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Abstract:

Technology involving genetic modification of crops has the potential to make a 
contribution to rural poverty reduction in many developing countries. Thus far, 
pesticide-producing ‘Bt’ varieties of cotton have been the main GM crops under 
cultivation in developing nations. Several studies have evaluated the farm-level 
performance of Bt varieties in comparison to conventional ones by estimating 
production technology, and have mostly found Bt technology to be very successful in 
raising output and/or reducing pesticide input. However, the production risk 
properties of this technology have not been studied, although they are likely to be 
important to risk-averse smallholders. This study investigates the output risk aspects 
of Bt technology by estimating two ‘flexible risk’ production function models 
allowing technology to independently affect the mean and higher moments of output. 
The first is the popular Just-Pope model and the second is a more general ‘damage 
control’ flexible risk model. The models are applied to cross-sectional data on South 
African smallholders, some of whom used Bt varieties. The results show no evidence 
that a ‘risk-reduction’ claim can be made for Bt technology. Indeed, there is some 
evidence to support the notion that the technology increases output risk, implying that 
simple (expected) profit computations used in past evaluations may overstate true 
benefits.
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Production Risk, Pesticide Use and GM Crop Technology in 

South Africa

I. Introduction

Genetically Modified (GM) crop technology is a potentially powerful addition to the toolkit 

for poverty alleviation in rural areas of developing countries. GM technology may provide 

answers to agricultural problems that conventional plant breeding methods have not been able 

to address adequately in the developing world (Nuffield Council for Bioethics (2003)). The 

promise held out is not restricted to larger, richer farmers; Given appropriate institutional 

conditions, GM technology is also seen as being capable of benefiting small, resource-poor 

farmers (FAO, 2004).

Bacillus Thuringensis (Bt) varieties of cotton and maize, first commercialized by Monsanto, 

Inc., are now the most widespread types of GM crops in the developing world. The Bt gene 

contained in Bt varieties produces a natural insecticide that acts specifically on a class of 

troublesome pests (notably bollworms) that regularly decimate crops in developing countries. 

Since its introduction in South Africa in 1998, Bt varieties, particularly of cotton, have been 

taken up by farmers in several other developing countries, notably the extremely populous 

and largely rural China and India. 

Rigorous farm-level performance evaluation of the first generation of Bt varieties has been 

conducted in the main adopting countries, and this first generation of results by and large 

indicate that Bt technology has been a noteworthy success. Two types of benefits have been 

reported, pesticide reduction and yield increase. In China, the extant level of pesticide use in 

cotton is very high, and pesticides are generally thought to be overused (applied beyond the 

economic optimum). In this case, the contribution of the Bt variety has been to enable a 
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substantial reduction in pesticide (over)use, with only a marginal effect on yields. These 

results have been reported and analyzed in Pray, et. al. (2001) and Huang, et. al. (2003). On 

the other hand, in South Africa and India, pesticide inputs are more likely to be underused 

(applied below the economic optimum) due to credit and labour availability constraints and 

market failure problems associated with the availability of timely supplies. Here, the 

contribution of the Bt variety has been to increase yields substantially, with modest changes 

in pesticide use. These results are reported and discussed in, among others, Qaim and 

Zilberman (2003); Thirtle, et. al. (2002); Shankar and Thirtle (2005); Qaim (2003); Qaim and 

de Janvry (2005).

All the studies mentioned above have undertaken their farm-level performance evaluation via 

the estimation of production technology, with a dummy variable representation for the use of 

Bt technology. Standard production functions have been estimated, in Qaim (2003), Qaim and 

Zilberman (2003) and Qaim and de Janvry (2005). ‘Damage Control’ production functions, 

which account for the special, damage abating nature of pesticide inputs and Bt technology, 

have been used in all the previous studies with the exception of Thirtle et. al. (2002). Thirtle 

et. al. instead used a stochastic frontier representation of technology. Almost without 

exception, these studies indicate superior performance of Bt varieties relative to local 

counterparts. 

Valuable as the information contained in these studies is, it is important to note that the 

representations of production technology used in the above studies do not consider the 

production risk element. Agricultural production is inherently risky, and smallholders in 

developing countries are likely very risk-averse. More complete production impact evaluation 

of inputs and technologies will therefore need consideration of their interactions with the 

riskiness of output. Thus it has been long recognized in the agricultural economics literature 

that it is important to allow inputs, particularly pesticides (and therefore technologies that 

embody pesticides, such as Bt), to freely affect variance and higher moments of output. 
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However, typically employed production functions, such as the Quadratic and the Cobb-

Douglas, do not allow production inputs and technologies to flexibly affect variance and 

higher moments of output (Just and Pope, 1979). This is also true of the standard damage 

control production functions (Saha, et. al., 1997) and stochastic frontier functions (Battese, 

Rambaldi and Wan, 1997). Thus these studies only consider the effect of technology on the 

expected value of output.

The objective of this paper is to help reduce this gap in knowledge about the production risk 

impact of Bt technology1. It accomplishes this by applying two ‘flexible risk’ production 

function models to the South African cotton smallholder data previously reported in Thirtle 

et. al. (2002) and Shankar and Thirtle (2005). The first model, which applies a Just-Pope 

production function (Just and Pope, 1979) to the data, is seen as a preliminary step prior to the 

application of a second, more complex model. This second model is an adaptation of Saha et. 

al.’s (1997) model which incorporates flexible risk properties while retaining the ‘damage 

control’ representation of pesticides and Bt technology. From both models, we simply wish to 

test the hypothesis that Bt technology reduces yield (output) risk. To our knowledge, no 

previous studies have empirically measured the production risk properties of Bt technology in 

a developing country setting. 

