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Abstract

Importance sampling is used in many areas of modern econometrics to approximate un-
solvable integrals. Its reliable use requires the sampler to possess a variance, for this guar-
antees a square root speed of convergence and asymptotic normality of the estimator of the
integral. However, this assumption is seldom checked. In this paper we use extreme value
theory to empirically assess the appropriateness of this assumption. Our main application is
the stochastic volatility model, where importance sampling is commonly used for maximum
likelihood estimation of the parameters of the model.

Keywords: Extreme value theory; Importance sampling; Simulation; Stochastic volatility.

JEL classification codes: C10, C22, C32, C51.

1 Introduction

This paper develops tools for evaluating the importance sampling techniques that are popular in

econometrics. There are two situations where importance sampling is commonly applied. It is

often used to numerically evaluate the likelihood function in missing data models, when an ana-

lytic expression for the likelihood function does not exist. This is of primary importance in the

literature on maximum likelihood estimation of stochastic volatility (SV) models. Importance

sampling is also popular in Bayesian applications when computing expectations of the posterior

distribution.

In a fundamental contribution, Geweke (1989) argued that importance sampling should only

be used in settings where the variance of the importance weights is known to exist. Failure of

this condition can lead to slow and unstable convergence of the estimator as the central limit
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theorem governing convergence fails to hold. Robert and Casella (2004, p.90) provide detailed

examples of importance samplers that fail this condition and note that ignoring the problem can

result in strongly biased estimators. While the variance conditions can be checked analytically

in low dimensional problems, proving that they are met in high dimensions can be challenging.

Many econometrics and statistics papers have recently been written which, in effect, a priori

assume that this condition holds. This is the case in the stochastic volatility literature; see, e.g.,

Hendry and Richard (1991), Danielsson and Richard (1993), Sandmann and Koopman (1998),

Elerian, Chib, and Shephard (2001), Durham and Gallant (2002), Durham (2006), and Asai

and McAleer (2006). It is also assumed to hold in the macroeconomics literature on dynamic

stochastic general equilibrium models; see, e.g. An and Schorfheide (2007).

In this paper, we develop methods to check for the existence of the variance of the importance

weights. This will be based on the application of extreme value theory.1 Limit theorems from

extreme value theory imply that we can learn about the variance of the weights by studying the

behavior of their distribution in the right hand tail. Earlier work on testing whether the variance

of the importance weights exists also using extreme value theory was conducted by Monahan

(1993, 2001). Monahan examined the tail-behavior of the weights by building a test statistic

from the Hill (1975) estimator. We take an alternative approach and develop three different test

statistics using the well-known principles of the Wald, score and likelihood ratio tests. We also

propose graphical diagnostics for a complete insight.

The new test procedures are carried out for two Monte Carlo studies and for the maximum

likelihood analysis of two SV models. The latter models have been our main motivation to

investigate the problem in detail. It will be shown that sometimes the variance of the importance

weights does not exist when estimating parameters of SV models. Although our main focus

will be on likelihood estimation, our methods apply generally to all applications of importance

sampling including Bayesian approaches.

A review of importance sampling is provided in Section 2. In Section 3, we discuss the

statistical estimation of tail indexes for extremes and introduce our test statistics. Section 4

includes results from some Monte Carlo experiments that are conducted to evaluate the power

and size of the proposed tests. We apply the test statistics and graphical diagnostics to maximum

likelihood estimation of the parameters of two SV models in Section 5. Section 6 concludes.

1We should note that extreme value theory has been applied in the context of financial economics and insurance
in order to determine the thickness of the tail of financial returns. Furthermore, it is used to compute various
measures of risk. References to this literature include Embrechts, Kluppelberg, and Mikosch (1997, Section 6.5.2)
and Danielsson and de Vries (1997). The application of the theory is much harder in that context for the i.i.d.
assumption does not hold.
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2 Importance sampling

Importance sampling was discussed as early as Kahn and Marshall (1953) and Marshall (1956),

while it was popularised in the influential monograph by Hammersley and Handscomb (1964,

Section 5.4). It was first used in econometrics by Kloek and van Dijk (1978) in their work on

computing posterior densities. Consider an integral that cannot be solved analytically

I =

∫

X

h(x)f(x)dx, (1)

where h(x) is a function and f(x) is a probability density. An importance sampling density g(x)

is selected from which it is easy to simulate and whose support is also X . The integral I can be

approximated by

Î =
1

N

N∑

i=1

wi, where wi = w(xi),

for a large number of N draws and with

w(x) =
h(x)f(x)

g(x)
and xi∼g(x). (2)

The strong law of large numbers implies that Î will be a consistent estimator of I without

any additional assumptions. By construction we know that the {wi}N
i=1 are i.i.d. and that

E[w(x)] = I. As a result, a simple application of Kolmogorov’s strong law of large numbers (e.g.

