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ABSTRACT

This paper applies parametric and non-parametric and parametric tests to assess 

the efficiency of electricity distribution companies in Germany. We address 

traditional issues in electricity sector benchmarking, such as the role of scale 

effects and optimal utility size, as well as new evidence specific to the situation in 

Germany. We use labour, capital, and peak load capacity as inputs, and units sold 

and the number of customers as output. The data cover 307 (out of 553) German 

electricity distribution utilities. We apply a data envelopment analysis (DEA) with 

constant returns to scale (CRS) as the main productivity analysis technique, 

whereas stochastic frontier analysis (SFA) with distance function is our 

verification method. The results suggest that returns to scale play but a minor role; 

only very small utilities have a significant cost advantage. Low customer density 

is found to affect the efficiency score significantly, in particular in the lower third 

of all observations. Surprisingly, East German utilities feature a higher average 

efficiency than their West German counterparts. The correlation tests imply a high 

coherence of the results.  

Keywords: Efficiency analysis, econometric methods, electricity distribution, 
benchmarking, Germany 

JEL Classification: L51, L43, L94, C14 

Page 3 of 45

Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK

Submitted Manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer R
eview

2

1. INTRODUCTION

Efficiency analysis has played a crucial role in defining regulatory policies, mainly 

in industries characterized by natural monopolies and/or by public ownership. 

Examples are telecommunication (e.g. Uri, 2001), transport (Coelli and Perelman, 

1998, 2000), energy (e.g. Jamasb and Pollitt, 2001, 2003), schooling (e.g. Mizala, 

Romaguera and Farren, 2002), hospitals (e.g. Steinmann and Zweifel, 2003), and 

even museums (e.g. Bishop and Brand (2003) using a stochastic analysis of 

museums in South Western England). Efficiency analysis is also increasingly 

applied for other sector-specific analysis, such as farming (e.g. Latruffe, et al., 

2004, on crop and livestock farms), banking (e.g. Färe, et al., 2004, and Hauner, 

2005), or the cement industry (Tsekouras and Skuras, 2005). In the electricity 

sector, efficiency analysis has played a particularly important role in the 

liberalization process towards a competitive industry structure and market-

orientated regulation, both in electricity transmission and electricity distribution. 

The objective of this paper is to assess the relative efficiency of decision-making 

units (here: electricity distribution companies), in order to generate information 

for an incentive-oriented regulation, with benchmarking and yardstick 

competition. 

Data envelopment analysis (DEA) and stochastic frontier analysis (SFA) are the 

most commonly used methods in the literature on benchmarking and efficiency 

analysis in the electricity sector. They have been particularly useful in the 

regulatory process in Great Britain, Switzerland, the Nordic States, the 

Netherlands, and Austria. Many authors concentrate on scale effects, and the 

optimal size and relative efficiency of utilities. Jamasb and Pollitt (2001) give an 
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extensive comparison of international efficiency studies for the electricity sector, 

stressing the importance of the proper variable choice. In a subsequent paper, 

Jamasb and Pollitt (2003) perform an international benchmarking study of 63 

utilities from six European countries comparing several SFA and DEA 

specifications. Although they determine a high correlation among the models, the 

results for single utilities differ noticeably. Using panel data of 59 Swiss 

distribution companies over eight years, Farsi and Filippini (2004) argue that 

different methodologies may lead to different results, but that the reasonable out-

of-sample “prediction errors suggest that panel data models can be used as a 

prediction instrument in order to narrow the information gap between the regulator 

and regulated companies” (p.2). In a similar panel data analysis for six Latin 

America countries, Estache, Rossi and Ruzzier (2004) also show that national 

regulators can reduce information asymmetry through cross-country efficiency 

analysis.  

Other examples of panel-data approaches are Burns, Davies and Riechmann 

(1999) with a dynamic benchmarking analysis for 12 regional electricity 

distribution utilities in Great Britain, Hjalmarsson’s (1992) analysis of Swedish 

electricity retail distributors, and the productivity study of Norwegian electricity 

utilities conducted by Forsund and Kittelsen (1998). Quality is recently explicitly 

taken into account and related to benchmarking in a study by Giannakis, et al. 

(2004) on the UK electricity distribution utilities. 

The present paper is the first productivity analysis of German electricity 

distributors to date. We address both traditional issues of electricity sector 

benchmarking, such as the role of scale effects and optimal utility size, as well as 
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new evidence specific to the situation in Germany. Regarding the latter, we 

consider the potential effects of three structural variables: consumer density, grid 

composition (cable versus aerial lines), and differences between East and West 

German distribution companies. Our empirical section thus follows the structural 

criteria set out by the German association agreements (“Verbändevereinbarung 

Strom VV II+”), a predecessor of the new energy law of 2005. The data cover 307 

(out of 553) German electricity distribution utilities.2

Our study is motivated by two factors: first, efficiency analysis in electricity 

distribution currently faces serious issues in determining whether there are 

significant returns to scale. The question arises whether or not smaller utilities do 

have systematically lower efficiency scores than larger ones, implying increasing 

returns (“big is beautiful”). Filippini (1998), Filippini, Hrovatin and Zoric (2004), 

and a number of other studies suggest significant economies of scale in “small” 

electricity distribution systems, e.g. Switzerland and Slovenia. Smaller utilities 

could reduce costs by merging and thereby extending their sub-optimal service 

territory size. This would suggest that the current, atomized structure of the 

German electricity utilities may be subject to structural change as well. Second, in 

the wake of liberalization, the German electricity industry is currently undergoing 

structural change from local monopolies to regulated competition. Observers 

suggest that liberalization will lead to a structural change of the sector, which has 

up to now comprised a large number of companies: four in high-voltage 

transmission, 56 in regional distribution, and 553 in local electricity distribution. 