If the risk-reduction hypothesis is confirmed, GM technology can be said to possess an 

additional ‘insurance’ function beyond the pesticide reduction/yield increase attributes 

analyzed before. The benefits from the technology would then include a positive risk 

premium obtained in addition to benefits (expected value of profits) obtained from mean 

output increases. On the other hand, a risk-increasing result would imply that computed 

profits overstate the true benefits from the technology. Thus the study of the risk properties is 

important for more complete impact evaluation of Bt technology.
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Section II proceeds by considering the analytic insights available from previous literature on 

how pesticides, and thus Bt technology, may affect risk. Section III sets out the empirical 

framework, and section IV presents and discusses the results. Section V concludes and offers 

suggestions for future work.

II. Analytical Background

The simple bioeconomics of pesticides and risk

Bt technology embodies a pesticide, and hence notions relating to the risk effects of Bt 

technology are parallel to those concerning conventional pesticides. While there is intuitive 

appeal on the surface to suggest that pesticides should decrease risk, Pannell (1991) suggests 

that this is misleading, and several empirical studies instead find a risk-increasing effect (eg.

Antle (1988); Horowitz and Lichtenberg (1993)). Horowitz and Lichtenberg (1994) provide 

an elegant exposition explaining why a risk-increasing effect is at least as plausible as a risk-

decreasing effect. We lean heavily on their exposition in heuristically outlining the arguments 

below.

Consider a production function, f(z, x, e), where z is pesticide input, x is a vector of all other 

inputs, and e is random production error. Without loss of generality, suppose e is ordered 

from bad states of nature to good states of nature, implying fe(z, x, e) > 0 where the subscript 

denotes the partial derivative. We would expect pesticide to not decrease output in any state 

of nature, i.e., fz(z, x, e) > 0. Risk averse producers may be characterized as choosing (z, x) to 

solve Max ∫U(pf(z, x, e) - wzz – wxx)de , where U(.) is the utility function, p is output price, 

wz is pesticide price and wx is the vector of other input prices. Then input z can be said to be 

risk-decreasing (increasing) if fze(z, x, e) < 0, i.e., z increases output more in bad (good) states 

of nature than in good (bad). Quiggin (1991) demonstrates that this definition is equivalent to 

alternative definitions of risk-decreasing (increasing) inputs used in the literature, such as that 
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more risk-averse producers use more (less) of risk-decreasing (increasing) inputs than less 

risk averse producers, all else equal. If e mainly represented randomness of pest density, then 

we have the conventional wisdom that pesticide and Bt technology should be risk-decreasing, 

since they raise output more in bad states of nature, i.e., when pest density is high. 

Intuitive as this logic seems, Horowitz and Lichtenberg (1994) show that it is untenable when 

alternative or multiple sources of uncertainty are considered. In developing country 

agricultural situations such as the rainfed cotton cultivation case we consider, rainfall, or crop 

growth conditions more generally, are at least as important as sources of randomness as pest 

density. In a situation where pest density is relatively stable, but there is considerable 

uncertainty over rainfall, rainfall becomes the main source of randomness in e. In such a case, 

during the good states of nature (high rainfall) there is more crop to save given the pest 

density, and pesticides raise output more in this good state of nature, making pesticide a risk-

increasing input. In many agricultural situations, both sources of randomness, pest density and 

rainfall, are important. More so, they are likely to be negatively correlated, i.e. pest density is 

high (bad state of nature with regard to pest density) when rainfall is high (good state of 

nature with regard to rainfall). In cases of strong negative correlation between these two, 

Horowitz and Lichtenberg’s analysis suggests again that pesticides are likely to be risk-

increasing. 

Thus, we are able to take away two major lessons from this previous literature:

(i) The risk effect of pesticides and Bt-technology can differ from situation to situation, and is 

a matter for empirical determination in any given situation, and

(ii) It may be important to explicitly account for multiple sources of randomness in empirical 

analysis. 

Note, however, that even though the above bioeconomic framework goes significantly beyond 

the standard production framework in its consideration of risk, ground realities can be more 
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complex still. High rainfall may not always represent a good state of nature even in the 

absence of pest considerations. The effect would depend on the amount of rainfall at various 

stages of plant growth. Rainfall and pest control interactions may also be affected by 

considerations such as pesticide wash-off caused by high rainfall. In Makhathini, there is 

anecdotal evidence that the latter effect might have occurred in the season for which our 

analysis has been conducted. However, consideration of such effects requires much more 

detailed data than are available to us, and is thus beyond the scope of this paper. Work by 

Antle (1983; 1988) provides an example of how pest control input determination can 

be viewed as a sequential problem, and how data from multiple stages during the 

season can be used to enhance empirical production models.

Risk and damage abatement properties of production functions

Conventional production functions are incapable of displaying flexible risk properties. 