Geweke (1989) and Geweke (2005, p. 114)) shows that

Î a.s.→ I, as N → ∞,

whatever importance sampler we design. In practice, the normalizing constant of f (x) or g (x)

in (2) may not be known requiring a self-normalized importance sampling estimator.2

In order to easily measure the precision of Î and to guarantee that the rate of convergence to

I is N1/2, it is helpful to have a Gaussian central limit theorem for Î. We know that a necessary

condition for the application of the Lindeberg-Lévy central limit theorem is the existence of a

variance for the importance weights. This would allow us to conclude that

√
N
(
Î − I

)
d→ N(0, γ2).

Expressions for the asymptotic variance γ2 of the importance sampling estimator can be found in

Geweke (2005, p. 114) and Cappé, Moulines, and Rydén (2005, p. 287). However, the existence

of the variance of the importance weights is by no means guaranteed. If it does not exist, the

importance sampling estimator may convergence erratically making estimates unreliable. An

approach for testing for the existence of the variance is considered in the next section.

2This self-normalized estimator induces a small bias but it remains consistent. Liu (2001, p. 35) and Robert
and Casella (2004, p.95) note that the self-normalized estimator may be preferred as it typically has smaller mean
square error than the unbiased estimator.
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3 Extreme value theory and inference

3.1 Extreme value theory

We begin this section briefly reviewing the results from extreme value theory that are relevant for

this paper; see Embrechts, Kluppelberg, and Mikosch (1997) for a detailed discussion. Assume

we have a sequence w1, w2, ..., wN of i.i.d random variables from a distribution function F . The

{wi}N
i=1 need not represent importance weights, although that will be the case in our work

below. Denote the endpoint of the distribution function F as wE = sup {w : F (w) < 1} ≤ +∞.

Pickands (1975) defined a new sequence of n random variables Z1, ..., Zn created from those wi

that lie above a threshold u, i.e. Zi = wi − u where n ≤ N . Pickands (1975) proved that as N

and u get larger the distribution of the excesses {Zi}n
i=1 is well approximated by the generalized

Pareto distribution. More formally, he showed that

lim
u→wE

sup
0<z<wE−u

|Fu (z) − GPD (z; ξ, β)| = 0,

where Fu (z) is the distribution function of the excesses conditional on threshold u and w > u.

GPD denotes the generalized Pareto distribution with density

f(z; ξ, β) =
1

β

(
1 + ξ

z

β

)− 1

ξ
−1

, z ∈ D(ξ, β) > u, β > 0. (3)

Here

D(ξ, β) =





[0,∞), ξ ≥ 0,

[0,−β/ξ], ξ < 0.

The threshold u plays a crucial role in this result and its selection will be discussed in Section

4. We continue by assuming that u is a given threshold.

The shape parameter ξ of the generalized Pareto distribution characterizes the thickness of

the distribution’s tails. In the context of extreme value theory, the value of ξ is determined by

the thickness of the tails of F . This means that we can extract information about the thickness

of the tails of the importance weights by making inference on the shape parameter using the

excesses {Zi}n
i=1. In fact, it can be shown that when ξ > 0 then E[wj ] = ∞ for j ≥ 1/ξ.

Consequently, the number of moments that the distribution of the importance weights has can

be determined by focusing on ξ. In particular, we are interested in establishing that ξ ≤ 1/2.

We know by construction of the importance sampler that ξ ≤ 1. The cases of ξ < 0 deal with

situations where the {wi}N
i=1 have some upper bound. This is of some relevance in importance

sampling in the case of the sampler being bounded, that is

f(x) ≤ Mg(x), (4)

4



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

for some finite choice of M > 0. Then if (4) is true for x ∈ X , the support of the importance

weights {wi}N
i=1 will be bounded and the existence of all moments is guaranteed. This is, in

practice, quite unusual. In most cases of real interest, the sampler is not bounded, so ξ ∈ [0, 1].

3.2 Previous work: Monahan’s test

Monahan (1993, 2001) proposed testing if an importance sampler’s weights have a finite variance

using the Hill (1975) estimator. The Hill estimator is an alternative to the generalized Pareto

distribution for estimating the tail parameter ξ. It is defined as

ξHill =
1

k

k∑

j=1

log w(N−j+1) − log w(N−k), (5)

where w(1) ≤ w(2) ≤ ... ≤ w(N) are the order statistics from a sample of importance weights.

The tuning parameter k determines the number of large order statistics used in (5) meaning

that it plays a similar role as the threshold parameter u above.

The Hill estimator is largely regarded as a nonparametric estimator although it can be

interpreted as a maximum likelihood estimator under appropriate conditions on the distribution

function F . Asymptotic normality of the Hill estimator has been studied by Haeusler and Teugels

(1985) who have shown that it depends on the rate of growth of k relative to N . Monahan used

their result
√

k/ξ2
(
ξ̂Hill − ξ

)
d→ N(0, 1),

and chose the values k = 2N1/3 and k = 4N1/3 to build a test statistic. Monahan’s test has

as its null hypothesis that the variance of the importance weights is infinite making it a test of

H0 : ξ ≥ 1/2 versus H1 : ξ < 1/2. In Section 4, we compare Monahan’s test with the tests we

propose below. To make the comparison easier, we have reversed the null hypothesis of his test

to make it consistent with ours.