These numbers contrast sharply with the U.K. system, for instance, which features 

only 13 regional electricity companies altogether. 

Page 6 of 45

Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK

Submitted Manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer R
eview

5

The next section briefly describes the institutional context of electricity sector 

reform in Germany. Section 3 presents our methodology and data. Results from 

the basic model, and from several extended models, estimated by using DEA and 

SFA are provided in Section 4; we also carry out a correlation analysis of different 

estimations. Section 5 concludes.  

2. ELECTRICITY SECTOR REFORMS IN GERMANY

Germany is the largest electricity producer and consumer in the European Union, 

and thus plays an important role in the liberalization of the sector launched by the 

European Commission in the mid 1990s. However, until recently, Germany has 

held the red lantern of the countries resisting European electricity deregulation, 

together with France and a few other countries. Subsequently the European Union 

has speeded up its attempts towards liberalization and vertical unbundling of the 

electricity sector. The so-called “acceleration directive” (2003/54/EC) requires 

legal unbundling of electricity distribution companies with more than 100,000 

connected customers, i.e. creating legally independent commercial units for 

generation, transmission, and distribution. This goes well beyond the former EU 

electricity directive 96/92. Given the slow progress of liberalization in most 

member states, the acceleration directive also calls for an intensification of 

regulatory oversight and the introduction of an explicit regulatory body in each 

country, responsible for regulating electricity distribution. A review of the 

implementation of the acceleration directive is scheduled for 2007. 

Consequently, in Germany the electricity industry will now be subordinated to ex-

ante regulation for the first time in its history. Under the former directive 96/92, 

Germany had implemented a model of negotiated access and had – to that end – 
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authorized industry self-regulation. The electricity industry and the large 

electricity consumers were given freedom to negotiate network access prices and 

conditions in so-called association agreements (“Verbändevereinbarungen”). 

Given the systemic information advantage of the electricity industry over the 

customers, and the hesitation of the German government to establish a sufficient 

countervailing power in a regulatory agency, self-regulation did not succeed in 

bringing prices down, or in establishing a significant level of competition. In its 

annual benchmarking reports, the European Commission has regularly criticized 

the German approach of self-regulation of network access charges (e.g. European 

Commission, 2003).3 The new German energy law, in force since July 2005, 

therefore set up a regulatory agency and required ex-ante regulation of network 

access. As observed in other countries implementing UK-style reforms, e.g. the 

Netherlands and Austria, the process of unbundling and the introduction of ex-

ante regulation are likely to lead to conflicts between the incumbent operators, 

potential market entrants, and the regulatory authorities. These conflicts revolve 

around the absolute level of access tariffs, the relative level, and non-tariff 

discrimination. 

Surprisingly, the literature on that issue in Germany is sparse: Riechmann (2000) 

investigates the efficiency of the 53 regional distributors in Germany with DEA 

and finds significant cost reduction potentials. Haupt, Kinnunen and Pfaffenberger 

(2002) compare network access prices of German electricity distributors and 

identify reasons for differences beyond the decision framework of the companies. 

They consider structural variables in order to take explicit account of regional 

specificities, for example settlement density and consumer structure; but they do 
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not include a comparative efficiency analysis. Growitsch and Wein (2005) try to 

explain the high network charges in German electricity distribution, but efficiency 

considerations are not included in the analysis. In a study for the German energy 

consuming industry, Frontier Economics and Consentec (2003) assess a sample of 

27 regional and local electricity distributors, using turnover as input, and peak 

load, units sold, and structural parameters as output. Interestingly, a regional 

distributor in East Germany was found to be on the efficient frontier, indicating 

that the traditional post-reunification bias towards higher costs in East German 

distribution may have decreased by now.  

3.   METHODOLOGY AND DATA

3.1. Methodology

To measure the relative efficiency of the German distribution utilities we use 

traditional data envelopment analysis (DEA) as well as stochastic frontier analysis 

(SFA), including the multi-output multi-input version of the distance function, 

mainly as a verification method. Our analysis is confined to the measurement of 

technical efficiency. DEA is a non-parametric approach determining a piecewise 

linear efficiency frontier along the most efficient utilities to derive relative 

efficiency measures of all other utilities. The efficiency scores can be obtained 

either within a constant returns to scale (CRS) approach or a less restrictive 

variable returns to scale (VRS) approach. The VRS approach compares companies 

only within similar sample sizes; this approach is appropriate if the utilities are not 

free to choose or adapt their size. Therefore we argue that the CRS approach is 

more relevant for our analysis. It assumes that companies are flexible to adjust 
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their size to the one optimal firm size at least in the German context. However, we 

also calculate the VRS model in order to report scale efficiency information, 

which is delivered by the difference between the CRS and VRS scores.  

The determination of the efficiency score of the i-th firm in a sample of N firms in 

the CRS model is equivalent to the following optimization: 

 

minθ,λθ

s.t. 

-yi + Yλ ≥ 0,

θxi – Xλ ≥ 0,

λ ≥ 0.

θ is the efficiency score, and λ a *1N vector of constants. Assuming that the 

firms use E inputs and M outputs, X and Y represent *E N input and *M N

output matrices, respectively. The input and output column vectors for the i-th 

firm are represented by ix and iy . The constraints ensure that the i-th firm is 

compared to a linear combination of firms similar in size. To determine efficiency 

measures under the VRS assumption a further convexity constraint ∑λ=1 has to be 

considered. The system is solved once for each firm (for details, see Jamasb and 

Pollitt, 2003, 1612, and Coelli, et al., 1998, Chapter 6). 