Production functions additive in the error term, such as the Quadratic, do not allow inputs to 

either decrease or increase risk. In other words, where f(z, x, e) = g(z, x) + e, fze = 0. Those 

with mutiplicative exponential error terms, such as the Cobb-Douglas and the Translog only 

allow risk-increasing effects, i.e., where f(z, x, e) = g(z, x)expe, fze > 0. Apart from their 

inflexibility in allowing the data to determine risk properties, these production functions also 

lump all sources of randomness into a single error term. Another critical shortcoming for 

agricultural applications is that they treat all inputs symmetrically, not accounting for the 

special nature of inputs like pesticides. The last point is also true of ‘stochastic production 

functions’ such as the Just-Pope production functions, y = q(z, x) + h(z, x)e, which are able to 

allow flexible risk properties, but do not account for the special, damage abating nature of 

pesticide inputs.
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Lichtenberg and Zilberman (1986) presented a critique of traditional production functions, 

and offered an alternative, more intuitive way to model the role of pesticide in the agricultural 

production process. Drawing inspiration from the bioeconomic literature, they posited that 

pesticides belong to a class of ‘damage control’ inputs. Damage control inputs are different 

from conventional inputs in that they affect output only indirectly, by reducing the extent of 

damage in the event that damage occurs. In contrast, conventional inputs such as fertilizer and 

labour increase output directly.

If y denotes output, x is a vector of ‘conventional’ inputs, and z is the damage control 

(pesticide), then y = f( x, g(z) ), with f(.) concave in x and g(z). g(z), the ‘abatement function’, 

is defined on the [0, 1] interval and is increasing in z. as z increases, 1)z(g   and 

)x(fy  , i.e., a greater part of maximum potential output is realized.  As z decreases, 

0)z(g  , and )0,x(fy  , i.e., output falls towards the level consistent with maximum 

destructive capacity. For reasons of econometric identification, the practice in empirical work 

is to simplify the damage control function to a proportional one, i.e., y = f(x)g(z).

In the context of pest management, the above specification implies that as pesticide input z 

increases, abatement 1)z(g  , and at the limit y = f(x), i.e., there is no destruction due to 

pest damage and maximum potential output is realized. As pesticide application declines 

towards 0, 0)z(g  , and 0y  . Since y is now proportional to g(z) and g(z) is between 0 

and 1, g(z) represents the percentage of maximum potential output realized for a given level 

of pesticide use, z. Since g(z) lies in the [0,1] interval, a choice of several cumulative 

distribution functions is available to model g(z), with the Weibull, Exponential and Logistic 

widely used in applications. Where the damage control representation is appropriate, 

Lichtenberg & Zilberman demonstrate that using conventional specifications can lead to 

serious bias and erroneous conclusions about the productivity and use efficiencies of 

pesticides as well as the other conventional inputs included in the analysis.
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As discussed before, most of the Bt cotton evaluation papers have accordingly used damage 

control specifications in their analysis. However, even though this corrects the potential bias 

caused by the special nature of pesticide inputs, it does not provide flexibility with regard to 

risk effects. It is easy to show that the usual damage control functions cannot allow mean and 

variance effects of inputs (or technologies) to be qualitatively independent of each other. 

Damage control specification with flexible risk properties

The above discussion points to the need for a specification that allows a damage control 

characterization for pesticide and Bt technology, flexible risk properties for the input and the 

technology, and explicit accounting for multiple sources of uncertainty. Saha, Shumway and 

Havenner (1997) present such a model (henceforth referred to as the SSH model), which we 

use as the main basis for our empirical work. Their model is described briefly below.

The SSH production function is described by:

y = f(x, β) g(z, α, e) exp(ε) (1)

Here, β is a vector of parameters attached to the ‘conventional’ inputs in x, while α is the 

parameter vector attached to the ‘damage control’ inputs in z. A key difference relative to the 

ordinary damage control function specification is that (1) contains two error terms: e, attached 

to the damage control function g(.), that represents pest and pesticide application related 

randomness, and ε, related to randomness in crop growth conditions such as rainfall 

variability. e and ε are allowed to be correlated. The SSH model makes two key assumptions 

that facilitates the identification and estimation of the model: (i) The damage control function 

is specified as g(z, α, e) = exp[-A(z, α)e], where A(.) is a continuous and differentiable 

function, and (ii) ε ~ N(0, 1), e ~ N(μ, 1) and cov(ε, e) = ρ. This specification gives:
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In(y) ~ N[ ln f(.) – μA(.),  B(.)] (2)

where B(.) ≡ [1 + A(.)2 – 2A(.)ρ]. A log-likelihood function can be easily derived under this 

specification, and estimation can use standard nonlinear optimization methods. One 

implication of the SSH model is that output is distributed lognormally. Although there may be 

other parametric distributions that describe farm output better, the lognormal does have a 

history of farm output applications (e.g. Sherrick, et. al, (2004); Saha et. al., (1997); 

Tirupattur, et. al. (1996)). Most importantly, Saha, et. al. demonstrate that marginal effects of 

inputs and technologies contained in g(.) on the variance of output can be either positive or 

negative, and independent of the marginal effects on the expected value of output. In other 

words, flexibility with respect to risk is achieved while retaining the damage control 

specification. 

Two comments are worth making at this stage:

(i) With the two error terms as specified in (1), the SSH model has a resemblance to 

stochastic frontier models. Indeed, all damage control production functions are similar in 

spirit to stochastic frontier models, since both types of models posit a maximum possible 

output f(x), with firms achieving some proportion of that output. The SSH model is closer to 

stochastic frontier specifications, given that it incorporates two, instead of one, error terms. 

However, standard stochastic control specifications do not allow correlation between the two 

error terms. 