3.3 Proposed methods

We propose testing for an infinite variance by constructing test statistics from the maximum

likelihood estimates of the generalized Pareto distribution. Our paper builds on the work of

Smith (1985, 1987) who studied the properties of the maximum likelihood estimator of θ = (ξ, β)′

in this setting. We construct three test statistics using his results. Formally, the hypotheses we

will be interested in deciding between is

H0 : ξ ≤ 1

2
, and H1 : ξ >

1

2
.

The null hypothesis implies the existence of the variance while the alternative denies it. In

practice it is helpful to make the null a point hypothesis (see, for example, Cox and Hinkley

5
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(1974, pp. 331–334)), so making the comparison between

H0 : ξ =
1

2
, and H1 : ξ >

1

2
. (6)

As we have a parametric model for the weights over a threshold, we will use a likelihood function

to carry out the testing. This approach to inference is often called the peaks over threshold

method. We will study the behavior of the score and likelihood ratio tests of the hypothesis.

3.4 Estimation and Wald test

Starting with N importance weights, we first find the n importance weights that lie above the

threshold and we construct the excesses z1, ..., zn from these large importance weights. The

log-likelihood for a sample z1, ..., zn over the threshold u equals

log f(z; θ) = −n log β −
(

1 +
1

ξ

) n∑

i=1

log
(
1 + ξβ−1zi

)
. (7)

Maximum likelihood estimation of the parameter vector θ = (ξ, β)′ is discussed in Smith (1985,

1987). The asymptotic distribution of the maximum likelihood estimator θ̂ is given by

√
n
(
θ̂ − θ

)
d→ N

(
0, I (θ)−1

)
where I (θ)−1 = (1 + ξ)

(
2β2 β
β 1 + ξ

)
, (8)

where nI (θ) denotes the expected information matrix. Smith (1985) has shown that likelihood

inference is standard for this problem as long as ξ > −1/2. This covers the null hypothesis

value H0 : ξ = 1
2 and all the values under the alternative. Davison and Smith (1990) describe

how to reduce maximum likelihood estimation of (7) to a one-dimensional parameter search.

Substituting β = ξ/τ into (7) and differentiating with respect to ξ and τ produces

ξ = ξ (τ) =
1

n

n∑

i=1

log (1 + τzi) , (9)

n

τ
=

(
1 +

1

ξ (τ)

) n∑

i=1

zi

1 + τzi
. (10)

Equation (9) can then be substituted into (10) and solved numerically for an estimate τ̂ . Given

τ̂ , the maximum likelihood estimates ξ̂ and β̂ are easily obtained. A sensible starting value for

τ = ξ/β can be found by imposing the null hypothesis ξ = 0.5 and noting that the expected

value of Z is

E[Z] =
β

ξ2

Γ(ξ−1 − 1)

Γ(1 + ξ−1)
= 2β, for ξ = 0.5. (11)

Iterations can therefore start at τ = 1/z̄ where z̄ = n−1
∑n

i=1 zi.

6
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Once the maximum likelihood estimator of θ is found the Wald test can be computed to test

the null hypothesis (6). As an alternative to the Wald test formulation, we can consider the

t-statistic

t =

√
n

3β̂2

(
ξ̂ − 1

2

)
, (12)

where β̂ is the maximum likelihood estimate of β. The null hypothesis is rejected when the

t-statistic takes a large positive value compared to a standard normal random variable.

3.5 Estimation under null hypothesis and score test

The maximum likelihood estimator of β under the null hypothesis of ξ = 0.5 can be found by

univariate Fisher scoring. The score value of β is given by

sβ
r = −n

β
+

3

2
β−2

n∑

i=1

zi

1 + 0.5β−1zi
,

= nβ−1

(
3

n

n∑

i=1

zi

2β + zi
− 1

)
,

Using the results in (11) once again, we can take 0.5z̄ as the initial value for β. After convergence

the restricted estimate of β is obtained which we denote by β̂r.

The one-sided score statistic will be used for testing the null hypothesis as this will be

computationally simple. It is based on the score value of ξ under the null hypothesis and is

given by

sξ
r = 4

n∑

i=1

log
(
1 + 0.5β−1zi

)
− 3β−1

n∑

i=1

zi

1 + 0.5β−1zi

= 4

n∑

i=1

log

(
1 +

zi

2β

)
− 6

n

n∑

i=1

zi

2β + zi
, for ξ = 0.5.

This score value for the null hypothesis (6) is a function of β and it can be evaluated when β

is replaced by its (restricted) maximum likelihood estimator β̂r. We know from the results of

Smith (1985, 1987) that

sξ
∗ =

1√
2n

sξ
r

d→ N(0, 1), (13)

which provides a simple test. We reject the null H0 : ξ = 1
2 when ŝξ

∗ is significantly positive and

where ŝξ
∗ is sξ

∗ with β replaced by β̂r.