Calculations can be done using an input-orientation or an output-orientation. The 

input-orientation considers the output to be fixed so that the input has to be 

adjusted in order to maximize efficiency. In the output-orientation, inputs are 

considered fix and the objective is the maximization of output. Traditionally, 
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efficiency analyses in the electricity sector assume the output fixed in a market 

with the legal duty to serve all customers in a predefined service territory. In order 

to avoid potential errors of misspecification, we calculated both input- and output 

efficiency measures. The two measures provide the same value under CRS and 

estimate exactly the same frontier, therefore identify the same set of utilities being 

on the efficient frontier; (see, Coelli, 1996). Our VRS results obtained under the 

output-orientated approach do not differ significantly in comparison to the input-

orientation. 

DEA is a relatively uncomplicated approach. The determination of an explicit 

production function is not required. However, since DEA is a non-parametric 

approach the impact of the respective input factors on the efficiency cannot be 

determined. Furthermore, DEA does not account for possible noise in the data and 

outliers can have a large effect on the result. We therefore introduce a second 

methodology, the stochastic frontier analysis (SFA). SFA delivers a parametric 

approach to efficiency benchmarking. The theory of stochastic frontier production 

functions was originally proposed by Aigner, Lovell and Schmidt (1977) as well 

as Meeusen and van den Broeck (1977). This approach requires the definition of 

an explicit production or cost function. Based on the usual OLS regression a 

parallel shift of the original production function yields the efficiency frontier. This 

is caused by an underlying assumption splitting the error term into a stochastic 

residuum (noise) and an inefficiency-term. Usually, stochastic errors are assumed 

to be distributed half-normally. Originally the model was specified for cross-

sectional data. Hence, the mathematical expression of the production process is: 

( )i i i iY x v uβ= + − , 1,...,i N= (1) 
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where  iY is output (or the logarithm of output) of the i-th firm, 

 ix is a *1k vector of input quantities of the i-th firm, 

β is a vector of parameters to be estimated, 

 iv are random variables which are assumed to be iid. N(0,σv
2), 

independent of  iu .

iu are non-negative random variables usually assumed to be half normal 

distributed (iid. |N(0,σU
2)|), thereby accounting for individual technical 

inefficiency. 

 

This original specification has been extended by different assumptions on the 

distribution of iu , such as truncated normal or two-parameter gamma 

distributions. The further extension of the model to panel data, systems of 

equations, and time-varying technical efficiencies follows more recent 

developments in econometrics and productivity analysis. 

SFA is more complex than DEA in terms of data requirements and handling, but 

has the advantage of allowing to deal with multiple-outputs multiple-inputs4 in the 

form of a distance function, originally proposed by Shephard (1970). The basic 

idea is that in the case of a given production possibility frontier, for every 

producer the distance from the production frontier is a function of the vector of 

inputs used, X , and the level of outputs produced, Y. For the output-oriented 

model the distance function is defined as:   
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( , ) min{ : ( / ) ( )}oD X Y Y P xθ θ= ∈ (2) 

where ( , )oD X Y is the distance from the firm’s output ( )P X set to the production 

frontier. ( , )oD X Y is non-decreasing, positively linearly homogeneous and convex 

in Y, and decreasing in X. θ is the scalar distance by which the output vector can 

be deflated (Coelli 2002)  and can be interpreted as the level of efficiency. The 

output distance function aims at identifying the largest proportional increase in the 

observed output vector Y provided that the expanded vector ( / )Y θ is still an 

element of the original output set (Grosskopf et al., 1995). If Y is located on the 

outer boundary of the production possibility set then ( , ) 1oD X Y θ= = and the 

utility is 100% efficient. On the other hand, values of ( , ) 1oD X Y θ= ≤ indicate 

inefficient enterprises lying within the efficiency frontier.  

The input orientated approach is defined on the input set ( )L Y and considers, by 

holding the output vector fixed how much the input vector may be proportionally 

contracted. The input distance function is expressed by: 

{ }( , ) max : ( / ) ( )iD X Y X L Yρ ρ= ∈ (3) 

( , )iD X Y is non-decreasing, positively linearly homogeneous and concave in X ,

and increasing in Y . ρ is the scalar distance by which the input vector can be 

deflated. If ( , ) 1iD X Y ρ= = , X is located on the inner boundary of the input set 

and the utility is 100% efficient. 

The first step is to estimate the distance from the frontier. Therefore both the 

efficiency frontier as well as the relationship between inputs and outputs has to be 
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determined. These considerations also include the case of multi-output production 

functions which can not be estimated with conventional SFA techniques. The 

most common and appropriated functional form is the translog production 

function. The translog input distance function in its parametric form with 

( 1,2,..., )M m M= outputs and ( 1,2,... )K k K= inputs is specified as (Coelli, 

2002) 

( ) 0
1 1 1 1

1 1 1 1

1ln ln ln ln ln
2

1 ln ln ln ln
2

M M M K
m m mn m n k ki m m n k

K K K M
km k l km k m

k l k m

D y y y x

x x x y

α γ γ β

β δ

= = = =

= = = =

= + + +

+ +

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
 (4) 

In order to maintain the homogeneity and symmetry a number of restrictions need 

to be imposed. For homogeneity the following restrictions have to be considered: 