(ii) We have started referring to marginal effects of inputs and technologies on variance, 

rather than on risk. As is well known, these are not generally equivalent. It is fully 

acknowledged here that theoretical assumptions are necessary to obtain equivalence. The first 

model we use, the Just-Pope production function, assumes normality of output. With this 

model, variance and risk effects are equivalent since the normal follows the location-scale 

condition of Meyer (Meyer (1989); Leathers and Quiggin (1991)). In the SSH model, output 
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is lognormally distributed. The lognormal does not follow the location-scale condition in spite 

of its two-parameter nature. However, if the utility function is characterized by constant 

relative risk aversion (CRRA) and the random variable is lognormally distributed, Newberry 

and Stiglitz (1981) show that the necessary equivalence is obtained. Thus we invoke the 

CRRA assumption. While the assumption is open to debate (see Wik, et. al. (2004) and 

Miyata (2003) for a discussion of and evidence against this assumption in agricultural 

settings) we note that CRRA is often employed in analysis in agricultural economics (e.g.

Myers (1989); Pope and Just (1991)).

III. Empirical Matters

Empirical setting

The empirical focus is on cotton growing smallholders in Makhathini flats, Kwa-Zulu Natal, 

South Africa (described extensively in Ismael et. al. (2002); Gouse, et. al. (2002)). About 

3,000 Zulu smallholders growing rainfed cotton in Makhathini Flats, and another 500 in 

Tonga, in Mpumalanga together account for about 98% of smallholder cotton grown in South 

Africa (Hofs and Kirsten, 2002).  In 1998/99, with strong support provided by a private input 

supply company called VUNISA, a few smallholders in Makhathini Flats started planting a Bt 

cottonseed variety, NuCOTN 37-B.  This insecticide produced by this variety provides 

resistance to bollworm, which is the most troublesome class of pests in the area, followed by 

cotton aphids and jassids. The Bt gene, used by Delta Pineland in developing NuCOTN 37-B, 

belongs to Monsanto. In addition to a premium payable per bag of Bt seed over conventional 

seed, Bt users also pay a technology fee.  At the time of the data collection for this research, 

VUNISA Cotton was the sole supplier of seed, chemicals and support services for the farmers 

through their extension officers, including credit for land preparation, chemicals and seed, 

based on their credit history.  VUNISA bought cotton from the farmers at prices fixed by 

Cotton South Africa, but has faced competition from a new gin since 2002. Diffusion of the 

technology was very rapid in the initial years, with some estimates putting the adoption rate at 
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90% by 2002/03. Reports suggest that significant disadoption has occurred since then due to 

the removal of institutional support (credit and buy-back guarantees initially offered by 

VUNISA). 

Agriculture is the main livelihood source in Makhathini. Smallholder farms grow between 1

and 3 hectares of rainfed cotton. Some maize and beans are grown, predominantly for

subsistence, but cotton occupies the most acreage and is the main source of cash income.

Smallholder cotton cultivation in the area is marked by relatively low yields. Irrigated cotton 

yields in China, for example, are on average in excess of 3000 kg/ha, while smallholder dry 

land cotton yields in Makhathini seldom exceeded 600 kg/ha prior to the introduction of Bt 

technology. Lack of irrigation is a major constraining factor.

Data

The dataset for the 1999-00 cotton season that we use has been discussed in detail by Thirtle 

et. al. (2003) and Shankar and Thirtle (2005), and so we restrict ourselves to a brief sketch. 

Survey data were originally obtained on 100 Makhatini cotton smallholders. After deletion of 

observations with missing values, and removal of outliers, 86 observations were used in 

analysis here, with 58 Bt adopters and 33 non-Bt farmers. The data included quantities of 

inputs and outputs, cost and revenue information for the cotton crop, as well as information 

on a set of socio-economic variables. Sample means for the key variables are presented in 

Table 1.

Table 1 about here.

Information in Table 1 reveals that Bt provided a substantial yield advantage in the year 1999-

2000. It also enabled pesticide application to be lowered considerably. Note that adoption in 

Makhathini flats was characterized by complete adoption or non-adoption (Thirtle, et. al., 

2003), i.e. the data do not contain partial adopters. One additional aspect of interest is that the 
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adopters on average had a significantly larger farm size. This reflects a policy adopted by 

VUNISA of targeting larger farmers in the early years (Shankar and Thirtle, 2005) and is 

further discussed below in the context of selectivity issues in estimation.

Estimation details:

All the production functions estimated in this article assume constant returns to scale and use 

a per-hectare specification for output and variable inputs. This is in line with most of the 

previous literature on Bt cotton impact assessment cited before, and also helps attenuate 

multicollinearity problems resulting from strong correlation between land and variable inputs 

such as pesticide and seed. Also, logic dictates that farm level applications of damage control 

models should specify at least pesticide input on a standardized (per-hectare), rather than on a 

whole farm basis. Since the abatement function g(z) is a proportion, expressing z on a whole 

farm basis would give misleading results. Henceforth, when we refer to the output y or the 

input sets (x, z), the implication is that all of these are expressed on a per-hectare basis.

The first model applied to the data is the Just-Pope production function, given by 

y = q(z, Bt, x, α) + h(z, Bt, x, β)e, e ~ N(0, 1) (3)

Here, Bt represents a dummy variable, 1=Bt adopter, 0=non-adopter, and the rest of the 

notation is as before. Under this Just-Pope setup, expected value of output, E(y) = q(z, Bt, x), 

while variance of output V(y) = h2(z, Bt, x), allowing all inputs as well as Bt technology to 

affect output variance independently of effects on the mean of output. 