3.6 Likelihood ratio test

When estimation of θ has taken place under the constraint that ξ ≥ 0.5, to deliver θ̃, together

with estimation under the null hypothesis, the likelihood ratio statistic can also be used to test

7
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the null

LR = 2
{

log f(z; θ̃) − log f(z; β̂r, ξ = 0.5)
}

.

Of course, the null is on the boundary next to the alternative and so the limiting distribution

of the statistic is

LR
d→ 0.5

(
χ2

0 + χ2
1

)
, under H0.

The χ2
0 distribution is a degenerate distribution with all its probability mass at zero. There

exists a 0.5 probability that the likelihood ratio statistic will be zero (as ξ̂ will be negative). The

rest of the time the statistic will have a χ2
1 distribution (e.g. Chernoff (1954) and Gourieroux,

Holly, and Monfort (1981)).

4 Monte Carlo evidence

To check the effectiveness of extreme value theory in practice for testing the assumptions behind

importance sampling we consider two experiments. The first is based on sampling from a normal

density to approximate a normal density with a different variance. Our second experiment is

the classic example of estimating a Student’s t distribution using a normal candidate density.

4.1 Normal density experiment

We take f(x) to be the normal density N(0, 1) and the importance sampling density g(x) is

N{0, (1 + ǫ)−1} where ǫ is a positive number. The function h(x) is constant and equal to one.

Thus for this problem I = 1 in (1). The question is whether the variance of the importance

weights exists? The weight function is given by

w(x) =
h(x)f(x)

g(x)
=

1√
1 + ǫ

exp
( ǫ

2
x2
)

,

which obviously has E[w(x)] = 1, while

E[w(x)2] =
1√
2π

√
1 + ǫ

1 + ǫ

∫ ∞

−∞

exp
(
ǫx2
)
exp[−1

2
x2 (1 + ǫ)]dx

=
1√
2π

1√
1 + ǫ

∫ ∞

−∞

exp[−1

2
x2 (1 − ǫ)]dx,

which is bounded only if ǫ < 1. The variance of the importance weights will not exist if ǫ ≥ 1,

meaning that the central limit theorem will not hold for importance samplers built in that range

of values.

<INSERT TABLE 1 HERE>

In Table 1, we present the diagnostic tests for a large number of different thresholds. They

show that for small values of ǫ importance sampling is valid while for values of ǫ ≥ 1 the variance

8
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of the importance weights does not exist. For our test statistics to be effective, we require a

simulation sample size N that is sufficiently large (say, 100, 000). The Wald test appears to

have the most power. It can potentially be oversized if the threshold is selected too high. It

can also perform poorly as the threshold gets extremely small. Tests that are slightly oversized

are not necessarily problematic. Rejecting importance samplers whose weights are barely finite

may not be a bad practice as these algorithms can still be unstable. The LR statistic has nearly

the same power and it behaves more robustly for different values of u than the Wald statistic.

This implies that computing more than one statistic is a good idea. Both of these statistics

are considerably more powerful than the Monahan statistic computed using either k = 4N1/3

or k = 2N1/3. We note that the Monahan statistic performs better than our tests when the

number of draws N is small (e.g. N ≤ 5, 000).

We have chosen the threshold u in an arguably ad hoc manner to both facilitate the Monte

Carlo study and to understand how different values of u impact the tests. In practice, the

threshold can be chosen in alternative ways and users may want to compare different selection

methods. Methods that are common in the extreme value literature are a mean residual life

plot or by minimizing the distance between the empirical distribution function and the gener-

alized Pareto distribution evaluated at the maximum likelihood estimates; see, e.g. Embrechts,

Kluppelberg, and Mikosch (1997) and Gonzalo and Olmo (2004). We recommend graphing the

maximum likelihood estimates of ξ along with confidence bands for a large number of thresh-

olds (say 50 values from 0.01N to 0.50N). We illustrate this strategy in our application to the

stochastic volatility model in Section 5.

Our proposed test statistics do not provide strict guarantees for a successful importance

sampling procedure. We believe that graphical diagnostics, although informal, can play a com-

plementary role. They are a simple way to detect severely deficient importance sampling al-

gorithms. A graph of the largest 100 weights indicates the seriousness of the outliers. The

remaining weights can be represented via a histogram. Plotting estimates of the variance of the

weights recursively can show the impact that each weight has on the estimate. As the sample

increases, the variance should converge to a constant if it exists. Plots like these do not al-

ways detect problems and we recommend viewing them for many different sequences of random

numbers.