 
1 1 1

1, 0  and  0
K K K

k kl km
k l k
β β δ

= = =

= = =∑ ∑ ∑  (5) 

For symmetry, two other restrictions have to be observed: 

 and mn nm kl lkγ γ β β= = (6) 

Imposing homogeneity and symmetry restrictions and normalizing equation (4) by 

dividing it by one of the inputs delivers the estimating form of the input distance 

function: 

( )
1

0

1 1 1 1

1 1 1

1 1 1 1

1ln ln ln ln ln
2

1 ln ln ln ln ln
2

M M M K k
K m m mn m n k

Km m n k

K K K M
k l k

kl km m I
K K Kk l k m

xx y y y
x

x x x y D
x x x

α γ γ β

β β

−

= = = =

− − −

= = = =

 − = + + +  
 

     + + −     
     

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
 (7) 
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ln iD can be interpreted as error term which reflects the difference between the 

observed data realizations and the predicted points of the estimated function. 

Replacing ln iD by a composed error term (the stochastic error iv and the 

technical inefficiency iu ) yields the common SFA form. It can be estimated by a 

stochastic frontier production function defined as ( )y f x v u= + − . For 

( 1,..., )I i I= firms, this econometric specification with 0ln i i iD uν= − , in its 

normalized form is expressed by: 

( )
1

0

1 1 1 1

1 1 1

1 1 1 1

1ln ln ln ln ln
2

1 ln ln ln ln
2

M M M K ki
Ki m mi mn mi ni k

Kim m n k

K K K M
ki li ki

kl km mi i i
Ki Ki Kik l k m

xx y y y
x

x x x y v u
x x x

α γ γ β

β β

−

= = = =

− − −

= = = =

 − = + + +  
 

     + + + −     
     

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
 (8) 

 

As discussed above, a certain distribution for iu has to be assumed in order to 

separate stochastic and inefficiency effects. Most common are the normal 

distribution, 2~ ( , )iu N µ σ and the half-normal distribution truncated at zero, 

2~ (0, )iu N σ . Further, the inefficiency can also be assumed to be constant over 

time resulting in ( ){ }( )expit iu u T tη= − (Battese and Coelli, 1992). 

 

3.2. Choice of Variables and Data

In the literature, a variety of specifications is employed depending on what exactly 

is being investigated and which variables are being used as inputs and as outputs.5

The choice of variables for input and output needs to take into account the 

international experience with electricity distribution benchmarking, and is 
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constrained by data availability. In this respect, Germany has to be ranked among 

the least developing countries. The absence of regulation has thus far prevented 

the systematic collection of the relevant data. We therefore have to cope with a 

data set providing a representative sample for one year only (2001). 

We estimate a base model, using the traditional input and output variables, and 

then add variations to this model. The base models include labour, grid size, and 

peak load (as the proxy for transformation capacity) as inputs, and units sold, the 

number of customers, and the inverse density index as outputs. In the extended 

models, we disaggregate both the consumers (number of industrial and number of 

residential customers) and the type of cable (aerial and underground), and we 

introduce an additional input variable: the electricity losses by each company. Last 

but not least, we compare the performance of utilities in East Germany and in 

West Germany to check whether this historical distinction still causes a structural 

difference between the two regions. The data specification is as follows: 

- Labour input is estimated by the number of workers.6 Some of the utilities 

have their own generating plants and we only dispose of employment data 

covering all workers in the electricity utility. To get an approximation of 

workers employed in electricity distribution, we subtract one employee for 

each 20 GWh electricity produced (following Auer, 2002, p. 128); 

- capital input is approximated by the length of the existing electricity cables. 

We differentiate between voltage levels (high, medium and low voltage) by 

introducing a cost factor for each type of line.7 In addition, in one of the 

extended models, we distinguish between the cable grid and the aerial grid 

(following Auer, 2002, and others); cable is supposed to be more expensive 
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than aerial grid. Thus, we substitute the simple grid size variable of the basic 

model by a weighted sum of cable and aerial grid;8

- in one model we also take into account the maximum peak load as a further 

cost factor to approximate transformer capacity; 

- the amount of electricity distributed to end users (units sold) and the total 

number of customers are used as output variables; in an extended model we 

use turnover (national revenue) instead of units sold as a further output 

variable;9

- losses are included as a proxy for the technical quality of the grid or the 

service quality of the grid. We consider losses as an input;10 

- the use of the inverse density index (settled area in kilometres per customers 

supplied) in the base model specification is motivated by the argument that 

utilities with a dense customer structure have a natural cost advantage over 

those with a weak customer density. When taken as an output, the inverse 

density index improves the performance of sparsely inhabited distribution 

areas;11 

- in addition, we distinguish between utilities situated in West Germany and 

those in East Germany (the former GDR). The latter are expected to display 

particularities due to their socialist heritage which may have a significant 

effect on their efficiency scores. An example is increasing costs because of the 

rough surface a utility has to cope with; another one is the density of a territory 

that a utility has to serve. Also, electricity consumption has plummeted 

significantly since the end of socialism, and the existing networks may have 

been too extensive.  
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The electricity distribution data used in this study include information on 307 

German distribution companies in the year 2001 (or, for some variables, previous 

years). The data was collected from publicly available sources.12 We have verified 

that the sample is representative: it covers 56% of the total number of utilities, and 

60.3% of the electricity sold. For the models 3-7, we have 197 observations. 

Summary statistics of the data are presented in Table 1.  