Cobb-Douglas forms are used in q(.) and h(.), i.e.                                                                                                                                          

     (4)

Bt
pestlabfertseed

Btpestlabfertseed exp)z()x()x()x(A(.)q 

Bt
pestlabfertseed

Btpestlabfertseed zxxxBh  exp)()()()((.) 
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In (4), xseed, xfert, xlab and zpest represent seed, fertilizer, labour and pesticide inputs, 

respectively, Bt is the Bt dummy variable, and (A, B, α, β) is the parameter set to be 

estimated. Although the Cobb-Douglas form is restrictive, it proved to be the most practical 

choice for estimation here due to the relatively small sample size. Besides the problem with 

conserving degrees of freedom, alternative forms such as the quadratic and the translog were 

found to worsen extant collinearity problems. 

The estimation of (3) was accomplished using the three-step process originally described by 

Just and Pope (1979). Suppose i indexes the farmers. First, a nonlinear least squares (NLS) 

regression yi = q(zi, Bti, xi, α) + ei* was estimated, resulting in first round estimates of α. 

Given (3), this is a heteroskedastic regression.  The second step involved an OLS regression 

of ln|ei*| (using ei* estimated from the first step) on ln [h(zi, Bti, xi, β)], to provide estimates of 

β. Finally, a NLS regression of                                       

produced revised estimates of  α . Just and Pope (1978) show that the resultant estimates are 

consistent and asymptotically efficient.    

 The SSH model features have already been described in section II. To recap, we estimated 

yi = f(xi, β) exp[-A(zi, Bti, α)ei]exp(εi),     εi ~ N(0, 1), ei ~ N(μ, 1), cov(εi, ei) = ρ       (5)

Saha, et. al. (1997) derive the loglikelihood function (LLF) for this model, given by:

LLF(α, β, μ, ρ) = 






 


i i

2
iii

i (.)B

](.)A(.)flny[ln
(.)Bln

2

1
2ln

2

n
(6)

where Bi(.) ≡ [1 + Ai(.)
2 – 2Ai(.)ρ]. We estimated the parameter vector (α, β, μ, ρ) by 

maximizing (6) directly. 

)ˆ,Bt,z(h),Bt,z(qon)ˆ,Bt,z(hy ii
1

iiii
1

i β,xα,xβ,x iii
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Alternative functional forms were experimented with for f(.) and A(.) 2, and a decision was 

made to use Cobb-Douglas forms for both functions. Ease of convergence in nonlinear 

estimation was a key factor in making this decision. Saha et. al. in their original application 

used a Cobb-Douglas form for f(.) and a linear form for A(.). Note, however, that a linear 

form sits uneasily with the abatement function interpretation of exp[-A(.)]. To take a simple 

example, if A(z, α) = α0 + α1z, to keep abatement within the [0,1] interval and to have a 

positive marginal product for z, it would be necessary to have α0 > 0 and α1 < 0. However, the 

implication then is that beyond a certain value for z, A(.) would become negative, and 

abatement exp[-A(.)] > 1. The Cobb-Douglas form improves on the linear specification in this 

regard3, and also has the virtue of parsimony.

Selectivity

Selectivity can be a serious issue in production function estimation of farm-level impacts of a 

technology using cross-sectional data. While survey datasets such as the one used in this 

research may contain information on both adopter and non-adopters, there is usually no 

random assignation of individuals into such groups.  There is then the very real possibility 

that adoption patterns of individuals are related to their productivity patterns. Often, ‘better’ 

or more efficient farmers, who are able to get more output out of a given technology and a 

given set of inputs, are also the ones to adopt technologies that improve productivity.  Thus 

production function estimation using cross-sectional data is likely to exaggerate the impacts 

of technology adoption, confounding the inherent efficiency of adopting farmers with the 

actual performance of the technology itself.

Selectivity is an issue to be considered seriously in farm-level GM crop impact estimation as 

well. However, there has been surprisingly little explicit attention devoted to this issue in the 

literature. Where panel data are available, it is possible to control for farmer-specific effects, 

thereby isolating the technology effects accurately. In a cross-sectional context, one solution 

is to use Heckman’s correction, where inverse Mills ratios derived from first step adoption 
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probit models can be used to correct selectivity bias in second step production function 

estimation. A common problem with this strategy, however, is that instruments derived from 

adoption probits are often poor.

However, as Barnow, Cain and Goldberger (1980) point out, assuming the effects that cause 

the sample selection problem are observable, including those variables in the outcome 

regression would correct for the sample selection problem. This standard regression based 

method has been called ‘ignorability of treatment’ (Rosenbaum and Rubin, 1983), and 

‘selection on observables’ (Heckman and Robb, 1985) in the literature. Loosely, treatment is 

random/ignorable conditional on those variables that affect both selection and outcomes. In 

Makhathini, Shankar and Thirtle (2005) have argued that farm size was the main variable 

determining adoption. VUNISA launched the technology by promoting it to larger farmers in 

the initial years, with the expectation that smaller farmers would be picked up via copy 

adoption in later years. Indeed, farm size was the only strongly significant variable in 

adoption models reported by Thirtle et. al. (2003) and Shankar and Thirtle (2005). Thus, 

inclusion of a farm size variable in our production function regressions may be an effective 

control for any existing selectivity. Other socio-economic variables such as farmer education 

and age have also been used in production functions estimated in the Bt cotton literature (eg. 

Qaim 2003; Qaim and de Janvry, 2005). A similar set was used in initial runs in this research. 

However, these other variables were largely insignificant in all regressions. The farm size 

variable alone was retained in the final set of estimates, because of farm size being a potential 

determinant of yields and also because of its role in selectivity control.