<INSERT FIGURE 1 HERE>

Graphs for the normal density experiment with ǫ = 0.5, 1.0, and 1.2 are presented in the

three rows of Figure 1. The values of ǫ were chosen to compare the output from importance

samplers representing both the null and alternative hypotheses. When ǫ = 0.5, the variance

9
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is finite and the recursive estimate of the variance convergences smoothly. The graphs for the

cases ǫ = 1.0 and 1.2 are clearly informative in this example. The large jumps in the recursive

variance estimates correspond to the outliers in the left hand graphs of the middle and bottom

rows.

4.2 Normal approximation to the Student’s t distribution

<INSERT TABLE 2 HERE>

Our second Monte Carlo experiment is the classic example of approximating a Student’s t

distribution with a normal distribution. This example can be used to evaluate the power of the

tests. A similar experiment was also considered by Monahan (1993). We let f(x) be a Student’s

t distribution with ν degrees of freedom and where g(x) is a normal density with mean zero and

variance ν/(ν + 1).3 Once again the function h(x) is constant and equal to one. The weight

function is simply

w(x) =
Γ
(

ν+1
2

)√
2

Γ
(

ν
2

)√
ν + 1

(
1 + x2/ν

)−(ν+1)/2

exp
(
−0.5(ν+1

ν )x2
) .

In this example, the quantity E[w(x)2] does not exist.

Table 2 contains the diagnostic tests for different values of the degrees of freedom and the

threshold. The performance of the tests are mostly in agreement with the results from the

normal experiment above. The Wald test is the most powerful and performs the best when

N is reasonably large. The difference in power between this test and the others is significant

when ν ≥ 20. Figure 2 plots the series of graphical diagnostics for two values of the degrees of

freedom. The recursive variance estimates easily detect problems when ν = 5 while ν = 20 also

appears doubtful. Problems created by large values of ν can be hard to recognize with plots,

making the combination of test statistics and graphical diagnostics valuable.

<INSERT FIGURE 2 HERE>

5 An illustration: stochastic volatility model

Stochastic volatility (SV) models have gained considerable interest in econometrics as a class of

models which allows volatility to change through time. These models are often stated in contin-

uous time and appear frequently in the option pricing literature. Ghysels, Harvey, and Renault

(1996) and Shephard (2005) review the literature on this topic from an econometric viewpoint.

The likelihood function for SV models is an integral than cannot be solved analytically but it can

3We believe we have implemented the same experiment as Monahan. A potential missprint in his paper may
imply an alternative normal importance density with variance (ν + 1)/ν rather than the importance density with
variance ν/(ν + 1) given here.
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be evaluated by Monte Carlo simulation. Papers that carry out maximum likelihood analysis

of SV models using importance sampling include Danielsson (1994), Shephard and Pitt (1997),

Durbin and Koopman (1997), Sandmann and Koopman (1998), Durham and Gallant (2002),

Durham (2003), Liesenfeld and Richard (2003), Brandt and Kang (2004), Durham (2006), Asai

and McAleer (2006), Richard and Zhang (2007), and Jungbacker and Koopman (2007).

The SV model we use to illustrate our discussion will be a discrete time, log-normal, uni-

variate SV model for a sequence of returns yt for t = 1, 2, ..., T . It can be thought of as an Euler

discretisation of a continuous time SV model where the spot volatility follows a log-normal

Ornstein-Uhlenbeck process (e.g. Hull and White (1987)). It is given by

yt = µy + exp(αt/2)εt,
αt+1 = µα + φ (αt − µα) + σηηt, α1 ∼ N{0, σ2

η/(1 − φ2)}, (14)

where the disturbances εt and ηt are independent of αt for t = 1, . . . , T . The unconditional

mean of the returns is given by µy while the mean of the log-volatility is µα. The degree of

volatility persistence is measured by the autoregressive parameter φ and the parameter ση is the

standard deviation of the disturbances to the log-volatility process. We will consider two cases

for εt. The first model, denoted by SV-N , assumes that εt ∼ N (0, 1) while the second model,

denoted SV-t, has εt ∼ tν where εt is scaled to have unit variance.

Both SV models require the estimation of the parameter vector Θ. Inference for the unknown

parameters will be based on f(y; Θ) where y = (y1, ..., yT )′. Clearly

f(y; Θ) =

∫

XT

f(y|α; Θ)f(α; Θ)dα, (15)

where α = (α1, ..., αT )′. The analytic form of f(y|α; Θ) and f(α; Θ) can be deduced from (14),

but the integral in (15) can only be solved numerically due to the non-Gaussian nature of the

model. Our approximation of f(y; Θ) by importance sampling is given by

f̂(y; Θ) =
1

N

N∑

i=1

wi, where wi = w(αi), (16)

with

w(α) =
f(y|α; Θ)f(α; Θ)

g(α|y; Θ)
and αi∼g(α|y; Θ).