 

Insert Table 1 

 

4. EMPIRICAL RESULTS 

4.1 Overview of the Model Runs  

The presentation of results is divided into two broad sections: in the first section, 

the base model is developed, consisting of two inputs (labour, network size) and 

three outputs (units sold, no. of customers, inverse density index). Subsequently, 

we run variations of the base model, including the use of turnover as a monetary 

variable (instead of units sold), a disaggregation of the consumers (industrial and 

residential), as well as a disaggregation of the network (into aerial lines and 

underground cable). Further, we consider peak load as a proxy for transformer 

capacity (for which no data is available). To extend the classical efficiency 

measurement approach quality is included: grid quality is approximated by the 

sum of losses as a further input variable. Results for East and West Germany will 

also be discussed separately. Models 1 and 2 are separately estimated with DEA 

(CRS and VRS) and SFA13, and the correlations and rank-correlations are 

checked. For models 3-7, we limit ourselves to DEA. The limited data availability 
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for firm-specific characteristics leads to a reduced data sample of 195 utilities in 

the second approach. Since model 2 is estimated with the full data sample as well 

as with the reduced data sample, it serves as reference model to compare results 

obtained in the two parts. Table 2 lists the different model specifications in more 

detail. 

 

Insert Table 2 

4.2. Results from the Base Model

4.2.1. Model 1

Model 1 considers two inputs (labour and grid size) and two outputs (units sold 

and number of customers). DEA delivers the efficiency estimates depicted in 
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Figure 1.14 The average efficiency for model 1 is 63.2%. Twelve utilities are on 

the efficient frontier. We observe a positive correlation between the size of the 

utility and its efficiency score: the average efficiency for the 154 largest utilities is 

69%, whereas for the smaller half of the sample it is only 57%. In particular, there 

seems to be a problem with very small utilities: the 25 smallest distribution 

companies average an efficiency score of only 41.4 %. 

If we use the VRS specification of model 1 instead, the efficiency scores rise 

significantly: 32 of the 307 utilities are on the efficient frontier. This can be 

explained by the fact that now utilities of similar size are compared with each 

other and not with the best ones in the sample. With VRS, the average efficiency 

increases to 68.3%, 5.1% higher than the results under the CRS assumption. For 

individual utilities, this improvement is significantly higher, in particular for the 

smaller ones. However, also the largest companies are considered more efficient 

under the VRS assumption because they are operating in an area of decreasing 

returns to scale. This may imply that they are too big to be efficient. Further 

analyses and specifications will show that some of the inefficiencies detected in 

the base model can be explained by further firm-specific characteristics or 

structural variables.  

 

Insert Figure 1 
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4.2.2. Impact of Structural Particularities

In the following analysis we address the first two structural variables that are used 

in the association agreement’s assessment of potential cost drivers: density, and 

East-West structure. It is reasonable to assume that regional particularities can 

have a strong impact on the efficiency of distribution utilities, although they are 

outside their decision framework. As mentioned before an example is increasing 

costs because of the rough surface a utility has to cope with; another one is the 

density of a territory that a utility has to serve. 

In model 2 we measure the first structural variable, the inverse density index, 

defined as service territory in kilometres divided by the number of inhabitants of 

the region.15 This structural variable increases the efficiency of utilities in sparsely 

settled regions.16 

The average productivity for model 2 increases moderately compared to model 1, 

from 63.2% to 66.7%. Fifteen utilities are on the efficient frontier, three more than 

under the CRS assumption for model 1. Figure 2 compares the CRS result for 

model 2, including the inverse density index, with the CRS result from model 1 

(without structural variable). It turns out that for the 190 largest utilities, the 

structural effect is less significant (average efficiency increase of 0.4%), whereas 

for the smaller ones, density is an important cost driver (average increase of 

6.9%); the effect is particularly strong for the 50 smallest utilities,17 because 

considered relatively: density, as a cost driver, has a higher impact for smaller 

utilities 

 Insert Figure 2 
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If we use the VRS specification of model 2 instead, the efficiency scores rise 

significantly. 35 of the 307 utilities are on the efficient frontier, which can again 

be explained by the fact that now utilities of similar size are compared with each 

other, and not with the best ones in the sample. With VRS, the average efficiency 

increases to 69.9%, 3.2% higher than the results under the CRS assumption. For 

individual utilities, this improvement is significantly higher, in particular for the 

smallest  but also the largest ones. Figure 3 shows the difference in efficiency 

scores between the VRS and the CRS model. It seems that the optimal utility size, 

i.e. the one where the VRS and the CRS efficiency scores converge, is around 

utility number 100 in our sample. This corresponds to about 200 GWh sold. 

Figure 3 also makes one issue clear: on the one hand smaller utilities could 

significantly gain in efficiency by merging; in this area, considerable economies of 

scale can be realized. On the other hand also larger utilities could become more 

efficient by becoming smaller.18 

Insert Figure 3 

 

4.2.3. Correlation analysis and verification with SFA

Before we continue the DEA estimations of the extended models we check the 

robustness of our results with a stochastic frontier analysis (SFA), the input 

distance approach. The correlation analysis of the results serves as verification of 

the obtained DEA efficiency measures. For verification with SFA we use a 

translog input distance function specification. In fact, this is a curved productivity 

function, similar to DEA-VRS where economies of scales are not considered to be 
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relevant for efficiency. Therefore, it is more appropriate to compare our SFA 

results with DEA VRS. 

Table 3 presents the correlation between the DEA and the SFA approaches for our 

first two models. All correlations are above 75% and thus seem to be significant. 