IV. Results

Just-Pope production function results
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As noted before, the first step (mean) regression in the three-step procedure is implicitly a 

heteroskedastic regression. We therefore tested for heteroskedasticity in the first step. Two 

tests were carried out, White’s (1980) test and Breusch & Pagan’s (1979) test. In both tests, 

the test statistic is distributed as chi-squared under the null hypothesis of no 

heteroskedasticity. The White test makes no assumptions about the form of the 

heteroskedasticity and simply tests H0: σ2
i = σ2 for all i against H1: Not H0. The Breusch-

Pagan test on the other hand is a Lagrange multiplier test that assumes that if any 

heteroskedasticity exists, the error variance varies with a set of regressors. In our case, the 

natural set of regressors to use is the set of regressors used in the variance regression step of 

the Just-Pope function, i.e., a constant, the three variable inputs, farm size, and the Bt 

adoption dummy. The White test value was 56.82, which is considerably in excess of the 95% 

level chi-square critical value of 38.80. Thus the White test strongly rejects the null 

hypothesis of homoskedasticity. The Breusch-Pagan test value was 25.83, which is also 

substantially higher than the 95% level chi-square critical value of 11.07 with 5 degrees of 

freedom. The Breusch-Pagan test thus bolsters the evidence provided by the White test that 

the null hypothesis of homoskedasticity can be rejected, and provides further rationale for the 

investigation of how output variance or risk is affected by inputs and technology.

Table 2 presents the estimates of the mean and variance portions of the Just-Pope production 

function, following implementation of the three-step procedure outlined earlier. Even though 

the mean portion is estimated as a Cobb-Douglas function with an additive, instead of the 

usual exponential error term, it retains an elasticity interpretation. Thus the elasticities of 

expected value of yield with respect to the variable inputs are all positive and have plausible 

values, although the seed elasticity is insignificant. Increasing farm size is seen to have a 

depressing effect on the expected value of yields, although the parameter is significant only at 

the 10% level. The Bt dummy variable parameter is the most strongly significant of all, and 

the positive value confirms previous findings that Bt varieties provide a strong boost to 

(expected value of) yields. 
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Table 2 about here.

The variance effects of the inputs, seen in the bottom half of the table, are however far weaker 

as estimated by the Just-Pope model. A positive (negative) coefficient sign indicates a risk 

increasing (decreasing) effect for the input it is attached to. Seed is seen to be the only 

variable input with a statistically significant effect on output variance, and that only at the 

10% level. The positive sign of the pesticide coefficient indicates a risk increasing effect for 

the input. However, it is insignificantly different from zero. The Bt dummy on the other hand, 

bears a negative sign indicating a risk-decreasing effect, but is even more strongly 

insignificant. Opposing signs for the pesticide and Bt dummy are not in line with 

expectations4, and along with the very low t-ratios suggest that the Just-Pope model cannot 

confirm any strong evidence for the hypothesis that Bt technology reduces risk. 

However, noting again that the Just-Pope function is estimated only as a preliminary step in 

the investigation of risk properties, and that it does not have a damage control specification 

appropriate for the pesticide and Bt variables, we now turn to results obtained from the SSH 

model.

SSH model results

Table 3 presents results from the SSH model. For comparison, we also present results from a 

damage control model obtained by imposing restrictions on the SSH model in (5), i.e., 

yi = f(xi, β) exp[-A(zi, Bti, α)]exp(εi),     εi ~ N(0, σ2) (7)
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With its single error term specification, potential output function f(.) and abatement function 

exp[-A(.)], (7) is a traditional damage control function. It can allow only risk-increasing 

inputs and technologies, in contrast to the SSH model, (5), which allows the data to determine 

the risk effects of inputs and technologies. This damage control model was estimated using 

nonlinear least squares.

Table 3 about here

The labour and seed production elasticities from the two models, seen in the top half of Table 

3, are not substantially dissimilar to the mean function estimates produced previously by the 

Just-Pope model. However, the SSH model produces a somewhat lower and statistically 

insignificant estimate for the seed coefficient, 0.16, compared to the significant 0.22 under the 

damage control model. The farm size effect is seen to be indistinguishable from zero under 

both models. An obvious a-priori expectation is that pesticide input and Bt technology should 

not reduce abatement. Equivalently, ∂y/∂zpesticide ≥ 0 and (y|Bt – y|NonBt) ≥ 0, all else held equal.

For these to hold, it can be verified that the coefficients attached to pesticide input and the Bt 

technology dummy in the two models need to be non-positive. As can be seen from the table, 

this is indeed so. In both models, the negative valued coefficients αpesticide and αBt are also 

significant at conventional significance levels, although these coefficients seem more 

precisely measured with the damage control model. 

As Saha, et. al. note, a necessary condition for rejecting the SSH model in favour of the 

damage control one is the restriction ρ=0 where ρ is the covariance between the two random 

variables e and ε, since one of the random variables is missing in the damage control model. 

Table 3 shows that the estimated value of ρ is highly significant, with a t value of 25.89. Thus 

we cannot find evidence to support discarding the SSH model in favor of the simpler damage 

control model. ρ has a positive value of 0.86. This positive correlation between pest density 
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random variable e and rainfall random variable ε would appear to contradict the earlier notion 

that e and ε should be negatively correlated. However, this is misleading. It can be calculated 

from (5) that ∂y/∂ε >0, i.e., the rainfall random variable is ordered from bad states of nature 

(poor rainfall) to good states (good rainfall). However, ∂y/∂e<0, i.e., the pest density random 

variable is ordered from good states of natures (low pest density) to bad (high pest density) in 

the SSH model (5). Therefore, ρ should indeed be positive. Our finding of a positive, strongly 

significant value for ρ is thus consistent with the earlier interpretation of the two random 

variables in the model, and lends support for the SSH model in comparison to a simpler 

damage control alternative.