It is assumed that g(α|y; Θ) is strictly positive for all α ∈ X T . We take the importance sampler

g(α|y; Θ) as the Laplace approximation to the posterior of α1, . . . , αT given the data y1, . . . , yT ;

see, e.g., Shephard and Pitt (1997) and Robert and Casella (2004, p. 107). The initial value of

α1 is a draw from the unconditional distribution of αt. The maximum likelihood estimator of

Θ is referred to as Θ̂. When maximising the log-likelihood function, we use N = 3, 000 draws

where the same underlying uniform random variables are used for each likelihood evaluation.

11
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In our empirical study we use the return series yt of daily Standard & Poor’s 500 stock index

closures. The historical return series is for the period 3rd January 1985 to 31st July 2007 and

was obtained from Yahoo Finance. Our sample consists of 5, 693 daily observations. Importance

sampling is being carried out over 5, 693 dimensions in this case. The continuously compounded

(raw) returns on the stock index are not adjusted for dividends and they are expressed in

percentage terms and therefore given by yt = 100(lnPt − lnPt−1) where Pt denotes the closing

price of the Standard & Poor’s 500 index on day t.

<INSERT TABLE 3 HERE>

5.1 Test statistics and graphical diagnostics

We start by considering the SV-N model whose estimated parameters are reported in Table 3

together with their 95% confidence intervals. We estimated both models on two different sample

sizes, the full sample and a smaller sample corresponding to 2nd January 2002 through 31st

July 2007. To illustrate our diagnostic procedure, we take the simulated maximum likelihood

estimate Θ = Θ̂ as fixed. Conditional on this estimate, we increase the simulation size from

N = 3, 000 to N+ = 100, 000 and produce a set of diagnostic graphs. The question we ask is

if the variance of the weights exists for Θ = Θ̂, basing the diagnostic graphics on these i.i.d.

100, 000 draws. The largest 100 importance weights are presented in Figure 3 together with a

histogram of the remaining 99, 900 smaller weights. The third graph presents recursive estimates

of the variance of the importance weights. The final graph presents estimates of ξ along with an

asymmetric 95% confidence interval for different thresholds u ranging from the largest 1 percent

to 50 percent of the N+ importance weights.

<INSERT FIGURE 3 HERE>

These diagnostic graphs provide evidence that the importance sampler is unreliable as they

indicate a maximum likelihood estimate of ξ which is larger than 0.5. The variance of the

importance weights does not exist for the SV-N model. This result is in line with the more

informal assessment given in Figure 3(iii). This records the recursive variance estimator, which

contains several large jumps. Standard asymptotics to measure the uncertainty of the importance

sampler’s estimate of the log-likelihood function is problematic in this case.

We now turn our attention to the empirically more interesting SV-t model and look at the

diagnostic graphs of the model with estimated parameters. The estimated parameter values are

provided in Table 3 and show a large improvement in the fit of the model over the full sample.

Figure 4 presents the same diagnostic graphs as in Figure 3. It is clear that these graphs indicate

a better behaved importance sampler. In particular, the estimated shape parameters provide

12
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evidence that two moments exist for the importance weights. When these diagnostic graphs are

compared with the same graphs for the estimated SV-N model, we conclude that the importance

sampler for the SV-t model is more reliable.

<INSERT FIGURE 4 HERE>

In Table 4, we present the test statistics for both SV models. The test statistics are computed

for two different thresholds where we have chosen u so that we have the 10,000 and 40,000 largest

weights, respectively. The score and t-value statistics are signed tests for the null hypothesis

H0 : ξ = 1
2 . We suspect that no variance exists for the importance weights when these tests

have significant positive values. Both tests are asymptotically standard normally distributed, so

having a 95% critical value of 1.64. The LR test follows an asymptotic 0.5
(
χ2

0 + χ2
1

)
distribution

with the 95% critical value 2.69.

<INSERT TABLE 4 HERE>

The results given in Table 4 are consistent across the choice of statistic. For the SV-N

model, the results are poor with all the statistics strongly rejecting the existence of a variance

for the full sample. As we reduce the number of observations and the dimension of the integral

decreases, the importance function for the SV-N begins to perform better. Table 4 also includes

test statistics computed from models estimated on roughly one-seventh the sample size (818

observations). At this point, the test statistics fail to reject the null hypothesis. Conversely, the

test statistics indicate that the importance function for the SV-t model has a finite variance for

all sample sizes.

The point estimates in Table 3 appear reasonable for the SV-N model, despite the fact

that the weight function has an infinite variance. We believe users should still proceed with

caution. Robert and Casella (2004, p. 95) emphasize that when the variance does not exist

the range of Monte Carlo estimates computed using different sequences of random numbers will

be enormous. For an SV model, this means that the estimated log-volatilities may be far from

the true, unobserved values. Robert (2007) demonstrates how an importance sampler with a

poorly chosen importance density can entirely miss-estimate the true log-volatilities for many

sequences of random numbers.

