arduous task since the decision variable N is discrete and appears in a complex
and non-linear expression. Hence, the optimum value N ∗ will be the first integer
by satisfying the inequality C(N ∗ − 1) ≥ C(N∗) ≤ C(N∗ + 1) .

r = 0.05 r = 0.1 r = 0.2 r = 0.4
N∗ 5 6 6 2

C(N∗) 3.16927 3.13 3.15438 3.68382
µq 0.0496361 0.110831 0.285909 0.568395
π0 0.22 0.208333 0.18183 0.134916
α 0.95 0.9 0.8 0.6

πN∗+1 5.62163 · 10−7 2.38219 · 10−6 0.000184056 0.153029

r = 0.6 r = 0.8 r = 0.9 r = 0.95
N∗ 2 2 2 2

C(N∗) 4.00389 4.91617 5.15506 5.25639
µq 0.816667 1.21226 1.3421 1.40122
π0 0.0816667 0.0568687 0.0437719 0.0381296
α 0.4 0.2 0.1 0.05

πN∗+1 0.272222 0.458694 0.531774 0.566452

Table 1: Constant rate policy.

Tables 1–2 present results for constant and discouraged rate policy, respec-
tively. The results are rounded to six significant digits. We first fix (p, s̄) =
(0.5, 0.3) and choose several values of r . The minimum expected cost C(N ∗)
and the values of various system performance measures µq , π0 , α and πN∗+1

at the optimum values N∗ are shown in Tables 1–2 for different values of r .
One sees that N∗ , as function of r , starts increasing to a maximum and then
decreases until 2. From the last five columns of Table 1, N ∗ does not change at
all when r varies from 0.4 to 0.95. From the last three columns of Table 2, the
optimum values N∗ are the same even though r changes from 0.8 to 0.95. As
the intuition tells us, the mean buffer size µq increases with increasing values of
r , while π0 and α reduce as r increases.

Let us briefly compare the data in Table 1 with those in Table 2. It is
observed that C(N∗) is slightly superior with a constant rate policy and the
balking probability is moderately higher with a discouraged rate discipline. As
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r = 0.05 r = 0.1 r = 0.2 r = 0.4
N∗ 3 4 4 6

C(N∗) 3.16715 3.11701 3.05614 3.11441
µq 0.0442488 0.0882514 0.180884 0.421937
π0 0.220588 0.210637 0.190874 0.149172
α 0.952689 0.909958 0.8345 0.707121

πN∗+1 1.87364 · 10−8 1.37687 · 10−10 1.37509 · 10−7 7.89711 · 10−9

r = 0.6 r = 0.8 r = 0.9 r = 0.95
N∗ 7 2 2 2

C(N∗) 3.59937 4.63386 5.02358 5.19561
µq 0.859605 1.08942 1.27753 1.36864
π0 0.100583 0.0657373 0.0480679 0.0402047
α 0.593192 0.297391 0.159062 0.0822321

πN∗+1 1.36671 · 10−6 0.374278 0.48582 0.542858

Table 2: Discouraged rate policy.

was expected, the costs are minimized with the discouraged policy since, under
this rule, the balking probability increases as function of the system size. More-
over, the probability that the system is empty (respectively, the loss probability)
is smaller (respectively, bigger) in the constant case than in the discouraged one.

8 Numerical work

This section shows some numerical results regarding the stationary distribution
of our systems. Besides, as performance measures, we choose the mean system
size µs , the balking probability α , the variance σ2s of the random variable
“system size”, the mean waiting/spending time and the mean unfinished work.
The arrival and departure probabilities p and s̄ in a slot are assumed to be equal
to 0.5 and 0.3, respectively. The following graphics and tables corroborate what
the analytical results and intuition tell us.

In Figure 6, the stationary probabilities πk are plotted versus r when the
buffer size is 3. The curves corresponding to the constant and discouraged rate
policies show a similar behaviour. We can observe that π0 and π1 decrease with
increasing values of r , which also agrees with the intuition. On the other hand,
we see that π2 and π3 are increasing and then decreasing according to the rises
of r . As is to be expected, the loss probability π4 is increasing as function of r .

Figure 7 considers the effect of the parameter r on the mean system size and
the balking probability.

Figure 7(a) illustrates the development of µs as function of r . We present
six curves which correspond to N = 10, 20, 30 subject to the two disciplines.
As was expected, the mean system size µs grows with increasing values of r
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and N . Under the constant rate rule, this increase is moderate when r varies
from 0 to 0.5, while the increment is considerable when r is superior to 0.5. An
analogous behaviour is observed for the discouraged rate policy, since the growth
is controlled if r < 0.9 and is heightened if r approaches 1. Moreover, assuming
r inferior to 0.5, µs is scarcely affected by the discipline and the buffer capacity.
We also note that, for any value of r , the mean system size µs is bigger in the
constant case than in the discouraged one; although the difference between both
rules, which increases with N , is intensified when r exceeds 0.5.

In Figure 7(b), the balking probability α is plotted against r for the two
disciplines. The curves are decreasing as function of r , in accordance with the
analytical expression of α . As is to be expected, the highest curves correspond to
the discouraged rate policy. Under the discouraged case, the balking probability
α rises with increasing values of N , but these differences are only appreciated
when r is close to 1.