We can conclude that the obtained DEA measures can generally be assumed to be 

robust and coherent. For the following analyses, we apply the (stricter) constant 

returns to scale approach to the sample. This implies that the size of companies is 

flexible. Given the recent liberalization of the sector, and the fact that mergers do 

occur regularly, this seems to be the more realistic assumption. 

 

Insert Table 3 

 

4.2.4. Analysis of Differences between East and West Germany

The model also permits an analysis of structural differences in efficiency between 

West and East German distribution utilities.19 In fact, the association agreement 

includes a structural variable “East-West”, implying that East German utilities 

have on average higher costs than their West German counterparts. This is 

supposedly due to the structural legacy inherited from socialist times, as well as to 

the drop in electricity consumption in East Germany after reunification, whereas 

network sizes have remained constant. In order to test the East-West hypothesis, 

we split up the sample into 259 West German utilities and 48 East German ones. 

The results of the East-West comparison are somewhat surprising: East German 
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utilities feature an average efficiency of 77%, against a West German average of 

65%. 

This result may suggest that investment efforts of the last decade have led to an 

accelerated modernization process in East Germany, and thus a more efficient use 

of resources. Electricity production and distribution can now revert to a 

modernized power station park distribution system. The results tend in the same 

direction as those of Frontier Economics and Consentec (2003, p. 19), which find 

that some East German utilities have some of the highest efficiency scores. 

4.3 Results from the Extended Model

We now estimate the efficiency taking into account a broader set of variables. In 

order to keep the results comparable, we estimate our base model with the reduced 

data sample of 195 utilities (“model 2b”). 

4.3.1 Peak Load, Turnover and Quality

In addition to the traditional inputs, grid line and labour, we consider peak load (as 

a proxy for transformer capacity, for which no data is available) to be a separate 

cost factor. Model 3 thus contains three input and three output variables. The 

efficiency estimates are slightly higher than before, averaging 73%. We find no 

structural correlation between the size of a utility and its peak load as a structural 

variable affecting efficiency. In the case of lacking cost data, it may therefore 

make sense to work with two different variables accounting for capital costs. 

In model 4, we introduce a monetary variable, turnover, as output measure. The 

results are not significantly different from those obtained with model 2: the 

average efficiency decreases by about 1% point. This is due only to the drop of the 

average efficiency of the 50% largest distribution utilities. The average of the 
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smallest one remains the same. An explanation of this uneven effect of the 

turnover variable could be that larger utilities generally have more industrial 

customers in relation to household customers. Since industrial customers obtain 

lower prices and thus lead to a lower average per unit revenue, this has an adverse 

effect on the efficiency score. 

Model 5 attempts to identify the relation between quality and efficiency. We 

define the quality of distribution by the electricity losses that occur during this 

process. As could be expected, the average efficiency of all utilities increases 

when we introduce this additional input. We do not detect any difference in the 

relative change of efficiency scores between the large and small utilities. This 

result contradicts the common view that large utilities are in possession of better 

grids. 

4.3.2. Grid Composition and Customer Structure

A third structural variable that may have an impact on efficiency scores is the 

composition of the grid, i.e. the relation of aerial lines to cable lines. The idea 

behind this reasoning is that cable lines are on average more expensive than aerial 

lines. However, regional utilities are often not free to choose the most appropriate 

grid type. This is particularly true in densely settled areas where national law 

prohibits aerial lines. We approach the issue in the following way: to show the real 

cost structure of the capital input we substitute in model 6 the simple grid size 

variable of the basic model by a weighted sum of cable and aerial grid. Since cable 

lines are on average more expensive we define an upwards factor of 1.25 for each 

km of cable line, and thereby indirectly consider higher prices for cables. This 
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takes into account the disadvantage of the utilities that are forced to maintain a 

high proportion of cable lines. 

The first noticeable result is that average efficiency remains almost unchanged; it 

increases slightly to 67.0% compared to the 66% in the original specification 

(model 2b). The modest change in efficiency is not surprising: some utilities use a 

grid with a higher proportion of cable lines, others with more aerial lines. These 

two tendencies compensate each other while the average productivity remains 

almost the same. The efficiency of single utilities, in contrast, changes more 

significantly: utilities with a higher share of cables benefit from this 

transformation. All in all, the grid composition does not add much to the 

interpretation of results, a finding also suggested by Frontier Economics and 

Consentec (2003, p. vii) who doubt that grid composition is a significant cost 

driver. 

In addition, we now consider the structure of customers. We distinguish between 

industrial and households customers taking into account the difference in the price 

structure of the end user prices. Figure 4 shows that the higher is the share of 

industrial customers to total customers, the lower is the efficiency increase from 

model 2b to 7. In model 4 we already noticed the same result: that an increase of 

the share of industrial customers represents a disadvantage for the utilities in terms 

of efficiency. 

 

Insert Figure 4 

 

4.3.3 Characteristics of most inefficient utilities
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In order to detect some regularities of inefficiency we now give a short summary 

of technical characteristics for the most inefficient firms. For this purpose we 

consider the extended models 2b to 7 and sorted out first the 34 most inefficient 

firms across all models. In a second step we compared these technical indicators 

(inputs and outputs) of the less efficient utilities with those of the more efficient 

ones (see Table 4). Within the 34 most inefficient utilities, only one is located in 

East Germany, which tends to confirm the result that West German utilities tend 

to be less efficient when compared to their East German counterparts. Notice that 

all inefficient utilities have proportionally a higher share of network length with 

respect to their number of customers.20 In a second step we check if there are any 

regularities between inefficiency and the amount of electricity sold for each 

customer. Relative to the firm size, there seems to no such correlation. Further we 

note that inefficiency is related to the electricity sold per employee. Most of the 

inefficient firms provide a relative low share of electricity sold and employees. 