6 Conclusion

Importance sampling is increasingly used in econometrics to estimate likelihoods and to compute

moments of the posterior distribution in Bayesian analyses. Behind its use lies the assumption

that the variance of the importance sampling weights exists. In this paper, we have proposed test

13
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statistics and graphical diagnostics to check this assumption in high dimensional settings when

it is often difficult to evaluate analytically. We have applied our new tests on empirical problems

and find this assumption is often overturned. This suggests that this is an important problem

of which researchers should be aware. We hope that our methods will provide researchers with

a better understanding of when their importance samplers are reliable.
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N = 10, 000 N = 100, 000

score t LR Mtest M∗
test score t LR Mtest M∗

test

u = 0.55N
ǫ = 0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ǫ = 0.8 0.00 0.46 0.07 0.00 0.00 0.00 0.60 0.21 0.00 0.00
ǫ = 1.0 0.13 0.97 0.76 0.01 0.02 1.00 1.00 1.00 0.00 0.00
ǫ = 1.2 0.71 1.00 0.99 0.05 0.06 1.00 1.00 1.00 0.08 0.08
ǫ = 1.5 0.99 1.00 1.00 0.23 0.19 1.00 1.00 1.00 0.46 0.33
ǫ = 3.0 1.00 1.00 1.00 0.90 0.73 1.00 1.00 1.00 1.00 0.95
ǫ = 5.0 1.00 1.00 1.00 0.98 0.89 1.00 1.00 1.00 1.00 1.00

u = 0.50N
ǫ = 0.5 0.00 0.00 0.00 - - 0.00 0.00 0.00 - -
ǫ = 0.8 0.00 0.19 0.01 - - 0.00 0.02 0.00 - -
ǫ = 1.0 0.03 0.87 0.47 - - 0.93 1.00 0.99 - -
ǫ = 1.2 0.41 1.00 0.94 - - 1.00 1.00 1.00 - -
ǫ = 1.5 0.95 1.00 1.00 - - 1.00 1.00 1.00 - -
ǫ = 3.0 1.00 1.00 1.00 - - 1.00 1.00 1.00 - -
ǫ = 5.0 1.00 1.00 1.00 - - 1.00 1.00 1.00 - -

u = 0.40N
ǫ = 0.8 0.00 0.02 0.00 - - 0.00 0.00 0.00 - -
ǫ = 1.0 0.00 0.48 0.11 - - 0.02 0.83 0.42 - -
ǫ = 1.2 0.08 0.92 0.63 - - 0.99 1.00 1.00 - -
ǫ = 1.5 0.64 1.00 0.98 - - 1.00 1.00 1.00 - -
ǫ = 3.0 0.82 1.00 1.00 - - 1.00 1.00 1.00 - -
ǫ = 5.0 0.97 1.00 1.00 - - 1.00 1.00 1.00 - -

u = 0.30N
ǫ = 0.8 0.00 0.01 0.00 - - 0.00 0.00 0.00 - -
ǫ = 1.0 0.00 0.20 0.03 - - 0.00 0.10 0.01 - -
ǫ = 1.2 0.01 0.68 0.30 - - 0.55 0.99 0.97 - -
ǫ = 1.5 0.28 0.97 0.85 - - 1.00 1.00 1.00 - -
ǫ = 3.0 0.91 1.00 0.98 - - 1.00 1.00 1.00 - -
ǫ = 5.0 1.00 1.00 1.00 - - 1.00 1.00 1.00 - -

u = 0.10N
ǫ = 0.8 0.00 0.01 0.00 - - 0.00 0.00 0.00 - -
ǫ = 1.0 0.00 0.05 0.01 - - 0.00 0.00 0.00 - -
ǫ = 1.2 0.00 0.19 0.08 - - 0.01 0.37 0.22 - -
ǫ = 1.5 0.03 0.47 0.34 - - 0.72 0.98 0.99 - -
ǫ = 3.0 0.75 0.98 0.76 - - 1.00 1.00 1.00 - -
ǫ = 5.0 0.97 1.00 1.00 - - 1.00 1.00 1.00 - -

u = 0.01N
ǫ = 0.8 0.00 0.01 0.01 - - 0.00 0.00 0.00 - -
ǫ = 1.0 0.00 0.01 0.02 - - 0.00 0.00 0.01 - -
ǫ = 1.2 0.00 0.00 0.05 - - 0.00 0.00 0.08 - -
ǫ = 1.5 0.01 0.00 0.10 - - 0.04 0.00 0.37 - -
ǫ = 3.0 0.08 0.00 0.34 - - 0.81 0.01 0.99 - -
ǫ = 5.0 0.17 0.00 0.51 - - 0.98 0.02 1.00 - -