Figure 8 depicts the variance σ2s of the random variable “system size” against
r in relation to three values of N and the two considered schemes. Obviously,
σ2s increases with N , i.e., the concentration of the stationary distribution of
the system size reduces as the buffer capacity grows. It can be seen that all
the curves, as function of r , increase to a maximum and then decrease. In the
constant rate discipline, observe Figure 8(a), the maxima are got when r takes
the value of the ergodicity condition in the case of infinite buffer (r = 1/ρ) .
In the discouraged rule, see Figure 8(b), the values of r where the maxima are
reached tend to 1 as N increases. Moreover, the maxima of σ2s are smaller in the
discouraged case than in the constant one, what confirms that the discouraged
rate policy continually receives and processes information in order to decide the
entrance in the system or not of the arriving customers. In both policies, when r
belongs to certain intervals, the variance σ2s is only lightly affected by the buffer
size, whereas the parameter N influences considerably in the complementary of
such intervals.

Tables 3–5 present the mean waiting/spending time and the mean unfinished
work for different values of N and r . The results are rounded to four decimal
digits. As was expected, these performance measures increase with increasing
values of r . In the constant case, for r = 0.05, 0.2 the values do not change
when N varies from 10 to 30, whereas for r = 0.4, 0.6, 0.8, 0.95 the values are
increasing as function ofN . In the discouraged case, for r = 0.05, 0.2, 0.4, 0.6 the
values remain constant when N varies from 10 to 30, while for r = 0.8, 0.95 the
values grow with N . As is to be expected, these performance characteristics
are bigger for the constant policy than for the discouraged one; though the
differences, which increase with N , are very small when r = 0.05, 0.2 and are
intensified when r = 0.4, 0.6, 0.8, 0.95 .

9 Conclusions

It should be pointed out that the economic importance of this paper resides in
the multiple applications to productive processes, since most of them operate on
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r = 0.05 r = 0.2 r = 0.4 r = 0.6 r = 0.8 r = 0.95
Constant rate policy

N = 10 1.9855 2.8636 6.1334 19.6791 29.9141 32.6736
N = 20 1.9855 2.8636 6.2215 36.4278 63.0056 66.0000
N = 30 1.9855 2.8636 6.2222 52.5529 96.3334 99.3333

Discouraged rate policy
N = 10 1.9661 2.4909 3.3917 4.9640 9.2520 26.4841
N = 20 1.9661 2.4909 3.3917 4.9640 9.2521 34.3299
N = 30 1.9661 2.4909 3.3917 4.9640 9.2521 34.4109

Table 3: The mean waiting time.

r = 0.05 r = 0.2 r = 0.4 r = 0.6 r = 0.8 r = 0.95
Constant rate policy

N = 10 5.3188 6.1970 9.4668 23.2257 33.2474 36.0069
N = 20 5.3188 6.1970 9.5548 39.8809 66.3389 69.3333
N = 30 5.3188 6.1970 9.5556 55.9326 99.6668 102.6667

Discouraged rate policy
N = 10 5.2995 5.8242 6.7251 8.2973 12.5853 29.8175
N = 20 5.2995 5.8242 6.7251 8.2973 12.5854 37.6633
N = 30 5.2995 5.8242 6.7251 8.2973 12.5854 37.7442

Table 4: The mean spending time.

a discrete-time basis. In fact, this paper presents two examples applied to the
industrial and services sectors. Furthermore, the optimal control of the buffer
size has been investigated in order to minimize a cost model, what represents a
main objective from the enterprise point of view.

On the other hand, the mathematical importance is in the direct resolution of
the systems of equations, since we find explicit formulae for the stationary prob-
abilities of the system size, of the waiting/spending time in the FCFS system and
of the unfinished work. From the solutions we can obtain, among others things,
all the moments for the stationary distributions of the number of customers in
the system and in the waiting line, the measures of effectiveness,. . .Moreover,
the formulae of the finite buffer can be used for the approximate calculus of
the stationary features of the respective queueing systems with infinite buffer
capacity (for values of N large enough).
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[11] Gravey, A. and Hébuterne, G. Simultaneity in discrete-time single server
queues with Bernoulli inputs. Performance Evaluation 14, 123-131 (1992).

[12] Haskose, A., Kingsman, B.G. and Worthington, D. Modelling flow and
jobbing shops as a queueing network for workload control. International
Journal of Production Economics 78, 271-285 (2002).

17

Page 17 of 23

Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK

Submitted Manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

[13] Haxholdt, C., Larsen, E.R. and Van Ackere, A. Mode locking and chaos
in a deterministic queueing model with feedback. Management Science 49,
816-830 (2003).

[14] Hunter, J.J. Mathematical techniques of applied probability. Vol. 2.
Discrete-time models: techniques and applications. Academic Press, New
York (1983).

[15] Ikeda, Z. and Nishida, T. M/G/1 queue with balking. Mathematica Japon-
ica 33, 707-711 (1988).

[16] Kapur, P.K., Garg, R.B., Sehgal, V.K. and Mishra, G.D. Numerical com-
putations of discrete-time solutions for a multi-server queue with balking
and reneging. Asia-Pacific Journal of Operational Research 13, 1-15 (1996).
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For Peer Review

(a) Constant rate policy.

(b) Discouraged rate policy.

Figure 6: The buffer capacity is N = 3 .
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For Peer Review

(a) The mean system size µs versus r .

(b) The balking probability α versus r .

Figure 7: The effect of the parameter r .
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For Peer Review

(a) Constant rate policy.

(b) Discouraged rate policy.

Figure 8: The variance σ2s of the random variable “system size” versus r .
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