The mean and variance effects of pesticide input and Bt technology were calculated at the 

sample mean values of the variables. At the baseline, it was assumed that non-Bt technology 

was being used, and all other independent variables were being held fixed at overall sample 

mean values. Given this baseline, the pesticide effects were calculated as ∂E(y)/∂zpesticide  and 

∂V(y)/∂zpesticide, i.e., the marginal effects on expected yields and yield variance5 of a one unit 

increase in pesticide. The Bt technology effect is a discrete one, where the technology 

provides the equivalent of an unknown number of units of pesticide upon adoption. Thus the 

Bt effects were calculated as E(y)|Bt – E(y)|Non-Bt  and V(y)|Bt – V(y)|Non-Bt, with all other 

variables held fixed. These effects were calculated for both the damage control model and the 

SSH model. Approximate standard errors were also calculated using the Delta method. The 

results are reported in Tables 4 and 5.

Table 4 about here.

Table 5 about here.

Both models in Table 4 are seen to predict a positive and statistically significant effect of 

pesticide on expected yields. Indeed, these effects are almost identical across the models. 

Turning to the variance effects of a marginal increase in pesticide use, the damage control 
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model predicts an increase in the variance (risk). As discussed earlier, this is as expected, 

since the damage control model forces the variance effect to be in the same direction as the 

marginal product. However, the SSH model, which provides flexible risk effects, predicts the 

same qualitative risk effect, i.e. that pesticide increases risk. In fact, the increase in yield 

variance is significantly higher in the SSH model than in the damage control model, in 

response to the same marginal unit increase in pesticide.

Since Bt technology embodies a certain type of pesticide, the expectation is that the mean and 

variance effects of Bt technology adoption would be along the same lines as those for 

pesticide. This is verified in Table 5. Once again, the mean effects of Bt technology adoption 

are positive, strongly significant, and almost identical across the two models. Since Bt 

technology is likely to provide the equivalent of several litres of bollworm pesticide during 

the season, the technology effect is much stronger than that of a marginal unit of pesticide 

seen in Table 4. Under the damage control model, the variance effect of Bt technology is 

positive, i.e. risk-increasing, as expected. However, again the SSH model reaffirms this 

qualitative finding in a flexible risk setting. Under the SSH model, Bt technology adoption is 

found to increase risk. What is more, the increase predicted by this flexible risk model is more 

than ten times the quantitative increase found under the damage control model. Although 

there is some imprecision in the estimation of this effect under the SSH model, the effect is 

nevertheless significant at the 10% level.

Thus neither the Just-Pope model nor the SSH model is able to confirm a strong and 

statistically significant risk-decreasing effect for Bt technology. Therefore, the available 

evidence does not allow claim of this potentially valuable additional benefit for the 

technology in Makhathini. On the contrary, the SSH model predicts a strong risk-increasing 

effect. This is intuitively plausible given the bioeconomic theory of pesticide and risk 

discussed previously. We have noted before that cotton cultivation in Makhathini is rainfed, 

and that lack of irrigation is a major constraining factor. Under these circumstances, rainfall is 
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likely at least as important a source of randomness as pest density. Where rainfall is relatively 

low, there is less crop to protect, and Bt technology is relatively less effective. Where rainfall 

is relatively high, there is more crop to protect, and the technology is more effective in raising 

marginal cotton product. In other words, the technology in these circumstances is a ‘fair 

weather friend’. Even where the rainfall and pest density random variables are strongly 

negatively correlated in the Horowitz and Lichtenberg sense (strongly positively correlated 

from the SSH model perspective), Horowitz and Lichtenberg have shown that a risk 

increasing effect is likely. This strong correlation has been confirmed for our case, and is 

consistent with the risk increasing effect we find. 

V. Conclusion

This research has investigated an important, but previously unexplored, aspect of GM 

technology – it’s production risk aspects. Specifically, we have been interested in testing the 

hypothesis that Bt cotton technology reduces risk in South Africa, in addition to the 

(expected) yield-boosting effect measured and analyzed by previous studies. The risk notion 

is of importance in a developing country smallholder setting since small farmers have 

relatively few avenues available to shift risk. The risk aspect is also intimately tied up with 

notions of vulnerability that are given much prominence in the poverty literature.

Our review of the bioeconomics of pesticide and risk revealed that the risk effects of this 

technology can be hard to predict and are probably situation-dependent. Where multiple 

sources of uncertainty abound, such as rainfall and pest-density, depending on the relative 

importance of each random variable and the correlation between them, either risk-increasing 

or risk-decreasing effects can plausibly be found. The first model applied was a Just-Pope 

model that is the workhorse of production risk investigation. In accordance with the notion of 

multiple sources of randomness, we also chose to apply the SSH production function model 

that can display flexible risk effects in addition to accommodating two distinct sources of 

randomness and a damage control representation. 
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Our results showed that neither model can provide any support for the risk-reduction 

hypothesis. The Just-Pope model shows the risk effect of Bt technology to be insignificant, 

while the SSH model shows a strong, statistically significant risk-increasing effect. This is 

consistent with the notion of rainfall being a key source of randomness in irrigated 

smallholder cotton production. Thus a plausible interpretation of the results is that Bt 

technology best produces its effects in Makhathini when the going is good, i.e., when the 

crop-growth conditions (rainfall) are good.