Table 1: Normal density experiment. Monte Carlo study for power and size with size α = 0.05.
Percentage of rejections of the null hypothesis computed from 10, 000 Monte Carlo replications.
The Mtest used k = 4N1/3 while M∗

test used k = 2N1/3.
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N = 10, 000 N = 100, 000

score t LR Mtest M∗
test score t LR Mtest M∗

test

u = 0.50N
ν = 1 1.00 1.00 1.00 0.97 0.88 1.00 1.00 1.00 1.00 1.00
ν = 2 1.00 1.00 1.00 0.87 0.75 1.00 1.00 1.00 1.00 0.99
ν = 5 1.00 1.00 1.00 0.19 0.26 1.00 1.00 1.00 0.84 0.76
ν = 20 1.00 1.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00
ν = 100 1.00 1.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00

u = 0.10N
ν = 1 0.98 1.00 1.00 - - 1.00 1.00 1.00 - -
ν = 2 0.89 1.00 1.00 - - 1.00 1.00 1.00 - -
ν = 5 0.37 1.00 0.87 - - 1.00 1.00 1.00 - -
ν = 20 0.00 0.50 0.05 - - 0.00 0.46 0.06 - -
ν = 100 0.00 0.00 0.00 - - 0.00 0.00 0.00 - -

u = 0.01N
ν = 1 0.21 0.02 0.56 - - 1.00 0.90 1.00 - -
ν = 2 0.15 0.05 0.47 - - 0.97 0.84 1.00 - -
ν = 5 0.04 0.15 0.24 - - 0.49 0.78 0.91 - -
ν = 20 0.00 0.14 0.01 - - 0.00 0.02 0.00 - -
ν = 100 0.00 0.01 0.00 - - 0.00 0.00 0.00 - -

Table 2: Normal approximation to the Student’s t experiment. Monte Carlo study for power
with size α = 0.05. Percentage of rejections of the null hypothesis computed from 10, 000 Monte
Carlo replications. The Mtest used k = 4N1/3 while M∗

test used k = 2N1/3.
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Stochastic volatility model
full sample 1/3 sample

SV-N SV-t SV-N SV-t

µy 0.0662 0.0636 0.0472 0.0481
(0.0470 0.0854) (0.0448 0.0825) (0.0090 0.0854) (0.0097 0.0864)

φ 0.983 0.993 0.993 0.994
(0.978 0.987) (0.988 0.996) (0.981 0.997) (0.981 0.998)

ση 0.0226 0.0077 0.0088 0.007
(0.0183 0.0278) (0.0050 0.0120) (0.0044 0.0177) (0.0033 0.0161)

µα -0.367 -0.309 -0.434 -0.402
(−0.600 −0.135) (−0.663 0.0459) (−1.125 0.258) (−1.258 0.454)

ν - 7.79 - 24.68
(6.35 9.71) (6.40 118.79)

log-like -7,270.0 -7,222.8 -1,743.7 -1,742.4

Table 3: Simulated maximum likelihood estimates of the parameters of the two SV models. The
values in parentheses give the asymptotic (asymmetric) 95% confidence intervals.
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Stochastic volatility model
full sample 1/3 sample 1/7 sample

SV-N SV-t SV-N SV-t SV-N SV-t

u = 0.4N
score 128.44 -10.42 17.09 -16.87 -0.252 -21.80
t 1810.0 -27.29 44.44 -60.42 -0.577 -118.5
LR 20464.1 0 1078.0 0 0 0
Mtest 20.01 -3.83 0.061 -5.65 0.232 -8.15

u = 0.1N
score 38.33 -5.52 3.68 -7.42 -0.825 -9.49
t 59.51 -9.28 3.22 -21.01 -0.930 -49.01
LR 2755.6 0 57.46 0 0 0

Table 4: Likelihood based tests for the null of the existence of the variance of the importance
weights for two SV models estimated by simulated maximum likelihood. The 95% critical values
for the score, t, LR, and Mtest are 1.65, 1.65, 2.69, and 1.65 respectively. The Mtest was
computed using k = 4N1/3.
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Figure 1: Graphical diagnostics for the normal experiment. Top, middle, and bottom rows
represent ǫ = 0.5, 1.0, 1.2 respectively. The left hand side pictures are of the largest 100 weights,
the middle pictures are a histogram of the remaining weights and the right hand side shows a
recursive estimator of the variance of the weights. N = 100, 000 draws.
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Figure 2: Graphical diagnostics for the Student’s t/normal experiment. Top and bottom rows
represent ν = 5 and 20, respectively. The left hand side pictures are of the largest 100 weights,
the middle pictures are a histogram of the remaining weights and the right hand side shows a
recursive estimator of the variance of the weights. N = 100, 000 draws.
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Figure 3: Importance sampling diagnostic graphics for the SV-N model. (i) Largest 100 im-
portance weights; (ii) histogram of the remaining weights; (iii) recursive variance estimator of
the weights; (iv) estimated shape parameters with 95% confidence intervals (dotted lines) for 50
different thresholds going from the largest 1% to 50% of the N+ weights.
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Figure 4: Importance sampling diagnostic graphics for the SV-t model. (i) Largest 100 impor-
tance weights; (ii) histogram of the remaining weights; (iii) recursive variance estimator of the
weights; (iv) estimated shape parameters with 95% confidence intervals (dotted lines) for 50
different thresholds going from the largest 1% to 50% of the N+ weights.