Across all firms we find low revenue per km network length and a share of 

network length per MWh electricity sold. 

 

Insert Table 4 

 

4.3.4 Correlation analysis of DEA models

In this section we again check the robustness of our results by conducting a 

correlation analysis for the respective model specifications. Table 5 shows the 

correlation analysis for models 2b to 7. Overall, the correlation among the models 

is high. All are above 79%. Thus we can conclude that the obtained DEA 

efficiency measures can generally be assumed to be robust. 
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Insert Table 5 

5. CONCLUSIONS

This paper has extended the literature on efficiency analysis to the electricity 

distribution sector in Germany. In addition to conventional DEA analysis, we have 

performed SFA distance function estimations, and find relatively high correlations 

between the two methods. We have addressed the general issue of optimal utility 

size and specific issues related to the ”Balkanization”, i.e. the atomisation of the 

German electricity distribution industry. The results suggest that returns to scale 

play only a minor role: only very small utilities have a significant cost 

disadvantage. Low customer density is found to affect the efficiency score 

significantly in the lower third of the sample. The grid composition does not 

produce systematic effects. Surprisingly, East German utilities show a higher 

average efficiency than their West German counterparts. Peak load as a structural 

input variable does not seem to be an important determinant of efficiency, when 

compared to the base model without peak load. Utilities with a high share of 

industrial customers seem to suffer a disadvantage by the efficiency analysis. 

Further research should focus on using cost data for the inputs to make 

comparison of allocative efficiency possible. Additional analysis of quality and its 

relation with efficiency seems to be the most urgent policy relevant question, but it 

would require a substantial effort in data collection and treatment. 
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1 This paper presents the results of a research project on the European electricity 

industry restructuring that was partly funded by the 6th Framework Program of the 

European Union. We thank Nicole Adler, Gert Brunekreeft, Jean-Michel 

Glachant, Manfred Horn, Karsten Neuhoff, Konstantin Staschus, Beatriz Tovar de 

la Fe, and the participants of the conference of the European Association for 

Research in Industrial Economics (Berlin, September 2004), the 6th European 

Conference of the International Association for Energy Economics (IAEE, 

September 2004, Zurich), and the 3rd Conference on Applied Infrastructure 

Research (October 2004, Berlin) for useful suggestions and comments. The usual 

disclaimer applies. 
2 In a previous (discussion paper) version of this study, we used a sample of 380 

utilities. The reduction of the sample size was due to the inclusion of the inverse 

density index, and the exclusion of evident outliers with doubtful data. 
3 See Brunekreeft (2003, 2005) for a detailed account of the regulatory context in 

German electricity. 
4 See Coelli and Perelman (2000). They measure the technical efficiency of 

European railways by means of a distance function approach and illustrate its 

usefulness in the analysis of production in multi-output industries  
5 For example, most studies consider the grid size as an input to approximate the 

capital costs whereas other studies cited by Jamasb and Pollitt (2001) specify the 

total length of line as output variable to approximate the complexity of the grid 

structure. Likewise, the transformer capacity is found to be an input in 11 of the 

20 studies analysed, whereas two of the studies chose it as an output. 
6 We are aware of the criticism of this choice of variable due to the potentially 

distorting effect of outsourcing: an utility can improve its efficiency simply by 

switching from in-house production to outsourcing. 
7 Following standard practice used by the German network association (VDN): 

factor 5 for high voltage, 1.6 for medium voltage, and 1 for low voltage cables. 
8 The share of cable lines of total lines is one of the structural variables in the 

German association agreements. 
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9 Due to data limitations, we cannot differentiate between operating costs (OPEX) 

and capital costs (CAPEX). For curiosity reasons, we have also run a model 

specification using turnover as the only input. If one assumes identical 

profitability among the distribution companies, then turnover can be used as a 

proxy for total costs (TOTEX). 
10 Alternatively, other studies use the inverse of the losses as an output. 
11 Density is also one of the structural variables defined in the German association 

agreements. 
12 The sources of the data are the following:  

Verlags- und Wirtschaftsgesellschaft der Elektrizitätswerke m.b.H. – VWEW: 

-„Jahresdaten der Stromversorger 2001“; VWEW Energieverlag GmbH, Frankfurt 

am Main, Heidelberg. (2002) for number of customers, units sold, number of 

employees and grid data.  

-VDEW-Statistik 1996/1997 Leistung und Arbeit; VWEW-Verlag, Frankfurt am 

Main; (1997/98) for inverse density index and peak load.  

Some data were also discovered by internet research on the utilities’ homepages. 
13 DEA was conducted using the Computer program DEAP Version 2.1; for SFA, 

we used the software package FRONTIER Version 4.1. Both were written by T. 

Coelli. 
14 In Figure 1 as well as in all subsequent figures, the utilities are ordered by units 

sold and, thereby, by size. Thus, utility no. 1 is the largest in size, and utility no. 