It must be emphasized that this research is just one preliminary piece in a potentially larger 

puzzle concerning GM technology and production risk. There are a number of limitations to 

this study, and there is much scope for future investigation. Firstly, risk effects are almost 

certainly situation dependent, and so similar applications to other parts of the world are 

warranted. Secondly, we have only used cross-sectional data6, and further analysis with panel 

data models can provide richer specifications controlling for heterogeneity and selectivity, if 

present. To provide an example of how panel specifications might be important, note that one 

potential cause of correlation between the random variables e and ε is individual 

heterogeneity. Lacking panel data, we have been unable to control for such heterogeneity and 

have simply interpreted the correlation in terms of natural production randomness. The Bt 

cotton evaluation literature has thus far avoided proper panel-data analysis, even where such 

data were available, possibly because of the difficulty of including heterogeneity effects 

within nonlinear models such as the damage control ones commonly applied. However, 

multiplicative panel data models (Wooldridge, 1997) have potential in this regard, and 

Carpentier and Weaver (1999) have shown how these can be adapted to damage control 

models. Thirdly, we have only calculated the risk effects of the technology, but have not been 

able to further explore implications for the smallholders. This is due to a lack of data for this 

study, but where household wealth data are available, it is possible to compute welfare 

equivalents of the increased risk for individuals in the data set or for representative agents.
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Table 1. Summary Statistics by Adoption Category, 1999/2000

Non-adopters Adopters
Mean Std. Dev. Mean Std. Dev.

Output (kg) 1293.5 1644.2 2200.0 1533.8
Labour (days) 18.5 8.5 22.0 9.1
Seed (25 kg bags) 1.9 1.3 2.2 2.1
Pesticide (litres) 8.6 8.5 7.2 6.3
Land (hectares) 3.9 2.9 6.1 5.8
Age (years) 44.4 10.3 46.6 8.3
Farmsize (hectares) 4.8 3.4 7.3 6.0
Yield (kg/ha) 330.3 206.3 482.9 252.8
Labour per ha. (days/ha) 6.1 4.4 5.8 3.9
Seed per ha (bags/ha.) 0.6 0.3 0.5 0.3
Pesticide per ha 
(litres/ha)

2.4 1.2 1.6 1.0
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Table 2. Just-Pope Production Function Estimates±

Parameter Estimate t Value
             Mean Regression

αfarmsize -0.11 -1.67*
αlabour 0.25 2.44**
αseed 0.20 0.87
αpesticide 0.20 2.00**
αBt 0.12 4.77***

            Variance Regression
βfarmsize -0.01 -0.06
βlabour -0.04 -0.15
βseed 0.44 1.74*
βpesticide 0.15 0.75
βBt -0.06 -0.24
± * implies significance at 10% level, ** at 5% level, *** at 1% level.
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Table 3. SSH model estimates±

Damage Control 
Model

SSH Model

Parameter Estimate t Value Estimate t Value

βlabour 0.25 2.28** 0.24 1.78*
βseed 0.22 1.91* 0.16 1.28
βfarmsize -0.03 -0.35 -0.03 -0.29

αpesticide -0.25 -2.86*** -0.29 -1.83*
αBt -0.87 -3.57*** -0.58 -2.43**

σ 0.49 12.57***
ρ 0.86 25.89***
μ 0.24 1.82*
± * implies significance at 10% level, ** at 5% level, *** at 1% level
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Table 4. Mean and Variance Effects of Pesticide±

Mean Effect: ∂E(y)/∂zpesticide Variance Effect: ∂V(y)/∂zpesticide

Damage control model 0.036 (0.0001) 0.006 (0.00001)

SSH model 0.040 (0.002) 0.040 (0.009)

± Approximate standard errors in parantheses.
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Table 5. Mean and Variance Effects of Bt Technology±

Mean Effect: 

E(y)|Bt – E(y)|Non-Bt

Variance Effect: 

V(y)|Bt – V(y)|Non-Bt

Damage control model 0.215 (0.004) 0.049 (0.0007)

SSH model 0.213 (0.019) 0.610 (0.336)

± Approximate standard errors in parantheses.
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Endnotes

                                                
1 Other dimensions of risk, such as price and marketing risk associated with Bt technology are 
recognised as important, but are beyond the scope of this paper.
2 Saha, et. al. (1997) also argued that a case can be made for including ‘conventional’ inputs such as 
labour in the A(.) function since they may also have a damage abating role. We tried including other 
variable inputs in A(.) but they were strongly insignificant and were therefore dropped.
3 Stochastic frontiers are more effective in ensuring that the proportion of potential output achieved 
stays within [0.1], by having a truncated distribution specification for the achieved proportion. They 
would be good candidates for modelling the problem specified here. However, the introduction of the 
correlation between the error terms complicates stochastic frontier estimation very considerably, as can 
be verified.
4 It is possible that occasional events like rainfall wash-off of pesticide can cause the technology and 
conventional pesticide application to have different qualitative risk effects. This is likely to be an 
exception rather than a rule, however.
5 Although the summary statistics table expresses output and yields in kilograms, the original dataset 
expressed these in bales of 200 kgs each. The latter unit, i.e, bales were used during econometric 
estimation. Those interested in the quantitative values of these estimates should multiply by 200 to get 
values in kilograms.
6 Another year of data (1998-99 season) for these Makhathini smallholders are available, as detailed in 
Thirtle et. al. (2003). However, this first year of data was collected more than one year in retrospect, ie, 
after the 1999-2000 season, jointly with data collection for 1999-2000. In our judgement, these data 
from long recall were almost surely too inaccurate to be worthy of inclusion in the analysis here.
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