307 the smallest. 
15 The inverse density index may also pick up some of the topographical 

particularities, since regions with a rough topography tend to have a lower density. 
16 DEA considers this effect under the present specification as an increase in 

output that will increase the estimated efficiency of utilities in sparsely settled 

areas. Companies with a higher inverse density index and thereby a territory with 

few customers per square kilometer will increase their efficiency.  
17 The extreme case is utility no. 297, which increases its efficiency score by 66.3 

percentage points. 
18 The nature of the scale inefficiencies (due to increasing or decreasing returns to 

scale) can directly be determined in DEAP Version 2.1 by running an additional 
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DEA problem with non-increasing returns to scale (NIRS) imposed; (for more 

details see Coelli 1998, p. 151). The empirical results indicate that large utilities 

are operating in an area of decreasing returns to scale, whereas the smaller utilities 

of our sample are operating in an area of increasing returns to scale. However, to 

make a definitive statement about the optimal utility size for the German 

electricity distribution sector, a more detailed analysis would be required. 
19  In our analysis we cannot incorporate a “modernisation” measure. This is due to 

the fact that because of limited data availability we apply a static model. Only with 

panel data we would be able to provide measures of technical change by means of 

dynamic DEA and SFA models.  
20 The ratio of network length and number of customers varies around 0.6. The 

more efficient firms show a significantly lower ratio. Only some very small 

more efficient utilities have a higher quotient. But this is due to the fact that they 

can compensate the high utilization of the input factor capital with a very low 

utilization of labour. 
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Table 1: Sample Summary Statistics 

 

Variable Obs. Mean Std. Dev. Min Max 

Units sold (MWh) 307 346306.3 1182148 5675 1420000000 

No. of customers 307 38494.9 103225,8 7 1060000 

Grid size (km) 307 1190.7 3328,4 20,60 38899 

Labour 307 100.6 291,1 2 3077 

Inv. Density Index 307 0.0027 0,0034 0,00022 0,028 

Peak load (kW) 195 78265.6 2191046 1363 2041000 

Turnover (mn.EUR) 195 49595.1 1806072 597 2182300 

Losses (MWh) 195 21690.9 1065133 53 1340262 

Aerial Line (km) 195 213.5 5807 1 5529 

Cable Line (km) 195 1189.9 26047 12,4 192234 

Non res. Customers 195 45197.8 1118686 60 909000 

Res. Customers 195 4639.5 137061 2 151000 
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Table 2: Model Specification for the Analysis 

 

Labour Grid 

Size 

Losses Peak 

Load 

Units 

Sold 

Turnover No. of 

Customers 

Inverse 

Density I. 

Model 1 I I   O  O  

Model 2 I I O O O

Model 2, VRS I I O O O

Model 2, 

West/East 
I I O O O

Model 3 I I I O O O

Model 2b I I O O

Model 4 I I O O O

Model5 I I I O O O

Model 6, Grid 

disaggregated 
I I O O O

Model 7, Cust. 

disaggregated 
I I O O O
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Table 3: Correlation Analysis for Models 1 to 2, Sample Size 307 

 

Samle Utilities DEA – VRS 

Model 1 

DEA – VRS 

Model 2 

SFA – DF 

Model 1 

SFA – DF 

Model 2 

DEA – VRS 

Model 1 
1.00 0.97 0.81 0.74 

DEA – VRS 

Model 2 
 1.00 0.77 0.76 

SFA – DF 

Model 1 
 1.00 0.89 

SFA – DF 

Model 2 
 1.00 
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Table 4: Efficiency Differences between Large and Small Utilities 

 

Model DEA Note Average First 50% of 

Utilities 

Last 50% of 

Utilities 

DEA 1 307 0.63 0.69 0.57 

DEA 2 307, Inverse 

Density Index 

0.67 0.70 0.64 

DEA 2, VRS 307, Inverse 

Density Index 

0.70 0.73 0.67 

DEA 2b 195, Inverse 

Density Index 

0.66 0.67 0.64 

DEA 3 195, Peak load 0.73 0.74 0.72 

DEA 4 195, Turnover 0.65 0.66 0.64 

DEA 5 195, Losses 0.71 0.71 0.71 

DEA 6 195, Grid 

Composition 

0.67 0.68 0.65 

DEA 7 195, Customer 

structure 

0.69 0.71 0.68 
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Table 5: Correlation Analysis between DEA Models from Section 2 (Reduced 

Data Sample) 

 

DEA – 
Model 2b 
CRS 

DEA – 
Model 3 
CRS 

DEA – 
Model 4 
CRS 

DEA – 
Model 5 
CRS 

DEA – 
Model 6 
CRS 

DEA – 
Model 7 
CRS 

DEA – 
Model 2b 
CRS 

1.00 0.93 0.90 0.90 1.00 0.98 

DEA – 
Model 3 
CRS 

 1.00 0.82 0.86 0.93 0.93 

DEA – 
Model 4 
CRS 

 1.00 0.79 0.90 0.89 

DEA – 
Model 5 
CRS 

 1.00 0.90 0.88 

DEA – 
Model 6 
CRS 

 1.00 0.97 

DEA – 
Model 7 
CRS 

 1.00 

Page 41 of 45

Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK

Submitted Manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer R
eview

40

Figure1: DEA Analysis, Model 1 with CRS 

DEA, Model 1, CRS 
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Average efficiency: 63.20%. 

307 utilities. 

Input: labour, grid size. 

Output: customers, units sold. 
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Figure 2: Differences for each Utility between Measures of Model 2 and Model 1 

Difference Results DEA, Model 2 - Model 1
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307 utilities. 

Input: labour, grid size. 

Output: customers, units sold, inverse density index (model2) 
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Figure 3: Difference Results DEA, Model 2, VRS-CRS 

Difference Results DEA, Model 2, VRS-CRS
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307 utilities. 

Input: labour, grid size. 

Output: customers, units sold, inverse density index. 
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Figure 4: Correlation between Customer Structure and Efficiency 
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